Merge branch 'for-3.18-consistent-ops' of git://git.kernel.org/pub/scm/linux/kernel...
[cascardo/linux.git] / fs / f2fs / checkpoint.c
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include <trace/events/f2fs.h>
24
25 static struct kmem_cache *ino_entry_slab;
26 static struct kmem_cache *inode_entry_slab;
27
28 /*
29  * We guarantee no failure on the returned page.
30  */
31 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
32 {
33         struct address_space *mapping = META_MAPPING(sbi);
34         struct page *page = NULL;
35 repeat:
36         page = grab_cache_page(mapping, index);
37         if (!page) {
38                 cond_resched();
39                 goto repeat;
40         }
41         f2fs_wait_on_page_writeback(page, META);
42         SetPageUptodate(page);
43         return page;
44 }
45
46 /*
47  * We guarantee no failure on the returned page.
48  */
49 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
50 {
51         struct address_space *mapping = META_MAPPING(sbi);
52         struct page *page;
53 repeat:
54         page = grab_cache_page(mapping, index);
55         if (!page) {
56                 cond_resched();
57                 goto repeat;
58         }
59         if (PageUptodate(page))
60                 goto out;
61
62         if (f2fs_submit_page_bio(sbi, page, index,
63                                 READ_SYNC | REQ_META | REQ_PRIO))
64                 goto repeat;
65
66         lock_page(page);
67         if (unlikely(page->mapping != mapping)) {
68                 f2fs_put_page(page, 1);
69                 goto repeat;
70         }
71 out:
72         return page;
73 }
74
75 struct page *get_meta_page_ra(struct f2fs_sb_info *sbi, pgoff_t index)
76 {
77         bool readahead = false;
78         struct page *page;
79
80         page = find_get_page(META_MAPPING(sbi), index);
81         if (!page || (page && !PageUptodate(page)))
82                 readahead = true;
83         f2fs_put_page(page, 0);
84
85         if (readahead)
86                 ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR);
87         return get_meta_page(sbi, index);
88 }
89
90 static inline block_t get_max_meta_blks(struct f2fs_sb_info *sbi, int type)
91 {
92         switch (type) {
93         case META_NAT:
94                 return NM_I(sbi)->max_nid / NAT_ENTRY_PER_BLOCK;
95         case META_SIT:
96                 return SIT_BLK_CNT(sbi);
97         case META_SSA:
98         case META_CP:
99                 return 0;
100         case META_POR:
101                 return MAX_BLKADDR(sbi);
102         default:
103                 BUG();
104         }
105 }
106
107 /*
108  * Readahead CP/NAT/SIT/SSA pages
109  */
110 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, int type)
111 {
112         block_t prev_blk_addr = 0;
113         struct page *page;
114         block_t blkno = start;
115         block_t max_blks = get_max_meta_blks(sbi, type);
116
117         struct f2fs_io_info fio = {
118                 .type = META,
119                 .rw = READ_SYNC | REQ_META | REQ_PRIO
120         };
121
122         for (; nrpages-- > 0; blkno++) {
123                 block_t blk_addr;
124
125                 switch (type) {
126                 case META_NAT:
127                         /* get nat block addr */
128                         if (unlikely(blkno >= max_blks))
129                                 blkno = 0;
130                         blk_addr = current_nat_addr(sbi,
131                                         blkno * NAT_ENTRY_PER_BLOCK);
132                         break;
133                 case META_SIT:
134                         /* get sit block addr */
135                         if (unlikely(blkno >= max_blks))
136                                 goto out;
137                         blk_addr = current_sit_addr(sbi,
138                                         blkno * SIT_ENTRY_PER_BLOCK);
139                         if (blkno != start && prev_blk_addr + 1 != blk_addr)
140                                 goto out;
141                         prev_blk_addr = blk_addr;
142                         break;
143                 case META_SSA:
144                 case META_CP:
145                 case META_POR:
146                         if (unlikely(blkno >= max_blks))
147                                 goto out;
148                         if (unlikely(blkno < SEG0_BLKADDR(sbi)))
149                                 goto out;
150                         blk_addr = blkno;
151                         break;
152                 default:
153                         BUG();
154                 }
155
156                 page = grab_cache_page(META_MAPPING(sbi), blk_addr);
157                 if (!page)
158                         continue;
159                 if (PageUptodate(page)) {
160                         f2fs_put_page(page, 1);
161                         continue;
162                 }
163
164                 f2fs_submit_page_mbio(sbi, page, blk_addr, &fio);
165                 f2fs_put_page(page, 0);
166         }
167 out:
168         f2fs_submit_merged_bio(sbi, META, READ);
169         return blkno - start;
170 }
171
172 static int f2fs_write_meta_page(struct page *page,
173                                 struct writeback_control *wbc)
174 {
175         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
176
177         trace_f2fs_writepage(page, META);
178
179         if (unlikely(sbi->por_doing))
180                 goto redirty_out;
181         if (wbc->for_reclaim)
182                 goto redirty_out;
183         if (unlikely(f2fs_cp_error(sbi)))
184                 goto redirty_out;
185
186         f2fs_wait_on_page_writeback(page, META);
187         write_meta_page(sbi, page);
188         dec_page_count(sbi, F2FS_DIRTY_META);
189         unlock_page(page);
190         return 0;
191
192 redirty_out:
193         redirty_page_for_writepage(wbc, page);
194         return AOP_WRITEPAGE_ACTIVATE;
195 }
196
197 static int f2fs_write_meta_pages(struct address_space *mapping,
198                                 struct writeback_control *wbc)
199 {
200         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
201         long diff, written;
202
203         trace_f2fs_writepages(mapping->host, wbc, META);
204
205         /* collect a number of dirty meta pages and write together */
206         if (wbc->for_kupdate ||
207                 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
208                 goto skip_write;
209
210         /* if mounting is failed, skip writing node pages */
211         mutex_lock(&sbi->cp_mutex);
212         diff = nr_pages_to_write(sbi, META, wbc);
213         written = sync_meta_pages(sbi, META, wbc->nr_to_write);
214         mutex_unlock(&sbi->cp_mutex);
215         wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
216         return 0;
217
218 skip_write:
219         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
220         return 0;
221 }
222
223 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
224                                                 long nr_to_write)
225 {
226         struct address_space *mapping = META_MAPPING(sbi);
227         pgoff_t index = 0, end = LONG_MAX;
228         struct pagevec pvec;
229         long nwritten = 0;
230         struct writeback_control wbc = {
231                 .for_reclaim = 0,
232         };
233
234         pagevec_init(&pvec, 0);
235
236         while (index <= end) {
237                 int i, nr_pages;
238                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
239                                 PAGECACHE_TAG_DIRTY,
240                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
241                 if (unlikely(nr_pages == 0))
242                         break;
243
244                 for (i = 0; i < nr_pages; i++) {
245                         struct page *page = pvec.pages[i];
246
247                         lock_page(page);
248
249                         if (unlikely(page->mapping != mapping)) {
250 continue_unlock:
251                                 unlock_page(page);
252                                 continue;
253                         }
254                         if (!PageDirty(page)) {
255                                 /* someone wrote it for us */
256                                 goto continue_unlock;
257                         }
258
259                         if (!clear_page_dirty_for_io(page))
260                                 goto continue_unlock;
261
262                         if (f2fs_write_meta_page(page, &wbc)) {
263                                 unlock_page(page);
264                                 break;
265                         }
266                         nwritten++;
267                         if (unlikely(nwritten >= nr_to_write))
268                                 break;
269                 }
270                 pagevec_release(&pvec);
271                 cond_resched();
272         }
273
274         if (nwritten)
275                 f2fs_submit_merged_bio(sbi, type, WRITE);
276
277         return nwritten;
278 }
279
280 static int f2fs_set_meta_page_dirty(struct page *page)
281 {
282         trace_f2fs_set_page_dirty(page, META);
283
284         SetPageUptodate(page);
285         if (!PageDirty(page)) {
286                 __set_page_dirty_nobuffers(page);
287                 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
288                 return 1;
289         }
290         return 0;
291 }
292
293 const struct address_space_operations f2fs_meta_aops = {
294         .writepage      = f2fs_write_meta_page,
295         .writepages     = f2fs_write_meta_pages,
296         .set_page_dirty = f2fs_set_meta_page_dirty,
297 };
298
299 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
300 {
301         struct ino_entry *e;
302 retry:
303         spin_lock(&sbi->ino_lock[type]);
304
305         e = radix_tree_lookup(&sbi->ino_root[type], ino);
306         if (!e) {
307                 e = kmem_cache_alloc(ino_entry_slab, GFP_ATOMIC);
308                 if (!e) {
309                         spin_unlock(&sbi->ino_lock[type]);
310                         goto retry;
311                 }
312                 if (radix_tree_insert(&sbi->ino_root[type], ino, e)) {
313                         spin_unlock(&sbi->ino_lock[type]);
314                         kmem_cache_free(ino_entry_slab, e);
315                         goto retry;
316                 }
317                 memset(e, 0, sizeof(struct ino_entry));
318                 e->ino = ino;
319
320                 list_add_tail(&e->list, &sbi->ino_list[type]);
321         }
322         spin_unlock(&sbi->ino_lock[type]);
323 }
324
325 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
326 {
327         struct ino_entry *e;
328
329         spin_lock(&sbi->ino_lock[type]);
330         e = radix_tree_lookup(&sbi->ino_root[type], ino);
331         if (e) {
332                 list_del(&e->list);
333                 radix_tree_delete(&sbi->ino_root[type], ino);
334                 if (type == ORPHAN_INO)
335                         sbi->n_orphans--;
336                 spin_unlock(&sbi->ino_lock[type]);
337                 kmem_cache_free(ino_entry_slab, e);
338                 return;
339         }
340         spin_unlock(&sbi->ino_lock[type]);
341 }
342
343 void add_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
344 {
345         /* add new dirty ino entry into list */
346         __add_ino_entry(sbi, ino, type);
347 }
348
349 void remove_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
350 {
351         /* remove dirty ino entry from list */
352         __remove_ino_entry(sbi, ino, type);
353 }
354
355 /* mode should be APPEND_INO or UPDATE_INO */
356 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
357 {
358         struct ino_entry *e;
359         spin_lock(&sbi->ino_lock[mode]);
360         e = radix_tree_lookup(&sbi->ino_root[mode], ino);
361         spin_unlock(&sbi->ino_lock[mode]);
362         return e ? true : false;
363 }
364
365 void release_dirty_inode(struct f2fs_sb_info *sbi)
366 {
367         struct ino_entry *e, *tmp;
368         int i;
369
370         for (i = APPEND_INO; i <= UPDATE_INO; i++) {
371                 spin_lock(&sbi->ino_lock[i]);
372                 list_for_each_entry_safe(e, tmp, &sbi->ino_list[i], list) {
373                         list_del(&e->list);
374                         radix_tree_delete(&sbi->ino_root[i], e->ino);
375                         kmem_cache_free(ino_entry_slab, e);
376                 }
377                 spin_unlock(&sbi->ino_lock[i]);
378         }
379 }
380
381 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
382 {
383         int err = 0;
384
385         spin_lock(&sbi->ino_lock[ORPHAN_INO]);
386         if (unlikely(sbi->n_orphans >= sbi->max_orphans))
387                 err = -ENOSPC;
388         else
389                 sbi->n_orphans++;
390         spin_unlock(&sbi->ino_lock[ORPHAN_INO]);
391
392         return err;
393 }
394
395 void release_orphan_inode(struct f2fs_sb_info *sbi)
396 {
397         spin_lock(&sbi->ino_lock[ORPHAN_INO]);
398         f2fs_bug_on(sbi, sbi->n_orphans == 0);
399         sbi->n_orphans--;
400         spin_unlock(&sbi->ino_lock[ORPHAN_INO]);
401 }
402
403 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
404 {
405         /* add new orphan ino entry into list */
406         __add_ino_entry(sbi, ino, ORPHAN_INO);
407 }
408
409 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
410 {
411         /* remove orphan entry from orphan list */
412         __remove_ino_entry(sbi, ino, ORPHAN_INO);
413 }
414
415 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
416 {
417         struct inode *inode = f2fs_iget(sbi->sb, ino);
418         f2fs_bug_on(sbi, IS_ERR(inode));
419         clear_nlink(inode);
420
421         /* truncate all the data during iput */
422         iput(inode);
423 }
424
425 void recover_orphan_inodes(struct f2fs_sb_info *sbi)
426 {
427         block_t start_blk, orphan_blkaddr, i, j;
428
429         if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
430                 return;
431
432         sbi->por_doing = true;
433
434         start_blk = __start_cp_addr(sbi) + 1 +
435                 le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
436         orphan_blkaddr = __start_sum_addr(sbi) - 1;
437
438         ra_meta_pages(sbi, start_blk, orphan_blkaddr, META_CP);
439
440         for (i = 0; i < orphan_blkaddr; i++) {
441                 struct page *page = get_meta_page(sbi, start_blk + i);
442                 struct f2fs_orphan_block *orphan_blk;
443
444                 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
445                 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
446                         nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
447                         recover_orphan_inode(sbi, ino);
448                 }
449                 f2fs_put_page(page, 1);
450         }
451         /* clear Orphan Flag */
452         clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
453         sbi->por_doing = false;
454         return;
455 }
456
457 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
458 {
459         struct list_head *head;
460         struct f2fs_orphan_block *orphan_blk = NULL;
461         unsigned int nentries = 0;
462         unsigned short index;
463         unsigned short orphan_blocks =
464                         (unsigned short)GET_ORPHAN_BLOCKS(sbi->n_orphans);
465         struct page *page = NULL;
466         struct ino_entry *orphan = NULL;
467
468         for (index = 0; index < orphan_blocks; index++)
469                 grab_meta_page(sbi, start_blk + index);
470
471         index = 1;
472         spin_lock(&sbi->ino_lock[ORPHAN_INO]);
473         head = &sbi->ino_list[ORPHAN_INO];
474
475         /* loop for each orphan inode entry and write them in Jornal block */
476         list_for_each_entry(orphan, head, list) {
477                 if (!page) {
478                         page = find_get_page(META_MAPPING(sbi), start_blk++);
479                         f2fs_bug_on(sbi, !page);
480                         orphan_blk =
481                                 (struct f2fs_orphan_block *)page_address(page);
482                         memset(orphan_blk, 0, sizeof(*orphan_blk));
483                         f2fs_put_page(page, 0);
484                 }
485
486                 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
487
488                 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
489                         /*
490                          * an orphan block is full of 1020 entries,
491                          * then we need to flush current orphan blocks
492                          * and bring another one in memory
493                          */
494                         orphan_blk->blk_addr = cpu_to_le16(index);
495                         orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
496                         orphan_blk->entry_count = cpu_to_le32(nentries);
497                         set_page_dirty(page);
498                         f2fs_put_page(page, 1);
499                         index++;
500                         nentries = 0;
501                         page = NULL;
502                 }
503         }
504
505         if (page) {
506                 orphan_blk->blk_addr = cpu_to_le16(index);
507                 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
508                 orphan_blk->entry_count = cpu_to_le32(nentries);
509                 set_page_dirty(page);
510                 f2fs_put_page(page, 1);
511         }
512
513         spin_unlock(&sbi->ino_lock[ORPHAN_INO]);
514 }
515
516 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
517                                 block_t cp_addr, unsigned long long *version)
518 {
519         struct page *cp_page_1, *cp_page_2 = NULL;
520         unsigned long blk_size = sbi->blocksize;
521         struct f2fs_checkpoint *cp_block;
522         unsigned long long cur_version = 0, pre_version = 0;
523         size_t crc_offset;
524         __u32 crc = 0;
525
526         /* Read the 1st cp block in this CP pack */
527         cp_page_1 = get_meta_page(sbi, cp_addr);
528
529         /* get the version number */
530         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
531         crc_offset = le32_to_cpu(cp_block->checksum_offset);
532         if (crc_offset >= blk_size)
533                 goto invalid_cp1;
534
535         crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
536         if (!f2fs_crc_valid(crc, cp_block, crc_offset))
537                 goto invalid_cp1;
538
539         pre_version = cur_cp_version(cp_block);
540
541         /* Read the 2nd cp block in this CP pack */
542         cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
543         cp_page_2 = get_meta_page(sbi, cp_addr);
544
545         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
546         crc_offset = le32_to_cpu(cp_block->checksum_offset);
547         if (crc_offset >= blk_size)
548                 goto invalid_cp2;
549
550         crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
551         if (!f2fs_crc_valid(crc, cp_block, crc_offset))
552                 goto invalid_cp2;
553
554         cur_version = cur_cp_version(cp_block);
555
556         if (cur_version == pre_version) {
557                 *version = cur_version;
558                 f2fs_put_page(cp_page_2, 1);
559                 return cp_page_1;
560         }
561 invalid_cp2:
562         f2fs_put_page(cp_page_2, 1);
563 invalid_cp1:
564         f2fs_put_page(cp_page_1, 1);
565         return NULL;
566 }
567
568 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
569 {
570         struct f2fs_checkpoint *cp_block;
571         struct f2fs_super_block *fsb = sbi->raw_super;
572         struct page *cp1, *cp2, *cur_page;
573         unsigned long blk_size = sbi->blocksize;
574         unsigned long long cp1_version = 0, cp2_version = 0;
575         unsigned long long cp_start_blk_no;
576         unsigned int cp_blks = 1 + le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
577         block_t cp_blk_no;
578         int i;
579
580         sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
581         if (!sbi->ckpt)
582                 return -ENOMEM;
583         /*
584          * Finding out valid cp block involves read both
585          * sets( cp pack1 and cp pack 2)
586          */
587         cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
588         cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
589
590         /* The second checkpoint pack should start at the next segment */
591         cp_start_blk_no += ((unsigned long long)1) <<
592                                 le32_to_cpu(fsb->log_blocks_per_seg);
593         cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
594
595         if (cp1 && cp2) {
596                 if (ver_after(cp2_version, cp1_version))
597                         cur_page = cp2;
598                 else
599                         cur_page = cp1;
600         } else if (cp1) {
601                 cur_page = cp1;
602         } else if (cp2) {
603                 cur_page = cp2;
604         } else {
605                 goto fail_no_cp;
606         }
607
608         cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
609         memcpy(sbi->ckpt, cp_block, blk_size);
610
611         if (cp_blks <= 1)
612                 goto done;
613
614         cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
615         if (cur_page == cp2)
616                 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
617
618         for (i = 1; i < cp_blks; i++) {
619                 void *sit_bitmap_ptr;
620                 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
621
622                 cur_page = get_meta_page(sbi, cp_blk_no + i);
623                 sit_bitmap_ptr = page_address(cur_page);
624                 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
625                 f2fs_put_page(cur_page, 1);
626         }
627 done:
628         f2fs_put_page(cp1, 1);
629         f2fs_put_page(cp2, 1);
630         return 0;
631
632 fail_no_cp:
633         kfree(sbi->ckpt);
634         return -EINVAL;
635 }
636
637 static int __add_dirty_inode(struct inode *inode, struct dir_inode_entry *new)
638 {
639         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
640
641         if (is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR))
642                 return -EEXIST;
643
644         set_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
645         F2FS_I(inode)->dirty_dir = new;
646         list_add_tail(&new->list, &sbi->dir_inode_list);
647         stat_inc_dirty_dir(sbi);
648         return 0;
649 }
650
651 void update_dirty_page(struct inode *inode, struct page *page)
652 {
653         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
654         struct dir_inode_entry *new;
655         int ret = 0;
656
657         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode))
658                 return;
659
660         if (!S_ISDIR(inode->i_mode)) {
661                 inode_inc_dirty_pages(inode);
662                 goto out;
663         }
664
665         new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
666         new->inode = inode;
667         INIT_LIST_HEAD(&new->list);
668
669         spin_lock(&sbi->dir_inode_lock);
670         ret = __add_dirty_inode(inode, new);
671         inode_inc_dirty_pages(inode);
672         spin_unlock(&sbi->dir_inode_lock);
673
674         if (ret)
675                 kmem_cache_free(inode_entry_slab, new);
676 out:
677         SetPagePrivate(page);
678 }
679
680 void add_dirty_dir_inode(struct inode *inode)
681 {
682         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
683         struct dir_inode_entry *new =
684                         f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
685         int ret = 0;
686
687         new->inode = inode;
688         INIT_LIST_HEAD(&new->list);
689
690         spin_lock(&sbi->dir_inode_lock);
691         ret = __add_dirty_inode(inode, new);
692         spin_unlock(&sbi->dir_inode_lock);
693
694         if (ret)
695                 kmem_cache_free(inode_entry_slab, new);
696 }
697
698 void remove_dirty_dir_inode(struct inode *inode)
699 {
700         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
701         struct dir_inode_entry *entry;
702
703         if (!S_ISDIR(inode->i_mode))
704                 return;
705
706         spin_lock(&sbi->dir_inode_lock);
707         if (get_dirty_pages(inode) ||
708                         !is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) {
709                 spin_unlock(&sbi->dir_inode_lock);
710                 return;
711         }
712
713         entry = F2FS_I(inode)->dirty_dir;
714         list_del(&entry->list);
715         F2FS_I(inode)->dirty_dir = NULL;
716         clear_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
717         stat_dec_dirty_dir(sbi);
718         spin_unlock(&sbi->dir_inode_lock);
719         kmem_cache_free(inode_entry_slab, entry);
720
721         /* Only from the recovery routine */
722         if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
723                 clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
724                 iput(inode);
725         }
726 }
727
728 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
729 {
730         struct list_head *head;
731         struct dir_inode_entry *entry;
732         struct inode *inode;
733 retry:
734         spin_lock(&sbi->dir_inode_lock);
735
736         head = &sbi->dir_inode_list;
737         if (list_empty(head)) {
738                 spin_unlock(&sbi->dir_inode_lock);
739                 return;
740         }
741         entry = list_entry(head->next, struct dir_inode_entry, list);
742         inode = igrab(entry->inode);
743         spin_unlock(&sbi->dir_inode_lock);
744         if (inode) {
745                 filemap_fdatawrite(inode->i_mapping);
746                 iput(inode);
747         } else {
748                 /*
749                  * We should submit bio, since it exists several
750                  * wribacking dentry pages in the freeing inode.
751                  */
752                 f2fs_submit_merged_bio(sbi, DATA, WRITE);
753         }
754         goto retry;
755 }
756
757 /*
758  * Freeze all the FS-operations for checkpoint.
759  */
760 static int block_operations(struct f2fs_sb_info *sbi)
761 {
762         struct writeback_control wbc = {
763                 .sync_mode = WB_SYNC_ALL,
764                 .nr_to_write = LONG_MAX,
765                 .for_reclaim = 0,
766         };
767         struct blk_plug plug;
768         int err = 0;
769
770         blk_start_plug(&plug);
771
772 retry_flush_dents:
773         f2fs_lock_all(sbi);
774         /* write all the dirty dentry pages */
775         if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
776                 f2fs_unlock_all(sbi);
777                 sync_dirty_dir_inodes(sbi);
778                 if (unlikely(f2fs_cp_error(sbi))) {
779                         err = -EIO;
780                         goto out;
781                 }
782                 goto retry_flush_dents;
783         }
784
785         /*
786          * POR: we should ensure that there are no dirty node pages
787          * until finishing nat/sit flush.
788          */
789 retry_flush_nodes:
790         down_write(&sbi->node_write);
791
792         if (get_pages(sbi, F2FS_DIRTY_NODES)) {
793                 up_write(&sbi->node_write);
794                 sync_node_pages(sbi, 0, &wbc);
795                 if (unlikely(f2fs_cp_error(sbi))) {
796                         f2fs_unlock_all(sbi);
797                         err = -EIO;
798                         goto out;
799                 }
800                 goto retry_flush_nodes;
801         }
802 out:
803         blk_finish_plug(&plug);
804         return err;
805 }
806
807 static void unblock_operations(struct f2fs_sb_info *sbi)
808 {
809         up_write(&sbi->node_write);
810         f2fs_unlock_all(sbi);
811 }
812
813 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
814 {
815         DEFINE_WAIT(wait);
816
817         for (;;) {
818                 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
819
820                 if (!get_pages(sbi, F2FS_WRITEBACK))
821                         break;
822
823                 io_schedule();
824         }
825         finish_wait(&sbi->cp_wait, &wait);
826 }
827
828 static void do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
829 {
830         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
831         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
832         struct f2fs_nm_info *nm_i = NM_I(sbi);
833         nid_t last_nid = nm_i->next_scan_nid;
834         block_t start_blk;
835         struct page *cp_page;
836         unsigned int data_sum_blocks, orphan_blocks;
837         __u32 crc32 = 0;
838         void *kaddr;
839         int i;
840         int cp_payload_blks = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
841
842         /*
843          * This avoids to conduct wrong roll-forward operations and uses
844          * metapages, so should be called prior to sync_meta_pages below.
845          */
846         discard_next_dnode(sbi, NEXT_FREE_BLKADDR(sbi, curseg));
847
848         /* Flush all the NAT/SIT pages */
849         while (get_pages(sbi, F2FS_DIRTY_META)) {
850                 sync_meta_pages(sbi, META, LONG_MAX);
851                 if (unlikely(f2fs_cp_error(sbi)))
852                         return;
853         }
854
855         next_free_nid(sbi, &last_nid);
856
857         /*
858          * modify checkpoint
859          * version number is already updated
860          */
861         ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
862         ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
863         ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
864         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
865                 ckpt->cur_node_segno[i] =
866                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
867                 ckpt->cur_node_blkoff[i] =
868                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
869                 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
870                                 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
871         }
872         for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
873                 ckpt->cur_data_segno[i] =
874                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
875                 ckpt->cur_data_blkoff[i] =
876                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
877                 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
878                                 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
879         }
880
881         ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
882         ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
883         ckpt->next_free_nid = cpu_to_le32(last_nid);
884
885         /* 2 cp  + n data seg summary + orphan inode blocks */
886         data_sum_blocks = npages_for_summary_flush(sbi);
887         if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
888                 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
889         else
890                 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
891
892         orphan_blocks = GET_ORPHAN_BLOCKS(sbi->n_orphans);
893         ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
894                         orphan_blocks);
895
896         if (cpc->reason == CP_UMOUNT) {
897                 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
898                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
899                                 cp_payload_blks + data_sum_blocks +
900                                 orphan_blocks + NR_CURSEG_NODE_TYPE);
901         } else {
902                 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
903                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
904                                 cp_payload_blks + data_sum_blocks +
905                                 orphan_blocks);
906         }
907
908         if (sbi->n_orphans)
909                 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
910         else
911                 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
912
913         if (sbi->need_fsck)
914                 set_ckpt_flags(ckpt, CP_FSCK_FLAG);
915
916         /* update SIT/NAT bitmap */
917         get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
918         get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
919
920         crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
921         *((__le32 *)((unsigned char *)ckpt +
922                                 le32_to_cpu(ckpt->checksum_offset)))
923                                 = cpu_to_le32(crc32);
924
925         start_blk = __start_cp_addr(sbi);
926
927         /* write out checkpoint buffer at block 0 */
928         cp_page = grab_meta_page(sbi, start_blk++);
929         kaddr = page_address(cp_page);
930         memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
931         set_page_dirty(cp_page);
932         f2fs_put_page(cp_page, 1);
933
934         for (i = 1; i < 1 + cp_payload_blks; i++) {
935                 cp_page = grab_meta_page(sbi, start_blk++);
936                 kaddr = page_address(cp_page);
937                 memcpy(kaddr, (char *)ckpt + i * F2FS_BLKSIZE,
938                                 (1 << sbi->log_blocksize));
939                 set_page_dirty(cp_page);
940                 f2fs_put_page(cp_page, 1);
941         }
942
943         if (sbi->n_orphans) {
944                 write_orphan_inodes(sbi, start_blk);
945                 start_blk += orphan_blocks;
946         }
947
948         write_data_summaries(sbi, start_blk);
949         start_blk += data_sum_blocks;
950         if (cpc->reason == CP_UMOUNT) {
951                 write_node_summaries(sbi, start_blk);
952                 start_blk += NR_CURSEG_NODE_TYPE;
953         }
954
955         /* writeout checkpoint block */
956         cp_page = grab_meta_page(sbi, start_blk);
957         kaddr = page_address(cp_page);
958         memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
959         set_page_dirty(cp_page);
960         f2fs_put_page(cp_page, 1);
961
962         /* wait for previous submitted node/meta pages writeback */
963         wait_on_all_pages_writeback(sbi);
964
965         if (unlikely(f2fs_cp_error(sbi)))
966                 return;
967
968         filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX);
969         filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX);
970
971         /* update user_block_counts */
972         sbi->last_valid_block_count = sbi->total_valid_block_count;
973         sbi->alloc_valid_block_count = 0;
974
975         /* Here, we only have one bio having CP pack */
976         sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
977
978         release_dirty_inode(sbi);
979
980         if (unlikely(f2fs_cp_error(sbi)))
981                 return;
982
983         clear_prefree_segments(sbi);
984         F2FS_RESET_SB_DIRT(sbi);
985 }
986
987 /*
988  * We guarantee that this checkpoint procedure will not fail.
989  */
990 void write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
991 {
992         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
993         unsigned long long ckpt_ver;
994
995         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
996
997         mutex_lock(&sbi->cp_mutex);
998
999         if (!sbi->s_dirty && cpc->reason != CP_DISCARD)
1000                 goto out;
1001         if (unlikely(f2fs_cp_error(sbi)))
1002                 goto out;
1003         if (block_operations(sbi))
1004                 goto out;
1005
1006         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1007
1008         f2fs_submit_merged_bio(sbi, DATA, WRITE);
1009         f2fs_submit_merged_bio(sbi, NODE, WRITE);
1010         f2fs_submit_merged_bio(sbi, META, WRITE);
1011
1012         /*
1013          * update checkpoint pack index
1014          * Increase the version number so that
1015          * SIT entries and seg summaries are written at correct place
1016          */
1017         ckpt_ver = cur_cp_version(ckpt);
1018         ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1019
1020         /* write cached NAT/SIT entries to NAT/SIT area */
1021         flush_nat_entries(sbi);
1022         flush_sit_entries(sbi, cpc);
1023
1024         /* unlock all the fs_lock[] in do_checkpoint() */
1025         do_checkpoint(sbi, cpc);
1026
1027         unblock_operations(sbi);
1028         stat_inc_cp_count(sbi->stat_info);
1029 out:
1030         mutex_unlock(&sbi->cp_mutex);
1031         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1032 }
1033
1034 void init_ino_entry_info(struct f2fs_sb_info *sbi)
1035 {
1036         int i;
1037
1038         for (i = 0; i < MAX_INO_ENTRY; i++) {
1039                 INIT_RADIX_TREE(&sbi->ino_root[i], GFP_ATOMIC);
1040                 spin_lock_init(&sbi->ino_lock[i]);
1041                 INIT_LIST_HEAD(&sbi->ino_list[i]);
1042         }
1043
1044         /*
1045          * considering 512 blocks in a segment 8 blocks are needed for cp
1046          * and log segment summaries. Remaining blocks are used to keep
1047          * orphan entries with the limitation one reserved segment
1048          * for cp pack we can have max 1020*504 orphan entries
1049          */
1050         sbi->n_orphans = 0;
1051         sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1052                         NR_CURSEG_TYPE) * F2FS_ORPHANS_PER_BLOCK;
1053 }
1054
1055 int __init create_checkpoint_caches(void)
1056 {
1057         ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1058                         sizeof(struct ino_entry));
1059         if (!ino_entry_slab)
1060                 return -ENOMEM;
1061         inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
1062                         sizeof(struct dir_inode_entry));
1063         if (!inode_entry_slab) {
1064                 kmem_cache_destroy(ino_entry_slab);
1065                 return -ENOMEM;
1066         }
1067         return 0;
1068 }
1069
1070 void destroy_checkpoint_caches(void)
1071 {
1072         kmem_cache_destroy(ino_entry_slab);
1073         kmem_cache_destroy(inode_entry_slab);
1074 }