Merge tag 'pinctrl-v3.19-1' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw...
[cascardo/linux.git] / fs / f2fs / segment.c
1 /*
2  * fs/f2fs/segment.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/kthread.h>
17 #include <linux/vmalloc.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "segment.h"
22 #include "node.h"
23 #include <trace/events/f2fs.h>
24
25 #define __reverse_ffz(x) __reverse_ffs(~(x))
26
27 static struct kmem_cache *discard_entry_slab;
28 static struct kmem_cache *sit_entry_set_slab;
29 static struct kmem_cache *inmem_entry_slab;
30
31 /*
32  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
33  * MSB and LSB are reversed in a byte by f2fs_set_bit.
34  */
35 static inline unsigned long __reverse_ffs(unsigned long word)
36 {
37         int num = 0;
38
39 #if BITS_PER_LONG == 64
40         if ((word & 0xffffffff) == 0) {
41                 num += 32;
42                 word >>= 32;
43         }
44 #endif
45         if ((word & 0xffff) == 0) {
46                 num += 16;
47                 word >>= 16;
48         }
49         if ((word & 0xff) == 0) {
50                 num += 8;
51                 word >>= 8;
52         }
53         if ((word & 0xf0) == 0)
54                 num += 4;
55         else
56                 word >>= 4;
57         if ((word & 0xc) == 0)
58                 num += 2;
59         else
60                 word >>= 2;
61         if ((word & 0x2) == 0)
62                 num += 1;
63         return num;
64 }
65
66 /*
67  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
68  * f2fs_set_bit makes MSB and LSB reversed in a byte.
69  * Example:
70  *                             LSB <--> MSB
71  *   f2fs_set_bit(0, bitmap) => 0000 0001
72  *   f2fs_set_bit(7, bitmap) => 1000 0000
73  */
74 static unsigned long __find_rev_next_bit(const unsigned long *addr,
75                         unsigned long size, unsigned long offset)
76 {
77         const unsigned long *p = addr + BIT_WORD(offset);
78         unsigned long result = offset & ~(BITS_PER_LONG - 1);
79         unsigned long tmp;
80         unsigned long mask, submask;
81         unsigned long quot, rest;
82
83         if (offset >= size)
84                 return size;
85
86         size -= result;
87         offset %= BITS_PER_LONG;
88         if (!offset)
89                 goto aligned;
90
91         tmp = *(p++);
92         quot = (offset >> 3) << 3;
93         rest = offset & 0x7;
94         mask = ~0UL << quot;
95         submask = (unsigned char)(0xff << rest) >> rest;
96         submask <<= quot;
97         mask &= submask;
98         tmp &= mask;
99         if (size < BITS_PER_LONG)
100                 goto found_first;
101         if (tmp)
102                 goto found_middle;
103
104         size -= BITS_PER_LONG;
105         result += BITS_PER_LONG;
106 aligned:
107         while (size & ~(BITS_PER_LONG-1)) {
108                 tmp = *(p++);
109                 if (tmp)
110                         goto found_middle;
111                 result += BITS_PER_LONG;
112                 size -= BITS_PER_LONG;
113         }
114         if (!size)
115                 return result;
116         tmp = *p;
117 found_first:
118         tmp &= (~0UL >> (BITS_PER_LONG - size));
119         if (tmp == 0UL)         /* Are any bits set? */
120                 return result + size;   /* Nope. */
121 found_middle:
122         return result + __reverse_ffs(tmp);
123 }
124
125 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
126                         unsigned long size, unsigned long offset)
127 {
128         const unsigned long *p = addr + BIT_WORD(offset);
129         unsigned long result = offset & ~(BITS_PER_LONG - 1);
130         unsigned long tmp;
131         unsigned long mask, submask;
132         unsigned long quot, rest;
133
134         if (offset >= size)
135                 return size;
136
137         size -= result;
138         offset %= BITS_PER_LONG;
139         if (!offset)
140                 goto aligned;
141
142         tmp = *(p++);
143         quot = (offset >> 3) << 3;
144         rest = offset & 0x7;
145         mask = ~(~0UL << quot);
146         submask = (unsigned char)~((unsigned char)(0xff << rest) >> rest);
147         submask <<= quot;
148         mask += submask;
149         tmp |= mask;
150         if (size < BITS_PER_LONG)
151                 goto found_first;
152         if (~tmp)
153                 goto found_middle;
154
155         size -= BITS_PER_LONG;
156         result += BITS_PER_LONG;
157 aligned:
158         while (size & ~(BITS_PER_LONG - 1)) {
159                 tmp = *(p++);
160                 if (~tmp)
161                         goto found_middle;
162                 result += BITS_PER_LONG;
163                 size -= BITS_PER_LONG;
164         }
165         if (!size)
166                 return result;
167         tmp = *p;
168
169 found_first:
170         tmp |= ~0UL << size;
171         if (tmp == ~0UL)        /* Are any bits zero? */
172                 return result + size;   /* Nope. */
173 found_middle:
174         return result + __reverse_ffz(tmp);
175 }
176
177 void register_inmem_page(struct inode *inode, struct page *page)
178 {
179         struct f2fs_inode_info *fi = F2FS_I(inode);
180         struct inmem_pages *new;
181         int err;
182
183         SetPagePrivate(page);
184
185         new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
186
187         /* add atomic page indices to the list */
188         new->page = page;
189         INIT_LIST_HEAD(&new->list);
190 retry:
191         /* increase reference count with clean state */
192         mutex_lock(&fi->inmem_lock);
193         err = radix_tree_insert(&fi->inmem_root, page->index, new);
194         if (err == -EEXIST) {
195                 mutex_unlock(&fi->inmem_lock);
196                 kmem_cache_free(inmem_entry_slab, new);
197                 return;
198         } else if (err) {
199                 mutex_unlock(&fi->inmem_lock);
200                 goto retry;
201         }
202         get_page(page);
203         list_add_tail(&new->list, &fi->inmem_pages);
204         inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
205         mutex_unlock(&fi->inmem_lock);
206 }
207
208 void invalidate_inmem_page(struct inode *inode, struct page *page)
209 {
210         struct f2fs_inode_info *fi = F2FS_I(inode);
211         struct inmem_pages *cur;
212
213         mutex_lock(&fi->inmem_lock);
214         cur = radix_tree_lookup(&fi->inmem_root, page->index);
215         if (cur) {
216                 radix_tree_delete(&fi->inmem_root, cur->page->index);
217                 f2fs_put_page(cur->page, 0);
218                 list_del(&cur->list);
219                 kmem_cache_free(inmem_entry_slab, cur);
220                 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
221         }
222         mutex_unlock(&fi->inmem_lock);
223 }
224
225 void commit_inmem_pages(struct inode *inode, bool abort)
226 {
227         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
228         struct f2fs_inode_info *fi = F2FS_I(inode);
229         struct inmem_pages *cur, *tmp;
230         bool submit_bio = false;
231         struct f2fs_io_info fio = {
232                 .type = DATA,
233                 .rw = WRITE_SYNC,
234         };
235
236         /*
237          * The abort is true only when f2fs_evict_inode is called.
238          * Basically, the f2fs_evict_inode doesn't produce any data writes, so
239          * that we don't need to call f2fs_balance_fs.
240          * Otherwise, f2fs_gc in f2fs_balance_fs can wait forever until this
241          * inode becomes free by iget_locked in f2fs_iget.
242          */
243         if (!abort)
244                 f2fs_balance_fs(sbi);
245
246         f2fs_lock_op(sbi);
247
248         mutex_lock(&fi->inmem_lock);
249         list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
250                 lock_page(cur->page);
251                 if (!abort && cur->page->mapping == inode->i_mapping) {
252                         f2fs_wait_on_page_writeback(cur->page, DATA);
253                         if (clear_page_dirty_for_io(cur->page))
254                                 inode_dec_dirty_pages(inode);
255                         do_write_data_page(cur->page, &fio);
256                         submit_bio = true;
257                 }
258                 radix_tree_delete(&fi->inmem_root, cur->page->index);
259                 f2fs_put_page(cur->page, 1);
260                 list_del(&cur->list);
261                 kmem_cache_free(inmem_entry_slab, cur);
262                 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
263         }
264         if (submit_bio)
265                 f2fs_submit_merged_bio(sbi, DATA, WRITE);
266         mutex_unlock(&fi->inmem_lock);
267
268         filemap_fdatawait_range(inode->i_mapping, 0, LLONG_MAX);
269         f2fs_unlock_op(sbi);
270 }
271
272 /*
273  * This function balances dirty node and dentry pages.
274  * In addition, it controls garbage collection.
275  */
276 void f2fs_balance_fs(struct f2fs_sb_info *sbi)
277 {
278         /*
279          * We should do GC or end up with checkpoint, if there are so many dirty
280          * dir/node pages without enough free segments.
281          */
282         if (has_not_enough_free_secs(sbi, 0)) {
283                 mutex_lock(&sbi->gc_mutex);
284                 f2fs_gc(sbi);
285         }
286 }
287
288 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
289 {
290         /* check the # of cached NAT entries and prefree segments */
291         if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK) ||
292                         excess_prefree_segs(sbi) ||
293                         available_free_memory(sbi, INO_ENTRIES))
294                 f2fs_sync_fs(sbi->sb, true);
295 }
296
297 static int issue_flush_thread(void *data)
298 {
299         struct f2fs_sb_info *sbi = data;
300         struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
301         wait_queue_head_t *q = &fcc->flush_wait_queue;
302 repeat:
303         if (kthread_should_stop())
304                 return 0;
305
306         if (!llist_empty(&fcc->issue_list)) {
307                 struct bio *bio = bio_alloc(GFP_NOIO, 0);
308                 struct flush_cmd *cmd, *next;
309                 int ret;
310
311                 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
312                 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
313
314                 bio->bi_bdev = sbi->sb->s_bdev;
315                 ret = submit_bio_wait(WRITE_FLUSH, bio);
316
317                 llist_for_each_entry_safe(cmd, next,
318                                           fcc->dispatch_list, llnode) {
319                         cmd->ret = ret;
320                         complete(&cmd->wait);
321                 }
322                 bio_put(bio);
323                 fcc->dispatch_list = NULL;
324         }
325
326         wait_event_interruptible(*q,
327                 kthread_should_stop() || !llist_empty(&fcc->issue_list));
328         goto repeat;
329 }
330
331 int f2fs_issue_flush(struct f2fs_sb_info *sbi)
332 {
333         struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
334         struct flush_cmd cmd;
335
336         trace_f2fs_issue_flush(sbi->sb, test_opt(sbi, NOBARRIER),
337                                         test_opt(sbi, FLUSH_MERGE));
338
339         if (test_opt(sbi, NOBARRIER))
340                 return 0;
341
342         if (!test_opt(sbi, FLUSH_MERGE))
343                 return blkdev_issue_flush(sbi->sb->s_bdev, GFP_KERNEL, NULL);
344
345         init_completion(&cmd.wait);
346
347         llist_add(&cmd.llnode, &fcc->issue_list);
348
349         if (!fcc->dispatch_list)
350                 wake_up(&fcc->flush_wait_queue);
351
352         wait_for_completion(&cmd.wait);
353
354         return cmd.ret;
355 }
356
357 int create_flush_cmd_control(struct f2fs_sb_info *sbi)
358 {
359         dev_t dev = sbi->sb->s_bdev->bd_dev;
360         struct flush_cmd_control *fcc;
361         int err = 0;
362
363         fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
364         if (!fcc)
365                 return -ENOMEM;
366         init_waitqueue_head(&fcc->flush_wait_queue);
367         init_llist_head(&fcc->issue_list);
368         SM_I(sbi)->cmd_control_info = fcc;
369         fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
370                                 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
371         if (IS_ERR(fcc->f2fs_issue_flush)) {
372                 err = PTR_ERR(fcc->f2fs_issue_flush);
373                 kfree(fcc);
374                 SM_I(sbi)->cmd_control_info = NULL;
375                 return err;
376         }
377
378         return err;
379 }
380
381 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi)
382 {
383         struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
384
385         if (fcc && fcc->f2fs_issue_flush)
386                 kthread_stop(fcc->f2fs_issue_flush);
387         kfree(fcc);
388         SM_I(sbi)->cmd_control_info = NULL;
389 }
390
391 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
392                 enum dirty_type dirty_type)
393 {
394         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
395
396         /* need not be added */
397         if (IS_CURSEG(sbi, segno))
398                 return;
399
400         if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
401                 dirty_i->nr_dirty[dirty_type]++;
402
403         if (dirty_type == DIRTY) {
404                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
405                 enum dirty_type t = sentry->type;
406
407                 if (unlikely(t >= DIRTY)) {
408                         f2fs_bug_on(sbi, 1);
409                         return;
410                 }
411                 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
412                         dirty_i->nr_dirty[t]++;
413         }
414 }
415
416 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
417                 enum dirty_type dirty_type)
418 {
419         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
420
421         if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
422                 dirty_i->nr_dirty[dirty_type]--;
423
424         if (dirty_type == DIRTY) {
425                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
426                 enum dirty_type t = sentry->type;
427
428                 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
429                         dirty_i->nr_dirty[t]--;
430
431                 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
432                         clear_bit(GET_SECNO(sbi, segno),
433                                                 dirty_i->victim_secmap);
434         }
435 }
436
437 /*
438  * Should not occur error such as -ENOMEM.
439  * Adding dirty entry into seglist is not critical operation.
440  * If a given segment is one of current working segments, it won't be added.
441  */
442 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
443 {
444         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
445         unsigned short valid_blocks;
446
447         if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
448                 return;
449
450         mutex_lock(&dirty_i->seglist_lock);
451
452         valid_blocks = get_valid_blocks(sbi, segno, 0);
453
454         if (valid_blocks == 0) {
455                 __locate_dirty_segment(sbi, segno, PRE);
456                 __remove_dirty_segment(sbi, segno, DIRTY);
457         } else if (valid_blocks < sbi->blocks_per_seg) {
458                 __locate_dirty_segment(sbi, segno, DIRTY);
459         } else {
460                 /* Recovery routine with SSR needs this */
461                 __remove_dirty_segment(sbi, segno, DIRTY);
462         }
463
464         mutex_unlock(&dirty_i->seglist_lock);
465 }
466
467 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
468                                 block_t blkstart, block_t blklen)
469 {
470         sector_t start = SECTOR_FROM_BLOCK(blkstart);
471         sector_t len = SECTOR_FROM_BLOCK(blklen);
472         trace_f2fs_issue_discard(sbi->sb, blkstart, blklen);
473         return blkdev_issue_discard(sbi->sb->s_bdev, start, len, GFP_NOFS, 0);
474 }
475
476 void discard_next_dnode(struct f2fs_sb_info *sbi, block_t blkaddr)
477 {
478         if (f2fs_issue_discard(sbi, blkaddr, 1)) {
479                 struct page *page = grab_meta_page(sbi, blkaddr);
480                 /* zero-filled page */
481                 set_page_dirty(page);
482                 f2fs_put_page(page, 1);
483         }
484 }
485
486 static void __add_discard_entry(struct f2fs_sb_info *sbi,
487                 struct cp_control *cpc, unsigned int start, unsigned int end)
488 {
489         struct list_head *head = &SM_I(sbi)->discard_list;
490         struct discard_entry *new, *last;
491
492         if (!list_empty(head)) {
493                 last = list_last_entry(head, struct discard_entry, list);
494                 if (START_BLOCK(sbi, cpc->trim_start) + start ==
495                                                 last->blkaddr + last->len) {
496                         last->len += end - start;
497                         goto done;
498                 }
499         }
500
501         new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS);
502         INIT_LIST_HEAD(&new->list);
503         new->blkaddr = START_BLOCK(sbi, cpc->trim_start) + start;
504         new->len = end - start;
505         list_add_tail(&new->list, head);
506 done:
507         SM_I(sbi)->nr_discards += end - start;
508         cpc->trimmed += end - start;
509 }
510
511 static void add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc)
512 {
513         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
514         int max_blocks = sbi->blocks_per_seg;
515         struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
516         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
517         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
518         unsigned long dmap[entries];
519         unsigned int start = 0, end = -1;
520         bool force = (cpc->reason == CP_DISCARD);
521         int i;
522
523         if (!force && !test_opt(sbi, DISCARD))
524                 return;
525
526         if (force && !se->valid_blocks) {
527                 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
528                 /*
529                  * if this segment is registered in the prefree list, then
530                  * we should skip adding a discard candidate, and let the
531                  * checkpoint do that later.
532                  */
533                 mutex_lock(&dirty_i->seglist_lock);
534                 if (test_bit(cpc->trim_start, dirty_i->dirty_segmap[PRE])) {
535                         mutex_unlock(&dirty_i->seglist_lock);
536                         cpc->trimmed += sbi->blocks_per_seg;
537                         return;
538                 }
539                 mutex_unlock(&dirty_i->seglist_lock);
540
541                 __add_discard_entry(sbi, cpc, 0, sbi->blocks_per_seg);
542                 return;
543         }
544
545         /* zero block will be discarded through the prefree list */
546         if (!se->valid_blocks || se->valid_blocks == max_blocks)
547                 return;
548
549         /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
550         for (i = 0; i < entries; i++)
551                 dmap[i] = ~(cur_map[i] | ckpt_map[i]);
552
553         while (force || SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) {
554                 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
555                 if (start >= max_blocks)
556                         break;
557
558                 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
559
560                 if (end - start < cpc->trim_minlen)
561                         continue;
562
563                 __add_discard_entry(sbi, cpc, start, end);
564         }
565 }
566
567 void release_discard_addrs(struct f2fs_sb_info *sbi)
568 {
569         struct list_head *head = &(SM_I(sbi)->discard_list);
570         struct discard_entry *entry, *this;
571
572         /* drop caches */
573         list_for_each_entry_safe(entry, this, head, list) {
574                 list_del(&entry->list);
575                 kmem_cache_free(discard_entry_slab, entry);
576         }
577 }
578
579 /*
580  * Should call clear_prefree_segments after checkpoint is done.
581  */
582 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
583 {
584         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
585         unsigned int segno;
586
587         mutex_lock(&dirty_i->seglist_lock);
588         for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
589                 __set_test_and_free(sbi, segno);
590         mutex_unlock(&dirty_i->seglist_lock);
591 }
592
593 void clear_prefree_segments(struct f2fs_sb_info *sbi)
594 {
595         struct list_head *head = &(SM_I(sbi)->discard_list);
596         struct discard_entry *entry, *this;
597         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
598         unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
599         unsigned int start = 0, end = -1;
600
601         mutex_lock(&dirty_i->seglist_lock);
602
603         while (1) {
604                 int i;
605                 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
606                 if (start >= MAIN_SEGS(sbi))
607                         break;
608                 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
609                                                                 start + 1);
610
611                 for (i = start; i < end; i++)
612                         clear_bit(i, prefree_map);
613
614                 dirty_i->nr_dirty[PRE] -= end - start;
615
616                 if (!test_opt(sbi, DISCARD))
617                         continue;
618
619                 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
620                                 (end - start) << sbi->log_blocks_per_seg);
621         }
622         mutex_unlock(&dirty_i->seglist_lock);
623
624         /* send small discards */
625         list_for_each_entry_safe(entry, this, head, list) {
626                 f2fs_issue_discard(sbi, entry->blkaddr, entry->len);
627                 list_del(&entry->list);
628                 SM_I(sbi)->nr_discards -= entry->len;
629                 kmem_cache_free(discard_entry_slab, entry);
630         }
631 }
632
633 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
634 {
635         struct sit_info *sit_i = SIT_I(sbi);
636
637         if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
638                 sit_i->dirty_sentries++;
639                 return false;
640         }
641
642         return true;
643 }
644
645 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
646                                         unsigned int segno, int modified)
647 {
648         struct seg_entry *se = get_seg_entry(sbi, segno);
649         se->type = type;
650         if (modified)
651                 __mark_sit_entry_dirty(sbi, segno);
652 }
653
654 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
655 {
656         struct seg_entry *se;
657         unsigned int segno, offset;
658         long int new_vblocks;
659
660         segno = GET_SEGNO(sbi, blkaddr);
661
662         se = get_seg_entry(sbi, segno);
663         new_vblocks = se->valid_blocks + del;
664         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
665
666         f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
667                                 (new_vblocks > sbi->blocks_per_seg)));
668
669         se->valid_blocks = new_vblocks;
670         se->mtime = get_mtime(sbi);
671         SIT_I(sbi)->max_mtime = se->mtime;
672
673         /* Update valid block bitmap */
674         if (del > 0) {
675                 if (f2fs_test_and_set_bit(offset, se->cur_valid_map))
676                         f2fs_bug_on(sbi, 1);
677         } else {
678                 if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map))
679                         f2fs_bug_on(sbi, 1);
680         }
681         if (!f2fs_test_bit(offset, se->ckpt_valid_map))
682                 se->ckpt_valid_blocks += del;
683
684         __mark_sit_entry_dirty(sbi, segno);
685
686         /* update total number of valid blocks to be written in ckpt area */
687         SIT_I(sbi)->written_valid_blocks += del;
688
689         if (sbi->segs_per_sec > 1)
690                 get_sec_entry(sbi, segno)->valid_blocks += del;
691 }
692
693 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new)
694 {
695         update_sit_entry(sbi, new, 1);
696         if (GET_SEGNO(sbi, old) != NULL_SEGNO)
697                 update_sit_entry(sbi, old, -1);
698
699         locate_dirty_segment(sbi, GET_SEGNO(sbi, old));
700         locate_dirty_segment(sbi, GET_SEGNO(sbi, new));
701 }
702
703 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
704 {
705         unsigned int segno = GET_SEGNO(sbi, addr);
706         struct sit_info *sit_i = SIT_I(sbi);
707
708         f2fs_bug_on(sbi, addr == NULL_ADDR);
709         if (addr == NEW_ADDR)
710                 return;
711
712         /* add it into sit main buffer */
713         mutex_lock(&sit_i->sentry_lock);
714
715         update_sit_entry(sbi, addr, -1);
716
717         /* add it into dirty seglist */
718         locate_dirty_segment(sbi, segno);
719
720         mutex_unlock(&sit_i->sentry_lock);
721 }
722
723 /*
724  * This function should be resided under the curseg_mutex lock
725  */
726 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
727                                         struct f2fs_summary *sum)
728 {
729         struct curseg_info *curseg = CURSEG_I(sbi, type);
730         void *addr = curseg->sum_blk;
731         addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
732         memcpy(addr, sum, sizeof(struct f2fs_summary));
733 }
734
735 /*
736  * Calculate the number of current summary pages for writing
737  */
738 int npages_for_summary_flush(struct f2fs_sb_info *sbi)
739 {
740         int valid_sum_count = 0;
741         int i, sum_in_page;
742
743         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
744                 if (sbi->ckpt->alloc_type[i] == SSR)
745                         valid_sum_count += sbi->blocks_per_seg;
746                 else
747                         valid_sum_count += curseg_blkoff(sbi, i);
748         }
749
750         sum_in_page = (PAGE_CACHE_SIZE - 2 * SUM_JOURNAL_SIZE -
751                         SUM_FOOTER_SIZE) / SUMMARY_SIZE;
752         if (valid_sum_count <= sum_in_page)
753                 return 1;
754         else if ((valid_sum_count - sum_in_page) <=
755                 (PAGE_CACHE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
756                 return 2;
757         return 3;
758 }
759
760 /*
761  * Caller should put this summary page
762  */
763 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
764 {
765         return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
766 }
767
768 static void write_sum_page(struct f2fs_sb_info *sbi,
769                         struct f2fs_summary_block *sum_blk, block_t blk_addr)
770 {
771         struct page *page = grab_meta_page(sbi, blk_addr);
772         void *kaddr = page_address(page);
773         memcpy(kaddr, sum_blk, PAGE_CACHE_SIZE);
774         set_page_dirty(page);
775         f2fs_put_page(page, 1);
776 }
777
778 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
779 {
780         struct curseg_info *curseg = CURSEG_I(sbi, type);
781         unsigned int segno = curseg->segno + 1;
782         struct free_segmap_info *free_i = FREE_I(sbi);
783
784         if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
785                 return !test_bit(segno, free_i->free_segmap);
786         return 0;
787 }
788
789 /*
790  * Find a new segment from the free segments bitmap to right order
791  * This function should be returned with success, otherwise BUG
792  */
793 static void get_new_segment(struct f2fs_sb_info *sbi,
794                         unsigned int *newseg, bool new_sec, int dir)
795 {
796         struct free_segmap_info *free_i = FREE_I(sbi);
797         unsigned int segno, secno, zoneno;
798         unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
799         unsigned int hint = *newseg / sbi->segs_per_sec;
800         unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
801         unsigned int left_start = hint;
802         bool init = true;
803         int go_left = 0;
804         int i;
805
806         write_lock(&free_i->segmap_lock);
807
808         if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
809                 segno = find_next_zero_bit(free_i->free_segmap,
810                                         MAIN_SEGS(sbi), *newseg + 1);
811                 if (segno - *newseg < sbi->segs_per_sec -
812                                         (*newseg % sbi->segs_per_sec))
813                         goto got_it;
814         }
815 find_other_zone:
816         secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
817         if (secno >= MAIN_SECS(sbi)) {
818                 if (dir == ALLOC_RIGHT) {
819                         secno = find_next_zero_bit(free_i->free_secmap,
820                                                         MAIN_SECS(sbi), 0);
821                         f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
822                 } else {
823                         go_left = 1;
824                         left_start = hint - 1;
825                 }
826         }
827         if (go_left == 0)
828                 goto skip_left;
829
830         while (test_bit(left_start, free_i->free_secmap)) {
831                 if (left_start > 0) {
832                         left_start--;
833                         continue;
834                 }
835                 left_start = find_next_zero_bit(free_i->free_secmap,
836                                                         MAIN_SECS(sbi), 0);
837                 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
838                 break;
839         }
840         secno = left_start;
841 skip_left:
842         hint = secno;
843         segno = secno * sbi->segs_per_sec;
844         zoneno = secno / sbi->secs_per_zone;
845
846         /* give up on finding another zone */
847         if (!init)
848                 goto got_it;
849         if (sbi->secs_per_zone == 1)
850                 goto got_it;
851         if (zoneno == old_zoneno)
852                 goto got_it;
853         if (dir == ALLOC_LEFT) {
854                 if (!go_left && zoneno + 1 >= total_zones)
855                         goto got_it;
856                 if (go_left && zoneno == 0)
857                         goto got_it;
858         }
859         for (i = 0; i < NR_CURSEG_TYPE; i++)
860                 if (CURSEG_I(sbi, i)->zone == zoneno)
861                         break;
862
863         if (i < NR_CURSEG_TYPE) {
864                 /* zone is in user, try another */
865                 if (go_left)
866                         hint = zoneno * sbi->secs_per_zone - 1;
867                 else if (zoneno + 1 >= total_zones)
868                         hint = 0;
869                 else
870                         hint = (zoneno + 1) * sbi->secs_per_zone;
871                 init = false;
872                 goto find_other_zone;
873         }
874 got_it:
875         /* set it as dirty segment in free segmap */
876         f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
877         __set_inuse(sbi, segno);
878         *newseg = segno;
879         write_unlock(&free_i->segmap_lock);
880 }
881
882 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
883 {
884         struct curseg_info *curseg = CURSEG_I(sbi, type);
885         struct summary_footer *sum_footer;
886
887         curseg->segno = curseg->next_segno;
888         curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
889         curseg->next_blkoff = 0;
890         curseg->next_segno = NULL_SEGNO;
891
892         sum_footer = &(curseg->sum_blk->footer);
893         memset(sum_footer, 0, sizeof(struct summary_footer));
894         if (IS_DATASEG(type))
895                 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
896         if (IS_NODESEG(type))
897                 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
898         __set_sit_entry_type(sbi, type, curseg->segno, modified);
899 }
900
901 /*
902  * Allocate a current working segment.
903  * This function always allocates a free segment in LFS manner.
904  */
905 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
906 {
907         struct curseg_info *curseg = CURSEG_I(sbi, type);
908         unsigned int segno = curseg->segno;
909         int dir = ALLOC_LEFT;
910
911         write_sum_page(sbi, curseg->sum_blk,
912                                 GET_SUM_BLOCK(sbi, segno));
913         if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
914                 dir = ALLOC_RIGHT;
915
916         if (test_opt(sbi, NOHEAP))
917                 dir = ALLOC_RIGHT;
918
919         get_new_segment(sbi, &segno, new_sec, dir);
920         curseg->next_segno = segno;
921         reset_curseg(sbi, type, 1);
922         curseg->alloc_type = LFS;
923 }
924
925 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
926                         struct curseg_info *seg, block_t start)
927 {
928         struct seg_entry *se = get_seg_entry(sbi, seg->segno);
929         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
930         unsigned long target_map[entries];
931         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
932         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
933         int i, pos;
934
935         for (i = 0; i < entries; i++)
936                 target_map[i] = ckpt_map[i] | cur_map[i];
937
938         pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
939
940         seg->next_blkoff = pos;
941 }
942
943 /*
944  * If a segment is written by LFS manner, next block offset is just obtained
945  * by increasing the current block offset. However, if a segment is written by
946  * SSR manner, next block offset obtained by calling __next_free_blkoff
947  */
948 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
949                                 struct curseg_info *seg)
950 {
951         if (seg->alloc_type == SSR)
952                 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
953         else
954                 seg->next_blkoff++;
955 }
956
957 /*
958  * This function always allocates a used segment(from dirty seglist) by SSR
959  * manner, so it should recover the existing segment information of valid blocks
960  */
961 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
962 {
963         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
964         struct curseg_info *curseg = CURSEG_I(sbi, type);
965         unsigned int new_segno = curseg->next_segno;
966         struct f2fs_summary_block *sum_node;
967         struct page *sum_page;
968
969         write_sum_page(sbi, curseg->sum_blk,
970                                 GET_SUM_BLOCK(sbi, curseg->segno));
971         __set_test_and_inuse(sbi, new_segno);
972
973         mutex_lock(&dirty_i->seglist_lock);
974         __remove_dirty_segment(sbi, new_segno, PRE);
975         __remove_dirty_segment(sbi, new_segno, DIRTY);
976         mutex_unlock(&dirty_i->seglist_lock);
977
978         reset_curseg(sbi, type, 1);
979         curseg->alloc_type = SSR;
980         __next_free_blkoff(sbi, curseg, 0);
981
982         if (reuse) {
983                 sum_page = get_sum_page(sbi, new_segno);
984                 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
985                 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
986                 f2fs_put_page(sum_page, 1);
987         }
988 }
989
990 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
991 {
992         struct curseg_info *curseg = CURSEG_I(sbi, type);
993         const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
994
995         if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0))
996                 return v_ops->get_victim(sbi,
997                                 &(curseg)->next_segno, BG_GC, type, SSR);
998
999         /* For data segments, let's do SSR more intensively */
1000         for (; type >= CURSEG_HOT_DATA; type--)
1001                 if (v_ops->get_victim(sbi, &(curseg)->next_segno,
1002                                                 BG_GC, type, SSR))
1003                         return 1;
1004         return 0;
1005 }
1006
1007 /*
1008  * flush out current segment and replace it with new segment
1009  * This function should be returned with success, otherwise BUG
1010  */
1011 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
1012                                                 int type, bool force)
1013 {
1014         struct curseg_info *curseg = CURSEG_I(sbi, type);
1015
1016         if (force)
1017                 new_curseg(sbi, type, true);
1018         else if (type == CURSEG_WARM_NODE)
1019                 new_curseg(sbi, type, false);
1020         else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
1021                 new_curseg(sbi, type, false);
1022         else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
1023                 change_curseg(sbi, type, true);
1024         else
1025                 new_curseg(sbi, type, false);
1026
1027         stat_inc_seg_type(sbi, curseg);
1028 }
1029
1030 void allocate_new_segments(struct f2fs_sb_info *sbi)
1031 {
1032         struct curseg_info *curseg;
1033         unsigned int old_curseg;
1034         int i;
1035
1036         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1037                 curseg = CURSEG_I(sbi, i);
1038                 old_curseg = curseg->segno;
1039                 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
1040                 locate_dirty_segment(sbi, old_curseg);
1041         }
1042 }
1043
1044 static const struct segment_allocation default_salloc_ops = {
1045         .allocate_segment = allocate_segment_by_default,
1046 };
1047
1048 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
1049 {
1050         __u64 start = range->start >> sbi->log_blocksize;
1051         __u64 end = start + (range->len >> sbi->log_blocksize) - 1;
1052         unsigned int start_segno, end_segno;
1053         struct cp_control cpc;
1054
1055         if (range->minlen > SEGMENT_SIZE(sbi) || start >= MAX_BLKADDR(sbi) ||
1056                                                 range->len < sbi->blocksize)
1057                 return -EINVAL;
1058
1059         cpc.trimmed = 0;
1060         if (end <= MAIN_BLKADDR(sbi))
1061                 goto out;
1062
1063         /* start/end segment number in main_area */
1064         start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
1065         end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
1066                                                 GET_SEGNO(sbi, end);
1067         cpc.reason = CP_DISCARD;
1068         cpc.trim_start = start_segno;
1069         cpc.trim_end = end_segno;
1070         cpc.trim_minlen = range->minlen >> sbi->log_blocksize;
1071
1072         /* do checkpoint to issue discard commands safely */
1073         mutex_lock(&sbi->gc_mutex);
1074         write_checkpoint(sbi, &cpc);
1075         mutex_unlock(&sbi->gc_mutex);
1076 out:
1077         range->len = cpc.trimmed << sbi->log_blocksize;
1078         return 0;
1079 }
1080
1081 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
1082 {
1083         struct curseg_info *curseg = CURSEG_I(sbi, type);
1084         if (curseg->next_blkoff < sbi->blocks_per_seg)
1085                 return true;
1086         return false;
1087 }
1088
1089 static int __get_segment_type_2(struct page *page, enum page_type p_type)
1090 {
1091         if (p_type == DATA)
1092                 return CURSEG_HOT_DATA;
1093         else
1094                 return CURSEG_HOT_NODE;
1095 }
1096
1097 static int __get_segment_type_4(struct page *page, enum page_type p_type)
1098 {
1099         if (p_type == DATA) {
1100                 struct inode *inode = page->mapping->host;
1101
1102                 if (S_ISDIR(inode->i_mode))
1103                         return CURSEG_HOT_DATA;
1104                 else
1105                         return CURSEG_COLD_DATA;
1106         } else {
1107                 if (IS_DNODE(page) && is_cold_node(page))
1108                         return CURSEG_WARM_NODE;
1109                 else
1110                         return CURSEG_COLD_NODE;
1111         }
1112 }
1113
1114 static int __get_segment_type_6(struct page *page, enum page_type p_type)
1115 {
1116         if (p_type == DATA) {
1117                 struct inode *inode = page->mapping->host;
1118
1119                 if (S_ISDIR(inode->i_mode))
1120                         return CURSEG_HOT_DATA;
1121                 else if (is_cold_data(page) || file_is_cold(inode))
1122                         return CURSEG_COLD_DATA;
1123                 else
1124                         return CURSEG_WARM_DATA;
1125         } else {
1126                 if (IS_DNODE(page))
1127                         return is_cold_node(page) ? CURSEG_WARM_NODE :
1128                                                 CURSEG_HOT_NODE;
1129                 else
1130                         return CURSEG_COLD_NODE;
1131         }
1132 }
1133
1134 static int __get_segment_type(struct page *page, enum page_type p_type)
1135 {
1136         switch (F2FS_P_SB(page)->active_logs) {
1137         case 2:
1138                 return __get_segment_type_2(page, p_type);
1139         case 4:
1140                 return __get_segment_type_4(page, p_type);
1141         }
1142         /* NR_CURSEG_TYPE(6) logs by default */
1143         f2fs_bug_on(F2FS_P_SB(page),
1144                 F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE);
1145         return __get_segment_type_6(page, p_type);
1146 }
1147
1148 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
1149                 block_t old_blkaddr, block_t *new_blkaddr,
1150                 struct f2fs_summary *sum, int type)
1151 {
1152         struct sit_info *sit_i = SIT_I(sbi);
1153         struct curseg_info *curseg;
1154
1155         curseg = CURSEG_I(sbi, type);
1156
1157         mutex_lock(&curseg->curseg_mutex);
1158
1159         *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
1160
1161         /*
1162          * __add_sum_entry should be resided under the curseg_mutex
1163          * because, this function updates a summary entry in the
1164          * current summary block.
1165          */
1166         __add_sum_entry(sbi, type, sum);
1167
1168         mutex_lock(&sit_i->sentry_lock);
1169         __refresh_next_blkoff(sbi, curseg);
1170
1171         stat_inc_block_count(sbi, curseg);
1172
1173         if (!__has_curseg_space(sbi, type))
1174                 sit_i->s_ops->allocate_segment(sbi, type, false);
1175         /*
1176          * SIT information should be updated before segment allocation,
1177          * since SSR needs latest valid block information.
1178          */
1179         refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
1180
1181         mutex_unlock(&sit_i->sentry_lock);
1182
1183         if (page && IS_NODESEG(type))
1184                 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
1185
1186         mutex_unlock(&curseg->curseg_mutex);
1187 }
1188
1189 static void do_write_page(struct f2fs_sb_info *sbi, struct page *page,
1190                         block_t old_blkaddr, block_t *new_blkaddr,
1191                         struct f2fs_summary *sum, struct f2fs_io_info *fio)
1192 {
1193         int type = __get_segment_type(page, fio->type);
1194
1195         allocate_data_block(sbi, page, old_blkaddr, new_blkaddr, sum, type);
1196
1197         /* writeout dirty page into bdev */
1198         f2fs_submit_page_mbio(sbi, page, *new_blkaddr, fio);
1199 }
1200
1201 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
1202 {
1203         struct f2fs_io_info fio = {
1204                 .type = META,
1205                 .rw = WRITE_SYNC | REQ_META | REQ_PRIO
1206         };
1207
1208         set_page_writeback(page);
1209         f2fs_submit_page_mbio(sbi, page, page->index, &fio);
1210 }
1211
1212 void write_node_page(struct f2fs_sb_info *sbi, struct page *page,
1213                 struct f2fs_io_info *fio,
1214                 unsigned int nid, block_t old_blkaddr, block_t *new_blkaddr)
1215 {
1216         struct f2fs_summary sum;
1217         set_summary(&sum, nid, 0, 0);
1218         do_write_page(sbi, page, old_blkaddr, new_blkaddr, &sum, fio);
1219 }
1220
1221 void write_data_page(struct page *page, struct dnode_of_data *dn,
1222                 block_t *new_blkaddr, struct f2fs_io_info *fio)
1223 {
1224         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1225         struct f2fs_summary sum;
1226         struct node_info ni;
1227
1228         f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
1229         get_node_info(sbi, dn->nid, &ni);
1230         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1231
1232         do_write_page(sbi, page, dn->data_blkaddr, new_blkaddr, &sum, fio);
1233 }
1234
1235 void rewrite_data_page(struct page *page, block_t old_blkaddr,
1236                                         struct f2fs_io_info *fio)
1237 {
1238         f2fs_submit_page_mbio(F2FS_P_SB(page), page, old_blkaddr, fio);
1239 }
1240
1241 void recover_data_page(struct f2fs_sb_info *sbi,
1242                         struct page *page, struct f2fs_summary *sum,
1243                         block_t old_blkaddr, block_t new_blkaddr)
1244 {
1245         struct sit_info *sit_i = SIT_I(sbi);
1246         struct curseg_info *curseg;
1247         unsigned int segno, old_cursegno;
1248         struct seg_entry *se;
1249         int type;
1250
1251         segno = GET_SEGNO(sbi, new_blkaddr);
1252         se = get_seg_entry(sbi, segno);
1253         type = se->type;
1254
1255         if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
1256                 if (old_blkaddr == NULL_ADDR)
1257                         type = CURSEG_COLD_DATA;
1258                 else
1259                         type = CURSEG_WARM_DATA;
1260         }
1261         curseg = CURSEG_I(sbi, type);
1262
1263         mutex_lock(&curseg->curseg_mutex);
1264         mutex_lock(&sit_i->sentry_lock);
1265
1266         old_cursegno = curseg->segno;
1267
1268         /* change the current segment */
1269         if (segno != curseg->segno) {
1270                 curseg->next_segno = segno;
1271                 change_curseg(sbi, type, true);
1272         }
1273
1274         curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
1275         __add_sum_entry(sbi, type, sum);
1276
1277         refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
1278         locate_dirty_segment(sbi, old_cursegno);
1279
1280         mutex_unlock(&sit_i->sentry_lock);
1281         mutex_unlock(&curseg->curseg_mutex);
1282 }
1283
1284 static inline bool is_merged_page(struct f2fs_sb_info *sbi,
1285                                         struct page *page, enum page_type type)
1286 {
1287         enum page_type btype = PAGE_TYPE_OF_BIO(type);
1288         struct f2fs_bio_info *io = &sbi->write_io[btype];
1289         struct bio_vec *bvec;
1290         int i;
1291
1292         down_read(&io->io_rwsem);
1293         if (!io->bio)
1294                 goto out;
1295
1296         bio_for_each_segment_all(bvec, io->bio, i) {
1297                 if (page == bvec->bv_page) {
1298                         up_read(&io->io_rwsem);
1299                         return true;
1300                 }
1301         }
1302
1303 out:
1304         up_read(&io->io_rwsem);
1305         return false;
1306 }
1307
1308 void f2fs_wait_on_page_writeback(struct page *page,
1309                                 enum page_type type)
1310 {
1311         if (PageWriteback(page)) {
1312                 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1313
1314                 if (is_merged_page(sbi, page, type))
1315                         f2fs_submit_merged_bio(sbi, type, WRITE);
1316                 wait_on_page_writeback(page);
1317         }
1318 }
1319
1320 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
1321 {
1322         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1323         struct curseg_info *seg_i;
1324         unsigned char *kaddr;
1325         struct page *page;
1326         block_t start;
1327         int i, j, offset;
1328
1329         start = start_sum_block(sbi);
1330
1331         page = get_meta_page(sbi, start++);
1332         kaddr = (unsigned char *)page_address(page);
1333
1334         /* Step 1: restore nat cache */
1335         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1336         memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE);
1337
1338         /* Step 2: restore sit cache */
1339         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1340         memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE,
1341                                                 SUM_JOURNAL_SIZE);
1342         offset = 2 * SUM_JOURNAL_SIZE;
1343
1344         /* Step 3: restore summary entries */
1345         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1346                 unsigned short blk_off;
1347                 unsigned int segno;
1348
1349                 seg_i = CURSEG_I(sbi, i);
1350                 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
1351                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
1352                 seg_i->next_segno = segno;
1353                 reset_curseg(sbi, i, 0);
1354                 seg_i->alloc_type = ckpt->alloc_type[i];
1355                 seg_i->next_blkoff = blk_off;
1356
1357                 if (seg_i->alloc_type == SSR)
1358                         blk_off = sbi->blocks_per_seg;
1359
1360                 for (j = 0; j < blk_off; j++) {
1361                         struct f2fs_summary *s;
1362                         s = (struct f2fs_summary *)(kaddr + offset);
1363                         seg_i->sum_blk->entries[j] = *s;
1364                         offset += SUMMARY_SIZE;
1365                         if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1366                                                 SUM_FOOTER_SIZE)
1367                                 continue;
1368
1369                         f2fs_put_page(page, 1);
1370                         page = NULL;
1371
1372                         page = get_meta_page(sbi, start++);
1373                         kaddr = (unsigned char *)page_address(page);
1374                         offset = 0;
1375                 }
1376         }
1377         f2fs_put_page(page, 1);
1378         return 0;
1379 }
1380
1381 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1382 {
1383         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1384         struct f2fs_summary_block *sum;
1385         struct curseg_info *curseg;
1386         struct page *new;
1387         unsigned short blk_off;
1388         unsigned int segno = 0;
1389         block_t blk_addr = 0;
1390
1391         /* get segment number and block addr */
1392         if (IS_DATASEG(type)) {
1393                 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1394                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1395                                                         CURSEG_HOT_DATA]);
1396                 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1397                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1398                 else
1399                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1400         } else {
1401                 segno = le32_to_cpu(ckpt->cur_node_segno[type -
1402                                                         CURSEG_HOT_NODE]);
1403                 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1404                                                         CURSEG_HOT_NODE]);
1405                 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1406                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1407                                                         type - CURSEG_HOT_NODE);
1408                 else
1409                         blk_addr = GET_SUM_BLOCK(sbi, segno);
1410         }
1411
1412         new = get_meta_page(sbi, blk_addr);
1413         sum = (struct f2fs_summary_block *)page_address(new);
1414
1415         if (IS_NODESEG(type)) {
1416                 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) {
1417                         struct f2fs_summary *ns = &sum->entries[0];
1418                         int i;
1419                         for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1420                                 ns->version = 0;
1421                                 ns->ofs_in_node = 0;
1422                         }
1423                 } else {
1424                         int err;
1425
1426                         err = restore_node_summary(sbi, segno, sum);
1427                         if (err) {
1428                                 f2fs_put_page(new, 1);
1429                                 return err;
1430                         }
1431                 }
1432         }
1433
1434         /* set uncompleted segment to curseg */
1435         curseg = CURSEG_I(sbi, type);
1436         mutex_lock(&curseg->curseg_mutex);
1437         memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE);
1438         curseg->next_segno = segno;
1439         reset_curseg(sbi, type, 0);
1440         curseg->alloc_type = ckpt->alloc_type[type];
1441         curseg->next_blkoff = blk_off;
1442         mutex_unlock(&curseg->curseg_mutex);
1443         f2fs_put_page(new, 1);
1444         return 0;
1445 }
1446
1447 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1448 {
1449         int type = CURSEG_HOT_DATA;
1450         int err;
1451
1452         if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
1453                 /* restore for compacted data summary */
1454                 if (read_compacted_summaries(sbi))
1455                         return -EINVAL;
1456                 type = CURSEG_HOT_NODE;
1457         }
1458
1459         for (; type <= CURSEG_COLD_NODE; type++) {
1460                 err = read_normal_summaries(sbi, type);
1461                 if (err)
1462                         return err;
1463         }
1464
1465         return 0;
1466 }
1467
1468 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1469 {
1470         struct page *page;
1471         unsigned char *kaddr;
1472         struct f2fs_summary *summary;
1473         struct curseg_info *seg_i;
1474         int written_size = 0;
1475         int i, j;
1476
1477         page = grab_meta_page(sbi, blkaddr++);
1478         kaddr = (unsigned char *)page_address(page);
1479
1480         /* Step 1: write nat cache */
1481         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1482         memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE);
1483         written_size += SUM_JOURNAL_SIZE;
1484
1485         /* Step 2: write sit cache */
1486         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1487         memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits,
1488                                                 SUM_JOURNAL_SIZE);
1489         written_size += SUM_JOURNAL_SIZE;
1490
1491         /* Step 3: write summary entries */
1492         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1493                 unsigned short blkoff;
1494                 seg_i = CURSEG_I(sbi, i);
1495                 if (sbi->ckpt->alloc_type[i] == SSR)
1496                         blkoff = sbi->blocks_per_seg;
1497                 else
1498                         blkoff = curseg_blkoff(sbi, i);
1499
1500                 for (j = 0; j < blkoff; j++) {
1501                         if (!page) {
1502                                 page = grab_meta_page(sbi, blkaddr++);
1503                                 kaddr = (unsigned char *)page_address(page);
1504                                 written_size = 0;
1505                         }
1506                         summary = (struct f2fs_summary *)(kaddr + written_size);
1507                         *summary = seg_i->sum_blk->entries[j];
1508                         written_size += SUMMARY_SIZE;
1509
1510                         if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1511                                                         SUM_FOOTER_SIZE)
1512                                 continue;
1513
1514                         set_page_dirty(page);
1515                         f2fs_put_page(page, 1);
1516                         page = NULL;
1517                 }
1518         }
1519         if (page) {
1520                 set_page_dirty(page);
1521                 f2fs_put_page(page, 1);
1522         }
1523 }
1524
1525 static void write_normal_summaries(struct f2fs_sb_info *sbi,
1526                                         block_t blkaddr, int type)
1527 {
1528         int i, end;
1529         if (IS_DATASEG(type))
1530                 end = type + NR_CURSEG_DATA_TYPE;
1531         else
1532                 end = type + NR_CURSEG_NODE_TYPE;
1533
1534         for (i = type; i < end; i++) {
1535                 struct curseg_info *sum = CURSEG_I(sbi, i);
1536                 mutex_lock(&sum->curseg_mutex);
1537                 write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type));
1538                 mutex_unlock(&sum->curseg_mutex);
1539         }
1540 }
1541
1542 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1543 {
1544         if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
1545                 write_compacted_summaries(sbi, start_blk);
1546         else
1547                 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1548 }
1549
1550 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1551 {
1552         if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG))
1553                 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
1554 }
1555
1556 int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type,
1557                                         unsigned int val, int alloc)
1558 {
1559         int i;
1560
1561         if (type == NAT_JOURNAL) {
1562                 for (i = 0; i < nats_in_cursum(sum); i++) {
1563                         if (le32_to_cpu(nid_in_journal(sum, i)) == val)
1564                                 return i;
1565                 }
1566                 if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES)
1567                         return update_nats_in_cursum(sum, 1);
1568         } else if (type == SIT_JOURNAL) {
1569                 for (i = 0; i < sits_in_cursum(sum); i++)
1570                         if (le32_to_cpu(segno_in_journal(sum, i)) == val)
1571                                 return i;
1572                 if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES)
1573                         return update_sits_in_cursum(sum, 1);
1574         }
1575         return -1;
1576 }
1577
1578 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1579                                         unsigned int segno)
1580 {
1581         return get_meta_page(sbi, current_sit_addr(sbi, segno));
1582 }
1583
1584 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1585                                         unsigned int start)
1586 {
1587         struct sit_info *sit_i = SIT_I(sbi);
1588         struct page *src_page, *dst_page;
1589         pgoff_t src_off, dst_off;
1590         void *src_addr, *dst_addr;
1591
1592         src_off = current_sit_addr(sbi, start);
1593         dst_off = next_sit_addr(sbi, src_off);
1594
1595         /* get current sit block page without lock */
1596         src_page = get_meta_page(sbi, src_off);
1597         dst_page = grab_meta_page(sbi, dst_off);
1598         f2fs_bug_on(sbi, PageDirty(src_page));
1599
1600         src_addr = page_address(src_page);
1601         dst_addr = page_address(dst_page);
1602         memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
1603
1604         set_page_dirty(dst_page);
1605         f2fs_put_page(src_page, 1);
1606
1607         set_to_next_sit(sit_i, start);
1608
1609         return dst_page;
1610 }
1611
1612 static struct sit_entry_set *grab_sit_entry_set(void)
1613 {
1614         struct sit_entry_set *ses =
1615                         f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_ATOMIC);
1616
1617         ses->entry_cnt = 0;
1618         INIT_LIST_HEAD(&ses->set_list);
1619         return ses;
1620 }
1621
1622 static void release_sit_entry_set(struct sit_entry_set *ses)
1623 {
1624         list_del(&ses->set_list);
1625         kmem_cache_free(sit_entry_set_slab, ses);
1626 }
1627
1628 static void adjust_sit_entry_set(struct sit_entry_set *ses,
1629                                                 struct list_head *head)
1630 {
1631         struct sit_entry_set *next = ses;
1632
1633         if (list_is_last(&ses->set_list, head))
1634                 return;
1635
1636         list_for_each_entry_continue(next, head, set_list)
1637                 if (ses->entry_cnt <= next->entry_cnt)
1638                         break;
1639
1640         list_move_tail(&ses->set_list, &next->set_list);
1641 }
1642
1643 static void add_sit_entry(unsigned int segno, struct list_head *head)
1644 {
1645         struct sit_entry_set *ses;
1646         unsigned int start_segno = START_SEGNO(segno);
1647
1648         list_for_each_entry(ses, head, set_list) {
1649                 if (ses->start_segno == start_segno) {
1650                         ses->entry_cnt++;
1651                         adjust_sit_entry_set(ses, head);
1652                         return;
1653                 }
1654         }
1655
1656         ses = grab_sit_entry_set();
1657
1658         ses->start_segno = start_segno;
1659         ses->entry_cnt++;
1660         list_add(&ses->set_list, head);
1661 }
1662
1663 static void add_sits_in_set(struct f2fs_sb_info *sbi)
1664 {
1665         struct f2fs_sm_info *sm_info = SM_I(sbi);
1666         struct list_head *set_list = &sm_info->sit_entry_set;
1667         unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
1668         unsigned int segno;
1669
1670         for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
1671                 add_sit_entry(segno, set_list);
1672 }
1673
1674 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
1675 {
1676         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1677         struct f2fs_summary_block *sum = curseg->sum_blk;
1678         int i;
1679
1680         for (i = sits_in_cursum(sum) - 1; i >= 0; i--) {
1681                 unsigned int segno;
1682                 bool dirtied;
1683
1684                 segno = le32_to_cpu(segno_in_journal(sum, i));
1685                 dirtied = __mark_sit_entry_dirty(sbi, segno);
1686
1687                 if (!dirtied)
1688                         add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
1689         }
1690         update_sits_in_cursum(sum, -sits_in_cursum(sum));
1691 }
1692
1693 /*
1694  * CP calls this function, which flushes SIT entries including sit_journal,
1695  * and moves prefree segs to free segs.
1696  */
1697 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1698 {
1699         struct sit_info *sit_i = SIT_I(sbi);
1700         unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
1701         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1702         struct f2fs_summary_block *sum = curseg->sum_blk;
1703         struct sit_entry_set *ses, *tmp;
1704         struct list_head *head = &SM_I(sbi)->sit_entry_set;
1705         bool to_journal = true;
1706         struct seg_entry *se;
1707
1708         mutex_lock(&curseg->curseg_mutex);
1709         mutex_lock(&sit_i->sentry_lock);
1710
1711         /*
1712          * add and account sit entries of dirty bitmap in sit entry
1713          * set temporarily
1714          */
1715         add_sits_in_set(sbi);
1716
1717         /*
1718          * if there are no enough space in journal to store dirty sit
1719          * entries, remove all entries from journal and add and account
1720          * them in sit entry set.
1721          */
1722         if (!__has_cursum_space(sum, sit_i->dirty_sentries, SIT_JOURNAL))
1723                 remove_sits_in_journal(sbi);
1724
1725         if (!sit_i->dirty_sentries)
1726                 goto out;
1727
1728         /*
1729          * there are two steps to flush sit entries:
1730          * #1, flush sit entries to journal in current cold data summary block.
1731          * #2, flush sit entries to sit page.
1732          */
1733         list_for_each_entry_safe(ses, tmp, head, set_list) {
1734                 struct page *page = NULL;
1735                 struct f2fs_sit_block *raw_sit = NULL;
1736                 unsigned int start_segno = ses->start_segno;
1737                 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
1738                                                 (unsigned long)MAIN_SEGS(sbi));
1739                 unsigned int segno = start_segno;
1740
1741                 if (to_journal &&
1742                         !__has_cursum_space(sum, ses->entry_cnt, SIT_JOURNAL))
1743                         to_journal = false;
1744
1745                 if (!to_journal) {
1746                         page = get_next_sit_page(sbi, start_segno);
1747                         raw_sit = page_address(page);
1748                 }
1749
1750                 /* flush dirty sit entries in region of current sit set */
1751                 for_each_set_bit_from(segno, bitmap, end) {
1752                         int offset, sit_offset;
1753
1754                         se = get_seg_entry(sbi, segno);
1755
1756                         /* add discard candidates */
1757                         if (SM_I(sbi)->nr_discards < SM_I(sbi)->max_discards) {
1758                                 cpc->trim_start = segno;
1759                                 add_discard_addrs(sbi, cpc);
1760                         }
1761
1762                         if (to_journal) {
1763                                 offset = lookup_journal_in_cursum(sum,
1764                                                         SIT_JOURNAL, segno, 1);
1765                                 f2fs_bug_on(sbi, offset < 0);
1766                                 segno_in_journal(sum, offset) =
1767                                                         cpu_to_le32(segno);
1768                                 seg_info_to_raw_sit(se,
1769                                                 &sit_in_journal(sum, offset));
1770                         } else {
1771                                 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
1772                                 seg_info_to_raw_sit(se,
1773                                                 &raw_sit->entries[sit_offset]);
1774                         }
1775
1776                         __clear_bit(segno, bitmap);
1777                         sit_i->dirty_sentries--;
1778                         ses->entry_cnt--;
1779                 }
1780
1781                 if (!to_journal)
1782                         f2fs_put_page(page, 1);
1783
1784                 f2fs_bug_on(sbi, ses->entry_cnt);
1785                 release_sit_entry_set(ses);
1786         }
1787
1788         f2fs_bug_on(sbi, !list_empty(head));
1789         f2fs_bug_on(sbi, sit_i->dirty_sentries);
1790 out:
1791         if (cpc->reason == CP_DISCARD) {
1792                 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
1793                         add_discard_addrs(sbi, cpc);
1794         }
1795         mutex_unlock(&sit_i->sentry_lock);
1796         mutex_unlock(&curseg->curseg_mutex);
1797
1798         set_prefree_as_free_segments(sbi);
1799 }
1800
1801 static int build_sit_info(struct f2fs_sb_info *sbi)
1802 {
1803         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1804         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1805         struct sit_info *sit_i;
1806         unsigned int sit_segs, start;
1807         char *src_bitmap, *dst_bitmap;
1808         unsigned int bitmap_size;
1809
1810         /* allocate memory for SIT information */
1811         sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
1812         if (!sit_i)
1813                 return -ENOMEM;
1814
1815         SM_I(sbi)->sit_info = sit_i;
1816
1817         sit_i->sentries = vzalloc(MAIN_SEGS(sbi) * sizeof(struct seg_entry));
1818         if (!sit_i->sentries)
1819                 return -ENOMEM;
1820
1821         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
1822         sit_i->dirty_sentries_bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1823         if (!sit_i->dirty_sentries_bitmap)
1824                 return -ENOMEM;
1825
1826         for (start = 0; start < MAIN_SEGS(sbi); start++) {
1827                 sit_i->sentries[start].cur_valid_map
1828                         = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1829                 sit_i->sentries[start].ckpt_valid_map
1830                         = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1831                 if (!sit_i->sentries[start].cur_valid_map
1832                                 || !sit_i->sentries[start].ckpt_valid_map)
1833                         return -ENOMEM;
1834         }
1835
1836         if (sbi->segs_per_sec > 1) {
1837                 sit_i->sec_entries = vzalloc(MAIN_SECS(sbi) *
1838                                         sizeof(struct sec_entry));
1839                 if (!sit_i->sec_entries)
1840                         return -ENOMEM;
1841         }
1842
1843         /* get information related with SIT */
1844         sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
1845
1846         /* setup SIT bitmap from ckeckpoint pack */
1847         bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
1848         src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
1849
1850         dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
1851         if (!dst_bitmap)
1852                 return -ENOMEM;
1853
1854         /* init SIT information */
1855         sit_i->s_ops = &default_salloc_ops;
1856
1857         sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
1858         sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
1859         sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
1860         sit_i->sit_bitmap = dst_bitmap;
1861         sit_i->bitmap_size = bitmap_size;
1862         sit_i->dirty_sentries = 0;
1863         sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
1864         sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
1865         sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
1866         mutex_init(&sit_i->sentry_lock);
1867         return 0;
1868 }
1869
1870 static int build_free_segmap(struct f2fs_sb_info *sbi)
1871 {
1872         struct free_segmap_info *free_i;
1873         unsigned int bitmap_size, sec_bitmap_size;
1874
1875         /* allocate memory for free segmap information */
1876         free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
1877         if (!free_i)
1878                 return -ENOMEM;
1879
1880         SM_I(sbi)->free_info = free_i;
1881
1882         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
1883         free_i->free_segmap = kmalloc(bitmap_size, GFP_KERNEL);
1884         if (!free_i->free_segmap)
1885                 return -ENOMEM;
1886
1887         sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
1888         free_i->free_secmap = kmalloc(sec_bitmap_size, GFP_KERNEL);
1889         if (!free_i->free_secmap)
1890                 return -ENOMEM;
1891
1892         /* set all segments as dirty temporarily */
1893         memset(free_i->free_segmap, 0xff, bitmap_size);
1894         memset(free_i->free_secmap, 0xff, sec_bitmap_size);
1895
1896         /* init free segmap information */
1897         free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
1898         free_i->free_segments = 0;
1899         free_i->free_sections = 0;
1900         rwlock_init(&free_i->segmap_lock);
1901         return 0;
1902 }
1903
1904 static int build_curseg(struct f2fs_sb_info *sbi)
1905 {
1906         struct curseg_info *array;
1907         int i;
1908
1909         array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL);
1910         if (!array)
1911                 return -ENOMEM;
1912
1913         SM_I(sbi)->curseg_array = array;
1914
1915         for (i = 0; i < NR_CURSEG_TYPE; i++) {
1916                 mutex_init(&array[i].curseg_mutex);
1917                 array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL);
1918                 if (!array[i].sum_blk)
1919                         return -ENOMEM;
1920                 array[i].segno = NULL_SEGNO;
1921                 array[i].next_blkoff = 0;
1922         }
1923         return restore_curseg_summaries(sbi);
1924 }
1925
1926 static void build_sit_entries(struct f2fs_sb_info *sbi)
1927 {
1928         struct sit_info *sit_i = SIT_I(sbi);
1929         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1930         struct f2fs_summary_block *sum = curseg->sum_blk;
1931         int sit_blk_cnt = SIT_BLK_CNT(sbi);
1932         unsigned int i, start, end;
1933         unsigned int readed, start_blk = 0;
1934         int nrpages = MAX_BIO_BLOCKS(sbi);
1935
1936         do {
1937                 readed = ra_meta_pages(sbi, start_blk, nrpages, META_SIT);
1938
1939                 start = start_blk * sit_i->sents_per_block;
1940                 end = (start_blk + readed) * sit_i->sents_per_block;
1941
1942                 for (; start < end && start < MAIN_SEGS(sbi); start++) {
1943                         struct seg_entry *se = &sit_i->sentries[start];
1944                         struct f2fs_sit_block *sit_blk;
1945                         struct f2fs_sit_entry sit;
1946                         struct page *page;
1947
1948                         mutex_lock(&curseg->curseg_mutex);
1949                         for (i = 0; i < sits_in_cursum(sum); i++) {
1950                                 if (le32_to_cpu(segno_in_journal(sum, i))
1951                                                                 == start) {
1952                                         sit = sit_in_journal(sum, i);
1953                                         mutex_unlock(&curseg->curseg_mutex);
1954                                         goto got_it;
1955                                 }
1956                         }
1957                         mutex_unlock(&curseg->curseg_mutex);
1958
1959                         page = get_current_sit_page(sbi, start);
1960                         sit_blk = (struct f2fs_sit_block *)page_address(page);
1961                         sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
1962                         f2fs_put_page(page, 1);
1963 got_it:
1964                         check_block_count(sbi, start, &sit);
1965                         seg_info_from_raw_sit(se, &sit);
1966                         if (sbi->segs_per_sec > 1) {
1967                                 struct sec_entry *e = get_sec_entry(sbi, start);
1968                                 e->valid_blocks += se->valid_blocks;
1969                         }
1970                 }
1971                 start_blk += readed;
1972         } while (start_blk < sit_blk_cnt);
1973 }
1974
1975 static void init_free_segmap(struct f2fs_sb_info *sbi)
1976 {
1977         unsigned int start;
1978         int type;
1979
1980         for (start = 0; start < MAIN_SEGS(sbi); start++) {
1981                 struct seg_entry *sentry = get_seg_entry(sbi, start);
1982                 if (!sentry->valid_blocks)
1983                         __set_free(sbi, start);
1984         }
1985
1986         /* set use the current segments */
1987         for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
1988                 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
1989                 __set_test_and_inuse(sbi, curseg_t->segno);
1990         }
1991 }
1992
1993 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
1994 {
1995         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1996         struct free_segmap_info *free_i = FREE_I(sbi);
1997         unsigned int segno = 0, offset = 0;
1998         unsigned short valid_blocks;
1999
2000         while (1) {
2001                 /* find dirty segment based on free segmap */
2002                 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
2003                 if (segno >= MAIN_SEGS(sbi))
2004                         break;
2005                 offset = segno + 1;
2006                 valid_blocks = get_valid_blocks(sbi, segno, 0);
2007                 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
2008                         continue;
2009                 if (valid_blocks > sbi->blocks_per_seg) {
2010                         f2fs_bug_on(sbi, 1);
2011                         continue;
2012                 }
2013                 mutex_lock(&dirty_i->seglist_lock);
2014                 __locate_dirty_segment(sbi, segno, DIRTY);
2015                 mutex_unlock(&dirty_i->seglist_lock);
2016         }
2017 }
2018
2019 static int init_victim_secmap(struct f2fs_sb_info *sbi)
2020 {
2021         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2022         unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2023
2024         dirty_i->victim_secmap = kzalloc(bitmap_size, GFP_KERNEL);
2025         if (!dirty_i->victim_secmap)
2026                 return -ENOMEM;
2027         return 0;
2028 }
2029
2030 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
2031 {
2032         struct dirty_seglist_info *dirty_i;
2033         unsigned int bitmap_size, i;
2034
2035         /* allocate memory for dirty segments list information */
2036         dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
2037         if (!dirty_i)
2038                 return -ENOMEM;
2039
2040         SM_I(sbi)->dirty_info = dirty_i;
2041         mutex_init(&dirty_i->seglist_lock);
2042
2043         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2044
2045         for (i = 0; i < NR_DIRTY_TYPE; i++) {
2046                 dirty_i->dirty_segmap[i] = kzalloc(bitmap_size, GFP_KERNEL);
2047                 if (!dirty_i->dirty_segmap[i])
2048                         return -ENOMEM;
2049         }
2050
2051         init_dirty_segmap(sbi);
2052         return init_victim_secmap(sbi);
2053 }
2054
2055 /*
2056  * Update min, max modified time for cost-benefit GC algorithm
2057  */
2058 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
2059 {
2060         struct sit_info *sit_i = SIT_I(sbi);
2061         unsigned int segno;
2062
2063         mutex_lock(&sit_i->sentry_lock);
2064
2065         sit_i->min_mtime = LLONG_MAX;
2066
2067         for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
2068                 unsigned int i;
2069                 unsigned long long mtime = 0;
2070
2071                 for (i = 0; i < sbi->segs_per_sec; i++)
2072                         mtime += get_seg_entry(sbi, segno + i)->mtime;
2073
2074                 mtime = div_u64(mtime, sbi->segs_per_sec);
2075
2076                 if (sit_i->min_mtime > mtime)
2077                         sit_i->min_mtime = mtime;
2078         }
2079         sit_i->max_mtime = get_mtime(sbi);
2080         mutex_unlock(&sit_i->sentry_lock);
2081 }
2082
2083 int build_segment_manager(struct f2fs_sb_info *sbi)
2084 {
2085         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2086         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2087         struct f2fs_sm_info *sm_info;
2088         int err;
2089
2090         sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
2091         if (!sm_info)
2092                 return -ENOMEM;
2093
2094         /* init sm info */
2095         sbi->sm_info = sm_info;
2096         sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2097         sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2098         sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
2099         sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2100         sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2101         sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
2102         sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2103         sm_info->rec_prefree_segments = sm_info->main_segments *
2104                                         DEF_RECLAIM_PREFREE_SEGMENTS / 100;
2105         sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
2106         sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
2107         sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
2108
2109         INIT_LIST_HEAD(&sm_info->discard_list);
2110         sm_info->nr_discards = 0;
2111         sm_info->max_discards = 0;
2112
2113         INIT_LIST_HEAD(&sm_info->sit_entry_set);
2114
2115         if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) {
2116                 err = create_flush_cmd_control(sbi);
2117                 if (err)
2118                         return err;
2119         }
2120
2121         err = build_sit_info(sbi);
2122         if (err)
2123                 return err;
2124         err = build_free_segmap(sbi);
2125         if (err)
2126                 return err;
2127         err = build_curseg(sbi);
2128         if (err)
2129                 return err;
2130
2131         /* reinit free segmap based on SIT */
2132         build_sit_entries(sbi);
2133
2134         init_free_segmap(sbi);
2135         err = build_dirty_segmap(sbi);
2136         if (err)
2137                 return err;
2138
2139         init_min_max_mtime(sbi);
2140         return 0;
2141 }
2142
2143 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
2144                 enum dirty_type dirty_type)
2145 {
2146         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2147
2148         mutex_lock(&dirty_i->seglist_lock);
2149         kfree(dirty_i->dirty_segmap[dirty_type]);
2150         dirty_i->nr_dirty[dirty_type] = 0;
2151         mutex_unlock(&dirty_i->seglist_lock);
2152 }
2153
2154 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
2155 {
2156         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2157         kfree(dirty_i->victim_secmap);
2158 }
2159
2160 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
2161 {
2162         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2163         int i;
2164
2165         if (!dirty_i)
2166                 return;
2167
2168         /* discard pre-free/dirty segments list */
2169         for (i = 0; i < NR_DIRTY_TYPE; i++)
2170                 discard_dirty_segmap(sbi, i);
2171
2172         destroy_victim_secmap(sbi);
2173         SM_I(sbi)->dirty_info = NULL;
2174         kfree(dirty_i);
2175 }
2176
2177 static void destroy_curseg(struct f2fs_sb_info *sbi)
2178 {
2179         struct curseg_info *array = SM_I(sbi)->curseg_array;
2180         int i;
2181
2182         if (!array)
2183                 return;
2184         SM_I(sbi)->curseg_array = NULL;
2185         for (i = 0; i < NR_CURSEG_TYPE; i++)
2186                 kfree(array[i].sum_blk);
2187         kfree(array);
2188 }
2189
2190 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
2191 {
2192         struct free_segmap_info *free_i = SM_I(sbi)->free_info;
2193         if (!free_i)
2194                 return;
2195         SM_I(sbi)->free_info = NULL;
2196         kfree(free_i->free_segmap);
2197         kfree(free_i->free_secmap);
2198         kfree(free_i);
2199 }
2200
2201 static void destroy_sit_info(struct f2fs_sb_info *sbi)
2202 {
2203         struct sit_info *sit_i = SIT_I(sbi);
2204         unsigned int start;
2205
2206         if (!sit_i)
2207                 return;
2208
2209         if (sit_i->sentries) {
2210                 for (start = 0; start < MAIN_SEGS(sbi); start++) {
2211                         kfree(sit_i->sentries[start].cur_valid_map);
2212                         kfree(sit_i->sentries[start].ckpt_valid_map);
2213                 }
2214         }
2215         vfree(sit_i->sentries);
2216         vfree(sit_i->sec_entries);
2217         kfree(sit_i->dirty_sentries_bitmap);
2218
2219         SM_I(sbi)->sit_info = NULL;
2220         kfree(sit_i->sit_bitmap);
2221         kfree(sit_i);
2222 }
2223
2224 void destroy_segment_manager(struct f2fs_sb_info *sbi)
2225 {
2226         struct f2fs_sm_info *sm_info = SM_I(sbi);
2227
2228         if (!sm_info)
2229                 return;
2230         destroy_flush_cmd_control(sbi);
2231         destroy_dirty_segmap(sbi);
2232         destroy_curseg(sbi);
2233         destroy_free_segmap(sbi);
2234         destroy_sit_info(sbi);
2235         sbi->sm_info = NULL;
2236         kfree(sm_info);
2237 }
2238
2239 int __init create_segment_manager_caches(void)
2240 {
2241         discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
2242                         sizeof(struct discard_entry));
2243         if (!discard_entry_slab)
2244                 goto fail;
2245
2246         sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
2247                         sizeof(struct sit_entry_set));
2248         if (!sit_entry_set_slab)
2249                 goto destory_discard_entry;
2250
2251         inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
2252                         sizeof(struct inmem_pages));
2253         if (!inmem_entry_slab)
2254                 goto destroy_sit_entry_set;
2255         return 0;
2256
2257 destroy_sit_entry_set:
2258         kmem_cache_destroy(sit_entry_set_slab);
2259 destory_discard_entry:
2260         kmem_cache_destroy(discard_entry_slab);
2261 fail:
2262         return -ENOMEM;
2263 }
2264
2265 void destroy_segment_manager_caches(void)
2266 {
2267         kmem_cache_destroy(sit_entry_set_slab);
2268         kmem_cache_destroy(discard_entry_slab);
2269         kmem_cache_destroy(inmem_entry_slab);
2270 }