f2fs: add customized migrate_page callback
[cascardo/linux.git] / fs / f2fs / checkpoint.c
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *inode_entry_slab;
28
29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
30 {
31         set_ckpt_flags(sbi, CP_ERROR_FLAG);
32         sbi->sb->s_flags |= MS_RDONLY;
33         if (!end_io)
34                 f2fs_flush_merged_bios(sbi);
35 }
36
37 /*
38  * We guarantee no failure on the returned page.
39  */
40 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
41 {
42         struct address_space *mapping = META_MAPPING(sbi);
43         struct page *page = NULL;
44 repeat:
45         page = f2fs_grab_cache_page(mapping, index, false);
46         if (!page) {
47                 cond_resched();
48                 goto repeat;
49         }
50         f2fs_wait_on_page_writeback(page, META, true);
51         if (!PageUptodate(page))
52                 SetPageUptodate(page);
53         return page;
54 }
55
56 /*
57  * We guarantee no failure on the returned page.
58  */
59 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
60                                                         bool is_meta)
61 {
62         struct address_space *mapping = META_MAPPING(sbi);
63         struct page *page;
64         struct f2fs_io_info fio = {
65                 .sbi = sbi,
66                 .type = META,
67                 .op = REQ_OP_READ,
68                 .op_flags = READ_SYNC | REQ_META | REQ_PRIO,
69                 .old_blkaddr = index,
70                 .new_blkaddr = index,
71                 .encrypted_page = NULL,
72         };
73
74         if (unlikely(!is_meta))
75                 fio.op_flags &= ~REQ_META;
76 repeat:
77         page = f2fs_grab_cache_page(mapping, index, false);
78         if (!page) {
79                 cond_resched();
80                 goto repeat;
81         }
82         if (PageUptodate(page))
83                 goto out;
84
85         fio.page = page;
86
87         if (f2fs_submit_page_bio(&fio)) {
88                 f2fs_put_page(page, 1);
89                 goto repeat;
90         }
91
92         lock_page(page);
93         if (unlikely(page->mapping != mapping)) {
94                 f2fs_put_page(page, 1);
95                 goto repeat;
96         }
97
98         /*
99          * if there is any IO error when accessing device, make our filesystem
100          * readonly and make sure do not write checkpoint with non-uptodate
101          * meta page.
102          */
103         if (unlikely(!PageUptodate(page)))
104                 f2fs_stop_checkpoint(sbi, false);
105 out:
106         return page;
107 }
108
109 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
110 {
111         return __get_meta_page(sbi, index, true);
112 }
113
114 /* for POR only */
115 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
116 {
117         return __get_meta_page(sbi, index, false);
118 }
119
120 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type)
121 {
122         switch (type) {
123         case META_NAT:
124                 break;
125         case META_SIT:
126                 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
127                         return false;
128                 break;
129         case META_SSA:
130                 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
131                         blkaddr < SM_I(sbi)->ssa_blkaddr))
132                         return false;
133                 break;
134         case META_CP:
135                 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
136                         blkaddr < __start_cp_addr(sbi)))
137                         return false;
138                 break;
139         case META_POR:
140                 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
141                         blkaddr < MAIN_BLKADDR(sbi)))
142                         return false;
143                 break;
144         default:
145                 BUG();
146         }
147
148         return true;
149 }
150
151 /*
152  * Readahead CP/NAT/SIT/SSA pages
153  */
154 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
155                                                         int type, bool sync)
156 {
157         struct page *page;
158         block_t blkno = start;
159         struct f2fs_io_info fio = {
160                 .sbi = sbi,
161                 .type = META,
162                 .op = REQ_OP_READ,
163                 .op_flags = sync ? (READ_SYNC | REQ_META | REQ_PRIO) : REQ_RAHEAD,
164                 .encrypted_page = NULL,
165         };
166         struct blk_plug plug;
167
168         if (unlikely(type == META_POR))
169                 fio.op_flags &= ~REQ_META;
170
171         blk_start_plug(&plug);
172         for (; nrpages-- > 0; blkno++) {
173
174                 if (!is_valid_blkaddr(sbi, blkno, type))
175                         goto out;
176
177                 switch (type) {
178                 case META_NAT:
179                         if (unlikely(blkno >=
180                                         NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
181                                 blkno = 0;
182                         /* get nat block addr */
183                         fio.new_blkaddr = current_nat_addr(sbi,
184                                         blkno * NAT_ENTRY_PER_BLOCK);
185                         break;
186                 case META_SIT:
187                         /* get sit block addr */
188                         fio.new_blkaddr = current_sit_addr(sbi,
189                                         blkno * SIT_ENTRY_PER_BLOCK);
190                         break;
191                 case META_SSA:
192                 case META_CP:
193                 case META_POR:
194                         fio.new_blkaddr = blkno;
195                         break;
196                 default:
197                         BUG();
198                 }
199
200                 page = f2fs_grab_cache_page(META_MAPPING(sbi),
201                                                 fio.new_blkaddr, false);
202                 if (!page)
203                         continue;
204                 if (PageUptodate(page)) {
205                         f2fs_put_page(page, 1);
206                         continue;
207                 }
208
209                 fio.page = page;
210                 fio.old_blkaddr = fio.new_blkaddr;
211                 f2fs_submit_page_mbio(&fio);
212                 f2fs_put_page(page, 0);
213         }
214 out:
215         f2fs_submit_merged_bio(sbi, META, READ);
216         blk_finish_plug(&plug);
217         return blkno - start;
218 }
219
220 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
221 {
222         struct page *page;
223         bool readahead = false;
224
225         page = find_get_page(META_MAPPING(sbi), index);
226         if (!page || !PageUptodate(page))
227                 readahead = true;
228         f2fs_put_page(page, 0);
229
230         if (readahead)
231                 ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR, true);
232 }
233
234 static int f2fs_write_meta_page(struct page *page,
235                                 struct writeback_control *wbc)
236 {
237         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
238
239         trace_f2fs_writepage(page, META);
240
241         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
242                 goto redirty_out;
243         if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
244                 goto redirty_out;
245         if (unlikely(f2fs_cp_error(sbi)))
246                 goto redirty_out;
247
248         write_meta_page(sbi, page);
249         dec_page_count(sbi, F2FS_DIRTY_META);
250
251         if (wbc->for_reclaim)
252                 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, META, WRITE);
253
254         unlock_page(page);
255
256         if (unlikely(f2fs_cp_error(sbi)))
257                 f2fs_submit_merged_bio(sbi, META, WRITE);
258
259         return 0;
260
261 redirty_out:
262         redirty_page_for_writepage(wbc, page);
263         return AOP_WRITEPAGE_ACTIVATE;
264 }
265
266 static int f2fs_write_meta_pages(struct address_space *mapping,
267                                 struct writeback_control *wbc)
268 {
269         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
270         struct blk_plug plug;
271         long diff, written;
272
273         /* collect a number of dirty meta pages and write together */
274         if (wbc->for_kupdate ||
275                 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
276                 goto skip_write;
277
278         trace_f2fs_writepages(mapping->host, wbc, META);
279
280         /* if mounting is failed, skip writing node pages */
281         mutex_lock(&sbi->cp_mutex);
282         diff = nr_pages_to_write(sbi, META, wbc);
283         blk_start_plug(&plug);
284         written = sync_meta_pages(sbi, META, wbc->nr_to_write);
285         blk_finish_plug(&plug);
286         mutex_unlock(&sbi->cp_mutex);
287         wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
288         return 0;
289
290 skip_write:
291         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
292         trace_f2fs_writepages(mapping->host, wbc, META);
293         return 0;
294 }
295
296 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
297                                                 long nr_to_write)
298 {
299         struct address_space *mapping = META_MAPPING(sbi);
300         pgoff_t index = 0, end = ULONG_MAX, prev = ULONG_MAX;
301         struct pagevec pvec;
302         long nwritten = 0;
303         struct writeback_control wbc = {
304                 .for_reclaim = 0,
305         };
306         struct blk_plug plug;
307
308         pagevec_init(&pvec, 0);
309
310         blk_start_plug(&plug);
311
312         while (index <= end) {
313                 int i, nr_pages;
314                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
315                                 PAGECACHE_TAG_DIRTY,
316                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
317                 if (unlikely(nr_pages == 0))
318                         break;
319
320                 for (i = 0; i < nr_pages; i++) {
321                         struct page *page = pvec.pages[i];
322
323                         if (prev == ULONG_MAX)
324                                 prev = page->index - 1;
325                         if (nr_to_write != LONG_MAX && page->index != prev + 1) {
326                                 pagevec_release(&pvec);
327                                 goto stop;
328                         }
329
330                         lock_page(page);
331
332                         if (unlikely(page->mapping != mapping)) {
333 continue_unlock:
334                                 unlock_page(page);
335                                 continue;
336                         }
337                         if (!PageDirty(page)) {
338                                 /* someone wrote it for us */
339                                 goto continue_unlock;
340                         }
341
342                         f2fs_wait_on_page_writeback(page, META, true);
343
344                         BUG_ON(PageWriteback(page));
345                         if (!clear_page_dirty_for_io(page))
346                                 goto continue_unlock;
347
348                         if (mapping->a_ops->writepage(page, &wbc)) {
349                                 unlock_page(page);
350                                 break;
351                         }
352                         nwritten++;
353                         prev = page->index;
354                         if (unlikely(nwritten >= nr_to_write))
355                                 break;
356                 }
357                 pagevec_release(&pvec);
358                 cond_resched();
359         }
360 stop:
361         if (nwritten)
362                 f2fs_submit_merged_bio(sbi, type, WRITE);
363
364         blk_finish_plug(&plug);
365
366         return nwritten;
367 }
368
369 static int f2fs_set_meta_page_dirty(struct page *page)
370 {
371         trace_f2fs_set_page_dirty(page, META);
372
373         if (!PageUptodate(page))
374                 SetPageUptodate(page);
375         if (!PageDirty(page)) {
376                 f2fs_set_page_dirty_nobuffers(page);
377                 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
378                 SetPagePrivate(page);
379                 f2fs_trace_pid(page);
380                 return 1;
381         }
382         return 0;
383 }
384
385 const struct address_space_operations f2fs_meta_aops = {
386         .writepage      = f2fs_write_meta_page,
387         .writepages     = f2fs_write_meta_pages,
388         .set_page_dirty = f2fs_set_meta_page_dirty,
389         .invalidatepage = f2fs_invalidate_page,
390         .releasepage    = f2fs_release_page,
391 #ifdef CONFIG_MIGRATION
392         .migratepage    = f2fs_migrate_page,
393 #endif
394 };
395
396 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
397 {
398         struct inode_management *im = &sbi->im[type];
399         struct ino_entry *e, *tmp;
400
401         tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
402 retry:
403         radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
404
405         spin_lock(&im->ino_lock);
406         e = radix_tree_lookup(&im->ino_root, ino);
407         if (!e) {
408                 e = tmp;
409                 if (radix_tree_insert(&im->ino_root, ino, e)) {
410                         spin_unlock(&im->ino_lock);
411                         radix_tree_preload_end();
412                         goto retry;
413                 }
414                 memset(e, 0, sizeof(struct ino_entry));
415                 e->ino = ino;
416
417                 list_add_tail(&e->list, &im->ino_list);
418                 if (type != ORPHAN_INO)
419                         im->ino_num++;
420         }
421         spin_unlock(&im->ino_lock);
422         radix_tree_preload_end();
423
424         if (e != tmp)
425                 kmem_cache_free(ino_entry_slab, tmp);
426 }
427
428 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
429 {
430         struct inode_management *im = &sbi->im[type];
431         struct ino_entry *e;
432
433         spin_lock(&im->ino_lock);
434         e = radix_tree_lookup(&im->ino_root, ino);
435         if (e) {
436                 list_del(&e->list);
437                 radix_tree_delete(&im->ino_root, ino);
438                 im->ino_num--;
439                 spin_unlock(&im->ino_lock);
440                 kmem_cache_free(ino_entry_slab, e);
441                 return;
442         }
443         spin_unlock(&im->ino_lock);
444 }
445
446 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
447 {
448         /* add new dirty ino entry into list */
449         __add_ino_entry(sbi, ino, type);
450 }
451
452 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
453 {
454         /* remove dirty ino entry from list */
455         __remove_ino_entry(sbi, ino, type);
456 }
457
458 /* mode should be APPEND_INO or UPDATE_INO */
459 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
460 {
461         struct inode_management *im = &sbi->im[mode];
462         struct ino_entry *e;
463
464         spin_lock(&im->ino_lock);
465         e = radix_tree_lookup(&im->ino_root, ino);
466         spin_unlock(&im->ino_lock);
467         return e ? true : false;
468 }
469
470 void release_ino_entry(struct f2fs_sb_info *sbi, bool all)
471 {
472         struct ino_entry *e, *tmp;
473         int i;
474
475         for (i = all ? ORPHAN_INO: APPEND_INO; i <= UPDATE_INO; i++) {
476                 struct inode_management *im = &sbi->im[i];
477
478                 spin_lock(&im->ino_lock);
479                 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
480                         list_del(&e->list);
481                         radix_tree_delete(&im->ino_root, e->ino);
482                         kmem_cache_free(ino_entry_slab, e);
483                         im->ino_num--;
484                 }
485                 spin_unlock(&im->ino_lock);
486         }
487 }
488
489 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
490 {
491         struct inode_management *im = &sbi->im[ORPHAN_INO];
492         int err = 0;
493
494         spin_lock(&im->ino_lock);
495
496 #ifdef CONFIG_F2FS_FAULT_INJECTION
497         if (time_to_inject(FAULT_ORPHAN)) {
498                 spin_unlock(&im->ino_lock);
499                 return -ENOSPC;
500         }
501 #endif
502         if (unlikely(im->ino_num >= sbi->max_orphans))
503                 err = -ENOSPC;
504         else
505                 im->ino_num++;
506         spin_unlock(&im->ino_lock);
507
508         return err;
509 }
510
511 void release_orphan_inode(struct f2fs_sb_info *sbi)
512 {
513         struct inode_management *im = &sbi->im[ORPHAN_INO];
514
515         spin_lock(&im->ino_lock);
516         f2fs_bug_on(sbi, im->ino_num == 0);
517         im->ino_num--;
518         spin_unlock(&im->ino_lock);
519 }
520
521 void add_orphan_inode(struct inode *inode)
522 {
523         /* add new orphan ino entry into list */
524         __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, ORPHAN_INO);
525         update_inode_page(inode);
526 }
527
528 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
529 {
530         /* remove orphan entry from orphan list */
531         __remove_ino_entry(sbi, ino, ORPHAN_INO);
532 }
533
534 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
535 {
536         struct inode *inode;
537         struct node_info ni;
538
539         inode = f2fs_iget_retry(sbi->sb, ino);
540         if (IS_ERR(inode)) {
541                 /*
542                  * there should be a bug that we can't find the entry
543                  * to orphan inode.
544                  */
545                 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
546                 return PTR_ERR(inode);
547         }
548
549         clear_nlink(inode);
550
551         /* truncate all the data during iput */
552         iput(inode);
553
554         get_node_info(sbi, ino, &ni);
555
556         /* ENOMEM was fully retried in f2fs_evict_inode. */
557         if (ni.blk_addr != NULL_ADDR) {
558                 int err = acquire_orphan_inode(sbi);
559
560                 if (err) {
561                         set_sbi_flag(sbi, SBI_NEED_FSCK);
562                         f2fs_msg(sbi->sb, KERN_WARNING,
563                                 "%s: orphan failed (ino=%x), run fsck to fix.",
564                                         __func__, ino);
565                         return err;
566                 }
567                 __add_ino_entry(sbi, ino, ORPHAN_INO);
568         }
569         return 0;
570 }
571
572 int recover_orphan_inodes(struct f2fs_sb_info *sbi)
573 {
574         block_t start_blk, orphan_blocks, i, j;
575         int err;
576
577         if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
578                 return 0;
579
580         start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
581         orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
582
583         ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
584
585         for (i = 0; i < orphan_blocks; i++) {
586                 struct page *page = get_meta_page(sbi, start_blk + i);
587                 struct f2fs_orphan_block *orphan_blk;
588
589                 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
590                 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
591                         nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
592                         err = recover_orphan_inode(sbi, ino);
593                         if (err) {
594                                 f2fs_put_page(page, 1);
595                                 return err;
596                         }
597                 }
598                 f2fs_put_page(page, 1);
599         }
600         /* clear Orphan Flag */
601         clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
602         return 0;
603 }
604
605 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
606 {
607         struct list_head *head;
608         struct f2fs_orphan_block *orphan_blk = NULL;
609         unsigned int nentries = 0;
610         unsigned short index = 1;
611         unsigned short orphan_blocks;
612         struct page *page = NULL;
613         struct ino_entry *orphan = NULL;
614         struct inode_management *im = &sbi->im[ORPHAN_INO];
615
616         orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
617
618         /*
619          * we don't need to do spin_lock(&im->ino_lock) here, since all the
620          * orphan inode operations are covered under f2fs_lock_op().
621          * And, spin_lock should be avoided due to page operations below.
622          */
623         head = &im->ino_list;
624
625         /* loop for each orphan inode entry and write them in Jornal block */
626         list_for_each_entry(orphan, head, list) {
627                 if (!page) {
628                         page = grab_meta_page(sbi, start_blk++);
629                         orphan_blk =
630                                 (struct f2fs_orphan_block *)page_address(page);
631                         memset(orphan_blk, 0, sizeof(*orphan_blk));
632                 }
633
634                 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
635
636                 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
637                         /*
638                          * an orphan block is full of 1020 entries,
639                          * then we need to flush current orphan blocks
640                          * and bring another one in memory
641                          */
642                         orphan_blk->blk_addr = cpu_to_le16(index);
643                         orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
644                         orphan_blk->entry_count = cpu_to_le32(nentries);
645                         set_page_dirty(page);
646                         f2fs_put_page(page, 1);
647                         index++;
648                         nentries = 0;
649                         page = NULL;
650                 }
651         }
652
653         if (page) {
654                 orphan_blk->blk_addr = cpu_to_le16(index);
655                 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
656                 orphan_blk->entry_count = cpu_to_le32(nentries);
657                 set_page_dirty(page);
658                 f2fs_put_page(page, 1);
659         }
660 }
661
662 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
663                                 block_t cp_addr, unsigned long long *version)
664 {
665         struct page *cp_page_1, *cp_page_2 = NULL;
666         unsigned long blk_size = sbi->blocksize;
667         struct f2fs_checkpoint *cp_block;
668         unsigned long long cur_version = 0, pre_version = 0;
669         size_t crc_offset;
670         __u32 crc = 0;
671
672         /* Read the 1st cp block in this CP pack */
673         cp_page_1 = get_meta_page(sbi, cp_addr);
674
675         /* get the version number */
676         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
677         crc_offset = le32_to_cpu(cp_block->checksum_offset);
678         if (crc_offset >= blk_size)
679                 goto invalid_cp1;
680
681         crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
682         if (!f2fs_crc_valid(sbi, crc, cp_block, crc_offset))
683                 goto invalid_cp1;
684
685         pre_version = cur_cp_version(cp_block);
686
687         /* Read the 2nd cp block in this CP pack */
688         cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
689         cp_page_2 = get_meta_page(sbi, cp_addr);
690
691         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
692         crc_offset = le32_to_cpu(cp_block->checksum_offset);
693         if (crc_offset >= blk_size)
694                 goto invalid_cp2;
695
696         crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
697         if (!f2fs_crc_valid(sbi, crc, cp_block, crc_offset))
698                 goto invalid_cp2;
699
700         cur_version = cur_cp_version(cp_block);
701
702         if (cur_version == pre_version) {
703                 *version = cur_version;
704                 f2fs_put_page(cp_page_2, 1);
705                 return cp_page_1;
706         }
707 invalid_cp2:
708         f2fs_put_page(cp_page_2, 1);
709 invalid_cp1:
710         f2fs_put_page(cp_page_1, 1);
711         return NULL;
712 }
713
714 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
715 {
716         struct f2fs_checkpoint *cp_block;
717         struct f2fs_super_block *fsb = sbi->raw_super;
718         struct page *cp1, *cp2, *cur_page;
719         unsigned long blk_size = sbi->blocksize;
720         unsigned long long cp1_version = 0, cp2_version = 0;
721         unsigned long long cp_start_blk_no;
722         unsigned int cp_blks = 1 + __cp_payload(sbi);
723         block_t cp_blk_no;
724         int i;
725
726         sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
727         if (!sbi->ckpt)
728                 return -ENOMEM;
729         /*
730          * Finding out valid cp block involves read both
731          * sets( cp pack1 and cp pack 2)
732          */
733         cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
734         cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
735
736         /* The second checkpoint pack should start at the next segment */
737         cp_start_blk_no += ((unsigned long long)1) <<
738                                 le32_to_cpu(fsb->log_blocks_per_seg);
739         cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
740
741         if (cp1 && cp2) {
742                 if (ver_after(cp2_version, cp1_version))
743                         cur_page = cp2;
744                 else
745                         cur_page = cp1;
746         } else if (cp1) {
747                 cur_page = cp1;
748         } else if (cp2) {
749                 cur_page = cp2;
750         } else {
751                 goto fail_no_cp;
752         }
753
754         cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
755         memcpy(sbi->ckpt, cp_block, blk_size);
756
757         /* Sanity checking of checkpoint */
758         if (sanity_check_ckpt(sbi))
759                 goto fail_no_cp;
760
761         if (cp_blks <= 1)
762                 goto done;
763
764         cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
765         if (cur_page == cp2)
766                 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
767
768         for (i = 1; i < cp_blks; i++) {
769                 void *sit_bitmap_ptr;
770                 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
771
772                 cur_page = get_meta_page(sbi, cp_blk_no + i);
773                 sit_bitmap_ptr = page_address(cur_page);
774                 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
775                 f2fs_put_page(cur_page, 1);
776         }
777 done:
778         f2fs_put_page(cp1, 1);
779         f2fs_put_page(cp2, 1);
780         return 0;
781
782 fail_no_cp:
783         kfree(sbi->ckpt);
784         return -EINVAL;
785 }
786
787 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
788 {
789         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
790         int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
791
792         if (is_inode_flag_set(inode, flag))
793                 return;
794
795         set_inode_flag(inode, flag);
796         list_add_tail(&F2FS_I(inode)->dirty_list, &sbi->inode_list[type]);
797         stat_inc_dirty_inode(sbi, type);
798 }
799
800 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
801 {
802         int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
803
804         if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
805                 return;
806
807         list_del_init(&F2FS_I(inode)->dirty_list);
808         clear_inode_flag(inode, flag);
809         stat_dec_dirty_inode(F2FS_I_SB(inode), type);
810 }
811
812 void update_dirty_page(struct inode *inode, struct page *page)
813 {
814         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
815         enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
816
817         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
818                         !S_ISLNK(inode->i_mode))
819                 return;
820
821         spin_lock(&sbi->inode_lock[type]);
822         if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
823                 __add_dirty_inode(inode, type);
824         inode_inc_dirty_pages(inode);
825         spin_unlock(&sbi->inode_lock[type]);
826
827         SetPagePrivate(page);
828         f2fs_trace_pid(page);
829 }
830
831 void remove_dirty_inode(struct inode *inode)
832 {
833         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
834         enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
835
836         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
837                         !S_ISLNK(inode->i_mode))
838                 return;
839
840         if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
841                 return;
842
843         spin_lock(&sbi->inode_lock[type]);
844         __remove_dirty_inode(inode, type);
845         spin_unlock(&sbi->inode_lock[type]);
846 }
847
848 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
849 {
850         struct list_head *head;
851         struct inode *inode;
852         struct f2fs_inode_info *fi;
853         bool is_dir = (type == DIR_INODE);
854
855         trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
856                                 get_pages(sbi, is_dir ?
857                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
858 retry:
859         if (unlikely(f2fs_cp_error(sbi)))
860                 return -EIO;
861
862         spin_lock(&sbi->inode_lock[type]);
863
864         head = &sbi->inode_list[type];
865         if (list_empty(head)) {
866                 spin_unlock(&sbi->inode_lock[type]);
867                 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
868                                 get_pages(sbi, is_dir ?
869                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
870                 return 0;
871         }
872         fi = list_entry(head->next, struct f2fs_inode_info, dirty_list);
873         inode = igrab(&fi->vfs_inode);
874         spin_unlock(&sbi->inode_lock[type]);
875         if (inode) {
876                 filemap_fdatawrite(inode->i_mapping);
877                 iput(inode);
878         } else {
879                 /*
880                  * We should submit bio, since it exists several
881                  * wribacking dentry pages in the freeing inode.
882                  */
883                 f2fs_submit_merged_bio(sbi, DATA, WRITE);
884                 cond_resched();
885         }
886         goto retry;
887 }
888
889 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
890 {
891         struct list_head *head = &sbi->inode_list[DIRTY_META];
892         struct inode *inode;
893         struct f2fs_inode_info *fi;
894         s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
895
896         while (total--) {
897                 if (unlikely(f2fs_cp_error(sbi)))
898                         return -EIO;
899
900                 spin_lock(&sbi->inode_lock[DIRTY_META]);
901                 if (list_empty(head)) {
902                         spin_unlock(&sbi->inode_lock[DIRTY_META]);
903                         return 0;
904                 }
905                 fi = list_entry(head->next, struct f2fs_inode_info,
906                                                         gdirty_list);
907                 inode = igrab(&fi->vfs_inode);
908                 spin_unlock(&sbi->inode_lock[DIRTY_META]);
909                 if (inode) {
910                         update_inode_page(inode);
911                         iput(inode);
912                 }
913         };
914         return 0;
915 }
916
917 /*
918  * Freeze all the FS-operations for checkpoint.
919  */
920 static int block_operations(struct f2fs_sb_info *sbi)
921 {
922         struct writeback_control wbc = {
923                 .sync_mode = WB_SYNC_ALL,
924                 .nr_to_write = LONG_MAX,
925                 .for_reclaim = 0,
926         };
927         struct blk_plug plug;
928         int err = 0;
929
930         blk_start_plug(&plug);
931
932 retry_flush_dents:
933         f2fs_lock_all(sbi);
934         /* write all the dirty dentry pages */
935         if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
936                 f2fs_unlock_all(sbi);
937                 err = sync_dirty_inodes(sbi, DIR_INODE);
938                 if (err)
939                         goto out;
940                 goto retry_flush_dents;
941         }
942
943         if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
944                 f2fs_unlock_all(sbi);
945                 err = f2fs_sync_inode_meta(sbi);
946                 if (err)
947                         goto out;
948                 goto retry_flush_dents;
949         }
950
951         /*
952          * POR: we should ensure that there are no dirty node pages
953          * until finishing nat/sit flush.
954          */
955 retry_flush_nodes:
956         down_write(&sbi->node_write);
957
958         if (get_pages(sbi, F2FS_DIRTY_NODES)) {
959                 up_write(&sbi->node_write);
960                 err = sync_node_pages(sbi, &wbc);
961                 if (err) {
962                         f2fs_unlock_all(sbi);
963                         goto out;
964                 }
965                 goto retry_flush_nodes;
966         }
967 out:
968         blk_finish_plug(&plug);
969         return err;
970 }
971
972 static void unblock_operations(struct f2fs_sb_info *sbi)
973 {
974         up_write(&sbi->node_write);
975
976         build_free_nids(sbi);
977         f2fs_unlock_all(sbi);
978 }
979
980 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
981 {
982         DEFINE_WAIT(wait);
983
984         for (;;) {
985                 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
986
987                 if (!atomic_read(&sbi->nr_wb_bios))
988                         break;
989
990                 io_schedule_timeout(5*HZ);
991         }
992         finish_wait(&sbi->cp_wait, &wait);
993 }
994
995 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
996 {
997         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
998         struct f2fs_nm_info *nm_i = NM_I(sbi);
999         unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1000         nid_t last_nid = nm_i->next_scan_nid;
1001         block_t start_blk;
1002         unsigned int data_sum_blocks, orphan_blocks;
1003         __u32 crc32 = 0;
1004         int i;
1005         int cp_payload_blks = __cp_payload(sbi);
1006         struct super_block *sb = sbi->sb;
1007         struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1008         u64 kbytes_written;
1009
1010         /* Flush all the NAT/SIT pages */
1011         while (get_pages(sbi, F2FS_DIRTY_META)) {
1012                 sync_meta_pages(sbi, META, LONG_MAX);
1013                 if (unlikely(f2fs_cp_error(sbi)))
1014                         return -EIO;
1015         }
1016
1017         next_free_nid(sbi, &last_nid);
1018
1019         /*
1020          * modify checkpoint
1021          * version number is already updated
1022          */
1023         ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
1024         ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
1025         ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1026         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1027                 ckpt->cur_node_segno[i] =
1028                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
1029                 ckpt->cur_node_blkoff[i] =
1030                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
1031                 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
1032                                 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
1033         }
1034         for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1035                 ckpt->cur_data_segno[i] =
1036                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
1037                 ckpt->cur_data_blkoff[i] =
1038                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
1039                 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
1040                                 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
1041         }
1042
1043         ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
1044         ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
1045         ckpt->next_free_nid = cpu_to_le32(last_nid);
1046
1047         /* 2 cp  + n data seg summary + orphan inode blocks */
1048         data_sum_blocks = npages_for_summary_flush(sbi, false);
1049         spin_lock(&sbi->cp_lock);
1050         if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1051                 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1052         else
1053                 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1054         spin_unlock(&sbi->cp_lock);
1055
1056         orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1057         ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1058                         orphan_blocks);
1059
1060         if (__remain_node_summaries(cpc->reason))
1061                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
1062                                 cp_payload_blks + data_sum_blocks +
1063                                 orphan_blocks + NR_CURSEG_NODE_TYPE);
1064         else
1065                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1066                                 cp_payload_blks + data_sum_blocks +
1067                                 orphan_blocks);
1068
1069         spin_lock(&sbi->cp_lock);
1070         if (cpc->reason == CP_UMOUNT)
1071                 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1072         else
1073                 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1074
1075         if (cpc->reason == CP_FASTBOOT)
1076                 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1077         else
1078                 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1079
1080         if (orphan_num)
1081                 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1082         else
1083                 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1084
1085         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1086                 __set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1087
1088         /* set this flag to activate crc|cp_ver for recovery */
1089         __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1090
1091         spin_unlock(&sbi->cp_lock);
1092
1093         /* update SIT/NAT bitmap */
1094         get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1095         get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1096
1097         crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset));
1098         *((__le32 *)((unsigned char *)ckpt +
1099                                 le32_to_cpu(ckpt->checksum_offset)))
1100                                 = cpu_to_le32(crc32);
1101
1102         start_blk = __start_cp_addr(sbi);
1103
1104         /* need to wait for end_io results */
1105         wait_on_all_pages_writeback(sbi);
1106         if (unlikely(f2fs_cp_error(sbi)))
1107                 return -EIO;
1108
1109         /* write out checkpoint buffer at block 0 */
1110         update_meta_page(sbi, ckpt, start_blk++);
1111
1112         for (i = 1; i < 1 + cp_payload_blks; i++)
1113                 update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1114                                                         start_blk++);
1115
1116         if (orphan_num) {
1117                 write_orphan_inodes(sbi, start_blk);
1118                 start_blk += orphan_blocks;
1119         }
1120
1121         write_data_summaries(sbi, start_blk);
1122         start_blk += data_sum_blocks;
1123
1124         /* Record write statistics in the hot node summary */
1125         kbytes_written = sbi->kbytes_written;
1126         if (sb->s_bdev->bd_part)
1127                 kbytes_written += BD_PART_WRITTEN(sbi);
1128
1129         seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1130
1131         if (__remain_node_summaries(cpc->reason)) {
1132                 write_node_summaries(sbi, start_blk);
1133                 start_blk += NR_CURSEG_NODE_TYPE;
1134         }
1135
1136         /* writeout checkpoint block */
1137         update_meta_page(sbi, ckpt, start_blk);
1138
1139         /* wait for previous submitted node/meta pages writeback */
1140         wait_on_all_pages_writeback(sbi);
1141
1142         if (unlikely(f2fs_cp_error(sbi)))
1143                 return -EIO;
1144
1145         filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LLONG_MAX);
1146         filemap_fdatawait_range(META_MAPPING(sbi), 0, LLONG_MAX);
1147
1148         /* update user_block_counts */
1149         sbi->last_valid_block_count = sbi->total_valid_block_count;
1150         percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1151
1152         /* Here, we only have one bio having CP pack */
1153         sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
1154
1155         /* wait for previous submitted meta pages writeback */
1156         wait_on_all_pages_writeback(sbi);
1157
1158         release_ino_entry(sbi, false);
1159
1160         if (unlikely(f2fs_cp_error(sbi)))
1161                 return -EIO;
1162
1163         clear_prefree_segments(sbi, cpc);
1164         clear_sbi_flag(sbi, SBI_IS_DIRTY);
1165         clear_sbi_flag(sbi, SBI_NEED_CP);
1166
1167         /*
1168          * redirty superblock if metadata like node page or inode cache is
1169          * updated during writing checkpoint.
1170          */
1171         if (get_pages(sbi, F2FS_DIRTY_NODES) ||
1172                         get_pages(sbi, F2FS_DIRTY_IMETA))
1173                 set_sbi_flag(sbi, SBI_IS_DIRTY);
1174
1175         f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1176
1177         return 0;
1178 }
1179
1180 /*
1181  * We guarantee that this checkpoint procedure will not fail.
1182  */
1183 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1184 {
1185         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1186         unsigned long long ckpt_ver;
1187         int err = 0;
1188
1189         mutex_lock(&sbi->cp_mutex);
1190
1191         if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1192                 (cpc->reason == CP_FASTBOOT || cpc->reason == CP_SYNC ||
1193                 (cpc->reason == CP_DISCARD && !sbi->discard_blks)))
1194                 goto out;
1195         if (unlikely(f2fs_cp_error(sbi))) {
1196                 err = -EIO;
1197                 goto out;
1198         }
1199         if (f2fs_readonly(sbi->sb)) {
1200                 err = -EROFS;
1201                 goto out;
1202         }
1203
1204         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1205
1206         err = block_operations(sbi);
1207         if (err)
1208                 goto out;
1209
1210         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1211
1212         f2fs_flush_merged_bios(sbi);
1213
1214         /* this is the case of multiple fstrims without any changes */
1215         if (cpc->reason == CP_DISCARD && !is_sbi_flag_set(sbi, SBI_IS_DIRTY)) {
1216                 f2fs_bug_on(sbi, NM_I(sbi)->dirty_nat_cnt);
1217                 f2fs_bug_on(sbi, SIT_I(sbi)->dirty_sentries);
1218                 f2fs_bug_on(sbi, prefree_segments(sbi));
1219                 flush_sit_entries(sbi, cpc);
1220                 clear_prefree_segments(sbi, cpc);
1221                 f2fs_wait_all_discard_bio(sbi);
1222                 unblock_operations(sbi);
1223                 goto out;
1224         }
1225
1226         /*
1227          * update checkpoint pack index
1228          * Increase the version number so that
1229          * SIT entries and seg summaries are written at correct place
1230          */
1231         ckpt_ver = cur_cp_version(ckpt);
1232         ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1233
1234         /* write cached NAT/SIT entries to NAT/SIT area */
1235         flush_nat_entries(sbi);
1236         flush_sit_entries(sbi, cpc);
1237
1238         /* unlock all the fs_lock[] in do_checkpoint() */
1239         err = do_checkpoint(sbi, cpc);
1240
1241         f2fs_wait_all_discard_bio(sbi);
1242
1243         unblock_operations(sbi);
1244         stat_inc_cp_count(sbi->stat_info);
1245
1246         if (cpc->reason == CP_RECOVERY)
1247                 f2fs_msg(sbi->sb, KERN_NOTICE,
1248                         "checkpoint: version = %llx", ckpt_ver);
1249
1250         /* do checkpoint periodically */
1251         f2fs_update_time(sbi, CP_TIME);
1252         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1253 out:
1254         mutex_unlock(&sbi->cp_mutex);
1255         return err;
1256 }
1257
1258 void init_ino_entry_info(struct f2fs_sb_info *sbi)
1259 {
1260         int i;
1261
1262         for (i = 0; i < MAX_INO_ENTRY; i++) {
1263                 struct inode_management *im = &sbi->im[i];
1264
1265                 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1266                 spin_lock_init(&im->ino_lock);
1267                 INIT_LIST_HEAD(&im->ino_list);
1268                 im->ino_num = 0;
1269         }
1270
1271         sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1272                         NR_CURSEG_TYPE - __cp_payload(sbi)) *
1273                                 F2FS_ORPHANS_PER_BLOCK;
1274 }
1275
1276 int __init create_checkpoint_caches(void)
1277 {
1278         ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1279                         sizeof(struct ino_entry));
1280         if (!ino_entry_slab)
1281                 return -ENOMEM;
1282         inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1283                         sizeof(struct inode_entry));
1284         if (!inode_entry_slab) {
1285                 kmem_cache_destroy(ino_entry_slab);
1286                 return -ENOMEM;
1287         }
1288         return 0;
1289 }
1290
1291 void destroy_checkpoint_caches(void)
1292 {
1293         kmem_cache_destroy(ino_entry_slab);
1294         kmem_cache_destroy(inode_entry_slab);
1295 }