Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/sage/ceph...
[cascardo/linux.git] / fs / f2fs / node.h
1 /*
2  * fs/f2fs/node.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 /* start node id of a node block dedicated to the given node id */
12 #define START_NID(nid) ((nid / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
13
14 /* node block offset on the NAT area dedicated to the given start node id */
15 #define NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK)
16
17 /* # of pages to perform readahead before building free nids */
18 #define FREE_NID_PAGES 4
19
20 /* maximum readahead size for node during getting data blocks */
21 #define MAX_RA_NODE             128
22
23 /* control the memory footprint threshold (10MB per 1GB ram) */
24 #define DEF_RAM_THRESHOLD       10
25
26 /* vector size for gang look-up from nat cache that consists of radix tree */
27 #define NATVEC_SIZE     64
28
29 /* return value for read_node_page */
30 #define LOCKED_PAGE     1
31
32 /*
33  * For node information
34  */
35 struct node_info {
36         nid_t nid;              /* node id */
37         nid_t ino;              /* inode number of the node's owner */
38         block_t blk_addr;       /* block address of the node */
39         unsigned char version;  /* version of the node */
40 };
41
42 struct nat_entry {
43         struct list_head list;  /* for clean or dirty nat list */
44         bool checkpointed;      /* whether it is checkpointed or not */
45         bool fsync_done;        /* whether the latest node has fsync mark */
46         struct node_info ni;    /* in-memory node information */
47 };
48
49 #define nat_get_nid(nat)                (nat->ni.nid)
50 #define nat_set_nid(nat, n)             (nat->ni.nid = n)
51 #define nat_get_blkaddr(nat)            (nat->ni.blk_addr)
52 #define nat_set_blkaddr(nat, b)         (nat->ni.blk_addr = b)
53 #define nat_get_ino(nat)                (nat->ni.ino)
54 #define nat_set_ino(nat, i)             (nat->ni.ino = i)
55 #define nat_get_version(nat)            (nat->ni.version)
56 #define nat_set_version(nat, v)         (nat->ni.version = v)
57
58 #define __set_nat_cache_dirty(nm_i, ne)                                 \
59         do {                                                            \
60                 ne->checkpointed = false;                               \
61                 list_move_tail(&ne->list, &nm_i->dirty_nat_entries);    \
62         } while (0)
63 #define __clear_nat_cache_dirty(nm_i, ne)                               \
64         do {                                                            \
65                 ne->checkpointed = true;                                \
66                 list_move_tail(&ne->list, &nm_i->nat_entries);          \
67         } while (0)
68 #define inc_node_version(version)       (++version)
69
70 static inline void node_info_from_raw_nat(struct node_info *ni,
71                                                 struct f2fs_nat_entry *raw_ne)
72 {
73         ni->ino = le32_to_cpu(raw_ne->ino);
74         ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
75         ni->version = raw_ne->version;
76 }
77
78 static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
79                                                 struct node_info *ni)
80 {
81         raw_ne->ino = cpu_to_le32(ni->ino);
82         raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
83         raw_ne->version = ni->version;
84 }
85
86 enum mem_type {
87         FREE_NIDS,      /* indicates the free nid list */
88         NAT_ENTRIES,    /* indicates the cached nat entry */
89         DIRTY_DENTS     /* indicates dirty dentry pages */
90 };
91
92 struct nat_entry_set {
93         struct list_head set_list;      /* link with all nat sets */
94         struct list_head entry_list;    /* link with dirty nat entries */
95         nid_t start_nid;                /* start nid of nats in set */
96         unsigned int entry_cnt;         /* the # of nat entries in set */
97 };
98
99 /*
100  * For free nid mangement
101  */
102 enum nid_state {
103         NID_NEW,        /* newly added to free nid list */
104         NID_ALLOC       /* it is allocated */
105 };
106
107 struct free_nid {
108         struct list_head list;  /* for free node id list */
109         nid_t nid;              /* node id */
110         int state;              /* in use or not: NID_NEW or NID_ALLOC */
111 };
112
113 static inline int next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
114 {
115         struct f2fs_nm_info *nm_i = NM_I(sbi);
116         struct free_nid *fnid;
117
118         if (nm_i->fcnt <= 0)
119                 return -1;
120         spin_lock(&nm_i->free_nid_list_lock);
121         fnid = list_entry(nm_i->free_nid_list.next, struct free_nid, list);
122         *nid = fnid->nid;
123         spin_unlock(&nm_i->free_nid_list_lock);
124         return 0;
125 }
126
127 /*
128  * inline functions
129  */
130 static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
131 {
132         struct f2fs_nm_info *nm_i = NM_I(sbi);
133         memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
134 }
135
136 static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
137 {
138         struct f2fs_nm_info *nm_i = NM_I(sbi);
139         pgoff_t block_off;
140         pgoff_t block_addr;
141         int seg_off;
142
143         block_off = NAT_BLOCK_OFFSET(start);
144         seg_off = block_off >> sbi->log_blocks_per_seg;
145
146         block_addr = (pgoff_t)(nm_i->nat_blkaddr +
147                 (seg_off << sbi->log_blocks_per_seg << 1) +
148                 (block_off & ((1 << sbi->log_blocks_per_seg) - 1)));
149
150         if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
151                 block_addr += sbi->blocks_per_seg;
152
153         return block_addr;
154 }
155
156 static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
157                                                 pgoff_t block_addr)
158 {
159         struct f2fs_nm_info *nm_i = NM_I(sbi);
160
161         block_addr -= nm_i->nat_blkaddr;
162         if ((block_addr >> sbi->log_blocks_per_seg) % 2)
163                 block_addr -= sbi->blocks_per_seg;
164         else
165                 block_addr += sbi->blocks_per_seg;
166
167         return block_addr + nm_i->nat_blkaddr;
168 }
169
170 static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
171 {
172         unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
173
174         if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
175                 f2fs_clear_bit(block_off, nm_i->nat_bitmap);
176         else
177                 f2fs_set_bit(block_off, nm_i->nat_bitmap);
178 }
179
180 static inline void fill_node_footer(struct page *page, nid_t nid,
181                                 nid_t ino, unsigned int ofs, bool reset)
182 {
183         struct f2fs_node *rn = F2FS_NODE(page);
184         if (reset)
185                 memset(rn, 0, sizeof(*rn));
186         rn->footer.nid = cpu_to_le32(nid);
187         rn->footer.ino = cpu_to_le32(ino);
188         rn->footer.flag = cpu_to_le32(ofs << OFFSET_BIT_SHIFT);
189 }
190
191 static inline void copy_node_footer(struct page *dst, struct page *src)
192 {
193         struct f2fs_node *src_rn = F2FS_NODE(src);
194         struct f2fs_node *dst_rn = F2FS_NODE(dst);
195         memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
196 }
197
198 static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
199 {
200         struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
201         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
202         struct f2fs_node *rn = F2FS_NODE(page);
203
204         rn->footer.cp_ver = ckpt->checkpoint_ver;
205         rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
206 }
207
208 static inline nid_t ino_of_node(struct page *node_page)
209 {
210         struct f2fs_node *rn = F2FS_NODE(node_page);
211         return le32_to_cpu(rn->footer.ino);
212 }
213
214 static inline nid_t nid_of_node(struct page *node_page)
215 {
216         struct f2fs_node *rn = F2FS_NODE(node_page);
217         return le32_to_cpu(rn->footer.nid);
218 }
219
220 static inline unsigned int ofs_of_node(struct page *node_page)
221 {
222         struct f2fs_node *rn = F2FS_NODE(node_page);
223         unsigned flag = le32_to_cpu(rn->footer.flag);
224         return flag >> OFFSET_BIT_SHIFT;
225 }
226
227 static inline unsigned long long cpver_of_node(struct page *node_page)
228 {
229         struct f2fs_node *rn = F2FS_NODE(node_page);
230         return le64_to_cpu(rn->footer.cp_ver);
231 }
232
233 static inline block_t next_blkaddr_of_node(struct page *node_page)
234 {
235         struct f2fs_node *rn = F2FS_NODE(node_page);
236         return le32_to_cpu(rn->footer.next_blkaddr);
237 }
238
239 /*
240  * f2fs assigns the following node offsets described as (num).
241  * N = NIDS_PER_BLOCK
242  *
243  *  Inode block (0)
244  *    |- direct node (1)
245  *    |- direct node (2)
246  *    |- indirect node (3)
247  *    |            `- direct node (4 => 4 + N - 1)
248  *    |- indirect node (4 + N)
249  *    |            `- direct node (5 + N => 5 + 2N - 1)
250  *    `- double indirect node (5 + 2N)
251  *                 `- indirect node (6 + 2N)
252  *                       `- direct node
253  *                 ......
254  *                 `- indirect node ((6 + 2N) + x(N + 1))
255  *                       `- direct node
256  *                 ......
257  *                 `- indirect node ((6 + 2N) + (N - 1)(N + 1))
258  *                       `- direct node
259  */
260 static inline bool IS_DNODE(struct page *node_page)
261 {
262         unsigned int ofs = ofs_of_node(node_page);
263
264         if (f2fs_has_xattr_block(ofs))
265                 return false;
266
267         if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
268                         ofs == 5 + 2 * NIDS_PER_BLOCK)
269                 return false;
270         if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
271                 ofs -= 6 + 2 * NIDS_PER_BLOCK;
272                 if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
273                         return false;
274         }
275         return true;
276 }
277
278 static inline void set_nid(struct page *p, int off, nid_t nid, bool i)
279 {
280         struct f2fs_node *rn = F2FS_NODE(p);
281
282         f2fs_wait_on_page_writeback(p, NODE);
283
284         if (i)
285                 rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
286         else
287                 rn->in.nid[off] = cpu_to_le32(nid);
288         set_page_dirty(p);
289 }
290
291 static inline nid_t get_nid(struct page *p, int off, bool i)
292 {
293         struct f2fs_node *rn = F2FS_NODE(p);
294
295         if (i)
296                 return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
297         return le32_to_cpu(rn->in.nid[off]);
298 }
299
300 /*
301  * Coldness identification:
302  *  - Mark cold files in f2fs_inode_info
303  *  - Mark cold node blocks in their node footer
304  *  - Mark cold data pages in page cache
305  */
306 static inline int is_file(struct inode *inode, int type)
307 {
308         return F2FS_I(inode)->i_advise & type;
309 }
310
311 static inline void set_file(struct inode *inode, int type)
312 {
313         F2FS_I(inode)->i_advise |= type;
314 }
315
316 static inline void clear_file(struct inode *inode, int type)
317 {
318         F2FS_I(inode)->i_advise &= ~type;
319 }
320
321 #define file_is_cold(inode)     is_file(inode, FADVISE_COLD_BIT)
322 #define file_wrong_pino(inode)  is_file(inode, FADVISE_LOST_PINO_BIT)
323 #define file_set_cold(inode)    set_file(inode, FADVISE_COLD_BIT)
324 #define file_lost_pino(inode)   set_file(inode, FADVISE_LOST_PINO_BIT)
325 #define file_clear_cold(inode)  clear_file(inode, FADVISE_COLD_BIT)
326 #define file_got_pino(inode)    clear_file(inode, FADVISE_LOST_PINO_BIT)
327
328 static inline int is_cold_data(struct page *page)
329 {
330         return PageChecked(page);
331 }
332
333 static inline void set_cold_data(struct page *page)
334 {
335         SetPageChecked(page);
336 }
337
338 static inline void clear_cold_data(struct page *page)
339 {
340         ClearPageChecked(page);
341 }
342
343 static inline int is_node(struct page *page, int type)
344 {
345         struct f2fs_node *rn = F2FS_NODE(page);
346         return le32_to_cpu(rn->footer.flag) & (1 << type);
347 }
348
349 #define is_cold_node(page)      is_node(page, COLD_BIT_SHIFT)
350 #define is_fsync_dnode(page)    is_node(page, FSYNC_BIT_SHIFT)
351 #define is_dent_dnode(page)     is_node(page, DENT_BIT_SHIFT)
352
353 static inline void set_cold_node(struct inode *inode, struct page *page)
354 {
355         struct f2fs_node *rn = F2FS_NODE(page);
356         unsigned int flag = le32_to_cpu(rn->footer.flag);
357
358         if (S_ISDIR(inode->i_mode))
359                 flag &= ~(0x1 << COLD_BIT_SHIFT);
360         else
361                 flag |= (0x1 << COLD_BIT_SHIFT);
362         rn->footer.flag = cpu_to_le32(flag);
363 }
364
365 static inline void set_mark(struct page *page, int mark, int type)
366 {
367         struct f2fs_node *rn = F2FS_NODE(page);
368         unsigned int flag = le32_to_cpu(rn->footer.flag);
369         if (mark)
370                 flag |= (0x1 << type);
371         else
372                 flag &= ~(0x1 << type);
373         rn->footer.flag = cpu_to_le32(flag);
374 }
375 #define set_dentry_mark(page, mark)     set_mark(page, mark, DENT_BIT_SHIFT)
376 #define set_fsync_mark(page, mark)      set_mark(page, mark, FSYNC_BIT_SHIFT)