f2fs: flush inode metadata when checkpoint is doing
[cascardo/linux.git] / fs / f2fs / super.c
1 /*
2  * fs/f2fs/super.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/f2fs_fs.h>
26 #include <linux/sysfs.h>
27
28 #include "f2fs.h"
29 #include "node.h"
30 #include "segment.h"
31 #include "xattr.h"
32 #include "gc.h"
33 #include "trace.h"
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/f2fs.h>
37
38 static struct proc_dir_entry *f2fs_proc_root;
39 static struct kmem_cache *f2fs_inode_cachep;
40 static struct kset *f2fs_kset;
41
42 #ifdef CONFIG_F2FS_FAULT_INJECTION
43 struct f2fs_fault_info f2fs_fault;
44
45 char *fault_name[FAULT_MAX] = {
46         [FAULT_KMALLOC]         = "kmalloc",
47         [FAULT_PAGE_ALLOC]      = "page alloc",
48         [FAULT_ALLOC_NID]       = "alloc nid",
49         [FAULT_ORPHAN]          = "orphan",
50         [FAULT_BLOCK]           = "no more block",
51         [FAULT_DIR_DEPTH]       = "too big dir depth",
52 };
53
54 static void f2fs_build_fault_attr(unsigned int rate)
55 {
56         if (rate) {
57                 atomic_set(&f2fs_fault.inject_ops, 0);
58                 f2fs_fault.inject_rate = rate;
59                 f2fs_fault.inject_type = (1 << FAULT_MAX) - 1;
60         } else {
61                 memset(&f2fs_fault, 0, sizeof(struct f2fs_fault_info));
62         }
63 }
64 #endif
65
66 /* f2fs-wide shrinker description */
67 static struct shrinker f2fs_shrinker_info = {
68         .scan_objects = f2fs_shrink_scan,
69         .count_objects = f2fs_shrink_count,
70         .seeks = DEFAULT_SEEKS,
71 };
72
73 enum {
74         Opt_gc_background,
75         Opt_disable_roll_forward,
76         Opt_norecovery,
77         Opt_discard,
78         Opt_noheap,
79         Opt_user_xattr,
80         Opt_nouser_xattr,
81         Opt_acl,
82         Opt_noacl,
83         Opt_active_logs,
84         Opt_disable_ext_identify,
85         Opt_inline_xattr,
86         Opt_inline_data,
87         Opt_inline_dentry,
88         Opt_flush_merge,
89         Opt_nobarrier,
90         Opt_fastboot,
91         Opt_extent_cache,
92         Opt_noextent_cache,
93         Opt_noinline_data,
94         Opt_data_flush,
95         Opt_fault_injection,
96         Opt_err,
97 };
98
99 static match_table_t f2fs_tokens = {
100         {Opt_gc_background, "background_gc=%s"},
101         {Opt_disable_roll_forward, "disable_roll_forward"},
102         {Opt_norecovery, "norecovery"},
103         {Opt_discard, "discard"},
104         {Opt_noheap, "no_heap"},
105         {Opt_user_xattr, "user_xattr"},
106         {Opt_nouser_xattr, "nouser_xattr"},
107         {Opt_acl, "acl"},
108         {Opt_noacl, "noacl"},
109         {Opt_active_logs, "active_logs=%u"},
110         {Opt_disable_ext_identify, "disable_ext_identify"},
111         {Opt_inline_xattr, "inline_xattr"},
112         {Opt_inline_data, "inline_data"},
113         {Opt_inline_dentry, "inline_dentry"},
114         {Opt_flush_merge, "flush_merge"},
115         {Opt_nobarrier, "nobarrier"},
116         {Opt_fastboot, "fastboot"},
117         {Opt_extent_cache, "extent_cache"},
118         {Opt_noextent_cache, "noextent_cache"},
119         {Opt_noinline_data, "noinline_data"},
120         {Opt_data_flush, "data_flush"},
121         {Opt_fault_injection, "fault_injection=%u"},
122         {Opt_err, NULL},
123 };
124
125 /* Sysfs support for f2fs */
126 enum {
127         GC_THREAD,      /* struct f2fs_gc_thread */
128         SM_INFO,        /* struct f2fs_sm_info */
129         NM_INFO,        /* struct f2fs_nm_info */
130         F2FS_SBI,       /* struct f2fs_sb_info */
131 #ifdef CONFIG_F2FS_FAULT_INJECTION
132         FAULT_INFO_RATE,        /* struct f2fs_fault_info */
133         FAULT_INFO_TYPE,        /* struct f2fs_fault_info */
134 #endif
135 };
136
137 struct f2fs_attr {
138         struct attribute attr;
139         ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *);
140         ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *,
141                          const char *, size_t);
142         int struct_type;
143         int offset;
144 };
145
146 static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type)
147 {
148         if (struct_type == GC_THREAD)
149                 return (unsigned char *)sbi->gc_thread;
150         else if (struct_type == SM_INFO)
151                 return (unsigned char *)SM_I(sbi);
152         else if (struct_type == NM_INFO)
153                 return (unsigned char *)NM_I(sbi);
154         else if (struct_type == F2FS_SBI)
155                 return (unsigned char *)sbi;
156 #ifdef CONFIG_F2FS_FAULT_INJECTION
157         else if (struct_type == FAULT_INFO_RATE ||
158                                         struct_type == FAULT_INFO_TYPE)
159                 return (unsigned char *)&f2fs_fault;
160 #endif
161         return NULL;
162 }
163
164 static ssize_t lifetime_write_kbytes_show(struct f2fs_attr *a,
165                 struct f2fs_sb_info *sbi, char *buf)
166 {
167         struct super_block *sb = sbi->sb;
168
169         if (!sb->s_bdev->bd_part)
170                 return snprintf(buf, PAGE_SIZE, "0\n");
171
172         return snprintf(buf, PAGE_SIZE, "%llu\n",
173                 (unsigned long long)(sbi->kbytes_written +
174                         BD_PART_WRITTEN(sbi)));
175 }
176
177 static ssize_t f2fs_sbi_show(struct f2fs_attr *a,
178                         struct f2fs_sb_info *sbi, char *buf)
179 {
180         unsigned char *ptr = NULL;
181         unsigned int *ui;
182
183         ptr = __struct_ptr(sbi, a->struct_type);
184         if (!ptr)
185                 return -EINVAL;
186
187         ui = (unsigned int *)(ptr + a->offset);
188
189         return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
190 }
191
192 static ssize_t f2fs_sbi_store(struct f2fs_attr *a,
193                         struct f2fs_sb_info *sbi,
194                         const char *buf, size_t count)
195 {
196         unsigned char *ptr;
197         unsigned long t;
198         unsigned int *ui;
199         ssize_t ret;
200
201         ptr = __struct_ptr(sbi, a->struct_type);
202         if (!ptr)
203                 return -EINVAL;
204
205         ui = (unsigned int *)(ptr + a->offset);
206
207         ret = kstrtoul(skip_spaces(buf), 0, &t);
208         if (ret < 0)
209                 return ret;
210 #ifdef CONFIG_F2FS_FAULT_INJECTION
211         if (a->struct_type == FAULT_INFO_TYPE && t >= (1 << FAULT_MAX))
212                 return -EINVAL;
213 #endif
214         *ui = t;
215         return count;
216 }
217
218 static ssize_t f2fs_attr_show(struct kobject *kobj,
219                                 struct attribute *attr, char *buf)
220 {
221         struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
222                                                                 s_kobj);
223         struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
224
225         return a->show ? a->show(a, sbi, buf) : 0;
226 }
227
228 static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr,
229                                                 const char *buf, size_t len)
230 {
231         struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
232                                                                         s_kobj);
233         struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
234
235         return a->store ? a->store(a, sbi, buf, len) : 0;
236 }
237
238 static void f2fs_sb_release(struct kobject *kobj)
239 {
240         struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
241                                                                 s_kobj);
242         complete(&sbi->s_kobj_unregister);
243 }
244
245 #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \
246 static struct f2fs_attr f2fs_attr_##_name = {                   \
247         .attr = {.name = __stringify(_name), .mode = _mode },   \
248         .show   = _show,                                        \
249         .store  = _store,                                       \
250         .struct_type = _struct_type,                            \
251         .offset = _offset                                       \
252 }
253
254 #define F2FS_RW_ATTR(struct_type, struct_name, name, elname)    \
255         F2FS_ATTR_OFFSET(struct_type, name, 0644,               \
256                 f2fs_sbi_show, f2fs_sbi_store,                  \
257                 offsetof(struct struct_name, elname))
258
259 #define F2FS_GENERAL_RO_ATTR(name) \
260 static struct f2fs_attr f2fs_attr_##name = __ATTR(name, 0444, name##_show, NULL)
261
262 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time);
263 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time);
264 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time);
265 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle);
266 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments);
267 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards);
268 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, batched_trim_sections, trim_sections);
269 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy);
270 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util);
271 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_fsync_blocks, min_fsync_blocks);
272 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh);
273 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ra_nid_pages, ra_nid_pages);
274 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, dirty_nats_ratio, dirty_nats_ratio);
275 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search);
276 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level);
277 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, cp_interval, interval_time[CP_TIME]);
278 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, idle_interval, interval_time[REQ_TIME]);
279 #ifdef CONFIG_F2FS_FAULT_INJECTION
280 F2FS_RW_ATTR(FAULT_INFO_RATE, f2fs_fault_info, inject_rate, inject_rate);
281 F2FS_RW_ATTR(FAULT_INFO_TYPE, f2fs_fault_info, inject_type, inject_type);
282 #endif
283 F2FS_GENERAL_RO_ATTR(lifetime_write_kbytes);
284
285 #define ATTR_LIST(name) (&f2fs_attr_##name.attr)
286 static struct attribute *f2fs_attrs[] = {
287         ATTR_LIST(gc_min_sleep_time),
288         ATTR_LIST(gc_max_sleep_time),
289         ATTR_LIST(gc_no_gc_sleep_time),
290         ATTR_LIST(gc_idle),
291         ATTR_LIST(reclaim_segments),
292         ATTR_LIST(max_small_discards),
293         ATTR_LIST(batched_trim_sections),
294         ATTR_LIST(ipu_policy),
295         ATTR_LIST(min_ipu_util),
296         ATTR_LIST(min_fsync_blocks),
297         ATTR_LIST(max_victim_search),
298         ATTR_LIST(dir_level),
299         ATTR_LIST(ram_thresh),
300         ATTR_LIST(ra_nid_pages),
301         ATTR_LIST(dirty_nats_ratio),
302         ATTR_LIST(cp_interval),
303         ATTR_LIST(idle_interval),
304         ATTR_LIST(lifetime_write_kbytes),
305         NULL,
306 };
307
308 static const struct sysfs_ops f2fs_attr_ops = {
309         .show   = f2fs_attr_show,
310         .store  = f2fs_attr_store,
311 };
312
313 static struct kobj_type f2fs_ktype = {
314         .default_attrs  = f2fs_attrs,
315         .sysfs_ops      = &f2fs_attr_ops,
316         .release        = f2fs_sb_release,
317 };
318
319 #ifdef CONFIG_F2FS_FAULT_INJECTION
320 /* sysfs for f2fs fault injection */
321 static struct kobject f2fs_fault_inject;
322
323 static struct attribute *f2fs_fault_attrs[] = {
324         ATTR_LIST(inject_rate),
325         ATTR_LIST(inject_type),
326         NULL
327 };
328
329 static struct kobj_type f2fs_fault_ktype = {
330         .default_attrs  = f2fs_fault_attrs,
331         .sysfs_ops      = &f2fs_attr_ops,
332 };
333 #endif
334
335 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
336 {
337         struct va_format vaf;
338         va_list args;
339
340         va_start(args, fmt);
341         vaf.fmt = fmt;
342         vaf.va = &args;
343         printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
344         va_end(args);
345 }
346
347 static void init_once(void *foo)
348 {
349         struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
350
351         inode_init_once(&fi->vfs_inode);
352 }
353
354 static int parse_options(struct super_block *sb, char *options)
355 {
356         struct f2fs_sb_info *sbi = F2FS_SB(sb);
357         struct request_queue *q;
358         substring_t args[MAX_OPT_ARGS];
359         char *p, *name;
360         int arg = 0;
361
362 #ifdef CONFIG_F2FS_FAULT_INJECTION
363         f2fs_build_fault_attr(0);
364 #endif
365
366         if (!options)
367                 return 0;
368
369         while ((p = strsep(&options, ",")) != NULL) {
370                 int token;
371                 if (!*p)
372                         continue;
373                 /*
374                  * Initialize args struct so we know whether arg was
375                  * found; some options take optional arguments.
376                  */
377                 args[0].to = args[0].from = NULL;
378                 token = match_token(p, f2fs_tokens, args);
379
380                 switch (token) {
381                 case Opt_gc_background:
382                         name = match_strdup(&args[0]);
383
384                         if (!name)
385                                 return -ENOMEM;
386                         if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
387                                 set_opt(sbi, BG_GC);
388                                 clear_opt(sbi, FORCE_FG_GC);
389                         } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
390                                 clear_opt(sbi, BG_GC);
391                                 clear_opt(sbi, FORCE_FG_GC);
392                         } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
393                                 set_opt(sbi, BG_GC);
394                                 set_opt(sbi, FORCE_FG_GC);
395                         } else {
396                                 kfree(name);
397                                 return -EINVAL;
398                         }
399                         kfree(name);
400                         break;
401                 case Opt_disable_roll_forward:
402                         set_opt(sbi, DISABLE_ROLL_FORWARD);
403                         break;
404                 case Opt_norecovery:
405                         /* this option mounts f2fs with ro */
406                         set_opt(sbi, DISABLE_ROLL_FORWARD);
407                         if (!f2fs_readonly(sb))
408                                 return -EINVAL;
409                         break;
410                 case Opt_discard:
411                         q = bdev_get_queue(sb->s_bdev);
412                         if (blk_queue_discard(q)) {
413                                 set_opt(sbi, DISCARD);
414                         } else {
415                                 f2fs_msg(sb, KERN_WARNING,
416                                         "mounting with \"discard\" option, but "
417                                         "the device does not support discard");
418                         }
419                         break;
420                 case Opt_noheap:
421                         set_opt(sbi, NOHEAP);
422                         break;
423 #ifdef CONFIG_F2FS_FS_XATTR
424                 case Opt_user_xattr:
425                         set_opt(sbi, XATTR_USER);
426                         break;
427                 case Opt_nouser_xattr:
428                         clear_opt(sbi, XATTR_USER);
429                         break;
430                 case Opt_inline_xattr:
431                         set_opt(sbi, INLINE_XATTR);
432                         break;
433 #else
434                 case Opt_user_xattr:
435                         f2fs_msg(sb, KERN_INFO,
436                                 "user_xattr options not supported");
437                         break;
438                 case Opt_nouser_xattr:
439                         f2fs_msg(sb, KERN_INFO,
440                                 "nouser_xattr options not supported");
441                         break;
442                 case Opt_inline_xattr:
443                         f2fs_msg(sb, KERN_INFO,
444                                 "inline_xattr options not supported");
445                         break;
446 #endif
447 #ifdef CONFIG_F2FS_FS_POSIX_ACL
448                 case Opt_acl:
449                         set_opt(sbi, POSIX_ACL);
450                         break;
451                 case Opt_noacl:
452                         clear_opt(sbi, POSIX_ACL);
453                         break;
454 #else
455                 case Opt_acl:
456                         f2fs_msg(sb, KERN_INFO, "acl options not supported");
457                         break;
458                 case Opt_noacl:
459                         f2fs_msg(sb, KERN_INFO, "noacl options not supported");
460                         break;
461 #endif
462                 case Opt_active_logs:
463                         if (args->from && match_int(args, &arg))
464                                 return -EINVAL;
465                         if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
466                                 return -EINVAL;
467                         sbi->active_logs = arg;
468                         break;
469                 case Opt_disable_ext_identify:
470                         set_opt(sbi, DISABLE_EXT_IDENTIFY);
471                         break;
472                 case Opt_inline_data:
473                         set_opt(sbi, INLINE_DATA);
474                         break;
475                 case Opt_inline_dentry:
476                         set_opt(sbi, INLINE_DENTRY);
477                         break;
478                 case Opt_flush_merge:
479                         set_opt(sbi, FLUSH_MERGE);
480                         break;
481                 case Opt_nobarrier:
482                         set_opt(sbi, NOBARRIER);
483                         break;
484                 case Opt_fastboot:
485                         set_opt(sbi, FASTBOOT);
486                         break;
487                 case Opt_extent_cache:
488                         set_opt(sbi, EXTENT_CACHE);
489                         break;
490                 case Opt_noextent_cache:
491                         clear_opt(sbi, EXTENT_CACHE);
492                         break;
493                 case Opt_noinline_data:
494                         clear_opt(sbi, INLINE_DATA);
495                         break;
496                 case Opt_data_flush:
497                         set_opt(sbi, DATA_FLUSH);
498                         break;
499                 case Opt_fault_injection:
500                         if (args->from && match_int(args, &arg))
501                                 return -EINVAL;
502 #ifdef CONFIG_F2FS_FAULT_INJECTION
503                         f2fs_build_fault_attr(arg);
504 #else
505                         f2fs_msg(sb, KERN_INFO,
506                                 "FAULT_INJECTION was not selected");
507 #endif
508                         break;
509                 default:
510                         f2fs_msg(sb, KERN_ERR,
511                                 "Unrecognized mount option \"%s\" or missing value",
512                                 p);
513                         return -EINVAL;
514                 }
515         }
516         return 0;
517 }
518
519 static struct inode *f2fs_alloc_inode(struct super_block *sb)
520 {
521         struct f2fs_inode_info *fi;
522
523         fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
524         if (!fi)
525                 return NULL;
526
527         init_once((void *) fi);
528
529         if (percpu_counter_init(&fi->dirty_pages, 0, GFP_NOFS)) {
530                 kmem_cache_free(f2fs_inode_cachep, fi);
531                 return NULL;
532         }
533
534         /* Initialize f2fs-specific inode info */
535         fi->vfs_inode.i_version = 1;
536         fi->i_current_depth = 1;
537         fi->i_advise = 0;
538         init_rwsem(&fi->i_sem);
539         INIT_LIST_HEAD(&fi->dirty_list);
540         INIT_LIST_HEAD(&fi->gdirty_list);
541         INIT_LIST_HEAD(&fi->inmem_pages);
542         mutex_init(&fi->inmem_lock);
543
544         /* Will be used by directory only */
545         fi->i_dir_level = F2FS_SB(sb)->dir_level;
546         return &fi->vfs_inode;
547 }
548
549 static int f2fs_drop_inode(struct inode *inode)
550 {
551         int ret;
552
553         /*
554          * This is to avoid a deadlock condition like below.
555          * writeback_single_inode(inode)
556          *  - f2fs_write_data_page
557          *    - f2fs_gc -> iput -> evict
558          *       - inode_wait_for_writeback(inode)
559          */
560         if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
561                 if (!inode->i_nlink && !is_bad_inode(inode)) {
562                         /* to avoid evict_inode call simultaneously */
563                         atomic_inc(&inode->i_count);
564                         spin_unlock(&inode->i_lock);
565
566                         /* some remained atomic pages should discarded */
567                         if (f2fs_is_atomic_file(inode))
568                                 drop_inmem_pages(inode);
569
570                         /* should remain fi->extent_tree for writepage */
571                         f2fs_destroy_extent_node(inode);
572
573                         sb_start_intwrite(inode->i_sb);
574                         f2fs_i_size_write(inode, 0);
575
576                         if (F2FS_HAS_BLOCKS(inode))
577                                 f2fs_truncate(inode, true);
578
579                         sb_end_intwrite(inode->i_sb);
580
581                         fscrypt_put_encryption_info(inode, NULL);
582                         spin_lock(&inode->i_lock);
583                         atomic_dec(&inode->i_count);
584                 }
585                 return 0;
586         }
587
588         ret = generic_drop_inode(inode);
589         if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
590                 if (ret)
591                         inode->i_state |= I_WILL_FREE;
592                 spin_unlock(&inode->i_lock);
593
594                 update_inode_page(inode);
595
596                 spin_lock(&inode->i_lock);
597                 if (ret)
598                         inode->i_state &= ~I_WILL_FREE;
599         }
600         return ret;
601 }
602
603 /*
604  * f2fs_dirty_inode() is called from __mark_inode_dirty()
605  *
606  * We should call set_dirty_inode to write the dirty inode through write_inode.
607  */
608 static void f2fs_dirty_inode(struct inode *inode, int flags)
609 {
610         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
611
612         if (inode->i_ino == F2FS_NODE_INO(sbi) ||
613                         inode->i_ino == F2FS_META_INO(sbi))
614                 return;
615
616         spin_lock(&sbi->inode_lock[DIRTY_META]);
617         if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
618                 spin_unlock(&sbi->inode_lock[DIRTY_META]);
619                 return;
620         }
621
622         set_inode_flag(inode, FI_DIRTY_INODE);
623         list_add_tail(&F2FS_I(inode)->gdirty_list,
624                                 &sbi->inode_list[DIRTY_META]);
625         inc_page_count(sbi, F2FS_DIRTY_IMETA);
626         spin_unlock(&sbi->inode_lock[DIRTY_META]);
627         stat_inc_dirty_inode(sbi, DIRTY_META);
628 }
629
630 void f2fs_inode_synced(struct inode *inode)
631 {
632         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
633
634         spin_lock(&sbi->inode_lock[DIRTY_META]);
635         if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
636                 spin_unlock(&sbi->inode_lock[DIRTY_META]);
637                 return;
638         }
639         list_del_init(&F2FS_I(inode)->gdirty_list);
640         clear_inode_flag(inode, FI_DIRTY_INODE);
641         dec_page_count(sbi, F2FS_DIRTY_IMETA);
642         spin_unlock(&sbi->inode_lock[DIRTY_META]);
643         stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
644 }
645
646 static void f2fs_i_callback(struct rcu_head *head)
647 {
648         struct inode *inode = container_of(head, struct inode, i_rcu);
649         kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
650 }
651
652 static void f2fs_destroy_inode(struct inode *inode)
653 {
654         percpu_counter_destroy(&F2FS_I(inode)->dirty_pages);
655         call_rcu(&inode->i_rcu, f2fs_i_callback);
656 }
657
658 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
659 {
660         int i;
661
662         for (i = 0; i < NR_COUNT_TYPE; i++)
663                 percpu_counter_destroy(&sbi->nr_pages[i]);
664         percpu_counter_destroy(&sbi->alloc_valid_block_count);
665         percpu_counter_destroy(&sbi->total_valid_inode_count);
666 }
667
668 static void f2fs_put_super(struct super_block *sb)
669 {
670         struct f2fs_sb_info *sbi = F2FS_SB(sb);
671
672         if (sbi->s_proc) {
673                 remove_proc_entry("segment_info", sbi->s_proc);
674                 remove_proc_entry("segment_bits", sbi->s_proc);
675                 remove_proc_entry(sb->s_id, f2fs_proc_root);
676         }
677         kobject_del(&sbi->s_kobj);
678
679         stop_gc_thread(sbi);
680
681         /* prevent remaining shrinker jobs */
682         mutex_lock(&sbi->umount_mutex);
683
684         /*
685          * We don't need to do checkpoint when superblock is clean.
686          * But, the previous checkpoint was not done by umount, it needs to do
687          * clean checkpoint again.
688          */
689         if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
690                         !is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG)) {
691                 struct cp_control cpc = {
692                         .reason = CP_UMOUNT,
693                 };
694                 write_checkpoint(sbi, &cpc);
695         }
696
697         /* write_checkpoint can update stat informaion */
698         f2fs_destroy_stats(sbi);
699
700         /*
701          * normally superblock is clean, so we need to release this.
702          * In addition, EIO will skip do checkpoint, we need this as well.
703          */
704         release_ino_entry(sbi, true);
705         release_discard_addrs(sbi);
706
707         f2fs_leave_shrinker(sbi);
708         mutex_unlock(&sbi->umount_mutex);
709
710         /* our cp_error case, we can wait for any writeback page */
711         f2fs_flush_merged_bios(sbi);
712
713         iput(sbi->node_inode);
714         iput(sbi->meta_inode);
715
716         /* destroy f2fs internal modules */
717         destroy_node_manager(sbi);
718         destroy_segment_manager(sbi);
719
720         kfree(sbi->ckpt);
721         kobject_put(&sbi->s_kobj);
722         wait_for_completion(&sbi->s_kobj_unregister);
723
724         sb->s_fs_info = NULL;
725         if (sbi->s_chksum_driver)
726                 crypto_free_shash(sbi->s_chksum_driver);
727         kfree(sbi->raw_super);
728
729         destroy_percpu_info(sbi);
730         kfree(sbi);
731 }
732
733 int f2fs_sync_fs(struct super_block *sb, int sync)
734 {
735         struct f2fs_sb_info *sbi = F2FS_SB(sb);
736         int err = 0;
737
738         trace_f2fs_sync_fs(sb, sync);
739
740         if (sync) {
741                 struct cp_control cpc;
742
743                 cpc.reason = __get_cp_reason(sbi);
744
745                 mutex_lock(&sbi->gc_mutex);
746                 err = write_checkpoint(sbi, &cpc);
747                 mutex_unlock(&sbi->gc_mutex);
748         }
749         f2fs_trace_ios(NULL, 1);
750
751         return err;
752 }
753
754 static int f2fs_freeze(struct super_block *sb)
755 {
756         int err;
757
758         if (f2fs_readonly(sb))
759                 return 0;
760
761         err = f2fs_sync_fs(sb, 1);
762         return err;
763 }
764
765 static int f2fs_unfreeze(struct super_block *sb)
766 {
767         return 0;
768 }
769
770 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
771 {
772         struct super_block *sb = dentry->d_sb;
773         struct f2fs_sb_info *sbi = F2FS_SB(sb);
774         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
775         block_t total_count, user_block_count, start_count, ovp_count;
776
777         total_count = le64_to_cpu(sbi->raw_super->block_count);
778         user_block_count = sbi->user_block_count;
779         start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
780         ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
781         buf->f_type = F2FS_SUPER_MAGIC;
782         buf->f_bsize = sbi->blocksize;
783
784         buf->f_blocks = total_count - start_count;
785         buf->f_bfree = buf->f_blocks - valid_user_blocks(sbi) - ovp_count;
786         buf->f_bavail = user_block_count - valid_user_blocks(sbi);
787
788         buf->f_files = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
789         buf->f_ffree = buf->f_files - valid_inode_count(sbi);
790
791         buf->f_namelen = F2FS_NAME_LEN;
792         buf->f_fsid.val[0] = (u32)id;
793         buf->f_fsid.val[1] = (u32)(id >> 32);
794
795         return 0;
796 }
797
798 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
799 {
800         struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
801
802         if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
803                 if (test_opt(sbi, FORCE_FG_GC))
804                         seq_printf(seq, ",background_gc=%s", "sync");
805                 else
806                         seq_printf(seq, ",background_gc=%s", "on");
807         } else {
808                 seq_printf(seq, ",background_gc=%s", "off");
809         }
810         if (test_opt(sbi, DISABLE_ROLL_FORWARD))
811                 seq_puts(seq, ",disable_roll_forward");
812         if (test_opt(sbi, DISCARD))
813                 seq_puts(seq, ",discard");
814         if (test_opt(sbi, NOHEAP))
815                 seq_puts(seq, ",no_heap_alloc");
816 #ifdef CONFIG_F2FS_FS_XATTR
817         if (test_opt(sbi, XATTR_USER))
818                 seq_puts(seq, ",user_xattr");
819         else
820                 seq_puts(seq, ",nouser_xattr");
821         if (test_opt(sbi, INLINE_XATTR))
822                 seq_puts(seq, ",inline_xattr");
823 #endif
824 #ifdef CONFIG_F2FS_FS_POSIX_ACL
825         if (test_opt(sbi, POSIX_ACL))
826                 seq_puts(seq, ",acl");
827         else
828                 seq_puts(seq, ",noacl");
829 #endif
830         if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
831                 seq_puts(seq, ",disable_ext_identify");
832         if (test_opt(sbi, INLINE_DATA))
833                 seq_puts(seq, ",inline_data");
834         else
835                 seq_puts(seq, ",noinline_data");
836         if (test_opt(sbi, INLINE_DENTRY))
837                 seq_puts(seq, ",inline_dentry");
838         if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
839                 seq_puts(seq, ",flush_merge");
840         if (test_opt(sbi, NOBARRIER))
841                 seq_puts(seq, ",nobarrier");
842         if (test_opt(sbi, FASTBOOT))
843                 seq_puts(seq, ",fastboot");
844         if (test_opt(sbi, EXTENT_CACHE))
845                 seq_puts(seq, ",extent_cache");
846         else
847                 seq_puts(seq, ",noextent_cache");
848         if (test_opt(sbi, DATA_FLUSH))
849                 seq_puts(seq, ",data_flush");
850         seq_printf(seq, ",active_logs=%u", sbi->active_logs);
851
852         return 0;
853 }
854
855 static int segment_info_seq_show(struct seq_file *seq, void *offset)
856 {
857         struct super_block *sb = seq->private;
858         struct f2fs_sb_info *sbi = F2FS_SB(sb);
859         unsigned int total_segs =
860                         le32_to_cpu(sbi->raw_super->segment_count_main);
861         int i;
862
863         seq_puts(seq, "format: segment_type|valid_blocks\n"
864                 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
865
866         for (i = 0; i < total_segs; i++) {
867                 struct seg_entry *se = get_seg_entry(sbi, i);
868
869                 if ((i % 10) == 0)
870                         seq_printf(seq, "%-10d", i);
871                 seq_printf(seq, "%d|%-3u", se->type,
872                                         get_valid_blocks(sbi, i, 1));
873                 if ((i % 10) == 9 || i == (total_segs - 1))
874                         seq_putc(seq, '\n');
875                 else
876                         seq_putc(seq, ' ');
877         }
878
879         return 0;
880 }
881
882 static int segment_bits_seq_show(struct seq_file *seq, void *offset)
883 {
884         struct super_block *sb = seq->private;
885         struct f2fs_sb_info *sbi = F2FS_SB(sb);
886         unsigned int total_segs =
887                         le32_to_cpu(sbi->raw_super->segment_count_main);
888         int i, j;
889
890         seq_puts(seq, "format: segment_type|valid_blocks|bitmaps\n"
891                 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
892
893         for (i = 0; i < total_segs; i++) {
894                 struct seg_entry *se = get_seg_entry(sbi, i);
895
896                 seq_printf(seq, "%-10d", i);
897                 seq_printf(seq, "%d|%-3u|", se->type,
898                                         get_valid_blocks(sbi, i, 1));
899                 for (j = 0; j < SIT_VBLOCK_MAP_SIZE; j++)
900                         seq_printf(seq, "%x ", se->cur_valid_map[j]);
901                 seq_putc(seq, '\n');
902         }
903         return 0;
904 }
905
906 #define F2FS_PROC_FILE_DEF(_name)                                       \
907 static int _name##_open_fs(struct inode *inode, struct file *file)      \
908 {                                                                       \
909         return single_open(file, _name##_seq_show, PDE_DATA(inode));    \
910 }                                                                       \
911                                                                         \
912 static const struct file_operations f2fs_seq_##_name##_fops = {         \
913         .owner = THIS_MODULE,                                           \
914         .open = _name##_open_fs,                                        \
915         .read = seq_read,                                               \
916         .llseek = seq_lseek,                                            \
917         .release = single_release,                                      \
918 };
919
920 F2FS_PROC_FILE_DEF(segment_info);
921 F2FS_PROC_FILE_DEF(segment_bits);
922
923 static void default_options(struct f2fs_sb_info *sbi)
924 {
925         /* init some FS parameters */
926         sbi->active_logs = NR_CURSEG_TYPE;
927
928         set_opt(sbi, BG_GC);
929         set_opt(sbi, INLINE_DATA);
930         set_opt(sbi, EXTENT_CACHE);
931
932 #ifdef CONFIG_F2FS_FS_XATTR
933         set_opt(sbi, XATTR_USER);
934 #endif
935 #ifdef CONFIG_F2FS_FS_POSIX_ACL
936         set_opt(sbi, POSIX_ACL);
937 #endif
938 }
939
940 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
941 {
942         struct f2fs_sb_info *sbi = F2FS_SB(sb);
943         struct f2fs_mount_info org_mount_opt;
944         int err, active_logs;
945         bool need_restart_gc = false;
946         bool need_stop_gc = false;
947         bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
948
949         /*
950          * Save the old mount options in case we
951          * need to restore them.
952          */
953         org_mount_opt = sbi->mount_opt;
954         active_logs = sbi->active_logs;
955
956         /* recover superblocks we couldn't write due to previous RO mount */
957         if (!(*flags & MS_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
958                 err = f2fs_commit_super(sbi, false);
959                 f2fs_msg(sb, KERN_INFO,
960                         "Try to recover all the superblocks, ret: %d", err);
961                 if (!err)
962                         clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
963         }
964
965         sbi->mount_opt.opt = 0;
966         default_options(sbi);
967
968         /* parse mount options */
969         err = parse_options(sb, data);
970         if (err)
971                 goto restore_opts;
972
973         /*
974          * Previous and new state of filesystem is RO,
975          * so skip checking GC and FLUSH_MERGE conditions.
976          */
977         if (f2fs_readonly(sb) && (*flags & MS_RDONLY))
978                 goto skip;
979
980         /* disallow enable/disable extent_cache dynamically */
981         if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
982                 err = -EINVAL;
983                 f2fs_msg(sbi->sb, KERN_WARNING,
984                                 "switch extent_cache option is not allowed");
985                 goto restore_opts;
986         }
987
988         /*
989          * We stop the GC thread if FS is mounted as RO
990          * or if background_gc = off is passed in mount
991          * option. Also sync the filesystem.
992          */
993         if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
994                 if (sbi->gc_thread) {
995                         stop_gc_thread(sbi);
996                         need_restart_gc = true;
997                 }
998         } else if (!sbi->gc_thread) {
999                 err = start_gc_thread(sbi);
1000                 if (err)
1001                         goto restore_opts;
1002                 need_stop_gc = true;
1003         }
1004
1005         if (*flags & MS_RDONLY) {
1006                 writeback_inodes_sb(sb, WB_REASON_SYNC);
1007                 sync_inodes_sb(sb);
1008
1009                 set_sbi_flag(sbi, SBI_IS_DIRTY);
1010                 set_sbi_flag(sbi, SBI_IS_CLOSE);
1011                 f2fs_sync_fs(sb, 1);
1012                 clear_sbi_flag(sbi, SBI_IS_CLOSE);
1013         }
1014
1015         /*
1016          * We stop issue flush thread if FS is mounted as RO
1017          * or if flush_merge is not passed in mount option.
1018          */
1019         if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
1020                 destroy_flush_cmd_control(sbi);
1021         } else if (!SM_I(sbi)->cmd_control_info) {
1022                 err = create_flush_cmd_control(sbi);
1023                 if (err)
1024                         goto restore_gc;
1025         }
1026 skip:
1027         /* Update the POSIXACL Flag */
1028         sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1029                 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1030
1031         return 0;
1032 restore_gc:
1033         if (need_restart_gc) {
1034                 if (start_gc_thread(sbi))
1035                         f2fs_msg(sbi->sb, KERN_WARNING,
1036                                 "background gc thread has stopped");
1037         } else if (need_stop_gc) {
1038                 stop_gc_thread(sbi);
1039         }
1040 restore_opts:
1041         sbi->mount_opt = org_mount_opt;
1042         sbi->active_logs = active_logs;
1043         return err;
1044 }
1045
1046 static struct super_operations f2fs_sops = {
1047         .alloc_inode    = f2fs_alloc_inode,
1048         .drop_inode     = f2fs_drop_inode,
1049         .destroy_inode  = f2fs_destroy_inode,
1050         .write_inode    = f2fs_write_inode,
1051         .dirty_inode    = f2fs_dirty_inode,
1052         .show_options   = f2fs_show_options,
1053         .evict_inode    = f2fs_evict_inode,
1054         .put_super      = f2fs_put_super,
1055         .sync_fs        = f2fs_sync_fs,
1056         .freeze_fs      = f2fs_freeze,
1057         .unfreeze_fs    = f2fs_unfreeze,
1058         .statfs         = f2fs_statfs,
1059         .remount_fs     = f2fs_remount,
1060 };
1061
1062 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1063 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
1064 {
1065         return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1066                                 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1067                                 ctx, len, NULL);
1068 }
1069
1070 static int f2fs_key_prefix(struct inode *inode, u8 **key)
1071 {
1072         *key = F2FS_I_SB(inode)->key_prefix;
1073         return F2FS_I_SB(inode)->key_prefix_size;
1074 }
1075
1076 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
1077                                                         void *fs_data)
1078 {
1079         return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1080                                 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1081                                 ctx, len, fs_data, XATTR_CREATE);
1082 }
1083
1084 static unsigned f2fs_max_namelen(struct inode *inode)
1085 {
1086         return S_ISLNK(inode->i_mode) ?
1087                         inode->i_sb->s_blocksize : F2FS_NAME_LEN;
1088 }
1089
1090 static struct fscrypt_operations f2fs_cryptops = {
1091         .get_context    = f2fs_get_context,
1092         .key_prefix     = f2fs_key_prefix,
1093         .set_context    = f2fs_set_context,
1094         .is_encrypted   = f2fs_encrypted_inode,
1095         .empty_dir      = f2fs_empty_dir,
1096         .max_namelen    = f2fs_max_namelen,
1097 };
1098 #else
1099 static struct fscrypt_operations f2fs_cryptops = {
1100         .is_encrypted   = f2fs_encrypted_inode,
1101 };
1102 #endif
1103
1104 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
1105                 u64 ino, u32 generation)
1106 {
1107         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1108         struct inode *inode;
1109
1110         if (check_nid_range(sbi, ino))
1111                 return ERR_PTR(-ESTALE);
1112
1113         /*
1114          * f2fs_iget isn't quite right if the inode is currently unallocated!
1115          * However f2fs_iget currently does appropriate checks to handle stale
1116          * inodes so everything is OK.
1117          */
1118         inode = f2fs_iget(sb, ino);
1119         if (IS_ERR(inode))
1120                 return ERR_CAST(inode);
1121         if (unlikely(generation && inode->i_generation != generation)) {
1122                 /* we didn't find the right inode.. */
1123                 iput(inode);
1124                 return ERR_PTR(-ESTALE);
1125         }
1126         return inode;
1127 }
1128
1129 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1130                 int fh_len, int fh_type)
1131 {
1132         return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1133                                     f2fs_nfs_get_inode);
1134 }
1135
1136 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
1137                 int fh_len, int fh_type)
1138 {
1139         return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1140                                     f2fs_nfs_get_inode);
1141 }
1142
1143 static const struct export_operations f2fs_export_ops = {
1144         .fh_to_dentry = f2fs_fh_to_dentry,
1145         .fh_to_parent = f2fs_fh_to_parent,
1146         .get_parent = f2fs_get_parent,
1147 };
1148
1149 static loff_t max_file_blocks(void)
1150 {
1151         loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS);
1152         loff_t leaf_count = ADDRS_PER_BLOCK;
1153
1154         /* two direct node blocks */
1155         result += (leaf_count * 2);
1156
1157         /* two indirect node blocks */
1158         leaf_count *= NIDS_PER_BLOCK;
1159         result += (leaf_count * 2);
1160
1161         /* one double indirect node block */
1162         leaf_count *= NIDS_PER_BLOCK;
1163         result += leaf_count;
1164
1165         return result;
1166 }
1167
1168 static int __f2fs_commit_super(struct buffer_head *bh,
1169                         struct f2fs_super_block *super)
1170 {
1171         lock_buffer(bh);
1172         if (super)
1173                 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
1174         set_buffer_uptodate(bh);
1175         set_buffer_dirty(bh);
1176         unlock_buffer(bh);
1177
1178         /* it's rare case, we can do fua all the time */
1179         return __sync_dirty_buffer(bh, WRITE_FLUSH_FUA);
1180 }
1181
1182 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
1183                                         struct buffer_head *bh)
1184 {
1185         struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1186                                         (bh->b_data + F2FS_SUPER_OFFSET);
1187         struct super_block *sb = sbi->sb;
1188         u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1189         u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
1190         u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
1191         u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
1192         u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1193         u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1194         u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
1195         u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
1196         u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
1197         u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
1198         u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
1199         u32 segment_count = le32_to_cpu(raw_super->segment_count);
1200         u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1201         u64 main_end_blkaddr = main_blkaddr +
1202                                 (segment_count_main << log_blocks_per_seg);
1203         u64 seg_end_blkaddr = segment0_blkaddr +
1204                                 (segment_count << log_blocks_per_seg);
1205
1206         if (segment0_blkaddr != cp_blkaddr) {
1207                 f2fs_msg(sb, KERN_INFO,
1208                         "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
1209                         segment0_blkaddr, cp_blkaddr);
1210                 return true;
1211         }
1212
1213         if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
1214                                                         sit_blkaddr) {
1215                 f2fs_msg(sb, KERN_INFO,
1216                         "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
1217                         cp_blkaddr, sit_blkaddr,
1218                         segment_count_ckpt << log_blocks_per_seg);
1219                 return true;
1220         }
1221
1222         if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
1223                                                         nat_blkaddr) {
1224                 f2fs_msg(sb, KERN_INFO,
1225                         "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
1226                         sit_blkaddr, nat_blkaddr,
1227                         segment_count_sit << log_blocks_per_seg);
1228                 return true;
1229         }
1230
1231         if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
1232                                                         ssa_blkaddr) {
1233                 f2fs_msg(sb, KERN_INFO,
1234                         "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
1235                         nat_blkaddr, ssa_blkaddr,
1236                         segment_count_nat << log_blocks_per_seg);
1237                 return true;
1238         }
1239
1240         if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
1241                                                         main_blkaddr) {
1242                 f2fs_msg(sb, KERN_INFO,
1243                         "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
1244                         ssa_blkaddr, main_blkaddr,
1245                         segment_count_ssa << log_blocks_per_seg);
1246                 return true;
1247         }
1248
1249         if (main_end_blkaddr > seg_end_blkaddr) {
1250                 f2fs_msg(sb, KERN_INFO,
1251                         "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
1252                         main_blkaddr,
1253                         segment0_blkaddr +
1254                                 (segment_count << log_blocks_per_seg),
1255                         segment_count_main << log_blocks_per_seg);
1256                 return true;
1257         } else if (main_end_blkaddr < seg_end_blkaddr) {
1258                 int err = 0;
1259                 char *res;
1260
1261                 /* fix in-memory information all the time */
1262                 raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
1263                                 segment0_blkaddr) >> log_blocks_per_seg);
1264
1265                 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
1266                         set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1267                         res = "internally";
1268                 } else {
1269                         err = __f2fs_commit_super(bh, NULL);
1270                         res = err ? "failed" : "done";
1271                 }
1272                 f2fs_msg(sb, KERN_INFO,
1273                         "Fix alignment : %s, start(%u) end(%u) block(%u)",
1274                         res, main_blkaddr,
1275                         segment0_blkaddr +
1276                                 (segment_count << log_blocks_per_seg),
1277                         segment_count_main << log_blocks_per_seg);
1278                 if (err)
1279                         return true;
1280         }
1281         return false;
1282 }
1283
1284 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
1285                                 struct buffer_head *bh)
1286 {
1287         struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1288                                         (bh->b_data + F2FS_SUPER_OFFSET);
1289         struct super_block *sb = sbi->sb;
1290         unsigned int blocksize;
1291
1292         if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
1293                 f2fs_msg(sb, KERN_INFO,
1294                         "Magic Mismatch, valid(0x%x) - read(0x%x)",
1295                         F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
1296                 return 1;
1297         }
1298
1299         /* Currently, support only 4KB page cache size */
1300         if (F2FS_BLKSIZE != PAGE_SIZE) {
1301                 f2fs_msg(sb, KERN_INFO,
1302                         "Invalid page_cache_size (%lu), supports only 4KB\n",
1303                         PAGE_SIZE);
1304                 return 1;
1305         }
1306
1307         /* Currently, support only 4KB block size */
1308         blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
1309         if (blocksize != F2FS_BLKSIZE) {
1310                 f2fs_msg(sb, KERN_INFO,
1311                         "Invalid blocksize (%u), supports only 4KB\n",
1312                         blocksize);
1313                 return 1;
1314         }
1315
1316         /* check log blocks per segment */
1317         if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
1318                 f2fs_msg(sb, KERN_INFO,
1319                         "Invalid log blocks per segment (%u)\n",
1320                         le32_to_cpu(raw_super->log_blocks_per_seg));
1321                 return 1;
1322         }
1323
1324         /* Currently, support 512/1024/2048/4096 bytes sector size */
1325         if (le32_to_cpu(raw_super->log_sectorsize) >
1326                                 F2FS_MAX_LOG_SECTOR_SIZE ||
1327                 le32_to_cpu(raw_super->log_sectorsize) <
1328                                 F2FS_MIN_LOG_SECTOR_SIZE) {
1329                 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
1330                         le32_to_cpu(raw_super->log_sectorsize));
1331                 return 1;
1332         }
1333         if (le32_to_cpu(raw_super->log_sectors_per_block) +
1334                 le32_to_cpu(raw_super->log_sectorsize) !=
1335                         F2FS_MAX_LOG_SECTOR_SIZE) {
1336                 f2fs_msg(sb, KERN_INFO,
1337                         "Invalid log sectors per block(%u) log sectorsize(%u)",
1338                         le32_to_cpu(raw_super->log_sectors_per_block),
1339                         le32_to_cpu(raw_super->log_sectorsize));
1340                 return 1;
1341         }
1342
1343         /* check reserved ino info */
1344         if (le32_to_cpu(raw_super->node_ino) != 1 ||
1345                 le32_to_cpu(raw_super->meta_ino) != 2 ||
1346                 le32_to_cpu(raw_super->root_ino) != 3) {
1347                 f2fs_msg(sb, KERN_INFO,
1348                         "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
1349                         le32_to_cpu(raw_super->node_ino),
1350                         le32_to_cpu(raw_super->meta_ino),
1351                         le32_to_cpu(raw_super->root_ino));
1352                 return 1;
1353         }
1354
1355         /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
1356         if (sanity_check_area_boundary(sbi, bh))
1357                 return 1;
1358
1359         return 0;
1360 }
1361
1362 int sanity_check_ckpt(struct f2fs_sb_info *sbi)
1363 {
1364         unsigned int total, fsmeta;
1365         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1366         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1367
1368         total = le32_to_cpu(raw_super->segment_count);
1369         fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
1370         fsmeta += le32_to_cpu(raw_super->segment_count_sit);
1371         fsmeta += le32_to_cpu(raw_super->segment_count_nat);
1372         fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
1373         fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
1374
1375         if (unlikely(fsmeta >= total))
1376                 return 1;
1377
1378         if (unlikely(f2fs_cp_error(sbi))) {
1379                 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
1380                 return 1;
1381         }
1382         return 0;
1383 }
1384
1385 static void init_sb_info(struct f2fs_sb_info *sbi)
1386 {
1387         struct f2fs_super_block *raw_super = sbi->raw_super;
1388
1389         sbi->log_sectors_per_block =
1390                 le32_to_cpu(raw_super->log_sectors_per_block);
1391         sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
1392         sbi->blocksize = 1 << sbi->log_blocksize;
1393         sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1394         sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
1395         sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
1396         sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
1397         sbi->total_sections = le32_to_cpu(raw_super->section_count);
1398         sbi->total_node_count =
1399                 (le32_to_cpu(raw_super->segment_count_nat) / 2)
1400                         * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
1401         sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
1402         sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
1403         sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
1404         sbi->cur_victim_sec = NULL_SECNO;
1405         sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
1406
1407         sbi->dir_level = DEF_DIR_LEVEL;
1408         sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
1409         sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
1410         clear_sbi_flag(sbi, SBI_NEED_FSCK);
1411
1412         INIT_LIST_HEAD(&sbi->s_list);
1413         mutex_init(&sbi->umount_mutex);
1414
1415 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1416         memcpy(sbi->key_prefix, F2FS_KEY_DESC_PREFIX,
1417                                 F2FS_KEY_DESC_PREFIX_SIZE);
1418         sbi->key_prefix_size = F2FS_KEY_DESC_PREFIX_SIZE;
1419 #endif
1420 }
1421
1422 static int init_percpu_info(struct f2fs_sb_info *sbi)
1423 {
1424         int i, err;
1425
1426         for (i = 0; i < NR_COUNT_TYPE; i++) {
1427                 err = percpu_counter_init(&sbi->nr_pages[i], 0, GFP_KERNEL);
1428                 if (err)
1429                         return err;
1430         }
1431
1432         err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
1433         if (err)
1434                 return err;
1435
1436         return percpu_counter_init(&sbi->total_valid_inode_count, 0,
1437                                                                 GFP_KERNEL);
1438 }
1439
1440 /*
1441  * Read f2fs raw super block.
1442  * Because we have two copies of super block, so read both of them
1443  * to get the first valid one. If any one of them is broken, we pass
1444  * them recovery flag back to the caller.
1445  */
1446 static int read_raw_super_block(struct f2fs_sb_info *sbi,
1447                         struct f2fs_super_block **raw_super,
1448                         int *valid_super_block, int *recovery)
1449 {
1450         struct super_block *sb = sbi->sb;
1451         int block;
1452         struct buffer_head *bh;
1453         struct f2fs_super_block *super;
1454         int err = 0;
1455
1456         super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
1457         if (!super)
1458                 return -ENOMEM;
1459
1460         for (block = 0; block < 2; block++) {
1461                 bh = sb_bread(sb, block);
1462                 if (!bh) {
1463                         f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
1464                                 block + 1);
1465                         err = -EIO;
1466                         continue;
1467                 }
1468
1469                 /* sanity checking of raw super */
1470                 if (sanity_check_raw_super(sbi, bh)) {
1471                         f2fs_msg(sb, KERN_ERR,
1472                                 "Can't find valid F2FS filesystem in %dth superblock",
1473                                 block + 1);
1474                         err = -EINVAL;
1475                         brelse(bh);
1476                         continue;
1477                 }
1478
1479                 if (!*raw_super) {
1480                         memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
1481                                                         sizeof(*super));
1482                         *valid_super_block = block;
1483                         *raw_super = super;
1484                 }
1485                 brelse(bh);
1486         }
1487
1488         /* Fail to read any one of the superblocks*/
1489         if (err < 0)
1490                 *recovery = 1;
1491
1492         /* No valid superblock */
1493         if (!*raw_super)
1494                 kfree(super);
1495         else
1496                 err = 0;
1497
1498         return err;
1499 }
1500
1501 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
1502 {
1503         struct buffer_head *bh;
1504         int err;
1505
1506         if ((recover && f2fs_readonly(sbi->sb)) ||
1507                                 bdev_read_only(sbi->sb->s_bdev)) {
1508                 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1509                 return -EROFS;
1510         }
1511
1512         /* write back-up superblock first */
1513         bh = sb_getblk(sbi->sb, sbi->valid_super_block ? 0: 1);
1514         if (!bh)
1515                 return -EIO;
1516         err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
1517         brelse(bh);
1518
1519         /* if we are in recovery path, skip writing valid superblock */
1520         if (recover || err)
1521                 return err;
1522
1523         /* write current valid superblock */
1524         bh = sb_getblk(sbi->sb, sbi->valid_super_block);
1525         if (!bh)
1526                 return -EIO;
1527         err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
1528         brelse(bh);
1529         return err;
1530 }
1531
1532 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
1533 {
1534         struct f2fs_sb_info *sbi;
1535         struct f2fs_super_block *raw_super;
1536         struct inode *root;
1537         int err;
1538         bool retry = true, need_fsck = false;
1539         char *options = NULL;
1540         int recovery, i, valid_super_block;
1541         struct curseg_info *seg_i;
1542
1543 try_onemore:
1544         err = -EINVAL;
1545         raw_super = NULL;
1546         valid_super_block = -1;
1547         recovery = 0;
1548
1549         /* allocate memory for f2fs-specific super block info */
1550         sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
1551         if (!sbi)
1552                 return -ENOMEM;
1553
1554         sbi->sb = sb;
1555
1556         /* Load the checksum driver */
1557         sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
1558         if (IS_ERR(sbi->s_chksum_driver)) {
1559                 f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver.");
1560                 err = PTR_ERR(sbi->s_chksum_driver);
1561                 sbi->s_chksum_driver = NULL;
1562                 goto free_sbi;
1563         }
1564
1565         /* set a block size */
1566         if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
1567                 f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
1568                 goto free_sbi;
1569         }
1570
1571         err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
1572                                                                 &recovery);
1573         if (err)
1574                 goto free_sbi;
1575
1576         sb->s_fs_info = sbi;
1577         default_options(sbi);
1578         /* parse mount options */
1579         options = kstrdup((const char *)data, GFP_KERNEL);
1580         if (data && !options) {
1581                 err = -ENOMEM;
1582                 goto free_sb_buf;
1583         }
1584
1585         err = parse_options(sb, options);
1586         if (err)
1587                 goto free_options;
1588
1589         sbi->max_file_blocks = max_file_blocks();
1590         sb->s_maxbytes = sbi->max_file_blocks <<
1591                                 le32_to_cpu(raw_super->log_blocksize);
1592         sb->s_max_links = F2FS_LINK_MAX;
1593         get_random_bytes(&sbi->s_next_generation, sizeof(u32));
1594
1595         sb->s_op = &f2fs_sops;
1596         sb->s_cop = &f2fs_cryptops;
1597         sb->s_xattr = f2fs_xattr_handlers;
1598         sb->s_export_op = &f2fs_export_ops;
1599         sb->s_magic = F2FS_SUPER_MAGIC;
1600         sb->s_time_gran = 1;
1601         sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1602                 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1603         memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
1604
1605         /* init f2fs-specific super block info */
1606         sbi->raw_super = raw_super;
1607         sbi->valid_super_block = valid_super_block;
1608         mutex_init(&sbi->gc_mutex);
1609         mutex_init(&sbi->writepages);
1610         mutex_init(&sbi->cp_mutex);
1611         init_rwsem(&sbi->node_write);
1612
1613         /* disallow all the data/node/meta page writes */
1614         set_sbi_flag(sbi, SBI_POR_DOING);
1615         spin_lock_init(&sbi->stat_lock);
1616
1617         init_rwsem(&sbi->read_io.io_rwsem);
1618         sbi->read_io.sbi = sbi;
1619         sbi->read_io.bio = NULL;
1620         for (i = 0; i < NR_PAGE_TYPE; i++) {
1621                 init_rwsem(&sbi->write_io[i].io_rwsem);
1622                 sbi->write_io[i].sbi = sbi;
1623                 sbi->write_io[i].bio = NULL;
1624         }
1625
1626         init_rwsem(&sbi->cp_rwsem);
1627         init_waitqueue_head(&sbi->cp_wait);
1628         init_sb_info(sbi);
1629
1630         err = init_percpu_info(sbi);
1631         if (err)
1632                 goto free_options;
1633
1634         /* get an inode for meta space */
1635         sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
1636         if (IS_ERR(sbi->meta_inode)) {
1637                 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
1638                 err = PTR_ERR(sbi->meta_inode);
1639                 goto free_options;
1640         }
1641
1642         err = get_valid_checkpoint(sbi);
1643         if (err) {
1644                 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
1645                 goto free_meta_inode;
1646         }
1647
1648         sbi->total_valid_node_count =
1649                                 le32_to_cpu(sbi->ckpt->valid_node_count);
1650         percpu_counter_set(&sbi->total_valid_inode_count,
1651                                 le32_to_cpu(sbi->ckpt->valid_inode_count));
1652         sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
1653         sbi->total_valid_block_count =
1654                                 le64_to_cpu(sbi->ckpt->valid_block_count);
1655         sbi->last_valid_block_count = sbi->total_valid_block_count;
1656
1657         for (i = 0; i < NR_INODE_TYPE; i++) {
1658                 INIT_LIST_HEAD(&sbi->inode_list[i]);
1659                 spin_lock_init(&sbi->inode_lock[i]);
1660         }
1661
1662         init_extent_cache_info(sbi);
1663
1664         init_ino_entry_info(sbi);
1665
1666         /* setup f2fs internal modules */
1667         err = build_segment_manager(sbi);
1668         if (err) {
1669                 f2fs_msg(sb, KERN_ERR,
1670                         "Failed to initialize F2FS segment manager");
1671                 goto free_sm;
1672         }
1673         err = build_node_manager(sbi);
1674         if (err) {
1675                 f2fs_msg(sb, KERN_ERR,
1676                         "Failed to initialize F2FS node manager");
1677                 goto free_nm;
1678         }
1679
1680         /* For write statistics */
1681         if (sb->s_bdev->bd_part)
1682                 sbi->sectors_written_start =
1683                         (u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]);
1684
1685         /* Read accumulated write IO statistics if exists */
1686         seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1687         if (__exist_node_summaries(sbi))
1688                 sbi->kbytes_written =
1689                         le64_to_cpu(seg_i->journal->info.kbytes_written);
1690
1691         build_gc_manager(sbi);
1692
1693         /* get an inode for node space */
1694         sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
1695         if (IS_ERR(sbi->node_inode)) {
1696                 f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
1697                 err = PTR_ERR(sbi->node_inode);
1698                 goto free_nm;
1699         }
1700
1701         f2fs_join_shrinker(sbi);
1702
1703         /* if there are nt orphan nodes free them */
1704         err = recover_orphan_inodes(sbi);
1705         if (err)
1706                 goto free_node_inode;
1707
1708         /* read root inode and dentry */
1709         root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
1710         if (IS_ERR(root)) {
1711                 f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
1712                 err = PTR_ERR(root);
1713                 goto free_node_inode;
1714         }
1715         if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
1716                 iput(root);
1717                 err = -EINVAL;
1718                 goto free_node_inode;
1719         }
1720
1721         sb->s_root = d_make_root(root); /* allocate root dentry */
1722         if (!sb->s_root) {
1723                 err = -ENOMEM;
1724                 goto free_root_inode;
1725         }
1726
1727         err = f2fs_build_stats(sbi);
1728         if (err)
1729                 goto free_root_inode;
1730
1731         if (f2fs_proc_root)
1732                 sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root);
1733
1734         if (sbi->s_proc) {
1735                 proc_create_data("segment_info", S_IRUGO, sbi->s_proc,
1736                                  &f2fs_seq_segment_info_fops, sb);
1737                 proc_create_data("segment_bits", S_IRUGO, sbi->s_proc,
1738                                  &f2fs_seq_segment_bits_fops, sb);
1739         }
1740
1741         sbi->s_kobj.kset = f2fs_kset;
1742         init_completion(&sbi->s_kobj_unregister);
1743         err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL,
1744                                                         "%s", sb->s_id);
1745         if (err)
1746                 goto free_proc;
1747
1748         /* recover fsynced data */
1749         if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
1750                 /*
1751                  * mount should be failed, when device has readonly mode, and
1752                  * previous checkpoint was not done by clean system shutdown.
1753                  */
1754                 if (bdev_read_only(sb->s_bdev) &&
1755                                 !is_set_ckpt_flags(sbi->ckpt, CP_UMOUNT_FLAG)) {
1756                         err = -EROFS;
1757                         goto free_kobj;
1758                 }
1759
1760                 if (need_fsck)
1761                         set_sbi_flag(sbi, SBI_NEED_FSCK);
1762
1763                 err = recover_fsync_data(sbi, false);
1764                 if (err < 0) {
1765                         need_fsck = true;
1766                         f2fs_msg(sb, KERN_ERR,
1767                                 "Cannot recover all fsync data errno=%d", err);
1768                         goto free_kobj;
1769                 }
1770         } else {
1771                 err = recover_fsync_data(sbi, true);
1772
1773                 if (!f2fs_readonly(sb) && err > 0) {
1774                         err = -EINVAL;
1775                         f2fs_msg(sb, KERN_ERR,
1776                                 "Need to recover fsync data");
1777                         goto free_kobj;
1778                 }
1779         }
1780
1781         /* recover_fsync_data() cleared this already */
1782         clear_sbi_flag(sbi, SBI_POR_DOING);
1783
1784         /*
1785          * If filesystem is not mounted as read-only then
1786          * do start the gc_thread.
1787          */
1788         if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
1789                 /* After POR, we can run background GC thread.*/
1790                 err = start_gc_thread(sbi);
1791                 if (err)
1792                         goto free_kobj;
1793         }
1794         kfree(options);
1795
1796         /* recover broken superblock */
1797         if (recovery) {
1798                 err = f2fs_commit_super(sbi, true);
1799                 f2fs_msg(sb, KERN_INFO,
1800                         "Try to recover %dth superblock, ret: %d",
1801                         sbi->valid_super_block ? 1 : 2, err);
1802         }
1803
1804         f2fs_update_time(sbi, CP_TIME);
1805         f2fs_update_time(sbi, REQ_TIME);
1806         return 0;
1807
1808 free_kobj:
1809         f2fs_sync_inode_meta(sbi);
1810         kobject_del(&sbi->s_kobj);
1811         kobject_put(&sbi->s_kobj);
1812         wait_for_completion(&sbi->s_kobj_unregister);
1813 free_proc:
1814         if (sbi->s_proc) {
1815                 remove_proc_entry("segment_info", sbi->s_proc);
1816                 remove_proc_entry("segment_bits", sbi->s_proc);
1817                 remove_proc_entry(sb->s_id, f2fs_proc_root);
1818         }
1819         f2fs_destroy_stats(sbi);
1820 free_root_inode:
1821         dput(sb->s_root);
1822         sb->s_root = NULL;
1823 free_node_inode:
1824         mutex_lock(&sbi->umount_mutex);
1825         f2fs_leave_shrinker(sbi);
1826         iput(sbi->node_inode);
1827         mutex_unlock(&sbi->umount_mutex);
1828 free_nm:
1829         destroy_node_manager(sbi);
1830 free_sm:
1831         destroy_segment_manager(sbi);
1832         kfree(sbi->ckpt);
1833 free_meta_inode:
1834         make_bad_inode(sbi->meta_inode);
1835         iput(sbi->meta_inode);
1836 free_options:
1837         destroy_percpu_info(sbi);
1838         kfree(options);
1839 free_sb_buf:
1840         kfree(raw_super);
1841 free_sbi:
1842         if (sbi->s_chksum_driver)
1843                 crypto_free_shash(sbi->s_chksum_driver);
1844         kfree(sbi);
1845
1846         /* give only one another chance */
1847         if (retry) {
1848                 retry = false;
1849                 shrink_dcache_sb(sb);
1850                 goto try_onemore;
1851         }
1852         return err;
1853 }
1854
1855 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
1856                         const char *dev_name, void *data)
1857 {
1858         return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
1859 }
1860
1861 static void kill_f2fs_super(struct super_block *sb)
1862 {
1863         if (sb->s_root)
1864                 set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE);
1865         kill_block_super(sb);
1866 }
1867
1868 static struct file_system_type f2fs_fs_type = {
1869         .owner          = THIS_MODULE,
1870         .name           = "f2fs",
1871         .mount          = f2fs_mount,
1872         .kill_sb        = kill_f2fs_super,
1873         .fs_flags       = FS_REQUIRES_DEV,
1874 };
1875 MODULE_ALIAS_FS("f2fs");
1876
1877 static int __init init_inodecache(void)
1878 {
1879         f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
1880                         sizeof(struct f2fs_inode_info), 0,
1881                         SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
1882         if (!f2fs_inode_cachep)
1883                 return -ENOMEM;
1884         return 0;
1885 }
1886
1887 static void destroy_inodecache(void)
1888 {
1889         /*
1890          * Make sure all delayed rcu free inodes are flushed before we
1891          * destroy cache.
1892          */
1893         rcu_barrier();
1894         kmem_cache_destroy(f2fs_inode_cachep);
1895 }
1896
1897 static int __init init_f2fs_fs(void)
1898 {
1899         int err;
1900
1901         f2fs_build_trace_ios();
1902
1903         err = init_inodecache();
1904         if (err)
1905                 goto fail;
1906         err = create_node_manager_caches();
1907         if (err)
1908                 goto free_inodecache;
1909         err = create_segment_manager_caches();
1910         if (err)
1911                 goto free_node_manager_caches;
1912         err = create_checkpoint_caches();
1913         if (err)
1914                 goto free_segment_manager_caches;
1915         err = create_extent_cache();
1916         if (err)
1917                 goto free_checkpoint_caches;
1918         f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj);
1919         if (!f2fs_kset) {
1920                 err = -ENOMEM;
1921                 goto free_extent_cache;
1922         }
1923 #ifdef CONFIG_F2FS_FAULT_INJECTION
1924         f2fs_fault_inject.kset = f2fs_kset;
1925         f2fs_build_fault_attr(0);
1926         err = kobject_init_and_add(&f2fs_fault_inject, &f2fs_fault_ktype,
1927                                 NULL, "fault_injection");
1928         if (err) {
1929                 f2fs_fault_inject.kset = NULL;
1930                 goto free_kset;
1931         }
1932 #endif
1933         err = register_shrinker(&f2fs_shrinker_info);
1934         if (err)
1935                 goto free_kset;
1936
1937         err = register_filesystem(&f2fs_fs_type);
1938         if (err)
1939                 goto free_shrinker;
1940         err = f2fs_create_root_stats();
1941         if (err)
1942                 goto free_filesystem;
1943         f2fs_proc_root = proc_mkdir("fs/f2fs", NULL);
1944         return 0;
1945
1946 free_filesystem:
1947         unregister_filesystem(&f2fs_fs_type);
1948 free_shrinker:
1949         unregister_shrinker(&f2fs_shrinker_info);
1950 free_kset:
1951 #ifdef CONFIG_F2FS_FAULT_INJECTION
1952         if (f2fs_fault_inject.kset)
1953                 kobject_put(&f2fs_fault_inject);
1954 #endif
1955         kset_unregister(f2fs_kset);
1956 free_extent_cache:
1957         destroy_extent_cache();
1958 free_checkpoint_caches:
1959         destroy_checkpoint_caches();
1960 free_segment_manager_caches:
1961         destroy_segment_manager_caches();
1962 free_node_manager_caches:
1963         destroy_node_manager_caches();
1964 free_inodecache:
1965         destroy_inodecache();
1966 fail:
1967         return err;
1968 }
1969
1970 static void __exit exit_f2fs_fs(void)
1971 {
1972         remove_proc_entry("fs/f2fs", NULL);
1973         f2fs_destroy_root_stats();
1974         unregister_filesystem(&f2fs_fs_type);
1975         unregister_shrinker(&f2fs_shrinker_info);
1976 #ifdef CONFIG_F2FS_FAULT_INJECTION
1977         kobject_put(&f2fs_fault_inject);
1978 #endif
1979         kset_unregister(f2fs_kset);
1980         destroy_extent_cache();
1981         destroy_checkpoint_caches();
1982         destroy_segment_manager_caches();
1983         destroy_node_manager_caches();
1984         destroy_inodecache();
1985         f2fs_destroy_trace_ios();
1986 }
1987
1988 module_init(init_f2fs_fs)
1989 module_exit(exit_f2fs_fs)
1990
1991 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
1992 MODULE_DESCRIPTION("Flash Friendly File System");
1993 MODULE_LICENSE("GPL");