Merge tag 'dt-for-3.17' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[cascardo/linux.git] / fs / f2fs / segment.c
1 /*
2  * fs/f2fs/segment.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/kthread.h>
17 #include <linux/vmalloc.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "segment.h"
22 #include "node.h"
23 #include <trace/events/f2fs.h>
24
25 #define __reverse_ffz(x) __reverse_ffs(~(x))
26
27 static struct kmem_cache *discard_entry_slab;
28
29 /*
30  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
31  * MSB and LSB are reversed in a byte by f2fs_set_bit.
32  */
33 static inline unsigned long __reverse_ffs(unsigned long word)
34 {
35         int num = 0;
36
37 #if BITS_PER_LONG == 64
38         if ((word & 0xffffffff) == 0) {
39                 num += 32;
40                 word >>= 32;
41         }
42 #endif
43         if ((word & 0xffff) == 0) {
44                 num += 16;
45                 word >>= 16;
46         }
47         if ((word & 0xff) == 0) {
48                 num += 8;
49                 word >>= 8;
50         }
51         if ((word & 0xf0) == 0)
52                 num += 4;
53         else
54                 word >>= 4;
55         if ((word & 0xc) == 0)
56                 num += 2;
57         else
58                 word >>= 2;
59         if ((word & 0x2) == 0)
60                 num += 1;
61         return num;
62 }
63
64 /*
65  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c becasue
66  * f2fs_set_bit makes MSB and LSB reversed in a byte.
67  * Example:
68  *                             LSB <--> MSB
69  *   f2fs_set_bit(0, bitmap) => 0000 0001
70  *   f2fs_set_bit(7, bitmap) => 1000 0000
71  */
72 static unsigned long __find_rev_next_bit(const unsigned long *addr,
73                         unsigned long size, unsigned long offset)
74 {
75         const unsigned long *p = addr + BIT_WORD(offset);
76         unsigned long result = offset & ~(BITS_PER_LONG - 1);
77         unsigned long tmp;
78         unsigned long mask, submask;
79         unsigned long quot, rest;
80
81         if (offset >= size)
82                 return size;
83
84         size -= result;
85         offset %= BITS_PER_LONG;
86         if (!offset)
87                 goto aligned;
88
89         tmp = *(p++);
90         quot = (offset >> 3) << 3;
91         rest = offset & 0x7;
92         mask = ~0UL << quot;
93         submask = (unsigned char)(0xff << rest) >> rest;
94         submask <<= quot;
95         mask &= submask;
96         tmp &= mask;
97         if (size < BITS_PER_LONG)
98                 goto found_first;
99         if (tmp)
100                 goto found_middle;
101
102         size -= BITS_PER_LONG;
103         result += BITS_PER_LONG;
104 aligned:
105         while (size & ~(BITS_PER_LONG-1)) {
106                 tmp = *(p++);
107                 if (tmp)
108                         goto found_middle;
109                 result += BITS_PER_LONG;
110                 size -= BITS_PER_LONG;
111         }
112         if (!size)
113                 return result;
114         tmp = *p;
115 found_first:
116         tmp &= (~0UL >> (BITS_PER_LONG - size));
117         if (tmp == 0UL)         /* Are any bits set? */
118                 return result + size;   /* Nope. */
119 found_middle:
120         return result + __reverse_ffs(tmp);
121 }
122
123 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
124                         unsigned long size, unsigned long offset)
125 {
126         const unsigned long *p = addr + BIT_WORD(offset);
127         unsigned long result = offset & ~(BITS_PER_LONG - 1);
128         unsigned long tmp;
129         unsigned long mask, submask;
130         unsigned long quot, rest;
131
132         if (offset >= size)
133                 return size;
134
135         size -= result;
136         offset %= BITS_PER_LONG;
137         if (!offset)
138                 goto aligned;
139
140         tmp = *(p++);
141         quot = (offset >> 3) << 3;
142         rest = offset & 0x7;
143         mask = ~(~0UL << quot);
144         submask = (unsigned char)~((unsigned char)(0xff << rest) >> rest);
145         submask <<= quot;
146         mask += submask;
147         tmp |= mask;
148         if (size < BITS_PER_LONG)
149                 goto found_first;
150         if (~tmp)
151                 goto found_middle;
152
153         size -= BITS_PER_LONG;
154         result += BITS_PER_LONG;
155 aligned:
156         while (size & ~(BITS_PER_LONG - 1)) {
157                 tmp = *(p++);
158                 if (~tmp)
159                         goto found_middle;
160                 result += BITS_PER_LONG;
161                 size -= BITS_PER_LONG;
162         }
163         if (!size)
164                 return result;
165         tmp = *p;
166
167 found_first:
168         tmp |= ~0UL << size;
169         if (tmp == ~0UL)        /* Are any bits zero? */
170                 return result + size;   /* Nope. */
171 found_middle:
172         return result + __reverse_ffz(tmp);
173 }
174
175 /*
176  * This function balances dirty node and dentry pages.
177  * In addition, it controls garbage collection.
178  */
179 void f2fs_balance_fs(struct f2fs_sb_info *sbi)
180 {
181         /*
182          * We should do GC or end up with checkpoint, if there are so many dirty
183          * dir/node pages without enough free segments.
184          */
185         if (has_not_enough_free_secs(sbi, 0)) {
186                 mutex_lock(&sbi->gc_mutex);
187                 f2fs_gc(sbi);
188         }
189 }
190
191 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
192 {
193         /* check the # of cached NAT entries and prefree segments */
194         if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK) ||
195                                 excess_prefree_segs(sbi))
196                 f2fs_sync_fs(sbi->sb, true);
197 }
198
199 static int issue_flush_thread(void *data)
200 {
201         struct f2fs_sb_info *sbi = data;
202         struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
203         wait_queue_head_t *q = &fcc->flush_wait_queue;
204 repeat:
205         if (kthread_should_stop())
206                 return 0;
207
208         spin_lock(&fcc->issue_lock);
209         if (fcc->issue_list) {
210                 fcc->dispatch_list = fcc->issue_list;
211                 fcc->issue_list = fcc->issue_tail = NULL;
212         }
213         spin_unlock(&fcc->issue_lock);
214
215         if (fcc->dispatch_list) {
216                 struct bio *bio = bio_alloc(GFP_NOIO, 0);
217                 struct flush_cmd *cmd, *next;
218                 int ret;
219
220                 bio->bi_bdev = sbi->sb->s_bdev;
221                 ret = submit_bio_wait(WRITE_FLUSH, bio);
222
223                 for (cmd = fcc->dispatch_list; cmd; cmd = next) {
224                         cmd->ret = ret;
225                         next = cmd->next;
226                         complete(&cmd->wait);
227                 }
228                 bio_put(bio);
229                 fcc->dispatch_list = NULL;
230         }
231
232         wait_event_interruptible(*q,
233                         kthread_should_stop() || fcc->issue_list);
234         goto repeat;
235 }
236
237 int f2fs_issue_flush(struct f2fs_sb_info *sbi)
238 {
239         struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
240         struct flush_cmd cmd;
241
242         trace_f2fs_issue_flush(sbi->sb, test_opt(sbi, NOBARRIER),
243                                         test_opt(sbi, FLUSH_MERGE));
244
245         if (test_opt(sbi, NOBARRIER))
246                 return 0;
247
248         if (!test_opt(sbi, FLUSH_MERGE))
249                 return blkdev_issue_flush(sbi->sb->s_bdev, GFP_KERNEL, NULL);
250
251         init_completion(&cmd.wait);
252         cmd.next = NULL;
253
254         spin_lock(&fcc->issue_lock);
255         if (fcc->issue_list)
256                 fcc->issue_tail->next = &cmd;
257         else
258                 fcc->issue_list = &cmd;
259         fcc->issue_tail = &cmd;
260         spin_unlock(&fcc->issue_lock);
261
262         if (!fcc->dispatch_list)
263                 wake_up(&fcc->flush_wait_queue);
264
265         wait_for_completion(&cmd.wait);
266
267         return cmd.ret;
268 }
269
270 int create_flush_cmd_control(struct f2fs_sb_info *sbi)
271 {
272         dev_t dev = sbi->sb->s_bdev->bd_dev;
273         struct flush_cmd_control *fcc;
274         int err = 0;
275
276         fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
277         if (!fcc)
278                 return -ENOMEM;
279         spin_lock_init(&fcc->issue_lock);
280         init_waitqueue_head(&fcc->flush_wait_queue);
281         SM_I(sbi)->cmd_control_info = fcc;
282         fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
283                                 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
284         if (IS_ERR(fcc->f2fs_issue_flush)) {
285                 err = PTR_ERR(fcc->f2fs_issue_flush);
286                 kfree(fcc);
287                 SM_I(sbi)->cmd_control_info = NULL;
288                 return err;
289         }
290
291         return err;
292 }
293
294 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi)
295 {
296         struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
297
298         if (fcc && fcc->f2fs_issue_flush)
299                 kthread_stop(fcc->f2fs_issue_flush);
300         kfree(fcc);
301         SM_I(sbi)->cmd_control_info = NULL;
302 }
303
304 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
305                 enum dirty_type dirty_type)
306 {
307         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
308
309         /* need not be added */
310         if (IS_CURSEG(sbi, segno))
311                 return;
312
313         if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
314                 dirty_i->nr_dirty[dirty_type]++;
315
316         if (dirty_type == DIRTY) {
317                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
318                 enum dirty_type t = sentry->type;
319
320                 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
321                         dirty_i->nr_dirty[t]++;
322         }
323 }
324
325 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
326                 enum dirty_type dirty_type)
327 {
328         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
329
330         if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
331                 dirty_i->nr_dirty[dirty_type]--;
332
333         if (dirty_type == DIRTY) {
334                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
335                 enum dirty_type t = sentry->type;
336
337                 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
338                         dirty_i->nr_dirty[t]--;
339
340                 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
341                         clear_bit(GET_SECNO(sbi, segno),
342                                                 dirty_i->victim_secmap);
343         }
344 }
345
346 /*
347  * Should not occur error such as -ENOMEM.
348  * Adding dirty entry into seglist is not critical operation.
349  * If a given segment is one of current working segments, it won't be added.
350  */
351 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
352 {
353         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
354         unsigned short valid_blocks;
355
356         if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
357                 return;
358
359         mutex_lock(&dirty_i->seglist_lock);
360
361         valid_blocks = get_valid_blocks(sbi, segno, 0);
362
363         if (valid_blocks == 0) {
364                 __locate_dirty_segment(sbi, segno, PRE);
365                 __remove_dirty_segment(sbi, segno, DIRTY);
366         } else if (valid_blocks < sbi->blocks_per_seg) {
367                 __locate_dirty_segment(sbi, segno, DIRTY);
368         } else {
369                 /* Recovery routine with SSR needs this */
370                 __remove_dirty_segment(sbi, segno, DIRTY);
371         }
372
373         mutex_unlock(&dirty_i->seglist_lock);
374 }
375
376 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
377                                 block_t blkstart, block_t blklen)
378 {
379         sector_t start = SECTOR_FROM_BLOCK(sbi, blkstart);
380         sector_t len = SECTOR_FROM_BLOCK(sbi, blklen);
381         trace_f2fs_issue_discard(sbi->sb, blkstart, blklen);
382         return blkdev_issue_discard(sbi->sb->s_bdev, start, len, GFP_NOFS, 0);
383 }
384
385 void discard_next_dnode(struct f2fs_sb_info *sbi, block_t blkaddr)
386 {
387         if (f2fs_issue_discard(sbi, blkaddr, 1)) {
388                 struct page *page = grab_meta_page(sbi, blkaddr);
389                 /* zero-filled page */
390                 set_page_dirty(page);
391                 f2fs_put_page(page, 1);
392         }
393 }
394
395 static void add_discard_addrs(struct f2fs_sb_info *sbi,
396                         unsigned int segno, struct seg_entry *se)
397 {
398         struct list_head *head = &SM_I(sbi)->discard_list;
399         struct discard_entry *new;
400         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
401         int max_blocks = sbi->blocks_per_seg;
402         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
403         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
404         unsigned long dmap[entries];
405         unsigned int start = 0, end = -1;
406         int i;
407
408         if (!test_opt(sbi, DISCARD))
409                 return;
410
411         /* zero block will be discarded through the prefree list */
412         if (!se->valid_blocks || se->valid_blocks == max_blocks)
413                 return;
414
415         /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
416         for (i = 0; i < entries; i++)
417                 dmap[i] = (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
418
419         while (SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) {
420                 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
421                 if (start >= max_blocks)
422                         break;
423
424                 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
425
426                 new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS);
427                 INIT_LIST_HEAD(&new->list);
428                 new->blkaddr = START_BLOCK(sbi, segno) + start;
429                 new->len = end - start;
430
431                 list_add_tail(&new->list, head);
432                 SM_I(sbi)->nr_discards += end - start;
433         }
434 }
435
436 /*
437  * Should call clear_prefree_segments after checkpoint is done.
438  */
439 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
440 {
441         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
442         unsigned int segno;
443         unsigned int total_segs = TOTAL_SEGS(sbi);
444
445         mutex_lock(&dirty_i->seglist_lock);
446         for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], total_segs)
447                 __set_test_and_free(sbi, segno);
448         mutex_unlock(&dirty_i->seglist_lock);
449 }
450
451 void clear_prefree_segments(struct f2fs_sb_info *sbi)
452 {
453         struct list_head *head = &(SM_I(sbi)->discard_list);
454         struct discard_entry *entry, *this;
455         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
456         unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
457         unsigned int total_segs = TOTAL_SEGS(sbi);
458         unsigned int start = 0, end = -1;
459
460         mutex_lock(&dirty_i->seglist_lock);
461
462         while (1) {
463                 int i;
464                 start = find_next_bit(prefree_map, total_segs, end + 1);
465                 if (start >= total_segs)
466                         break;
467                 end = find_next_zero_bit(prefree_map, total_segs, start + 1);
468
469                 for (i = start; i < end; i++)
470                         clear_bit(i, prefree_map);
471
472                 dirty_i->nr_dirty[PRE] -= end - start;
473
474                 if (!test_opt(sbi, DISCARD))
475                         continue;
476
477                 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
478                                 (end - start) << sbi->log_blocks_per_seg);
479         }
480         mutex_unlock(&dirty_i->seglist_lock);
481
482         /* send small discards */
483         list_for_each_entry_safe(entry, this, head, list) {
484                 f2fs_issue_discard(sbi, entry->blkaddr, entry->len);
485                 list_del(&entry->list);
486                 SM_I(sbi)->nr_discards -= entry->len;
487                 kmem_cache_free(discard_entry_slab, entry);
488         }
489 }
490
491 static void __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
492 {
493         struct sit_info *sit_i = SIT_I(sbi);
494         if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap))
495                 sit_i->dirty_sentries++;
496 }
497
498 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
499                                         unsigned int segno, int modified)
500 {
501         struct seg_entry *se = get_seg_entry(sbi, segno);
502         se->type = type;
503         if (modified)
504                 __mark_sit_entry_dirty(sbi, segno);
505 }
506
507 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
508 {
509         struct seg_entry *se;
510         unsigned int segno, offset;
511         long int new_vblocks;
512
513         segno = GET_SEGNO(sbi, blkaddr);
514
515         se = get_seg_entry(sbi, segno);
516         new_vblocks = se->valid_blocks + del;
517         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
518
519         f2fs_bug_on((new_vblocks >> (sizeof(unsigned short) << 3) ||
520                                 (new_vblocks > sbi->blocks_per_seg)));
521
522         se->valid_blocks = new_vblocks;
523         se->mtime = get_mtime(sbi);
524         SIT_I(sbi)->max_mtime = se->mtime;
525
526         /* Update valid block bitmap */
527         if (del > 0) {
528                 if (f2fs_set_bit(offset, se->cur_valid_map))
529                         BUG();
530         } else {
531                 if (!f2fs_clear_bit(offset, se->cur_valid_map))
532                         BUG();
533         }
534         if (!f2fs_test_bit(offset, se->ckpt_valid_map))
535                 se->ckpt_valid_blocks += del;
536
537         __mark_sit_entry_dirty(sbi, segno);
538
539         /* update total number of valid blocks to be written in ckpt area */
540         SIT_I(sbi)->written_valid_blocks += del;
541
542         if (sbi->segs_per_sec > 1)
543                 get_sec_entry(sbi, segno)->valid_blocks += del;
544 }
545
546 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new)
547 {
548         update_sit_entry(sbi, new, 1);
549         if (GET_SEGNO(sbi, old) != NULL_SEGNO)
550                 update_sit_entry(sbi, old, -1);
551
552         locate_dirty_segment(sbi, GET_SEGNO(sbi, old));
553         locate_dirty_segment(sbi, GET_SEGNO(sbi, new));
554 }
555
556 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
557 {
558         unsigned int segno = GET_SEGNO(sbi, addr);
559         struct sit_info *sit_i = SIT_I(sbi);
560
561         f2fs_bug_on(addr == NULL_ADDR);
562         if (addr == NEW_ADDR)
563                 return;
564
565         /* add it into sit main buffer */
566         mutex_lock(&sit_i->sentry_lock);
567
568         update_sit_entry(sbi, addr, -1);
569
570         /* add it into dirty seglist */
571         locate_dirty_segment(sbi, segno);
572
573         mutex_unlock(&sit_i->sentry_lock);
574 }
575
576 /*
577  * This function should be resided under the curseg_mutex lock
578  */
579 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
580                                         struct f2fs_summary *sum)
581 {
582         struct curseg_info *curseg = CURSEG_I(sbi, type);
583         void *addr = curseg->sum_blk;
584         addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
585         memcpy(addr, sum, sizeof(struct f2fs_summary));
586 }
587
588 /*
589  * Calculate the number of current summary pages for writing
590  */
591 int npages_for_summary_flush(struct f2fs_sb_info *sbi)
592 {
593         int valid_sum_count = 0;
594         int i, sum_in_page;
595
596         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
597                 if (sbi->ckpt->alloc_type[i] == SSR)
598                         valid_sum_count += sbi->blocks_per_seg;
599                 else
600                         valid_sum_count += curseg_blkoff(sbi, i);
601         }
602
603         sum_in_page = (PAGE_CACHE_SIZE - 2 * SUM_JOURNAL_SIZE -
604                         SUM_FOOTER_SIZE) / SUMMARY_SIZE;
605         if (valid_sum_count <= sum_in_page)
606                 return 1;
607         else if ((valid_sum_count - sum_in_page) <=
608                 (PAGE_CACHE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
609                 return 2;
610         return 3;
611 }
612
613 /*
614  * Caller should put this summary page
615  */
616 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
617 {
618         return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
619 }
620
621 static void write_sum_page(struct f2fs_sb_info *sbi,
622                         struct f2fs_summary_block *sum_blk, block_t blk_addr)
623 {
624         struct page *page = grab_meta_page(sbi, blk_addr);
625         void *kaddr = page_address(page);
626         memcpy(kaddr, sum_blk, PAGE_CACHE_SIZE);
627         set_page_dirty(page);
628         f2fs_put_page(page, 1);
629 }
630
631 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
632 {
633         struct curseg_info *curseg = CURSEG_I(sbi, type);
634         unsigned int segno = curseg->segno + 1;
635         struct free_segmap_info *free_i = FREE_I(sbi);
636
637         if (segno < TOTAL_SEGS(sbi) && segno % sbi->segs_per_sec)
638                 return !test_bit(segno, free_i->free_segmap);
639         return 0;
640 }
641
642 /*
643  * Find a new segment from the free segments bitmap to right order
644  * This function should be returned with success, otherwise BUG
645  */
646 static void get_new_segment(struct f2fs_sb_info *sbi,
647                         unsigned int *newseg, bool new_sec, int dir)
648 {
649         struct free_segmap_info *free_i = FREE_I(sbi);
650         unsigned int segno, secno, zoneno;
651         unsigned int total_zones = TOTAL_SECS(sbi) / sbi->secs_per_zone;
652         unsigned int hint = *newseg / sbi->segs_per_sec;
653         unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
654         unsigned int left_start = hint;
655         bool init = true;
656         int go_left = 0;
657         int i;
658
659         write_lock(&free_i->segmap_lock);
660
661         if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
662                 segno = find_next_zero_bit(free_i->free_segmap,
663                                         TOTAL_SEGS(sbi), *newseg + 1);
664                 if (segno - *newseg < sbi->segs_per_sec -
665                                         (*newseg % sbi->segs_per_sec))
666                         goto got_it;
667         }
668 find_other_zone:
669         secno = find_next_zero_bit(free_i->free_secmap, TOTAL_SECS(sbi), hint);
670         if (secno >= TOTAL_SECS(sbi)) {
671                 if (dir == ALLOC_RIGHT) {
672                         secno = find_next_zero_bit(free_i->free_secmap,
673                                                         TOTAL_SECS(sbi), 0);
674                         f2fs_bug_on(secno >= TOTAL_SECS(sbi));
675                 } else {
676                         go_left = 1;
677                         left_start = hint - 1;
678                 }
679         }
680         if (go_left == 0)
681                 goto skip_left;
682
683         while (test_bit(left_start, free_i->free_secmap)) {
684                 if (left_start > 0) {
685                         left_start--;
686                         continue;
687                 }
688                 left_start = find_next_zero_bit(free_i->free_secmap,
689                                                         TOTAL_SECS(sbi), 0);
690                 f2fs_bug_on(left_start >= TOTAL_SECS(sbi));
691                 break;
692         }
693         secno = left_start;
694 skip_left:
695         hint = secno;
696         segno = secno * sbi->segs_per_sec;
697         zoneno = secno / sbi->secs_per_zone;
698
699         /* give up on finding another zone */
700         if (!init)
701                 goto got_it;
702         if (sbi->secs_per_zone == 1)
703                 goto got_it;
704         if (zoneno == old_zoneno)
705                 goto got_it;
706         if (dir == ALLOC_LEFT) {
707                 if (!go_left && zoneno + 1 >= total_zones)
708                         goto got_it;
709                 if (go_left && zoneno == 0)
710                         goto got_it;
711         }
712         for (i = 0; i < NR_CURSEG_TYPE; i++)
713                 if (CURSEG_I(sbi, i)->zone == zoneno)
714                         break;
715
716         if (i < NR_CURSEG_TYPE) {
717                 /* zone is in user, try another */
718                 if (go_left)
719                         hint = zoneno * sbi->secs_per_zone - 1;
720                 else if (zoneno + 1 >= total_zones)
721                         hint = 0;
722                 else
723                         hint = (zoneno + 1) * sbi->secs_per_zone;
724                 init = false;
725                 goto find_other_zone;
726         }
727 got_it:
728         /* set it as dirty segment in free segmap */
729         f2fs_bug_on(test_bit(segno, free_i->free_segmap));
730         __set_inuse(sbi, segno);
731         *newseg = segno;
732         write_unlock(&free_i->segmap_lock);
733 }
734
735 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
736 {
737         struct curseg_info *curseg = CURSEG_I(sbi, type);
738         struct summary_footer *sum_footer;
739
740         curseg->segno = curseg->next_segno;
741         curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
742         curseg->next_blkoff = 0;
743         curseg->next_segno = NULL_SEGNO;
744
745         sum_footer = &(curseg->sum_blk->footer);
746         memset(sum_footer, 0, sizeof(struct summary_footer));
747         if (IS_DATASEG(type))
748                 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
749         if (IS_NODESEG(type))
750                 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
751         __set_sit_entry_type(sbi, type, curseg->segno, modified);
752 }
753
754 /*
755  * Allocate a current working segment.
756  * This function always allocates a free segment in LFS manner.
757  */
758 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
759 {
760         struct curseg_info *curseg = CURSEG_I(sbi, type);
761         unsigned int segno = curseg->segno;
762         int dir = ALLOC_LEFT;
763
764         write_sum_page(sbi, curseg->sum_blk,
765                                 GET_SUM_BLOCK(sbi, segno));
766         if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
767                 dir = ALLOC_RIGHT;
768
769         if (test_opt(sbi, NOHEAP))
770                 dir = ALLOC_RIGHT;
771
772         get_new_segment(sbi, &segno, new_sec, dir);
773         curseg->next_segno = segno;
774         reset_curseg(sbi, type, 1);
775         curseg->alloc_type = LFS;
776 }
777
778 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
779                         struct curseg_info *seg, block_t start)
780 {
781         struct seg_entry *se = get_seg_entry(sbi, seg->segno);
782         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
783         unsigned long target_map[entries];
784         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
785         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
786         int i, pos;
787
788         for (i = 0; i < entries; i++)
789                 target_map[i] = ckpt_map[i] | cur_map[i];
790
791         pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
792
793         seg->next_blkoff = pos;
794 }
795
796 /*
797  * If a segment is written by LFS manner, next block offset is just obtained
798  * by increasing the current block offset. However, if a segment is written by
799  * SSR manner, next block offset obtained by calling __next_free_blkoff
800  */
801 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
802                                 struct curseg_info *seg)
803 {
804         if (seg->alloc_type == SSR)
805                 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
806         else
807                 seg->next_blkoff++;
808 }
809
810 /*
811  * This function always allocates a used segment (from dirty seglist) by SSR
812  * manner, so it should recover the existing segment information of valid blocks
813  */
814 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
815 {
816         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
817         struct curseg_info *curseg = CURSEG_I(sbi, type);
818         unsigned int new_segno = curseg->next_segno;
819         struct f2fs_summary_block *sum_node;
820         struct page *sum_page;
821
822         write_sum_page(sbi, curseg->sum_blk,
823                                 GET_SUM_BLOCK(sbi, curseg->segno));
824         __set_test_and_inuse(sbi, new_segno);
825
826         mutex_lock(&dirty_i->seglist_lock);
827         __remove_dirty_segment(sbi, new_segno, PRE);
828         __remove_dirty_segment(sbi, new_segno, DIRTY);
829         mutex_unlock(&dirty_i->seglist_lock);
830
831         reset_curseg(sbi, type, 1);
832         curseg->alloc_type = SSR;
833         __next_free_blkoff(sbi, curseg, 0);
834
835         if (reuse) {
836                 sum_page = get_sum_page(sbi, new_segno);
837                 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
838                 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
839                 f2fs_put_page(sum_page, 1);
840         }
841 }
842
843 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
844 {
845         struct curseg_info *curseg = CURSEG_I(sbi, type);
846         const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
847
848         if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0))
849                 return v_ops->get_victim(sbi,
850                                 &(curseg)->next_segno, BG_GC, type, SSR);
851
852         /* For data segments, let's do SSR more intensively */
853         for (; type >= CURSEG_HOT_DATA; type--)
854                 if (v_ops->get_victim(sbi, &(curseg)->next_segno,
855                                                 BG_GC, type, SSR))
856                         return 1;
857         return 0;
858 }
859
860 /*
861  * flush out current segment and replace it with new segment
862  * This function should be returned with success, otherwise BUG
863  */
864 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
865                                                 int type, bool force)
866 {
867         struct curseg_info *curseg = CURSEG_I(sbi, type);
868
869         if (force)
870                 new_curseg(sbi, type, true);
871         else if (type == CURSEG_WARM_NODE)
872                 new_curseg(sbi, type, false);
873         else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
874                 new_curseg(sbi, type, false);
875         else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
876                 change_curseg(sbi, type, true);
877         else
878                 new_curseg(sbi, type, false);
879
880         stat_inc_seg_type(sbi, curseg);
881 }
882
883 void allocate_new_segments(struct f2fs_sb_info *sbi)
884 {
885         struct curseg_info *curseg;
886         unsigned int old_curseg;
887         int i;
888
889         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
890                 curseg = CURSEG_I(sbi, i);
891                 old_curseg = curseg->segno;
892                 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
893                 locate_dirty_segment(sbi, old_curseg);
894         }
895 }
896
897 static const struct segment_allocation default_salloc_ops = {
898         .allocate_segment = allocate_segment_by_default,
899 };
900
901 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
902 {
903         struct curseg_info *curseg = CURSEG_I(sbi, type);
904         if (curseg->next_blkoff < sbi->blocks_per_seg)
905                 return true;
906         return false;
907 }
908
909 static int __get_segment_type_2(struct page *page, enum page_type p_type)
910 {
911         if (p_type == DATA)
912                 return CURSEG_HOT_DATA;
913         else
914                 return CURSEG_HOT_NODE;
915 }
916
917 static int __get_segment_type_4(struct page *page, enum page_type p_type)
918 {
919         if (p_type == DATA) {
920                 struct inode *inode = page->mapping->host;
921
922                 if (S_ISDIR(inode->i_mode))
923                         return CURSEG_HOT_DATA;
924                 else
925                         return CURSEG_COLD_DATA;
926         } else {
927                 if (IS_DNODE(page) && !is_cold_node(page))
928                         return CURSEG_HOT_NODE;
929                 else
930                         return CURSEG_COLD_NODE;
931         }
932 }
933
934 static int __get_segment_type_6(struct page *page, enum page_type p_type)
935 {
936         if (p_type == DATA) {
937                 struct inode *inode = page->mapping->host;
938
939                 if (S_ISDIR(inode->i_mode))
940                         return CURSEG_HOT_DATA;
941                 else if (is_cold_data(page) || file_is_cold(inode))
942                         return CURSEG_COLD_DATA;
943                 else
944                         return CURSEG_WARM_DATA;
945         } else {
946                 if (IS_DNODE(page))
947                         return is_cold_node(page) ? CURSEG_WARM_NODE :
948                                                 CURSEG_HOT_NODE;
949                 else
950                         return CURSEG_COLD_NODE;
951         }
952 }
953
954 static int __get_segment_type(struct page *page, enum page_type p_type)
955 {
956         struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
957         switch (sbi->active_logs) {
958         case 2:
959                 return __get_segment_type_2(page, p_type);
960         case 4:
961                 return __get_segment_type_4(page, p_type);
962         }
963         /* NR_CURSEG_TYPE(6) logs by default */
964         f2fs_bug_on(sbi->active_logs != NR_CURSEG_TYPE);
965         return __get_segment_type_6(page, p_type);
966 }
967
968 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
969                 block_t old_blkaddr, block_t *new_blkaddr,
970                 struct f2fs_summary *sum, int type)
971 {
972         struct sit_info *sit_i = SIT_I(sbi);
973         struct curseg_info *curseg;
974
975         curseg = CURSEG_I(sbi, type);
976
977         mutex_lock(&curseg->curseg_mutex);
978
979         *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
980
981         /*
982          * __add_sum_entry should be resided under the curseg_mutex
983          * because, this function updates a summary entry in the
984          * current summary block.
985          */
986         __add_sum_entry(sbi, type, sum);
987
988         mutex_lock(&sit_i->sentry_lock);
989         __refresh_next_blkoff(sbi, curseg);
990
991         stat_inc_block_count(sbi, curseg);
992
993         if (!__has_curseg_space(sbi, type))
994                 sit_i->s_ops->allocate_segment(sbi, type, false);
995         /*
996          * SIT information should be updated before segment allocation,
997          * since SSR needs latest valid block information.
998          */
999         refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
1000
1001         mutex_unlock(&sit_i->sentry_lock);
1002
1003         if (page && IS_NODESEG(type))
1004                 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
1005
1006         mutex_unlock(&curseg->curseg_mutex);
1007 }
1008
1009 static void do_write_page(struct f2fs_sb_info *sbi, struct page *page,
1010                         block_t old_blkaddr, block_t *new_blkaddr,
1011                         struct f2fs_summary *sum, struct f2fs_io_info *fio)
1012 {
1013         int type = __get_segment_type(page, fio->type);
1014
1015         allocate_data_block(sbi, page, old_blkaddr, new_blkaddr, sum, type);
1016
1017         /* writeout dirty page into bdev */
1018         f2fs_submit_page_mbio(sbi, page, *new_blkaddr, fio);
1019 }
1020
1021 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
1022 {
1023         struct f2fs_io_info fio = {
1024                 .type = META,
1025                 .rw = WRITE_SYNC | REQ_META | REQ_PRIO
1026         };
1027
1028         set_page_writeback(page);
1029         f2fs_submit_page_mbio(sbi, page, page->index, &fio);
1030 }
1031
1032 void write_node_page(struct f2fs_sb_info *sbi, struct page *page,
1033                 struct f2fs_io_info *fio,
1034                 unsigned int nid, block_t old_blkaddr, block_t *new_blkaddr)
1035 {
1036         struct f2fs_summary sum;
1037         set_summary(&sum, nid, 0, 0);
1038         do_write_page(sbi, page, old_blkaddr, new_blkaddr, &sum, fio);
1039 }
1040
1041 void write_data_page(struct page *page, struct dnode_of_data *dn,
1042                 block_t *new_blkaddr, struct f2fs_io_info *fio)
1043 {
1044         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
1045         struct f2fs_summary sum;
1046         struct node_info ni;
1047
1048         f2fs_bug_on(dn->data_blkaddr == NULL_ADDR);
1049         get_node_info(sbi, dn->nid, &ni);
1050         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1051
1052         do_write_page(sbi, page, dn->data_blkaddr, new_blkaddr, &sum, fio);
1053 }
1054
1055 void rewrite_data_page(struct page *page, block_t old_blkaddr,
1056                                         struct f2fs_io_info *fio)
1057 {
1058         struct inode *inode = page->mapping->host;
1059         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1060         f2fs_submit_page_mbio(sbi, page, old_blkaddr, fio);
1061 }
1062
1063 void recover_data_page(struct f2fs_sb_info *sbi,
1064                         struct page *page, struct f2fs_summary *sum,
1065                         block_t old_blkaddr, block_t new_blkaddr)
1066 {
1067         struct sit_info *sit_i = SIT_I(sbi);
1068         struct curseg_info *curseg;
1069         unsigned int segno, old_cursegno;
1070         struct seg_entry *se;
1071         int type;
1072
1073         segno = GET_SEGNO(sbi, new_blkaddr);
1074         se = get_seg_entry(sbi, segno);
1075         type = se->type;
1076
1077         if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
1078                 if (old_blkaddr == NULL_ADDR)
1079                         type = CURSEG_COLD_DATA;
1080                 else
1081                         type = CURSEG_WARM_DATA;
1082         }
1083         curseg = CURSEG_I(sbi, type);
1084
1085         mutex_lock(&curseg->curseg_mutex);
1086         mutex_lock(&sit_i->sentry_lock);
1087
1088         old_cursegno = curseg->segno;
1089
1090         /* change the current segment */
1091         if (segno != curseg->segno) {
1092                 curseg->next_segno = segno;
1093                 change_curseg(sbi, type, true);
1094         }
1095
1096         curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
1097         __add_sum_entry(sbi, type, sum);
1098
1099         refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
1100         locate_dirty_segment(sbi, old_cursegno);
1101
1102         mutex_unlock(&sit_i->sentry_lock);
1103         mutex_unlock(&curseg->curseg_mutex);
1104 }
1105
1106 void rewrite_node_page(struct f2fs_sb_info *sbi,
1107                         struct page *page, struct f2fs_summary *sum,
1108                         block_t old_blkaddr, block_t new_blkaddr)
1109 {
1110         struct sit_info *sit_i = SIT_I(sbi);
1111         int type = CURSEG_WARM_NODE;
1112         struct curseg_info *curseg;
1113         unsigned int segno, old_cursegno;
1114         block_t next_blkaddr = next_blkaddr_of_node(page);
1115         unsigned int next_segno = GET_SEGNO(sbi, next_blkaddr);
1116         struct f2fs_io_info fio = {
1117                 .type = NODE,
1118                 .rw = WRITE_SYNC,
1119         };
1120
1121         curseg = CURSEG_I(sbi, type);
1122
1123         mutex_lock(&curseg->curseg_mutex);
1124         mutex_lock(&sit_i->sentry_lock);
1125
1126         segno = GET_SEGNO(sbi, new_blkaddr);
1127         old_cursegno = curseg->segno;
1128
1129         /* change the current segment */
1130         if (segno != curseg->segno) {
1131                 curseg->next_segno = segno;
1132                 change_curseg(sbi, type, true);
1133         }
1134         curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
1135         __add_sum_entry(sbi, type, sum);
1136
1137         /* change the current log to the next block addr in advance */
1138         if (next_segno != segno) {
1139                 curseg->next_segno = next_segno;
1140                 change_curseg(sbi, type, true);
1141         }
1142         curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, next_blkaddr);
1143
1144         /* rewrite node page */
1145         set_page_writeback(page);
1146         f2fs_submit_page_mbio(sbi, page, new_blkaddr, &fio);
1147         f2fs_submit_merged_bio(sbi, NODE, WRITE);
1148         refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
1149         locate_dirty_segment(sbi, old_cursegno);
1150
1151         mutex_unlock(&sit_i->sentry_lock);
1152         mutex_unlock(&curseg->curseg_mutex);
1153 }
1154
1155 static inline bool is_merged_page(struct f2fs_sb_info *sbi,
1156                                         struct page *page, enum page_type type)
1157 {
1158         enum page_type btype = PAGE_TYPE_OF_BIO(type);
1159         struct f2fs_bio_info *io = &sbi->write_io[btype];
1160         struct bio_vec *bvec;
1161         int i;
1162
1163         down_read(&io->io_rwsem);
1164         if (!io->bio)
1165                 goto out;
1166
1167         bio_for_each_segment_all(bvec, io->bio, i) {
1168                 if (page == bvec->bv_page) {
1169                         up_read(&io->io_rwsem);
1170                         return true;
1171                 }
1172         }
1173
1174 out:
1175         up_read(&io->io_rwsem);
1176         return false;
1177 }
1178
1179 void f2fs_wait_on_page_writeback(struct page *page,
1180                                 enum page_type type)
1181 {
1182         struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
1183         if (PageWriteback(page)) {
1184                 if (is_merged_page(sbi, page, type))
1185                         f2fs_submit_merged_bio(sbi, type, WRITE);
1186                 wait_on_page_writeback(page);
1187         }
1188 }
1189
1190 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
1191 {
1192         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1193         struct curseg_info *seg_i;
1194         unsigned char *kaddr;
1195         struct page *page;
1196         block_t start;
1197         int i, j, offset;
1198
1199         start = start_sum_block(sbi);
1200
1201         page = get_meta_page(sbi, start++);
1202         kaddr = (unsigned char *)page_address(page);
1203
1204         /* Step 1: restore nat cache */
1205         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1206         memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE);
1207
1208         /* Step 2: restore sit cache */
1209         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1210         memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE,
1211                                                 SUM_JOURNAL_SIZE);
1212         offset = 2 * SUM_JOURNAL_SIZE;
1213
1214         /* Step 3: restore summary entries */
1215         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1216                 unsigned short blk_off;
1217                 unsigned int segno;
1218
1219                 seg_i = CURSEG_I(sbi, i);
1220                 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
1221                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
1222                 seg_i->next_segno = segno;
1223                 reset_curseg(sbi, i, 0);
1224                 seg_i->alloc_type = ckpt->alloc_type[i];
1225                 seg_i->next_blkoff = blk_off;
1226
1227                 if (seg_i->alloc_type == SSR)
1228                         blk_off = sbi->blocks_per_seg;
1229
1230                 for (j = 0; j < blk_off; j++) {
1231                         struct f2fs_summary *s;
1232                         s = (struct f2fs_summary *)(kaddr + offset);
1233                         seg_i->sum_blk->entries[j] = *s;
1234                         offset += SUMMARY_SIZE;
1235                         if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1236                                                 SUM_FOOTER_SIZE)
1237                                 continue;
1238
1239                         f2fs_put_page(page, 1);
1240                         page = NULL;
1241
1242                         page = get_meta_page(sbi, start++);
1243                         kaddr = (unsigned char *)page_address(page);
1244                         offset = 0;
1245                 }
1246         }
1247         f2fs_put_page(page, 1);
1248         return 0;
1249 }
1250
1251 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1252 {
1253         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1254         struct f2fs_summary_block *sum;
1255         struct curseg_info *curseg;
1256         struct page *new;
1257         unsigned short blk_off;
1258         unsigned int segno = 0;
1259         block_t blk_addr = 0;
1260
1261         /* get segment number and block addr */
1262         if (IS_DATASEG(type)) {
1263                 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1264                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1265                                                         CURSEG_HOT_DATA]);
1266                 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1267                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1268                 else
1269                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1270         } else {
1271                 segno = le32_to_cpu(ckpt->cur_node_segno[type -
1272                                                         CURSEG_HOT_NODE]);
1273                 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1274                                                         CURSEG_HOT_NODE]);
1275                 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1276                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1277                                                         type - CURSEG_HOT_NODE);
1278                 else
1279                         blk_addr = GET_SUM_BLOCK(sbi, segno);
1280         }
1281
1282         new = get_meta_page(sbi, blk_addr);
1283         sum = (struct f2fs_summary_block *)page_address(new);
1284
1285         if (IS_NODESEG(type)) {
1286                 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) {
1287                         struct f2fs_summary *ns = &sum->entries[0];
1288                         int i;
1289                         for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1290                                 ns->version = 0;
1291                                 ns->ofs_in_node = 0;
1292                         }
1293                 } else {
1294                         int err;
1295
1296                         err = restore_node_summary(sbi, segno, sum);
1297                         if (err) {
1298                                 f2fs_put_page(new, 1);
1299                                 return err;
1300                         }
1301                 }
1302         }
1303
1304         /* set uncompleted segment to curseg */
1305         curseg = CURSEG_I(sbi, type);
1306         mutex_lock(&curseg->curseg_mutex);
1307         memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE);
1308         curseg->next_segno = segno;
1309         reset_curseg(sbi, type, 0);
1310         curseg->alloc_type = ckpt->alloc_type[type];
1311         curseg->next_blkoff = blk_off;
1312         mutex_unlock(&curseg->curseg_mutex);
1313         f2fs_put_page(new, 1);
1314         return 0;
1315 }
1316
1317 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1318 {
1319         int type = CURSEG_HOT_DATA;
1320         int err;
1321
1322         if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
1323                 /* restore for compacted data summary */
1324                 if (read_compacted_summaries(sbi))
1325                         return -EINVAL;
1326                 type = CURSEG_HOT_NODE;
1327         }
1328
1329         for (; type <= CURSEG_COLD_NODE; type++) {
1330                 err = read_normal_summaries(sbi, type);
1331                 if (err)
1332                         return err;
1333         }
1334
1335         return 0;
1336 }
1337
1338 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1339 {
1340         struct page *page;
1341         unsigned char *kaddr;
1342         struct f2fs_summary *summary;
1343         struct curseg_info *seg_i;
1344         int written_size = 0;
1345         int i, j;
1346
1347         page = grab_meta_page(sbi, blkaddr++);
1348         kaddr = (unsigned char *)page_address(page);
1349
1350         /* Step 1: write nat cache */
1351         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1352         memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE);
1353         written_size += SUM_JOURNAL_SIZE;
1354
1355         /* Step 2: write sit cache */
1356         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1357         memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits,
1358                                                 SUM_JOURNAL_SIZE);
1359         written_size += SUM_JOURNAL_SIZE;
1360
1361         /* Step 3: write summary entries */
1362         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1363                 unsigned short blkoff;
1364                 seg_i = CURSEG_I(sbi, i);
1365                 if (sbi->ckpt->alloc_type[i] == SSR)
1366                         blkoff = sbi->blocks_per_seg;
1367                 else
1368                         blkoff = curseg_blkoff(sbi, i);
1369
1370                 for (j = 0; j < blkoff; j++) {
1371                         if (!page) {
1372                                 page = grab_meta_page(sbi, blkaddr++);
1373                                 kaddr = (unsigned char *)page_address(page);
1374                                 written_size = 0;
1375                         }
1376                         summary = (struct f2fs_summary *)(kaddr + written_size);
1377                         *summary = seg_i->sum_blk->entries[j];
1378                         written_size += SUMMARY_SIZE;
1379
1380                         if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1381                                                         SUM_FOOTER_SIZE)
1382                                 continue;
1383
1384                         set_page_dirty(page);
1385                         f2fs_put_page(page, 1);
1386                         page = NULL;
1387                 }
1388         }
1389         if (page) {
1390                 set_page_dirty(page);
1391                 f2fs_put_page(page, 1);
1392         }
1393 }
1394
1395 static void write_normal_summaries(struct f2fs_sb_info *sbi,
1396                                         block_t blkaddr, int type)
1397 {
1398         int i, end;
1399         if (IS_DATASEG(type))
1400                 end = type + NR_CURSEG_DATA_TYPE;
1401         else
1402                 end = type + NR_CURSEG_NODE_TYPE;
1403
1404         for (i = type; i < end; i++) {
1405                 struct curseg_info *sum = CURSEG_I(sbi, i);
1406                 mutex_lock(&sum->curseg_mutex);
1407                 write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type));
1408                 mutex_unlock(&sum->curseg_mutex);
1409         }
1410 }
1411
1412 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1413 {
1414         if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
1415                 write_compacted_summaries(sbi, start_blk);
1416         else
1417                 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1418 }
1419
1420 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1421 {
1422         if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG))
1423                 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
1424 }
1425
1426 int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type,
1427                                         unsigned int val, int alloc)
1428 {
1429         int i;
1430
1431         if (type == NAT_JOURNAL) {
1432                 for (i = 0; i < nats_in_cursum(sum); i++) {
1433                         if (le32_to_cpu(nid_in_journal(sum, i)) == val)
1434                                 return i;
1435                 }
1436                 if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES)
1437                         return update_nats_in_cursum(sum, 1);
1438         } else if (type == SIT_JOURNAL) {
1439                 for (i = 0; i < sits_in_cursum(sum); i++)
1440                         if (le32_to_cpu(segno_in_journal(sum, i)) == val)
1441                                 return i;
1442                 if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES)
1443                         return update_sits_in_cursum(sum, 1);
1444         }
1445         return -1;
1446 }
1447
1448 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1449                                         unsigned int segno)
1450 {
1451         struct sit_info *sit_i = SIT_I(sbi);
1452         unsigned int offset = SIT_BLOCK_OFFSET(sit_i, segno);
1453         block_t blk_addr = sit_i->sit_base_addr + offset;
1454
1455         check_seg_range(sbi, segno);
1456
1457         /* calculate sit block address */
1458         if (f2fs_test_bit(offset, sit_i->sit_bitmap))
1459                 blk_addr += sit_i->sit_blocks;
1460
1461         return get_meta_page(sbi, blk_addr);
1462 }
1463
1464 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1465                                         unsigned int start)
1466 {
1467         struct sit_info *sit_i = SIT_I(sbi);
1468         struct page *src_page, *dst_page;
1469         pgoff_t src_off, dst_off;
1470         void *src_addr, *dst_addr;
1471
1472         src_off = current_sit_addr(sbi, start);
1473         dst_off = next_sit_addr(sbi, src_off);
1474
1475         /* get current sit block page without lock */
1476         src_page = get_meta_page(sbi, src_off);
1477         dst_page = grab_meta_page(sbi, dst_off);
1478         f2fs_bug_on(PageDirty(src_page));
1479
1480         src_addr = page_address(src_page);
1481         dst_addr = page_address(dst_page);
1482         memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
1483
1484         set_page_dirty(dst_page);
1485         f2fs_put_page(src_page, 1);
1486
1487         set_to_next_sit(sit_i, start);
1488
1489         return dst_page;
1490 }
1491
1492 static bool flush_sits_in_journal(struct f2fs_sb_info *sbi)
1493 {
1494         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1495         struct f2fs_summary_block *sum = curseg->sum_blk;
1496         int i;
1497
1498         /*
1499          * If the journal area in the current summary is full of sit entries,
1500          * all the sit entries will be flushed. Otherwise the sit entries
1501          * are not able to replace with newly hot sit entries.
1502          */
1503         if (sits_in_cursum(sum) >= SIT_JOURNAL_ENTRIES) {
1504                 for (i = sits_in_cursum(sum) - 1; i >= 0; i--) {
1505                         unsigned int segno;
1506                         segno = le32_to_cpu(segno_in_journal(sum, i));
1507                         __mark_sit_entry_dirty(sbi, segno);
1508                 }
1509                 update_sits_in_cursum(sum, -sits_in_cursum(sum));
1510                 return true;
1511         }
1512         return false;
1513 }
1514
1515 /*
1516  * CP calls this function, which flushes SIT entries including sit_journal,
1517  * and moves prefree segs to free segs.
1518  */
1519 void flush_sit_entries(struct f2fs_sb_info *sbi)
1520 {
1521         struct sit_info *sit_i = SIT_I(sbi);
1522         unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
1523         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1524         struct f2fs_summary_block *sum = curseg->sum_blk;
1525         unsigned long nsegs = TOTAL_SEGS(sbi);
1526         struct page *page = NULL;
1527         struct f2fs_sit_block *raw_sit = NULL;
1528         unsigned int start = 0, end = 0;
1529         unsigned int segno;
1530         bool flushed;
1531
1532         mutex_lock(&curseg->curseg_mutex);
1533         mutex_lock(&sit_i->sentry_lock);
1534
1535         /*
1536          * "flushed" indicates whether sit entries in journal are flushed
1537          * to the SIT area or not.
1538          */
1539         flushed = flush_sits_in_journal(sbi);
1540
1541         for_each_set_bit(segno, bitmap, nsegs) {
1542                 struct seg_entry *se = get_seg_entry(sbi, segno);
1543                 int sit_offset, offset;
1544
1545                 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
1546
1547                 /* add discard candidates */
1548                 if (SM_I(sbi)->nr_discards < SM_I(sbi)->max_discards)
1549                         add_discard_addrs(sbi, segno, se);
1550
1551                 if (flushed)
1552                         goto to_sit_page;
1553
1554                 offset = lookup_journal_in_cursum(sum, SIT_JOURNAL, segno, 1);
1555                 if (offset >= 0) {
1556                         segno_in_journal(sum, offset) = cpu_to_le32(segno);
1557                         seg_info_to_raw_sit(se, &sit_in_journal(sum, offset));
1558                         goto flush_done;
1559                 }
1560 to_sit_page:
1561                 if (!page || (start > segno) || (segno > end)) {
1562                         if (page) {
1563                                 f2fs_put_page(page, 1);
1564                                 page = NULL;
1565                         }
1566
1567                         start = START_SEGNO(sit_i, segno);
1568                         end = start + SIT_ENTRY_PER_BLOCK - 1;
1569
1570                         /* read sit block that will be updated */
1571                         page = get_next_sit_page(sbi, start);
1572                         raw_sit = page_address(page);
1573                 }
1574
1575                 /* udpate entry in SIT block */
1576                 seg_info_to_raw_sit(se, &raw_sit->entries[sit_offset]);
1577 flush_done:
1578                 __clear_bit(segno, bitmap);
1579                 sit_i->dirty_sentries--;
1580         }
1581         mutex_unlock(&sit_i->sentry_lock);
1582         mutex_unlock(&curseg->curseg_mutex);
1583
1584         /* writeout last modified SIT block */
1585         f2fs_put_page(page, 1);
1586
1587         set_prefree_as_free_segments(sbi);
1588 }
1589
1590 static int build_sit_info(struct f2fs_sb_info *sbi)
1591 {
1592         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1593         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1594         struct sit_info *sit_i;
1595         unsigned int sit_segs, start;
1596         char *src_bitmap, *dst_bitmap;
1597         unsigned int bitmap_size;
1598
1599         /* allocate memory for SIT information */
1600         sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
1601         if (!sit_i)
1602                 return -ENOMEM;
1603
1604         SM_I(sbi)->sit_info = sit_i;
1605
1606         sit_i->sentries = vzalloc(TOTAL_SEGS(sbi) * sizeof(struct seg_entry));
1607         if (!sit_i->sentries)
1608                 return -ENOMEM;
1609
1610         bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1611         sit_i->dirty_sentries_bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1612         if (!sit_i->dirty_sentries_bitmap)
1613                 return -ENOMEM;
1614
1615         for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1616                 sit_i->sentries[start].cur_valid_map
1617                         = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1618                 sit_i->sentries[start].ckpt_valid_map
1619                         = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1620                 if (!sit_i->sentries[start].cur_valid_map
1621                                 || !sit_i->sentries[start].ckpt_valid_map)
1622                         return -ENOMEM;
1623         }
1624
1625         if (sbi->segs_per_sec > 1) {
1626                 sit_i->sec_entries = vzalloc(TOTAL_SECS(sbi) *
1627                                         sizeof(struct sec_entry));
1628                 if (!sit_i->sec_entries)
1629                         return -ENOMEM;
1630         }
1631
1632         /* get information related with SIT */
1633         sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
1634
1635         /* setup SIT bitmap from ckeckpoint pack */
1636         bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
1637         src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
1638
1639         dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
1640         if (!dst_bitmap)
1641                 return -ENOMEM;
1642
1643         /* init SIT information */
1644         sit_i->s_ops = &default_salloc_ops;
1645
1646         sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
1647         sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
1648         sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
1649         sit_i->sit_bitmap = dst_bitmap;
1650         sit_i->bitmap_size = bitmap_size;
1651         sit_i->dirty_sentries = 0;
1652         sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
1653         sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
1654         sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
1655         mutex_init(&sit_i->sentry_lock);
1656         return 0;
1657 }
1658
1659 static int build_free_segmap(struct f2fs_sb_info *sbi)
1660 {
1661         struct f2fs_sm_info *sm_info = SM_I(sbi);
1662         struct free_segmap_info *free_i;
1663         unsigned int bitmap_size, sec_bitmap_size;
1664
1665         /* allocate memory for free segmap information */
1666         free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
1667         if (!free_i)
1668                 return -ENOMEM;
1669
1670         SM_I(sbi)->free_info = free_i;
1671
1672         bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1673         free_i->free_segmap = kmalloc(bitmap_size, GFP_KERNEL);
1674         if (!free_i->free_segmap)
1675                 return -ENOMEM;
1676
1677         sec_bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
1678         free_i->free_secmap = kmalloc(sec_bitmap_size, GFP_KERNEL);
1679         if (!free_i->free_secmap)
1680                 return -ENOMEM;
1681
1682         /* set all segments as dirty temporarily */
1683         memset(free_i->free_segmap, 0xff, bitmap_size);
1684         memset(free_i->free_secmap, 0xff, sec_bitmap_size);
1685
1686         /* init free segmap information */
1687         free_i->start_segno =
1688                 (unsigned int) GET_SEGNO_FROM_SEG0(sbi, sm_info->main_blkaddr);
1689         free_i->free_segments = 0;
1690         free_i->free_sections = 0;
1691         rwlock_init(&free_i->segmap_lock);
1692         return 0;
1693 }
1694
1695 static int build_curseg(struct f2fs_sb_info *sbi)
1696 {
1697         struct curseg_info *array;
1698         int i;
1699
1700         array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL);
1701         if (!array)
1702                 return -ENOMEM;
1703
1704         SM_I(sbi)->curseg_array = array;
1705
1706         for (i = 0; i < NR_CURSEG_TYPE; i++) {
1707                 mutex_init(&array[i].curseg_mutex);
1708                 array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL);
1709                 if (!array[i].sum_blk)
1710                         return -ENOMEM;
1711                 array[i].segno = NULL_SEGNO;
1712                 array[i].next_blkoff = 0;
1713         }
1714         return restore_curseg_summaries(sbi);
1715 }
1716
1717 static void build_sit_entries(struct f2fs_sb_info *sbi)
1718 {
1719         struct sit_info *sit_i = SIT_I(sbi);
1720         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1721         struct f2fs_summary_block *sum = curseg->sum_blk;
1722         int sit_blk_cnt = SIT_BLK_CNT(sbi);
1723         unsigned int i, start, end;
1724         unsigned int readed, start_blk = 0;
1725         int nrpages = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
1726
1727         do {
1728                 readed = ra_meta_pages(sbi, start_blk, nrpages, META_SIT);
1729
1730                 start = start_blk * sit_i->sents_per_block;
1731                 end = (start_blk + readed) * sit_i->sents_per_block;
1732
1733                 for (; start < end && start < TOTAL_SEGS(sbi); start++) {
1734                         struct seg_entry *se = &sit_i->sentries[start];
1735                         struct f2fs_sit_block *sit_blk;
1736                         struct f2fs_sit_entry sit;
1737                         struct page *page;
1738
1739                         mutex_lock(&curseg->curseg_mutex);
1740                         for (i = 0; i < sits_in_cursum(sum); i++) {
1741                                 if (le32_to_cpu(segno_in_journal(sum, i))
1742                                                                 == start) {
1743                                         sit = sit_in_journal(sum, i);
1744                                         mutex_unlock(&curseg->curseg_mutex);
1745                                         goto got_it;
1746                                 }
1747                         }
1748                         mutex_unlock(&curseg->curseg_mutex);
1749
1750                         page = get_current_sit_page(sbi, start);
1751                         sit_blk = (struct f2fs_sit_block *)page_address(page);
1752                         sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
1753                         f2fs_put_page(page, 1);
1754 got_it:
1755                         check_block_count(sbi, start, &sit);
1756                         seg_info_from_raw_sit(se, &sit);
1757                         if (sbi->segs_per_sec > 1) {
1758                                 struct sec_entry *e = get_sec_entry(sbi, start);
1759                                 e->valid_blocks += se->valid_blocks;
1760                         }
1761                 }
1762                 start_blk += readed;
1763         } while (start_blk < sit_blk_cnt);
1764 }
1765
1766 static void init_free_segmap(struct f2fs_sb_info *sbi)
1767 {
1768         unsigned int start;
1769         int type;
1770
1771         for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1772                 struct seg_entry *sentry = get_seg_entry(sbi, start);
1773                 if (!sentry->valid_blocks)
1774                         __set_free(sbi, start);
1775         }
1776
1777         /* set use the current segments */
1778         for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
1779                 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
1780                 __set_test_and_inuse(sbi, curseg_t->segno);
1781         }
1782 }
1783
1784 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
1785 {
1786         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1787         struct free_segmap_info *free_i = FREE_I(sbi);
1788         unsigned int segno = 0, offset = 0, total_segs = TOTAL_SEGS(sbi);
1789         unsigned short valid_blocks;
1790
1791         while (1) {
1792                 /* find dirty segment based on free segmap */
1793                 segno = find_next_inuse(free_i, total_segs, offset);
1794                 if (segno >= total_segs)
1795                         break;
1796                 offset = segno + 1;
1797                 valid_blocks = get_valid_blocks(sbi, segno, 0);
1798                 if (valid_blocks >= sbi->blocks_per_seg || !valid_blocks)
1799                         continue;
1800                 mutex_lock(&dirty_i->seglist_lock);
1801                 __locate_dirty_segment(sbi, segno, DIRTY);
1802                 mutex_unlock(&dirty_i->seglist_lock);
1803         }
1804 }
1805
1806 static int init_victim_secmap(struct f2fs_sb_info *sbi)
1807 {
1808         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1809         unsigned int bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
1810
1811         dirty_i->victim_secmap = kzalloc(bitmap_size, GFP_KERNEL);
1812         if (!dirty_i->victim_secmap)
1813                 return -ENOMEM;
1814         return 0;
1815 }
1816
1817 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
1818 {
1819         struct dirty_seglist_info *dirty_i;
1820         unsigned int bitmap_size, i;
1821
1822         /* allocate memory for dirty segments list information */
1823         dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
1824         if (!dirty_i)
1825                 return -ENOMEM;
1826
1827         SM_I(sbi)->dirty_info = dirty_i;
1828         mutex_init(&dirty_i->seglist_lock);
1829
1830         bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1831
1832         for (i = 0; i < NR_DIRTY_TYPE; i++) {
1833                 dirty_i->dirty_segmap[i] = kzalloc(bitmap_size, GFP_KERNEL);
1834                 if (!dirty_i->dirty_segmap[i])
1835                         return -ENOMEM;
1836         }
1837
1838         init_dirty_segmap(sbi);
1839         return init_victim_secmap(sbi);
1840 }
1841
1842 /*
1843  * Update min, max modified time for cost-benefit GC algorithm
1844  */
1845 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
1846 {
1847         struct sit_info *sit_i = SIT_I(sbi);
1848         unsigned int segno;
1849
1850         mutex_lock(&sit_i->sentry_lock);
1851
1852         sit_i->min_mtime = LLONG_MAX;
1853
1854         for (segno = 0; segno < TOTAL_SEGS(sbi); segno += sbi->segs_per_sec) {
1855                 unsigned int i;
1856                 unsigned long long mtime = 0;
1857
1858                 for (i = 0; i < sbi->segs_per_sec; i++)
1859                         mtime += get_seg_entry(sbi, segno + i)->mtime;
1860
1861                 mtime = div_u64(mtime, sbi->segs_per_sec);
1862
1863                 if (sit_i->min_mtime > mtime)
1864                         sit_i->min_mtime = mtime;
1865         }
1866         sit_i->max_mtime = get_mtime(sbi);
1867         mutex_unlock(&sit_i->sentry_lock);
1868 }
1869
1870 int build_segment_manager(struct f2fs_sb_info *sbi)
1871 {
1872         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1873         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1874         struct f2fs_sm_info *sm_info;
1875         int err;
1876
1877         sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
1878         if (!sm_info)
1879                 return -ENOMEM;
1880
1881         /* init sm info */
1882         sbi->sm_info = sm_info;
1883         sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1884         sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1885         sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
1886         sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
1887         sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
1888         sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
1889         sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1890         sm_info->rec_prefree_segments = sm_info->main_segments *
1891                                         DEF_RECLAIM_PREFREE_SEGMENTS / 100;
1892         sm_info->ipu_policy = F2FS_IPU_DISABLE;
1893         sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
1894
1895         INIT_LIST_HEAD(&sm_info->discard_list);
1896         sm_info->nr_discards = 0;
1897         sm_info->max_discards = 0;
1898
1899         if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) {
1900                 err = create_flush_cmd_control(sbi);
1901                 if (err)
1902                         return err;
1903         }
1904
1905         err = build_sit_info(sbi);
1906         if (err)
1907                 return err;
1908         err = build_free_segmap(sbi);
1909         if (err)
1910                 return err;
1911         err = build_curseg(sbi);
1912         if (err)
1913                 return err;
1914
1915         /* reinit free segmap based on SIT */
1916         build_sit_entries(sbi);
1917
1918         init_free_segmap(sbi);
1919         err = build_dirty_segmap(sbi);
1920         if (err)
1921                 return err;
1922
1923         init_min_max_mtime(sbi);
1924         return 0;
1925 }
1926
1927 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
1928                 enum dirty_type dirty_type)
1929 {
1930         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1931
1932         mutex_lock(&dirty_i->seglist_lock);
1933         kfree(dirty_i->dirty_segmap[dirty_type]);
1934         dirty_i->nr_dirty[dirty_type] = 0;
1935         mutex_unlock(&dirty_i->seglist_lock);
1936 }
1937
1938 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
1939 {
1940         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1941         kfree(dirty_i->victim_secmap);
1942 }
1943
1944 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
1945 {
1946         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1947         int i;
1948
1949         if (!dirty_i)
1950                 return;
1951
1952         /* discard pre-free/dirty segments list */
1953         for (i = 0; i < NR_DIRTY_TYPE; i++)
1954                 discard_dirty_segmap(sbi, i);
1955
1956         destroy_victim_secmap(sbi);
1957         SM_I(sbi)->dirty_info = NULL;
1958         kfree(dirty_i);
1959 }
1960
1961 static void destroy_curseg(struct f2fs_sb_info *sbi)
1962 {
1963         struct curseg_info *array = SM_I(sbi)->curseg_array;
1964         int i;
1965
1966         if (!array)
1967                 return;
1968         SM_I(sbi)->curseg_array = NULL;
1969         for (i = 0; i < NR_CURSEG_TYPE; i++)
1970                 kfree(array[i].sum_blk);
1971         kfree(array);
1972 }
1973
1974 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
1975 {
1976         struct free_segmap_info *free_i = SM_I(sbi)->free_info;
1977         if (!free_i)
1978                 return;
1979         SM_I(sbi)->free_info = NULL;
1980         kfree(free_i->free_segmap);
1981         kfree(free_i->free_secmap);
1982         kfree(free_i);
1983 }
1984
1985 static void destroy_sit_info(struct f2fs_sb_info *sbi)
1986 {
1987         struct sit_info *sit_i = SIT_I(sbi);
1988         unsigned int start;
1989
1990         if (!sit_i)
1991                 return;
1992
1993         if (sit_i->sentries) {
1994                 for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1995                         kfree(sit_i->sentries[start].cur_valid_map);
1996                         kfree(sit_i->sentries[start].ckpt_valid_map);
1997                 }
1998         }
1999         vfree(sit_i->sentries);
2000         vfree(sit_i->sec_entries);
2001         kfree(sit_i->dirty_sentries_bitmap);
2002
2003         SM_I(sbi)->sit_info = NULL;
2004         kfree(sit_i->sit_bitmap);
2005         kfree(sit_i);
2006 }
2007
2008 void destroy_segment_manager(struct f2fs_sb_info *sbi)
2009 {
2010         struct f2fs_sm_info *sm_info = SM_I(sbi);
2011
2012         if (!sm_info)
2013                 return;
2014         destroy_flush_cmd_control(sbi);
2015         destroy_dirty_segmap(sbi);
2016         destroy_curseg(sbi);
2017         destroy_free_segmap(sbi);
2018         destroy_sit_info(sbi);
2019         sbi->sm_info = NULL;
2020         kfree(sm_info);
2021 }
2022
2023 int __init create_segment_manager_caches(void)
2024 {
2025         discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
2026                         sizeof(struct discard_entry));
2027         if (!discard_entry_slab)
2028                 return -ENOMEM;
2029         return 0;
2030 }
2031
2032 void destroy_segment_manager_caches(void)
2033 {
2034         kmem_cache_destroy(discard_entry_slab);
2035 }