f2fs: introduce cp_lock to protect updating of ckpt_flags
[cascardo/linux.git] / fs / f2fs / checkpoint.c
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *inode_entry_slab;
28
29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
30 {
31         set_ckpt_flags(sbi, CP_ERROR_FLAG);
32         sbi->sb->s_flags |= MS_RDONLY;
33         if (!end_io)
34                 f2fs_flush_merged_bios(sbi);
35 }
36
37 /*
38  * We guarantee no failure on the returned page.
39  */
40 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
41 {
42         struct address_space *mapping = META_MAPPING(sbi);
43         struct page *page = NULL;
44 repeat:
45         page = f2fs_grab_cache_page(mapping, index, false);
46         if (!page) {
47                 cond_resched();
48                 goto repeat;
49         }
50         f2fs_wait_on_page_writeback(page, META, true);
51         if (!PageUptodate(page))
52                 SetPageUptodate(page);
53         return page;
54 }
55
56 /*
57  * We guarantee no failure on the returned page.
58  */
59 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
60                                                         bool is_meta)
61 {
62         struct address_space *mapping = META_MAPPING(sbi);
63         struct page *page;
64         struct f2fs_io_info fio = {
65                 .sbi = sbi,
66                 .type = META,
67                 .op = REQ_OP_READ,
68                 .op_flags = READ_SYNC | REQ_META | REQ_PRIO,
69                 .old_blkaddr = index,
70                 .new_blkaddr = index,
71                 .encrypted_page = NULL,
72         };
73
74         if (unlikely(!is_meta))
75                 fio.op_flags &= ~REQ_META;
76 repeat:
77         page = f2fs_grab_cache_page(mapping, index, false);
78         if (!page) {
79                 cond_resched();
80                 goto repeat;
81         }
82         if (PageUptodate(page))
83                 goto out;
84
85         fio.page = page;
86
87         if (f2fs_submit_page_bio(&fio)) {
88                 f2fs_put_page(page, 1);
89                 goto repeat;
90         }
91
92         lock_page(page);
93         if (unlikely(page->mapping != mapping)) {
94                 f2fs_put_page(page, 1);
95                 goto repeat;
96         }
97
98         /*
99          * if there is any IO error when accessing device, make our filesystem
100          * readonly and make sure do not write checkpoint with non-uptodate
101          * meta page.
102          */
103         if (unlikely(!PageUptodate(page)))
104                 f2fs_stop_checkpoint(sbi, false);
105 out:
106         return page;
107 }
108
109 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
110 {
111         return __get_meta_page(sbi, index, true);
112 }
113
114 /* for POR only */
115 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
116 {
117         return __get_meta_page(sbi, index, false);
118 }
119
120 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type)
121 {
122         switch (type) {
123         case META_NAT:
124                 break;
125         case META_SIT:
126                 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
127                         return false;
128                 break;
129         case META_SSA:
130                 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
131                         blkaddr < SM_I(sbi)->ssa_blkaddr))
132                         return false;
133                 break;
134         case META_CP:
135                 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
136                         blkaddr < __start_cp_addr(sbi)))
137                         return false;
138                 break;
139         case META_POR:
140                 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
141                         blkaddr < MAIN_BLKADDR(sbi)))
142                         return false;
143                 break;
144         default:
145                 BUG();
146         }
147
148         return true;
149 }
150
151 /*
152  * Readahead CP/NAT/SIT/SSA pages
153  */
154 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
155                                                         int type, bool sync)
156 {
157         struct page *page;
158         block_t blkno = start;
159         struct f2fs_io_info fio = {
160                 .sbi = sbi,
161                 .type = META,
162                 .op = REQ_OP_READ,
163                 .op_flags = sync ? (READ_SYNC | REQ_META | REQ_PRIO) : REQ_RAHEAD,
164                 .encrypted_page = NULL,
165         };
166         struct blk_plug plug;
167
168         if (unlikely(type == META_POR))
169                 fio.op_flags &= ~REQ_META;
170
171         blk_start_plug(&plug);
172         for (; nrpages-- > 0; blkno++) {
173
174                 if (!is_valid_blkaddr(sbi, blkno, type))
175                         goto out;
176
177                 switch (type) {
178                 case META_NAT:
179                         if (unlikely(blkno >=
180                                         NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
181                                 blkno = 0;
182                         /* get nat block addr */
183                         fio.new_blkaddr = current_nat_addr(sbi,
184                                         blkno * NAT_ENTRY_PER_BLOCK);
185                         break;
186                 case META_SIT:
187                         /* get sit block addr */
188                         fio.new_blkaddr = current_sit_addr(sbi,
189                                         blkno * SIT_ENTRY_PER_BLOCK);
190                         break;
191                 case META_SSA:
192                 case META_CP:
193                 case META_POR:
194                         fio.new_blkaddr = blkno;
195                         break;
196                 default:
197                         BUG();
198                 }
199
200                 page = f2fs_grab_cache_page(META_MAPPING(sbi),
201                                                 fio.new_blkaddr, false);
202                 if (!page)
203                         continue;
204                 if (PageUptodate(page)) {
205                         f2fs_put_page(page, 1);
206                         continue;
207                 }
208
209                 fio.page = page;
210                 fio.old_blkaddr = fio.new_blkaddr;
211                 f2fs_submit_page_mbio(&fio);
212                 f2fs_put_page(page, 0);
213         }
214 out:
215         f2fs_submit_merged_bio(sbi, META, READ);
216         blk_finish_plug(&plug);
217         return blkno - start;
218 }
219
220 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
221 {
222         struct page *page;
223         bool readahead = false;
224
225         page = find_get_page(META_MAPPING(sbi), index);
226         if (!page || !PageUptodate(page))
227                 readahead = true;
228         f2fs_put_page(page, 0);
229
230         if (readahead)
231                 ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR, true);
232 }
233
234 static int f2fs_write_meta_page(struct page *page,
235                                 struct writeback_control *wbc)
236 {
237         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
238
239         trace_f2fs_writepage(page, META);
240
241         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
242                 goto redirty_out;
243         if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
244                 goto redirty_out;
245         if (unlikely(f2fs_cp_error(sbi)))
246                 goto redirty_out;
247
248         write_meta_page(sbi, page);
249         dec_page_count(sbi, F2FS_DIRTY_META);
250
251         if (wbc->for_reclaim)
252                 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, META, WRITE);
253
254         unlock_page(page);
255
256         if (unlikely(f2fs_cp_error(sbi)))
257                 f2fs_submit_merged_bio(sbi, META, WRITE);
258
259         return 0;
260
261 redirty_out:
262         redirty_page_for_writepage(wbc, page);
263         return AOP_WRITEPAGE_ACTIVATE;
264 }
265
266 static int f2fs_write_meta_pages(struct address_space *mapping,
267                                 struct writeback_control *wbc)
268 {
269         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
270         struct blk_plug plug;
271         long diff, written;
272
273         /* collect a number of dirty meta pages and write together */
274         if (wbc->for_kupdate ||
275                 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
276                 goto skip_write;
277
278         trace_f2fs_writepages(mapping->host, wbc, META);
279
280         /* if mounting is failed, skip writing node pages */
281         mutex_lock(&sbi->cp_mutex);
282         diff = nr_pages_to_write(sbi, META, wbc);
283         blk_start_plug(&plug);
284         written = sync_meta_pages(sbi, META, wbc->nr_to_write);
285         blk_finish_plug(&plug);
286         mutex_unlock(&sbi->cp_mutex);
287         wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
288         return 0;
289
290 skip_write:
291         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
292         trace_f2fs_writepages(mapping->host, wbc, META);
293         return 0;
294 }
295
296 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
297                                                 long nr_to_write)
298 {
299         struct address_space *mapping = META_MAPPING(sbi);
300         pgoff_t index = 0, end = ULONG_MAX, prev = ULONG_MAX;
301         struct pagevec pvec;
302         long nwritten = 0;
303         struct writeback_control wbc = {
304                 .for_reclaim = 0,
305         };
306         struct blk_plug plug;
307
308         pagevec_init(&pvec, 0);
309
310         blk_start_plug(&plug);
311
312         while (index <= end) {
313                 int i, nr_pages;
314                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
315                                 PAGECACHE_TAG_DIRTY,
316                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
317                 if (unlikely(nr_pages == 0))
318                         break;
319
320                 for (i = 0; i < nr_pages; i++) {
321                         struct page *page = pvec.pages[i];
322
323                         if (prev == ULONG_MAX)
324                                 prev = page->index - 1;
325                         if (nr_to_write != LONG_MAX && page->index != prev + 1) {
326                                 pagevec_release(&pvec);
327                                 goto stop;
328                         }
329
330                         lock_page(page);
331
332                         if (unlikely(page->mapping != mapping)) {
333 continue_unlock:
334                                 unlock_page(page);
335                                 continue;
336                         }
337                         if (!PageDirty(page)) {
338                                 /* someone wrote it for us */
339                                 goto continue_unlock;
340                         }
341
342                         f2fs_wait_on_page_writeback(page, META, true);
343
344                         BUG_ON(PageWriteback(page));
345                         if (!clear_page_dirty_for_io(page))
346                                 goto continue_unlock;
347
348                         if (mapping->a_ops->writepage(page, &wbc)) {
349                                 unlock_page(page);
350                                 break;
351                         }
352                         nwritten++;
353                         prev = page->index;
354                         if (unlikely(nwritten >= nr_to_write))
355                                 break;
356                 }
357                 pagevec_release(&pvec);
358                 cond_resched();
359         }
360 stop:
361         if (nwritten)
362                 f2fs_submit_merged_bio(sbi, type, WRITE);
363
364         blk_finish_plug(&plug);
365
366         return nwritten;
367 }
368
369 static int f2fs_set_meta_page_dirty(struct page *page)
370 {
371         trace_f2fs_set_page_dirty(page, META);
372
373         if (!PageUptodate(page))
374                 SetPageUptodate(page);
375         if (!PageDirty(page)) {
376                 f2fs_set_page_dirty_nobuffers(page);
377                 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
378                 SetPagePrivate(page);
379                 f2fs_trace_pid(page);
380                 return 1;
381         }
382         return 0;
383 }
384
385 const struct address_space_operations f2fs_meta_aops = {
386         .writepage      = f2fs_write_meta_page,
387         .writepages     = f2fs_write_meta_pages,
388         .set_page_dirty = f2fs_set_meta_page_dirty,
389         .invalidatepage = f2fs_invalidate_page,
390         .releasepage    = f2fs_release_page,
391 };
392
393 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
394 {
395         struct inode_management *im = &sbi->im[type];
396         struct ino_entry *e, *tmp;
397
398         tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
399 retry:
400         radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
401
402         spin_lock(&im->ino_lock);
403         e = radix_tree_lookup(&im->ino_root, ino);
404         if (!e) {
405                 e = tmp;
406                 if (radix_tree_insert(&im->ino_root, ino, e)) {
407                         spin_unlock(&im->ino_lock);
408                         radix_tree_preload_end();
409                         goto retry;
410                 }
411                 memset(e, 0, sizeof(struct ino_entry));
412                 e->ino = ino;
413
414                 list_add_tail(&e->list, &im->ino_list);
415                 if (type != ORPHAN_INO)
416                         im->ino_num++;
417         }
418         spin_unlock(&im->ino_lock);
419         radix_tree_preload_end();
420
421         if (e != tmp)
422                 kmem_cache_free(ino_entry_slab, tmp);
423 }
424
425 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
426 {
427         struct inode_management *im = &sbi->im[type];
428         struct ino_entry *e;
429
430         spin_lock(&im->ino_lock);
431         e = radix_tree_lookup(&im->ino_root, ino);
432         if (e) {
433                 list_del(&e->list);
434                 radix_tree_delete(&im->ino_root, ino);
435                 im->ino_num--;
436                 spin_unlock(&im->ino_lock);
437                 kmem_cache_free(ino_entry_slab, e);
438                 return;
439         }
440         spin_unlock(&im->ino_lock);
441 }
442
443 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
444 {
445         /* add new dirty ino entry into list */
446         __add_ino_entry(sbi, ino, type);
447 }
448
449 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
450 {
451         /* remove dirty ino entry from list */
452         __remove_ino_entry(sbi, ino, type);
453 }
454
455 /* mode should be APPEND_INO or UPDATE_INO */
456 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
457 {
458         struct inode_management *im = &sbi->im[mode];
459         struct ino_entry *e;
460
461         spin_lock(&im->ino_lock);
462         e = radix_tree_lookup(&im->ino_root, ino);
463         spin_unlock(&im->ino_lock);
464         return e ? true : false;
465 }
466
467 void release_ino_entry(struct f2fs_sb_info *sbi, bool all)
468 {
469         struct ino_entry *e, *tmp;
470         int i;
471
472         for (i = all ? ORPHAN_INO: APPEND_INO; i <= UPDATE_INO; i++) {
473                 struct inode_management *im = &sbi->im[i];
474
475                 spin_lock(&im->ino_lock);
476                 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
477                         list_del(&e->list);
478                         radix_tree_delete(&im->ino_root, e->ino);
479                         kmem_cache_free(ino_entry_slab, e);
480                         im->ino_num--;
481                 }
482                 spin_unlock(&im->ino_lock);
483         }
484 }
485
486 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
487 {
488         struct inode_management *im = &sbi->im[ORPHAN_INO];
489         int err = 0;
490
491         spin_lock(&im->ino_lock);
492
493 #ifdef CONFIG_F2FS_FAULT_INJECTION
494         if (time_to_inject(FAULT_ORPHAN)) {
495                 spin_unlock(&im->ino_lock);
496                 return -ENOSPC;
497         }
498 #endif
499         if (unlikely(im->ino_num >= sbi->max_orphans))
500                 err = -ENOSPC;
501         else
502                 im->ino_num++;
503         spin_unlock(&im->ino_lock);
504
505         return err;
506 }
507
508 void release_orphan_inode(struct f2fs_sb_info *sbi)
509 {
510         struct inode_management *im = &sbi->im[ORPHAN_INO];
511
512         spin_lock(&im->ino_lock);
513         f2fs_bug_on(sbi, im->ino_num == 0);
514         im->ino_num--;
515         spin_unlock(&im->ino_lock);
516 }
517
518 void add_orphan_inode(struct inode *inode)
519 {
520         /* add new orphan ino entry into list */
521         __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, ORPHAN_INO);
522         update_inode_page(inode);
523 }
524
525 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
526 {
527         /* remove orphan entry from orphan list */
528         __remove_ino_entry(sbi, ino, ORPHAN_INO);
529 }
530
531 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
532 {
533         struct inode *inode;
534         struct node_info ni;
535
536         inode = f2fs_iget_retry(sbi->sb, ino);
537         if (IS_ERR(inode)) {
538                 /*
539                  * there should be a bug that we can't find the entry
540                  * to orphan inode.
541                  */
542                 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
543                 return PTR_ERR(inode);
544         }
545
546         clear_nlink(inode);
547
548         /* truncate all the data during iput */
549         iput(inode);
550
551         get_node_info(sbi, ino, &ni);
552
553         /* ENOMEM was fully retried in f2fs_evict_inode. */
554         if (ni.blk_addr != NULL_ADDR) {
555                 int err = acquire_orphan_inode(sbi);
556
557                 if (err) {
558                         set_sbi_flag(sbi, SBI_NEED_FSCK);
559                         f2fs_msg(sbi->sb, KERN_WARNING,
560                                 "%s: orphan failed (ino=%x), run fsck to fix.",
561                                         __func__, ino);
562                         return err;
563                 }
564                 __add_ino_entry(sbi, ino, ORPHAN_INO);
565         }
566         return 0;
567 }
568
569 int recover_orphan_inodes(struct f2fs_sb_info *sbi)
570 {
571         block_t start_blk, orphan_blocks, i, j;
572         int err;
573
574         if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
575                 return 0;
576
577         start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
578         orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
579
580         ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
581
582         for (i = 0; i < orphan_blocks; i++) {
583                 struct page *page = get_meta_page(sbi, start_blk + i);
584                 struct f2fs_orphan_block *orphan_blk;
585
586                 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
587                 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
588                         nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
589                         err = recover_orphan_inode(sbi, ino);
590                         if (err) {
591                                 f2fs_put_page(page, 1);
592                                 return err;
593                         }
594                 }
595                 f2fs_put_page(page, 1);
596         }
597         /* clear Orphan Flag */
598         clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
599         return 0;
600 }
601
602 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
603 {
604         struct list_head *head;
605         struct f2fs_orphan_block *orphan_blk = NULL;
606         unsigned int nentries = 0;
607         unsigned short index = 1;
608         unsigned short orphan_blocks;
609         struct page *page = NULL;
610         struct ino_entry *orphan = NULL;
611         struct inode_management *im = &sbi->im[ORPHAN_INO];
612
613         orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
614
615         /*
616          * we don't need to do spin_lock(&im->ino_lock) here, since all the
617          * orphan inode operations are covered under f2fs_lock_op().
618          * And, spin_lock should be avoided due to page operations below.
619          */
620         head = &im->ino_list;
621
622         /* loop for each orphan inode entry and write them in Jornal block */
623         list_for_each_entry(orphan, head, list) {
624                 if (!page) {
625                         page = grab_meta_page(sbi, start_blk++);
626                         orphan_blk =
627                                 (struct f2fs_orphan_block *)page_address(page);
628                         memset(orphan_blk, 0, sizeof(*orphan_blk));
629                 }
630
631                 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
632
633                 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
634                         /*
635                          * an orphan block is full of 1020 entries,
636                          * then we need to flush current orphan blocks
637                          * and bring another one in memory
638                          */
639                         orphan_blk->blk_addr = cpu_to_le16(index);
640                         orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
641                         orphan_blk->entry_count = cpu_to_le32(nentries);
642                         set_page_dirty(page);
643                         f2fs_put_page(page, 1);
644                         index++;
645                         nentries = 0;
646                         page = NULL;
647                 }
648         }
649
650         if (page) {
651                 orphan_blk->blk_addr = cpu_to_le16(index);
652                 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
653                 orphan_blk->entry_count = cpu_to_le32(nentries);
654                 set_page_dirty(page);
655                 f2fs_put_page(page, 1);
656         }
657 }
658
659 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
660                                 block_t cp_addr, unsigned long long *version)
661 {
662         struct page *cp_page_1, *cp_page_2 = NULL;
663         unsigned long blk_size = sbi->blocksize;
664         struct f2fs_checkpoint *cp_block;
665         unsigned long long cur_version = 0, pre_version = 0;
666         size_t crc_offset;
667         __u32 crc = 0;
668
669         /* Read the 1st cp block in this CP pack */
670         cp_page_1 = get_meta_page(sbi, cp_addr);
671
672         /* get the version number */
673         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
674         crc_offset = le32_to_cpu(cp_block->checksum_offset);
675         if (crc_offset >= blk_size)
676                 goto invalid_cp1;
677
678         crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
679         if (!f2fs_crc_valid(sbi, crc, cp_block, crc_offset))
680                 goto invalid_cp1;
681
682         pre_version = cur_cp_version(cp_block);
683
684         /* Read the 2nd cp block in this CP pack */
685         cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
686         cp_page_2 = get_meta_page(sbi, cp_addr);
687
688         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
689         crc_offset = le32_to_cpu(cp_block->checksum_offset);
690         if (crc_offset >= blk_size)
691                 goto invalid_cp2;
692
693         crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
694         if (!f2fs_crc_valid(sbi, crc, cp_block, crc_offset))
695                 goto invalid_cp2;
696
697         cur_version = cur_cp_version(cp_block);
698
699         if (cur_version == pre_version) {
700                 *version = cur_version;
701                 f2fs_put_page(cp_page_2, 1);
702                 return cp_page_1;
703         }
704 invalid_cp2:
705         f2fs_put_page(cp_page_2, 1);
706 invalid_cp1:
707         f2fs_put_page(cp_page_1, 1);
708         return NULL;
709 }
710
711 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
712 {
713         struct f2fs_checkpoint *cp_block;
714         struct f2fs_super_block *fsb = sbi->raw_super;
715         struct page *cp1, *cp2, *cur_page;
716         unsigned long blk_size = sbi->blocksize;
717         unsigned long long cp1_version = 0, cp2_version = 0;
718         unsigned long long cp_start_blk_no;
719         unsigned int cp_blks = 1 + __cp_payload(sbi);
720         block_t cp_blk_no;
721         int i;
722
723         sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
724         if (!sbi->ckpt)
725                 return -ENOMEM;
726         /*
727          * Finding out valid cp block involves read both
728          * sets( cp pack1 and cp pack 2)
729          */
730         cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
731         cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
732
733         /* The second checkpoint pack should start at the next segment */
734         cp_start_blk_no += ((unsigned long long)1) <<
735                                 le32_to_cpu(fsb->log_blocks_per_seg);
736         cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
737
738         if (cp1 && cp2) {
739                 if (ver_after(cp2_version, cp1_version))
740                         cur_page = cp2;
741                 else
742                         cur_page = cp1;
743         } else if (cp1) {
744                 cur_page = cp1;
745         } else if (cp2) {
746                 cur_page = cp2;
747         } else {
748                 goto fail_no_cp;
749         }
750
751         cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
752         memcpy(sbi->ckpt, cp_block, blk_size);
753
754         /* Sanity checking of checkpoint */
755         if (sanity_check_ckpt(sbi))
756                 goto fail_no_cp;
757
758         if (cp_blks <= 1)
759                 goto done;
760
761         cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
762         if (cur_page == cp2)
763                 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
764
765         for (i = 1; i < cp_blks; i++) {
766                 void *sit_bitmap_ptr;
767                 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
768
769                 cur_page = get_meta_page(sbi, cp_blk_no + i);
770                 sit_bitmap_ptr = page_address(cur_page);
771                 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
772                 f2fs_put_page(cur_page, 1);
773         }
774 done:
775         f2fs_put_page(cp1, 1);
776         f2fs_put_page(cp2, 1);
777         return 0;
778
779 fail_no_cp:
780         kfree(sbi->ckpt);
781         return -EINVAL;
782 }
783
784 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
785 {
786         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
787         int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
788
789         if (is_inode_flag_set(inode, flag))
790                 return;
791
792         set_inode_flag(inode, flag);
793         list_add_tail(&F2FS_I(inode)->dirty_list, &sbi->inode_list[type]);
794         stat_inc_dirty_inode(sbi, type);
795 }
796
797 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
798 {
799         int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
800
801         if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
802                 return;
803
804         list_del_init(&F2FS_I(inode)->dirty_list);
805         clear_inode_flag(inode, flag);
806         stat_dec_dirty_inode(F2FS_I_SB(inode), type);
807 }
808
809 void update_dirty_page(struct inode *inode, struct page *page)
810 {
811         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
812         enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
813
814         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
815                         !S_ISLNK(inode->i_mode))
816                 return;
817
818         spin_lock(&sbi->inode_lock[type]);
819         if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
820                 __add_dirty_inode(inode, type);
821         inode_inc_dirty_pages(inode);
822         spin_unlock(&sbi->inode_lock[type]);
823
824         SetPagePrivate(page);
825         f2fs_trace_pid(page);
826 }
827
828 void remove_dirty_inode(struct inode *inode)
829 {
830         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
831         enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
832
833         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
834                         !S_ISLNK(inode->i_mode))
835                 return;
836
837         if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
838                 return;
839
840         spin_lock(&sbi->inode_lock[type]);
841         __remove_dirty_inode(inode, type);
842         spin_unlock(&sbi->inode_lock[type]);
843 }
844
845 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
846 {
847         struct list_head *head;
848         struct inode *inode;
849         struct f2fs_inode_info *fi;
850         bool is_dir = (type == DIR_INODE);
851
852         trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
853                                 get_pages(sbi, is_dir ?
854                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
855 retry:
856         if (unlikely(f2fs_cp_error(sbi)))
857                 return -EIO;
858
859         spin_lock(&sbi->inode_lock[type]);
860
861         head = &sbi->inode_list[type];
862         if (list_empty(head)) {
863                 spin_unlock(&sbi->inode_lock[type]);
864                 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
865                                 get_pages(sbi, is_dir ?
866                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
867                 return 0;
868         }
869         fi = list_entry(head->next, struct f2fs_inode_info, dirty_list);
870         inode = igrab(&fi->vfs_inode);
871         spin_unlock(&sbi->inode_lock[type]);
872         if (inode) {
873                 filemap_fdatawrite(inode->i_mapping);
874                 iput(inode);
875         } else {
876                 /*
877                  * We should submit bio, since it exists several
878                  * wribacking dentry pages in the freeing inode.
879                  */
880                 f2fs_submit_merged_bio(sbi, DATA, WRITE);
881                 cond_resched();
882         }
883         goto retry;
884 }
885
886 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
887 {
888         struct list_head *head = &sbi->inode_list[DIRTY_META];
889         struct inode *inode;
890         struct f2fs_inode_info *fi;
891         s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
892
893         while (total--) {
894                 if (unlikely(f2fs_cp_error(sbi)))
895                         return -EIO;
896
897                 spin_lock(&sbi->inode_lock[DIRTY_META]);
898                 if (list_empty(head)) {
899                         spin_unlock(&sbi->inode_lock[DIRTY_META]);
900                         return 0;
901                 }
902                 fi = list_entry(head->next, struct f2fs_inode_info,
903                                                         gdirty_list);
904                 inode = igrab(&fi->vfs_inode);
905                 spin_unlock(&sbi->inode_lock[DIRTY_META]);
906                 if (inode) {
907                         update_inode_page(inode);
908                         iput(inode);
909                 }
910         };
911         return 0;
912 }
913
914 /*
915  * Freeze all the FS-operations for checkpoint.
916  */
917 static int block_operations(struct f2fs_sb_info *sbi)
918 {
919         struct writeback_control wbc = {
920                 .sync_mode = WB_SYNC_ALL,
921                 .nr_to_write = LONG_MAX,
922                 .for_reclaim = 0,
923         };
924         struct blk_plug plug;
925         int err = 0;
926
927         blk_start_plug(&plug);
928
929 retry_flush_dents:
930         f2fs_lock_all(sbi);
931         /* write all the dirty dentry pages */
932         if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
933                 f2fs_unlock_all(sbi);
934                 err = sync_dirty_inodes(sbi, DIR_INODE);
935                 if (err)
936                         goto out;
937                 goto retry_flush_dents;
938         }
939
940         if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
941                 f2fs_unlock_all(sbi);
942                 err = f2fs_sync_inode_meta(sbi);
943                 if (err)
944                         goto out;
945                 goto retry_flush_dents;
946         }
947
948         /*
949          * POR: we should ensure that there are no dirty node pages
950          * until finishing nat/sit flush.
951          */
952 retry_flush_nodes:
953         down_write(&sbi->node_write);
954
955         if (get_pages(sbi, F2FS_DIRTY_NODES)) {
956                 up_write(&sbi->node_write);
957                 err = sync_node_pages(sbi, &wbc);
958                 if (err) {
959                         f2fs_unlock_all(sbi);
960                         goto out;
961                 }
962                 goto retry_flush_nodes;
963         }
964 out:
965         blk_finish_plug(&plug);
966         return err;
967 }
968
969 static void unblock_operations(struct f2fs_sb_info *sbi)
970 {
971         up_write(&sbi->node_write);
972
973         build_free_nids(sbi);
974         f2fs_unlock_all(sbi);
975 }
976
977 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
978 {
979         DEFINE_WAIT(wait);
980
981         for (;;) {
982                 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
983
984                 if (!atomic_read(&sbi->nr_wb_bios))
985                         break;
986
987                 io_schedule_timeout(5*HZ);
988         }
989         finish_wait(&sbi->cp_wait, &wait);
990 }
991
992 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
993 {
994         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
995         struct f2fs_nm_info *nm_i = NM_I(sbi);
996         unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
997         nid_t last_nid = nm_i->next_scan_nid;
998         block_t start_blk;
999         unsigned int data_sum_blocks, orphan_blocks;
1000         __u32 crc32 = 0;
1001         int i;
1002         int cp_payload_blks = __cp_payload(sbi);
1003         struct super_block *sb = sbi->sb;
1004         struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1005         u64 kbytes_written;
1006
1007         /* Flush all the NAT/SIT pages */
1008         while (get_pages(sbi, F2FS_DIRTY_META)) {
1009                 sync_meta_pages(sbi, META, LONG_MAX);
1010                 if (unlikely(f2fs_cp_error(sbi)))
1011                         return -EIO;
1012         }
1013
1014         next_free_nid(sbi, &last_nid);
1015
1016         /*
1017          * modify checkpoint
1018          * version number is already updated
1019          */
1020         ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
1021         ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
1022         ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1023         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1024                 ckpt->cur_node_segno[i] =
1025                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
1026                 ckpt->cur_node_blkoff[i] =
1027                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
1028                 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
1029                                 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
1030         }
1031         for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1032                 ckpt->cur_data_segno[i] =
1033                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
1034                 ckpt->cur_data_blkoff[i] =
1035                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
1036                 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
1037                                 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
1038         }
1039
1040         ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
1041         ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
1042         ckpt->next_free_nid = cpu_to_le32(last_nid);
1043
1044         /* 2 cp  + n data seg summary + orphan inode blocks */
1045         data_sum_blocks = npages_for_summary_flush(sbi, false);
1046         spin_lock(&sbi->cp_lock);
1047         if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1048                 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1049         else
1050                 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1051         spin_unlock(&sbi->cp_lock);
1052
1053         orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1054         ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1055                         orphan_blocks);
1056
1057         if (__remain_node_summaries(cpc->reason))
1058                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
1059                                 cp_payload_blks + data_sum_blocks +
1060                                 orphan_blocks + NR_CURSEG_NODE_TYPE);
1061         else
1062                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1063                                 cp_payload_blks + data_sum_blocks +
1064                                 orphan_blocks);
1065
1066         spin_lock(&sbi->cp_lock);
1067         if (cpc->reason == CP_UMOUNT)
1068                 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1069         else
1070                 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1071
1072         if (cpc->reason == CP_FASTBOOT)
1073                 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1074         else
1075                 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1076
1077         if (orphan_num)
1078                 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1079         else
1080                 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1081
1082         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1083                 __set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1084
1085         /* set this flag to activate crc|cp_ver for recovery */
1086         __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1087
1088         spin_unlock(&sbi->cp_lock);
1089
1090         /* update SIT/NAT bitmap */
1091         get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1092         get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1093
1094         crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset));
1095         *((__le32 *)((unsigned char *)ckpt +
1096                                 le32_to_cpu(ckpt->checksum_offset)))
1097                                 = cpu_to_le32(crc32);
1098
1099         start_blk = __start_cp_addr(sbi);
1100
1101         /* need to wait for end_io results */
1102         wait_on_all_pages_writeback(sbi);
1103         if (unlikely(f2fs_cp_error(sbi)))
1104                 return -EIO;
1105
1106         /* write out checkpoint buffer at block 0 */
1107         update_meta_page(sbi, ckpt, start_blk++);
1108
1109         for (i = 1; i < 1 + cp_payload_blks; i++)
1110                 update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1111                                                         start_blk++);
1112
1113         if (orphan_num) {
1114                 write_orphan_inodes(sbi, start_blk);
1115                 start_blk += orphan_blocks;
1116         }
1117
1118         write_data_summaries(sbi, start_blk);
1119         start_blk += data_sum_blocks;
1120
1121         /* Record write statistics in the hot node summary */
1122         kbytes_written = sbi->kbytes_written;
1123         if (sb->s_bdev->bd_part)
1124                 kbytes_written += BD_PART_WRITTEN(sbi);
1125
1126         seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1127
1128         if (__remain_node_summaries(cpc->reason)) {
1129                 write_node_summaries(sbi, start_blk);
1130                 start_blk += NR_CURSEG_NODE_TYPE;
1131         }
1132
1133         /* writeout checkpoint block */
1134         update_meta_page(sbi, ckpt, start_blk);
1135
1136         /* wait for previous submitted node/meta pages writeback */
1137         wait_on_all_pages_writeback(sbi);
1138
1139         if (unlikely(f2fs_cp_error(sbi)))
1140                 return -EIO;
1141
1142         filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LLONG_MAX);
1143         filemap_fdatawait_range(META_MAPPING(sbi), 0, LLONG_MAX);
1144
1145         /* update user_block_counts */
1146         sbi->last_valid_block_count = sbi->total_valid_block_count;
1147         percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1148
1149         /* Here, we only have one bio having CP pack */
1150         sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
1151
1152         /* wait for previous submitted meta pages writeback */
1153         wait_on_all_pages_writeback(sbi);
1154
1155         release_ino_entry(sbi, false);
1156
1157         if (unlikely(f2fs_cp_error(sbi)))
1158                 return -EIO;
1159
1160         clear_prefree_segments(sbi, cpc);
1161         clear_sbi_flag(sbi, SBI_IS_DIRTY);
1162         clear_sbi_flag(sbi, SBI_NEED_CP);
1163
1164         /*
1165          * redirty superblock if metadata like node page or inode cache is
1166          * updated during writing checkpoint.
1167          */
1168         if (get_pages(sbi, F2FS_DIRTY_NODES) ||
1169                         get_pages(sbi, F2FS_DIRTY_IMETA))
1170                 set_sbi_flag(sbi, SBI_IS_DIRTY);
1171
1172         f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1173
1174         return 0;
1175 }
1176
1177 /*
1178  * We guarantee that this checkpoint procedure will not fail.
1179  */
1180 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1181 {
1182         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1183         unsigned long long ckpt_ver;
1184         int err = 0;
1185
1186         mutex_lock(&sbi->cp_mutex);
1187
1188         if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1189                 (cpc->reason == CP_FASTBOOT || cpc->reason == CP_SYNC ||
1190                 (cpc->reason == CP_DISCARD && !sbi->discard_blks)))
1191                 goto out;
1192         if (unlikely(f2fs_cp_error(sbi))) {
1193                 err = -EIO;
1194                 goto out;
1195         }
1196         if (f2fs_readonly(sbi->sb)) {
1197                 err = -EROFS;
1198                 goto out;
1199         }
1200
1201         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1202
1203         err = block_operations(sbi);
1204         if (err)
1205                 goto out;
1206
1207         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1208
1209         f2fs_flush_merged_bios(sbi);
1210
1211         /* this is the case of multiple fstrims without any changes */
1212         if (cpc->reason == CP_DISCARD && !is_sbi_flag_set(sbi, SBI_IS_DIRTY)) {
1213                 f2fs_bug_on(sbi, NM_I(sbi)->dirty_nat_cnt);
1214                 f2fs_bug_on(sbi, SIT_I(sbi)->dirty_sentries);
1215                 f2fs_bug_on(sbi, prefree_segments(sbi));
1216                 flush_sit_entries(sbi, cpc);
1217                 clear_prefree_segments(sbi, cpc);
1218                 f2fs_wait_all_discard_bio(sbi);
1219                 unblock_operations(sbi);
1220                 goto out;
1221         }
1222
1223         /*
1224          * update checkpoint pack index
1225          * Increase the version number so that
1226          * SIT entries and seg summaries are written at correct place
1227          */
1228         ckpt_ver = cur_cp_version(ckpt);
1229         ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1230
1231         /* write cached NAT/SIT entries to NAT/SIT area */
1232         flush_nat_entries(sbi);
1233         flush_sit_entries(sbi, cpc);
1234
1235         /* unlock all the fs_lock[] in do_checkpoint() */
1236         err = do_checkpoint(sbi, cpc);
1237
1238         f2fs_wait_all_discard_bio(sbi);
1239
1240         unblock_operations(sbi);
1241         stat_inc_cp_count(sbi->stat_info);
1242
1243         if (cpc->reason == CP_RECOVERY)
1244                 f2fs_msg(sbi->sb, KERN_NOTICE,
1245                         "checkpoint: version = %llx", ckpt_ver);
1246
1247         /* do checkpoint periodically */
1248         f2fs_update_time(sbi, CP_TIME);
1249         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1250 out:
1251         mutex_unlock(&sbi->cp_mutex);
1252         return err;
1253 }
1254
1255 void init_ino_entry_info(struct f2fs_sb_info *sbi)
1256 {
1257         int i;
1258
1259         for (i = 0; i < MAX_INO_ENTRY; i++) {
1260                 struct inode_management *im = &sbi->im[i];
1261
1262                 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1263                 spin_lock_init(&im->ino_lock);
1264                 INIT_LIST_HEAD(&im->ino_list);
1265                 im->ino_num = 0;
1266         }
1267
1268         sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1269                         NR_CURSEG_TYPE - __cp_payload(sbi)) *
1270                                 F2FS_ORPHANS_PER_BLOCK;
1271 }
1272
1273 int __init create_checkpoint_caches(void)
1274 {
1275         ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1276                         sizeof(struct ino_entry));
1277         if (!ino_entry_slab)
1278                 return -ENOMEM;
1279         inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1280                         sizeof(struct inode_entry));
1281         if (!inode_entry_slab) {
1282                 kmem_cache_destroy(ino_entry_slab);
1283                 return -ENOMEM;
1284         }
1285         return 0;
1286 }
1287
1288 void destroy_checkpoint_caches(void)
1289 {
1290         kmem_cache_destroy(ino_entry_slab);
1291         kmem_cache_destroy(inode_entry_slab);
1292 }