Merge tag 'asoc-v3.18-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie...
[cascardo/linux.git] / fs / f2fs / super.c
1 /*
2  * fs/f2fs/super.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/f2fs_fs.h>
26 #include <linux/sysfs.h>
27
28 #include "f2fs.h"
29 #include "node.h"
30 #include "segment.h"
31 #include "xattr.h"
32 #include "gc.h"
33
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/f2fs.h>
36
37 static struct proc_dir_entry *f2fs_proc_root;
38 static struct kmem_cache *f2fs_inode_cachep;
39 static struct kset *f2fs_kset;
40
41 enum {
42         Opt_gc_background,
43         Opt_disable_roll_forward,
44         Opt_discard,
45         Opt_noheap,
46         Opt_user_xattr,
47         Opt_nouser_xattr,
48         Opt_acl,
49         Opt_noacl,
50         Opt_active_logs,
51         Opt_disable_ext_identify,
52         Opt_inline_xattr,
53         Opt_inline_data,
54         Opt_flush_merge,
55         Opt_nobarrier,
56         Opt_err,
57 };
58
59 static match_table_t f2fs_tokens = {
60         {Opt_gc_background, "background_gc=%s"},
61         {Opt_disable_roll_forward, "disable_roll_forward"},
62         {Opt_discard, "discard"},
63         {Opt_noheap, "no_heap"},
64         {Opt_user_xattr, "user_xattr"},
65         {Opt_nouser_xattr, "nouser_xattr"},
66         {Opt_acl, "acl"},
67         {Opt_noacl, "noacl"},
68         {Opt_active_logs, "active_logs=%u"},
69         {Opt_disable_ext_identify, "disable_ext_identify"},
70         {Opt_inline_xattr, "inline_xattr"},
71         {Opt_inline_data, "inline_data"},
72         {Opt_flush_merge, "flush_merge"},
73         {Opt_nobarrier, "nobarrier"},
74         {Opt_err, NULL},
75 };
76
77 /* Sysfs support for f2fs */
78 enum {
79         GC_THREAD,      /* struct f2fs_gc_thread */
80         SM_INFO,        /* struct f2fs_sm_info */
81         NM_INFO,        /* struct f2fs_nm_info */
82         F2FS_SBI,       /* struct f2fs_sb_info */
83 };
84
85 struct f2fs_attr {
86         struct attribute attr;
87         ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *);
88         ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *,
89                          const char *, size_t);
90         int struct_type;
91         int offset;
92 };
93
94 static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type)
95 {
96         if (struct_type == GC_THREAD)
97                 return (unsigned char *)sbi->gc_thread;
98         else if (struct_type == SM_INFO)
99                 return (unsigned char *)SM_I(sbi);
100         else if (struct_type == NM_INFO)
101                 return (unsigned char *)NM_I(sbi);
102         else if (struct_type == F2FS_SBI)
103                 return (unsigned char *)sbi;
104         return NULL;
105 }
106
107 static ssize_t f2fs_sbi_show(struct f2fs_attr *a,
108                         struct f2fs_sb_info *sbi, char *buf)
109 {
110         unsigned char *ptr = NULL;
111         unsigned int *ui;
112
113         ptr = __struct_ptr(sbi, a->struct_type);
114         if (!ptr)
115                 return -EINVAL;
116
117         ui = (unsigned int *)(ptr + a->offset);
118
119         return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
120 }
121
122 static ssize_t f2fs_sbi_store(struct f2fs_attr *a,
123                         struct f2fs_sb_info *sbi,
124                         const char *buf, size_t count)
125 {
126         unsigned char *ptr;
127         unsigned long t;
128         unsigned int *ui;
129         ssize_t ret;
130
131         ptr = __struct_ptr(sbi, a->struct_type);
132         if (!ptr)
133                 return -EINVAL;
134
135         ui = (unsigned int *)(ptr + a->offset);
136
137         ret = kstrtoul(skip_spaces(buf), 0, &t);
138         if (ret < 0)
139                 return ret;
140         *ui = t;
141         return count;
142 }
143
144 static ssize_t f2fs_attr_show(struct kobject *kobj,
145                                 struct attribute *attr, char *buf)
146 {
147         struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
148                                                                 s_kobj);
149         struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
150
151         return a->show ? a->show(a, sbi, buf) : 0;
152 }
153
154 static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr,
155                                                 const char *buf, size_t len)
156 {
157         struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
158                                                                         s_kobj);
159         struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
160
161         return a->store ? a->store(a, sbi, buf, len) : 0;
162 }
163
164 static void f2fs_sb_release(struct kobject *kobj)
165 {
166         struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
167                                                                 s_kobj);
168         complete(&sbi->s_kobj_unregister);
169 }
170
171 #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \
172 static struct f2fs_attr f2fs_attr_##_name = {                   \
173         .attr = {.name = __stringify(_name), .mode = _mode },   \
174         .show   = _show,                                        \
175         .store  = _store,                                       \
176         .struct_type = _struct_type,                            \
177         .offset = _offset                                       \
178 }
179
180 #define F2FS_RW_ATTR(struct_type, struct_name, name, elname)    \
181         F2FS_ATTR_OFFSET(struct_type, name, 0644,               \
182                 f2fs_sbi_show, f2fs_sbi_store,                  \
183                 offsetof(struct struct_name, elname))
184
185 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time);
186 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time);
187 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time);
188 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle);
189 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments);
190 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards);
191 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy);
192 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util);
193 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_fsync_blocks, min_fsync_blocks);
194 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh);
195 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search);
196 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level);
197
198 #define ATTR_LIST(name) (&f2fs_attr_##name.attr)
199 static struct attribute *f2fs_attrs[] = {
200         ATTR_LIST(gc_min_sleep_time),
201         ATTR_LIST(gc_max_sleep_time),
202         ATTR_LIST(gc_no_gc_sleep_time),
203         ATTR_LIST(gc_idle),
204         ATTR_LIST(reclaim_segments),
205         ATTR_LIST(max_small_discards),
206         ATTR_LIST(ipu_policy),
207         ATTR_LIST(min_ipu_util),
208         ATTR_LIST(min_fsync_blocks),
209         ATTR_LIST(max_victim_search),
210         ATTR_LIST(dir_level),
211         ATTR_LIST(ram_thresh),
212         NULL,
213 };
214
215 static const struct sysfs_ops f2fs_attr_ops = {
216         .show   = f2fs_attr_show,
217         .store  = f2fs_attr_store,
218 };
219
220 static struct kobj_type f2fs_ktype = {
221         .default_attrs  = f2fs_attrs,
222         .sysfs_ops      = &f2fs_attr_ops,
223         .release        = f2fs_sb_release,
224 };
225
226 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
227 {
228         struct va_format vaf;
229         va_list args;
230
231         va_start(args, fmt);
232         vaf.fmt = fmt;
233         vaf.va = &args;
234         printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
235         va_end(args);
236 }
237
238 static void init_once(void *foo)
239 {
240         struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
241
242         inode_init_once(&fi->vfs_inode);
243 }
244
245 static int parse_options(struct super_block *sb, char *options)
246 {
247         struct f2fs_sb_info *sbi = F2FS_SB(sb);
248         substring_t args[MAX_OPT_ARGS];
249         char *p, *name;
250         int arg = 0;
251
252         if (!options)
253                 return 0;
254
255         while ((p = strsep(&options, ",")) != NULL) {
256                 int token;
257                 if (!*p)
258                         continue;
259                 /*
260                  * Initialize args struct so we know whether arg was
261                  * found; some options take optional arguments.
262                  */
263                 args[0].to = args[0].from = NULL;
264                 token = match_token(p, f2fs_tokens, args);
265
266                 switch (token) {
267                 case Opt_gc_background:
268                         name = match_strdup(&args[0]);
269
270                         if (!name)
271                                 return -ENOMEM;
272                         if (strlen(name) == 2 && !strncmp(name, "on", 2))
273                                 set_opt(sbi, BG_GC);
274                         else if (strlen(name) == 3 && !strncmp(name, "off", 3))
275                                 clear_opt(sbi, BG_GC);
276                         else {
277                                 kfree(name);
278                                 return -EINVAL;
279                         }
280                         kfree(name);
281                         break;
282                 case Opt_disable_roll_forward:
283                         set_opt(sbi, DISABLE_ROLL_FORWARD);
284                         break;
285                 case Opt_discard:
286                         set_opt(sbi, DISCARD);
287                         break;
288                 case Opt_noheap:
289                         set_opt(sbi, NOHEAP);
290                         break;
291 #ifdef CONFIG_F2FS_FS_XATTR
292                 case Opt_user_xattr:
293                         set_opt(sbi, XATTR_USER);
294                         break;
295                 case Opt_nouser_xattr:
296                         clear_opt(sbi, XATTR_USER);
297                         break;
298                 case Opt_inline_xattr:
299                         set_opt(sbi, INLINE_XATTR);
300                         break;
301 #else
302                 case Opt_user_xattr:
303                         f2fs_msg(sb, KERN_INFO,
304                                 "user_xattr options not supported");
305                         break;
306                 case Opt_nouser_xattr:
307                         f2fs_msg(sb, KERN_INFO,
308                                 "nouser_xattr options not supported");
309                         break;
310                 case Opt_inline_xattr:
311                         f2fs_msg(sb, KERN_INFO,
312                                 "inline_xattr options not supported");
313                         break;
314 #endif
315 #ifdef CONFIG_F2FS_FS_POSIX_ACL
316                 case Opt_acl:
317                         set_opt(sbi, POSIX_ACL);
318                         break;
319                 case Opt_noacl:
320                         clear_opt(sbi, POSIX_ACL);
321                         break;
322 #else
323                 case Opt_acl:
324                         f2fs_msg(sb, KERN_INFO, "acl options not supported");
325                         break;
326                 case Opt_noacl:
327                         f2fs_msg(sb, KERN_INFO, "noacl options not supported");
328                         break;
329 #endif
330                 case Opt_active_logs:
331                         if (args->from && match_int(args, &arg))
332                                 return -EINVAL;
333                         if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
334                                 return -EINVAL;
335                         sbi->active_logs = arg;
336                         break;
337                 case Opt_disable_ext_identify:
338                         set_opt(sbi, DISABLE_EXT_IDENTIFY);
339                         break;
340                 case Opt_inline_data:
341                         set_opt(sbi, INLINE_DATA);
342                         break;
343                 case Opt_flush_merge:
344                         set_opt(sbi, FLUSH_MERGE);
345                         break;
346                 case Opt_nobarrier:
347                         set_opt(sbi, NOBARRIER);
348                         break;
349                 default:
350                         f2fs_msg(sb, KERN_ERR,
351                                 "Unrecognized mount option \"%s\" or missing value",
352                                 p);
353                         return -EINVAL;
354                 }
355         }
356         return 0;
357 }
358
359 static struct inode *f2fs_alloc_inode(struct super_block *sb)
360 {
361         struct f2fs_inode_info *fi;
362
363         fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
364         if (!fi)
365                 return NULL;
366
367         init_once((void *) fi);
368
369         /* Initialize f2fs-specific inode info */
370         fi->vfs_inode.i_version = 1;
371         atomic_set(&fi->dirty_pages, 0);
372         fi->i_current_depth = 1;
373         fi->i_advise = 0;
374         rwlock_init(&fi->ext.ext_lock);
375         init_rwsem(&fi->i_sem);
376         INIT_LIST_HEAD(&fi->inmem_pages);
377         mutex_init(&fi->inmem_lock);
378
379         set_inode_flag(fi, FI_NEW_INODE);
380
381         if (test_opt(F2FS_SB(sb), INLINE_XATTR))
382                 set_inode_flag(fi, FI_INLINE_XATTR);
383
384         /* Will be used by directory only */
385         fi->i_dir_level = F2FS_SB(sb)->dir_level;
386
387         return &fi->vfs_inode;
388 }
389
390 static int f2fs_drop_inode(struct inode *inode)
391 {
392         /*
393          * This is to avoid a deadlock condition like below.
394          * writeback_single_inode(inode)
395          *  - f2fs_write_data_page
396          *    - f2fs_gc -> iput -> evict
397          *       - inode_wait_for_writeback(inode)
398          */
399         if (!inode_unhashed(inode) && inode->i_state & I_SYNC)
400                 return 0;
401         return generic_drop_inode(inode);
402 }
403
404 /*
405  * f2fs_dirty_inode() is called from __mark_inode_dirty()
406  *
407  * We should call set_dirty_inode to write the dirty inode through write_inode.
408  */
409 static void f2fs_dirty_inode(struct inode *inode, int flags)
410 {
411         set_inode_flag(F2FS_I(inode), FI_DIRTY_INODE);
412 }
413
414 static void f2fs_i_callback(struct rcu_head *head)
415 {
416         struct inode *inode = container_of(head, struct inode, i_rcu);
417         kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
418 }
419
420 static void f2fs_destroy_inode(struct inode *inode)
421 {
422         call_rcu(&inode->i_rcu, f2fs_i_callback);
423 }
424
425 static void f2fs_put_super(struct super_block *sb)
426 {
427         struct f2fs_sb_info *sbi = F2FS_SB(sb);
428
429         if (sbi->s_proc) {
430                 remove_proc_entry("segment_info", sbi->s_proc);
431                 remove_proc_entry(sb->s_id, f2fs_proc_root);
432         }
433         kobject_del(&sbi->s_kobj);
434
435         f2fs_destroy_stats(sbi);
436         stop_gc_thread(sbi);
437
438         /* We don't need to do checkpoint when it's clean */
439         if (sbi->s_dirty) {
440                 struct cp_control cpc = {
441                         .reason = CP_UMOUNT,
442                 };
443                 write_checkpoint(sbi, &cpc);
444         }
445
446         /*
447          * normally superblock is clean, so we need to release this.
448          * In addition, EIO will skip do checkpoint, we need this as well.
449          */
450         release_dirty_inode(sbi);
451         release_discard_addrs(sbi);
452
453         iput(sbi->node_inode);
454         iput(sbi->meta_inode);
455
456         /* destroy f2fs internal modules */
457         destroy_node_manager(sbi);
458         destroy_segment_manager(sbi);
459
460         kfree(sbi->ckpt);
461         kobject_put(&sbi->s_kobj);
462         wait_for_completion(&sbi->s_kobj_unregister);
463
464         sb->s_fs_info = NULL;
465         brelse(sbi->raw_super_buf);
466         kfree(sbi);
467 }
468
469 int f2fs_sync_fs(struct super_block *sb, int sync)
470 {
471         struct f2fs_sb_info *sbi = F2FS_SB(sb);
472
473         trace_f2fs_sync_fs(sb, sync);
474
475         if (sync) {
476                 struct cp_control cpc = {
477                         .reason = CP_SYNC,
478                 };
479                 mutex_lock(&sbi->gc_mutex);
480                 write_checkpoint(sbi, &cpc);
481                 mutex_unlock(&sbi->gc_mutex);
482         } else {
483                 f2fs_balance_fs(sbi);
484         }
485
486         return 0;
487 }
488
489 static int f2fs_freeze(struct super_block *sb)
490 {
491         int err;
492
493         if (f2fs_readonly(sb))
494                 return 0;
495
496         err = f2fs_sync_fs(sb, 1);
497         return err;
498 }
499
500 static int f2fs_unfreeze(struct super_block *sb)
501 {
502         return 0;
503 }
504
505 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
506 {
507         struct super_block *sb = dentry->d_sb;
508         struct f2fs_sb_info *sbi = F2FS_SB(sb);
509         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
510         block_t total_count, user_block_count, start_count, ovp_count;
511
512         total_count = le64_to_cpu(sbi->raw_super->block_count);
513         user_block_count = sbi->user_block_count;
514         start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
515         ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
516         buf->f_type = F2FS_SUPER_MAGIC;
517         buf->f_bsize = sbi->blocksize;
518
519         buf->f_blocks = total_count - start_count;
520         buf->f_bfree = buf->f_blocks - valid_user_blocks(sbi) - ovp_count;
521         buf->f_bavail = user_block_count - valid_user_blocks(sbi);
522
523         buf->f_files = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
524         buf->f_ffree = buf->f_files - valid_inode_count(sbi);
525
526         buf->f_namelen = F2FS_NAME_LEN;
527         buf->f_fsid.val[0] = (u32)id;
528         buf->f_fsid.val[1] = (u32)(id >> 32);
529
530         return 0;
531 }
532
533 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
534 {
535         struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
536
537         if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC))
538                 seq_printf(seq, ",background_gc=%s", "on");
539         else
540                 seq_printf(seq, ",background_gc=%s", "off");
541         if (test_opt(sbi, DISABLE_ROLL_FORWARD))
542                 seq_puts(seq, ",disable_roll_forward");
543         if (test_opt(sbi, DISCARD))
544                 seq_puts(seq, ",discard");
545         if (test_opt(sbi, NOHEAP))
546                 seq_puts(seq, ",no_heap_alloc");
547 #ifdef CONFIG_F2FS_FS_XATTR
548         if (test_opt(sbi, XATTR_USER))
549                 seq_puts(seq, ",user_xattr");
550         else
551                 seq_puts(seq, ",nouser_xattr");
552         if (test_opt(sbi, INLINE_XATTR))
553                 seq_puts(seq, ",inline_xattr");
554 #endif
555 #ifdef CONFIG_F2FS_FS_POSIX_ACL
556         if (test_opt(sbi, POSIX_ACL))
557                 seq_puts(seq, ",acl");
558         else
559                 seq_puts(seq, ",noacl");
560 #endif
561         if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
562                 seq_puts(seq, ",disable_ext_identify");
563         if (test_opt(sbi, INLINE_DATA))
564                 seq_puts(seq, ",inline_data");
565         if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
566                 seq_puts(seq, ",flush_merge");
567         if (test_opt(sbi, NOBARRIER))
568                 seq_puts(seq, ",nobarrier");
569         seq_printf(seq, ",active_logs=%u", sbi->active_logs);
570
571         return 0;
572 }
573
574 static int segment_info_seq_show(struct seq_file *seq, void *offset)
575 {
576         struct super_block *sb = seq->private;
577         struct f2fs_sb_info *sbi = F2FS_SB(sb);
578         unsigned int total_segs =
579                         le32_to_cpu(sbi->raw_super->segment_count_main);
580         int i;
581
582         seq_puts(seq, "format: segment_type|valid_blocks\n"
583                 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
584
585         for (i = 0; i < total_segs; i++) {
586                 struct seg_entry *se = get_seg_entry(sbi, i);
587
588                 if ((i % 10) == 0)
589                         seq_printf(seq, "%-5d", i);
590                 seq_printf(seq, "%d|%-3u", se->type,
591                                         get_valid_blocks(sbi, i, 1));
592                 if ((i % 10) == 9 || i == (total_segs - 1))
593                         seq_putc(seq, '\n');
594                 else
595                         seq_putc(seq, ' ');
596         }
597
598         return 0;
599 }
600
601 static int segment_info_open_fs(struct inode *inode, struct file *file)
602 {
603         return single_open(file, segment_info_seq_show, PDE_DATA(inode));
604 }
605
606 static const struct file_operations f2fs_seq_segment_info_fops = {
607         .owner = THIS_MODULE,
608         .open = segment_info_open_fs,
609         .read = seq_read,
610         .llseek = seq_lseek,
611         .release = single_release,
612 };
613
614 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
615 {
616         struct f2fs_sb_info *sbi = F2FS_SB(sb);
617         struct f2fs_mount_info org_mount_opt;
618         int err, active_logs;
619         bool need_restart_gc = false;
620         bool need_stop_gc = false;
621
622         sync_filesystem(sb);
623
624         /*
625          * Save the old mount options in case we
626          * need to restore them.
627          */
628         org_mount_opt = sbi->mount_opt;
629         active_logs = sbi->active_logs;
630
631         sbi->mount_opt.opt = 0;
632         sbi->active_logs = NR_CURSEG_TYPE;
633
634         /* parse mount options */
635         err = parse_options(sb, data);
636         if (err)
637                 goto restore_opts;
638
639         /*
640          * Previous and new state of filesystem is RO,
641          * so skip checking GC and FLUSH_MERGE conditions.
642          */
643         if (f2fs_readonly(sb) && (*flags & MS_RDONLY))
644                 goto skip;
645
646         /*
647          * We stop the GC thread if FS is mounted as RO
648          * or if background_gc = off is passed in mount
649          * option. Also sync the filesystem.
650          */
651         if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
652                 if (sbi->gc_thread) {
653                         stop_gc_thread(sbi);
654                         f2fs_sync_fs(sb, 1);
655                         need_restart_gc = true;
656                 }
657         } else if (test_opt(sbi, BG_GC) && !sbi->gc_thread) {
658                 err = start_gc_thread(sbi);
659                 if (err)
660                         goto restore_opts;
661                 need_stop_gc = true;
662         }
663
664         /*
665          * We stop issue flush thread if FS is mounted as RO
666          * or if flush_merge is not passed in mount option.
667          */
668         if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
669                 destroy_flush_cmd_control(sbi);
670         } else if (test_opt(sbi, FLUSH_MERGE) && !SM_I(sbi)->cmd_control_info) {
671                 err = create_flush_cmd_control(sbi);
672                 if (err)
673                         goto restore_gc;
674         }
675 skip:
676         /* Update the POSIXACL Flag */
677          sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
678                 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
679         return 0;
680 restore_gc:
681         if (need_restart_gc) {
682                 if (start_gc_thread(sbi))
683                         f2fs_msg(sbi->sb, KERN_WARNING,
684                                 "background gc thread has stopped");
685         } else if (need_stop_gc) {
686                 stop_gc_thread(sbi);
687         }
688 restore_opts:
689         sbi->mount_opt = org_mount_opt;
690         sbi->active_logs = active_logs;
691         return err;
692 }
693
694 static struct super_operations f2fs_sops = {
695         .alloc_inode    = f2fs_alloc_inode,
696         .drop_inode     = f2fs_drop_inode,
697         .destroy_inode  = f2fs_destroy_inode,
698         .write_inode    = f2fs_write_inode,
699         .dirty_inode    = f2fs_dirty_inode,
700         .show_options   = f2fs_show_options,
701         .evict_inode    = f2fs_evict_inode,
702         .put_super      = f2fs_put_super,
703         .sync_fs        = f2fs_sync_fs,
704         .freeze_fs      = f2fs_freeze,
705         .unfreeze_fs    = f2fs_unfreeze,
706         .statfs         = f2fs_statfs,
707         .remount_fs     = f2fs_remount,
708 };
709
710 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
711                 u64 ino, u32 generation)
712 {
713         struct f2fs_sb_info *sbi = F2FS_SB(sb);
714         struct inode *inode;
715
716         if (check_nid_range(sbi, ino))
717                 return ERR_PTR(-ESTALE);
718
719         /*
720          * f2fs_iget isn't quite right if the inode is currently unallocated!
721          * However f2fs_iget currently does appropriate checks to handle stale
722          * inodes so everything is OK.
723          */
724         inode = f2fs_iget(sb, ino);
725         if (IS_ERR(inode))
726                 return ERR_CAST(inode);
727         if (unlikely(generation && inode->i_generation != generation)) {
728                 /* we didn't find the right inode.. */
729                 iput(inode);
730                 return ERR_PTR(-ESTALE);
731         }
732         return inode;
733 }
734
735 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
736                 int fh_len, int fh_type)
737 {
738         return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
739                                     f2fs_nfs_get_inode);
740 }
741
742 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
743                 int fh_len, int fh_type)
744 {
745         return generic_fh_to_parent(sb, fid, fh_len, fh_type,
746                                     f2fs_nfs_get_inode);
747 }
748
749 static const struct export_operations f2fs_export_ops = {
750         .fh_to_dentry = f2fs_fh_to_dentry,
751         .fh_to_parent = f2fs_fh_to_parent,
752         .get_parent = f2fs_get_parent,
753 };
754
755 static loff_t max_file_size(unsigned bits)
756 {
757         loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS);
758         loff_t leaf_count = ADDRS_PER_BLOCK;
759
760         /* two direct node blocks */
761         result += (leaf_count * 2);
762
763         /* two indirect node blocks */
764         leaf_count *= NIDS_PER_BLOCK;
765         result += (leaf_count * 2);
766
767         /* one double indirect node block */
768         leaf_count *= NIDS_PER_BLOCK;
769         result += leaf_count;
770
771         result <<= bits;
772         return result;
773 }
774
775 static int sanity_check_raw_super(struct super_block *sb,
776                         struct f2fs_super_block *raw_super)
777 {
778         unsigned int blocksize;
779
780         if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
781                 f2fs_msg(sb, KERN_INFO,
782                         "Magic Mismatch, valid(0x%x) - read(0x%x)",
783                         F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
784                 return 1;
785         }
786
787         /* Currently, support only 4KB page cache size */
788         if (F2FS_BLKSIZE != PAGE_CACHE_SIZE) {
789                 f2fs_msg(sb, KERN_INFO,
790                         "Invalid page_cache_size (%lu), supports only 4KB\n",
791                         PAGE_CACHE_SIZE);
792                 return 1;
793         }
794
795         /* Currently, support only 4KB block size */
796         blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
797         if (blocksize != F2FS_BLKSIZE) {
798                 f2fs_msg(sb, KERN_INFO,
799                         "Invalid blocksize (%u), supports only 4KB\n",
800                         blocksize);
801                 return 1;
802         }
803
804         /* Currently, support 512/1024/2048/4096 bytes sector size */
805         if (le32_to_cpu(raw_super->log_sectorsize) >
806                                 F2FS_MAX_LOG_SECTOR_SIZE ||
807                 le32_to_cpu(raw_super->log_sectorsize) <
808                                 F2FS_MIN_LOG_SECTOR_SIZE) {
809                 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
810                         le32_to_cpu(raw_super->log_sectorsize));
811                 return 1;
812         }
813         if (le32_to_cpu(raw_super->log_sectors_per_block) +
814                 le32_to_cpu(raw_super->log_sectorsize) !=
815                         F2FS_MAX_LOG_SECTOR_SIZE) {
816                 f2fs_msg(sb, KERN_INFO,
817                         "Invalid log sectors per block(%u) log sectorsize(%u)",
818                         le32_to_cpu(raw_super->log_sectors_per_block),
819                         le32_to_cpu(raw_super->log_sectorsize));
820                 return 1;
821         }
822         return 0;
823 }
824
825 static int sanity_check_ckpt(struct f2fs_sb_info *sbi)
826 {
827         unsigned int total, fsmeta;
828         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
829         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
830
831         total = le32_to_cpu(raw_super->segment_count);
832         fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
833         fsmeta += le32_to_cpu(raw_super->segment_count_sit);
834         fsmeta += le32_to_cpu(raw_super->segment_count_nat);
835         fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
836         fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
837
838         if (unlikely(fsmeta >= total))
839                 return 1;
840
841         if (unlikely(f2fs_cp_error(sbi))) {
842                 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
843                 return 1;
844         }
845         return 0;
846 }
847
848 static void init_sb_info(struct f2fs_sb_info *sbi)
849 {
850         struct f2fs_super_block *raw_super = sbi->raw_super;
851         int i;
852
853         sbi->log_sectors_per_block =
854                 le32_to_cpu(raw_super->log_sectors_per_block);
855         sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
856         sbi->blocksize = 1 << sbi->log_blocksize;
857         sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
858         sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
859         sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
860         sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
861         sbi->total_sections = le32_to_cpu(raw_super->section_count);
862         sbi->total_node_count =
863                 (le32_to_cpu(raw_super->segment_count_nat) / 2)
864                         * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
865         sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
866         sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
867         sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
868         sbi->cur_victim_sec = NULL_SECNO;
869         sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
870
871         for (i = 0; i < NR_COUNT_TYPE; i++)
872                 atomic_set(&sbi->nr_pages[i], 0);
873
874         sbi->dir_level = DEF_DIR_LEVEL;
875         sbi->need_fsck = false;
876 }
877
878 /*
879  * Read f2fs raw super block.
880  * Because we have two copies of super block, so read the first one at first,
881  * if the first one is invalid, move to read the second one.
882  */
883 static int read_raw_super_block(struct super_block *sb,
884                         struct f2fs_super_block **raw_super,
885                         struct buffer_head **raw_super_buf)
886 {
887         int block = 0;
888
889 retry:
890         *raw_super_buf = sb_bread(sb, block);
891         if (!*raw_super_buf) {
892                 f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
893                                 block + 1);
894                 if (block == 0) {
895                         block++;
896                         goto retry;
897                 } else {
898                         return -EIO;
899                 }
900         }
901
902         *raw_super = (struct f2fs_super_block *)
903                 ((char *)(*raw_super_buf)->b_data + F2FS_SUPER_OFFSET);
904
905         /* sanity checking of raw super */
906         if (sanity_check_raw_super(sb, *raw_super)) {
907                 brelse(*raw_super_buf);
908                 f2fs_msg(sb, KERN_ERR,
909                         "Can't find valid F2FS filesystem in %dth superblock",
910                                                                 block + 1);
911                 if (block == 0) {
912                         block++;
913                         goto retry;
914                 } else {
915                         return -EINVAL;
916                 }
917         }
918
919         return 0;
920 }
921
922 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
923 {
924         struct f2fs_sb_info *sbi;
925         struct f2fs_super_block *raw_super;
926         struct buffer_head *raw_super_buf;
927         struct inode *root;
928         long err = -EINVAL;
929         bool retry = true;
930         int i;
931
932 try_onemore:
933         /* allocate memory for f2fs-specific super block info */
934         sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
935         if (!sbi)
936                 return -ENOMEM;
937
938         /* set a block size */
939         if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
940                 f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
941                 goto free_sbi;
942         }
943
944         err = read_raw_super_block(sb, &raw_super, &raw_super_buf);
945         if (err)
946                 goto free_sbi;
947
948         sb->s_fs_info = sbi;
949         /* init some FS parameters */
950         sbi->active_logs = NR_CURSEG_TYPE;
951
952         set_opt(sbi, BG_GC);
953
954 #ifdef CONFIG_F2FS_FS_XATTR
955         set_opt(sbi, XATTR_USER);
956 #endif
957 #ifdef CONFIG_F2FS_FS_POSIX_ACL
958         set_opt(sbi, POSIX_ACL);
959 #endif
960         /* parse mount options */
961         err = parse_options(sb, (char *)data);
962         if (err)
963                 goto free_sb_buf;
964
965         sb->s_maxbytes = max_file_size(le32_to_cpu(raw_super->log_blocksize));
966         sb->s_max_links = F2FS_LINK_MAX;
967         get_random_bytes(&sbi->s_next_generation, sizeof(u32));
968
969         sb->s_op = &f2fs_sops;
970         sb->s_xattr = f2fs_xattr_handlers;
971         sb->s_export_op = &f2fs_export_ops;
972         sb->s_magic = F2FS_SUPER_MAGIC;
973         sb->s_time_gran = 1;
974         sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
975                 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
976         memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
977
978         /* init f2fs-specific super block info */
979         sbi->sb = sb;
980         sbi->raw_super = raw_super;
981         sbi->raw_super_buf = raw_super_buf;
982         mutex_init(&sbi->gc_mutex);
983         mutex_init(&sbi->writepages);
984         mutex_init(&sbi->cp_mutex);
985         init_rwsem(&sbi->node_write);
986         sbi->por_doing = false;
987         spin_lock_init(&sbi->stat_lock);
988
989         init_rwsem(&sbi->read_io.io_rwsem);
990         sbi->read_io.sbi = sbi;
991         sbi->read_io.bio = NULL;
992         for (i = 0; i < NR_PAGE_TYPE; i++) {
993                 init_rwsem(&sbi->write_io[i].io_rwsem);
994                 sbi->write_io[i].sbi = sbi;
995                 sbi->write_io[i].bio = NULL;
996         }
997
998         init_rwsem(&sbi->cp_rwsem);
999         init_waitqueue_head(&sbi->cp_wait);
1000         init_sb_info(sbi);
1001
1002         /* get an inode for meta space */
1003         sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
1004         if (IS_ERR(sbi->meta_inode)) {
1005                 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
1006                 err = PTR_ERR(sbi->meta_inode);
1007                 goto free_sb_buf;
1008         }
1009
1010         err = get_valid_checkpoint(sbi);
1011         if (err) {
1012                 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
1013                 goto free_meta_inode;
1014         }
1015
1016         /* sanity checking of checkpoint */
1017         err = -EINVAL;
1018         if (sanity_check_ckpt(sbi)) {
1019                 f2fs_msg(sb, KERN_ERR, "Invalid F2FS checkpoint");
1020                 goto free_cp;
1021         }
1022
1023         sbi->total_valid_node_count =
1024                                 le32_to_cpu(sbi->ckpt->valid_node_count);
1025         sbi->total_valid_inode_count =
1026                                 le32_to_cpu(sbi->ckpt->valid_inode_count);
1027         sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
1028         sbi->total_valid_block_count =
1029                                 le64_to_cpu(sbi->ckpt->valid_block_count);
1030         sbi->last_valid_block_count = sbi->total_valid_block_count;
1031         sbi->alloc_valid_block_count = 0;
1032         INIT_LIST_HEAD(&sbi->dir_inode_list);
1033         spin_lock_init(&sbi->dir_inode_lock);
1034
1035         init_ino_entry_info(sbi);
1036
1037         /* setup f2fs internal modules */
1038         err = build_segment_manager(sbi);
1039         if (err) {
1040                 f2fs_msg(sb, KERN_ERR,
1041                         "Failed to initialize F2FS segment manager");
1042                 goto free_sm;
1043         }
1044         err = build_node_manager(sbi);
1045         if (err) {
1046                 f2fs_msg(sb, KERN_ERR,
1047                         "Failed to initialize F2FS node manager");
1048                 goto free_nm;
1049         }
1050
1051         build_gc_manager(sbi);
1052
1053         /* get an inode for node space */
1054         sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
1055         if (IS_ERR(sbi->node_inode)) {
1056                 f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
1057                 err = PTR_ERR(sbi->node_inode);
1058                 goto free_nm;
1059         }
1060
1061         /* if there are nt orphan nodes free them */
1062         recover_orphan_inodes(sbi);
1063
1064         /* read root inode and dentry */
1065         root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
1066         if (IS_ERR(root)) {
1067                 f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
1068                 err = PTR_ERR(root);
1069                 goto free_node_inode;
1070         }
1071         if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
1072                 iput(root);
1073                 err = -EINVAL;
1074                 goto free_node_inode;
1075         }
1076
1077         sb->s_root = d_make_root(root); /* allocate root dentry */
1078         if (!sb->s_root) {
1079                 err = -ENOMEM;
1080                 goto free_root_inode;
1081         }
1082
1083         err = f2fs_build_stats(sbi);
1084         if (err)
1085                 goto free_root_inode;
1086
1087         if (f2fs_proc_root)
1088                 sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root);
1089
1090         if (sbi->s_proc)
1091                 proc_create_data("segment_info", S_IRUGO, sbi->s_proc,
1092                                  &f2fs_seq_segment_info_fops, sb);
1093
1094         if (test_opt(sbi, DISCARD)) {
1095                 struct request_queue *q = bdev_get_queue(sb->s_bdev);
1096                 if (!blk_queue_discard(q))
1097                         f2fs_msg(sb, KERN_WARNING,
1098                                         "mounting with \"discard\" option, but "
1099                                         "the device does not support discard");
1100         }
1101
1102         sbi->s_kobj.kset = f2fs_kset;
1103         init_completion(&sbi->s_kobj_unregister);
1104         err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL,
1105                                                         "%s", sb->s_id);
1106         if (err)
1107                 goto free_proc;
1108
1109         if (!retry)
1110                 sbi->need_fsck = true;
1111
1112         /* recover fsynced data */
1113         if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
1114                 err = recover_fsync_data(sbi);
1115                 if (err) {
1116                         f2fs_msg(sb, KERN_ERR,
1117                                 "Cannot recover all fsync data errno=%ld", err);
1118                         goto free_kobj;
1119                 }
1120         }
1121
1122         /*
1123          * If filesystem is not mounted as read-only then
1124          * do start the gc_thread.
1125          */
1126         if (!f2fs_readonly(sb)) {
1127                 /* After POR, we can run background GC thread.*/
1128                 err = start_gc_thread(sbi);
1129                 if (err)
1130                         goto free_kobj;
1131         }
1132         return 0;
1133
1134 free_kobj:
1135         kobject_del(&sbi->s_kobj);
1136 free_proc:
1137         if (sbi->s_proc) {
1138                 remove_proc_entry("segment_info", sbi->s_proc);
1139                 remove_proc_entry(sb->s_id, f2fs_proc_root);
1140         }
1141         f2fs_destroy_stats(sbi);
1142 free_root_inode:
1143         dput(sb->s_root);
1144         sb->s_root = NULL;
1145 free_node_inode:
1146         iput(sbi->node_inode);
1147 free_nm:
1148         destroy_node_manager(sbi);
1149 free_sm:
1150         destroy_segment_manager(sbi);
1151 free_cp:
1152         kfree(sbi->ckpt);
1153 free_meta_inode:
1154         make_bad_inode(sbi->meta_inode);
1155         iput(sbi->meta_inode);
1156 free_sb_buf:
1157         brelse(raw_super_buf);
1158 free_sbi:
1159         kfree(sbi);
1160
1161         /* give only one another chance */
1162         if (retry) {
1163                 retry = 0;
1164                 shrink_dcache_sb(sb);
1165                 goto try_onemore;
1166         }
1167         return err;
1168 }
1169
1170 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
1171                         const char *dev_name, void *data)
1172 {
1173         return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
1174 }
1175
1176 static struct file_system_type f2fs_fs_type = {
1177         .owner          = THIS_MODULE,
1178         .name           = "f2fs",
1179         .mount          = f2fs_mount,
1180         .kill_sb        = kill_block_super,
1181         .fs_flags       = FS_REQUIRES_DEV,
1182 };
1183 MODULE_ALIAS_FS("f2fs");
1184
1185 static int __init init_inodecache(void)
1186 {
1187         f2fs_inode_cachep = f2fs_kmem_cache_create("f2fs_inode_cache",
1188                         sizeof(struct f2fs_inode_info));
1189         if (!f2fs_inode_cachep)
1190                 return -ENOMEM;
1191         return 0;
1192 }
1193
1194 static void destroy_inodecache(void)
1195 {
1196         /*
1197          * Make sure all delayed rcu free inodes are flushed before we
1198          * destroy cache.
1199          */
1200         rcu_barrier();
1201         kmem_cache_destroy(f2fs_inode_cachep);
1202 }
1203
1204 static int __init init_f2fs_fs(void)
1205 {
1206         int err;
1207
1208         err = init_inodecache();
1209         if (err)
1210                 goto fail;
1211         err = create_node_manager_caches();
1212         if (err)
1213                 goto free_inodecache;
1214         err = create_segment_manager_caches();
1215         if (err)
1216                 goto free_node_manager_caches;
1217         err = create_gc_caches();
1218         if (err)
1219                 goto free_segment_manager_caches;
1220         err = create_checkpoint_caches();
1221         if (err)
1222                 goto free_gc_caches;
1223         f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj);
1224         if (!f2fs_kset) {
1225                 err = -ENOMEM;
1226                 goto free_checkpoint_caches;
1227         }
1228         err = register_filesystem(&f2fs_fs_type);
1229         if (err)
1230                 goto free_kset;
1231         f2fs_create_root_stats();
1232         f2fs_proc_root = proc_mkdir("fs/f2fs", NULL);
1233         return 0;
1234
1235 free_kset:
1236         kset_unregister(f2fs_kset);
1237 free_checkpoint_caches:
1238         destroy_checkpoint_caches();
1239 free_gc_caches:
1240         destroy_gc_caches();
1241 free_segment_manager_caches:
1242         destroy_segment_manager_caches();
1243 free_node_manager_caches:
1244         destroy_node_manager_caches();
1245 free_inodecache:
1246         destroy_inodecache();
1247 fail:
1248         return err;
1249 }
1250
1251 static void __exit exit_f2fs_fs(void)
1252 {
1253         remove_proc_entry("fs/f2fs", NULL);
1254         f2fs_destroy_root_stats();
1255         unregister_filesystem(&f2fs_fs_type);
1256         destroy_checkpoint_caches();
1257         destroy_gc_caches();
1258         destroy_segment_manager_caches();
1259         destroy_node_manager_caches();
1260         destroy_inodecache();
1261         kset_unregister(f2fs_kset);
1262 }
1263
1264 module_init(init_f2fs_fs)
1265 module_exit(exit_f2fs_fs)
1266
1267 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
1268 MODULE_DESCRIPTION("Flash Friendly File System");
1269 MODULE_LICENSE("GPL");