writeback: keep superblock pinned during cgroup writeback association switches
[cascardo/linux.git] / fs / fs-writeback.c
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002    Andrew Morton
12  *              Split out of fs/inode.c
13  *              Additions for address_space-based writeback
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include <linux/memcontrol.h>
31 #include "internal.h"
32
33 /*
34  * 4MB minimal write chunk size
35  */
36 #define MIN_WRITEBACK_PAGES     (4096UL >> (PAGE_CACHE_SHIFT - 10))
37
38 struct wb_completion {
39         atomic_t                cnt;
40 };
41
42 /*
43  * Passed into wb_writeback(), essentially a subset of writeback_control
44  */
45 struct wb_writeback_work {
46         long nr_pages;
47         struct super_block *sb;
48         unsigned long *older_than_this;
49         enum writeback_sync_modes sync_mode;
50         unsigned int tagged_writepages:1;
51         unsigned int for_kupdate:1;
52         unsigned int range_cyclic:1;
53         unsigned int for_background:1;
54         unsigned int for_sync:1;        /* sync(2) WB_SYNC_ALL writeback */
55         unsigned int auto_free:1;       /* free on completion */
56         enum wb_reason reason;          /* why was writeback initiated? */
57
58         struct list_head list;          /* pending work list */
59         struct wb_completion *done;     /* set if the caller waits */
60 };
61
62 /*
63  * If one wants to wait for one or more wb_writeback_works, each work's
64  * ->done should be set to a wb_completion defined using the following
65  * macro.  Once all work items are issued with wb_queue_work(), the caller
66  * can wait for the completion of all using wb_wait_for_completion().  Work
67  * items which are waited upon aren't freed automatically on completion.
68  */
69 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl)                              \
70         struct wb_completion cmpl = {                                   \
71                 .cnt            = ATOMIC_INIT(1),                       \
72         }
73
74
75 /*
76  * If an inode is constantly having its pages dirtied, but then the
77  * updates stop dirtytime_expire_interval seconds in the past, it's
78  * possible for the worst case time between when an inode has its
79  * timestamps updated and when they finally get written out to be two
80  * dirtytime_expire_intervals.  We set the default to 12 hours (in
81  * seconds), which means most of the time inodes will have their
82  * timestamps written to disk after 12 hours, but in the worst case a
83  * few inodes might not their timestamps updated for 24 hours.
84  */
85 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
86
87 static inline struct inode *wb_inode(struct list_head *head)
88 {
89         return list_entry(head, struct inode, i_io_list);
90 }
91
92 /*
93  * Include the creation of the trace points after defining the
94  * wb_writeback_work structure and inline functions so that the definition
95  * remains local to this file.
96  */
97 #define CREATE_TRACE_POINTS
98 #include <trace/events/writeback.h>
99
100 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
101
102 static bool wb_io_lists_populated(struct bdi_writeback *wb)
103 {
104         if (wb_has_dirty_io(wb)) {
105                 return false;
106         } else {
107                 set_bit(WB_has_dirty_io, &wb->state);
108                 WARN_ON_ONCE(!wb->avg_write_bandwidth);
109                 atomic_long_add(wb->avg_write_bandwidth,
110                                 &wb->bdi->tot_write_bandwidth);
111                 return true;
112         }
113 }
114
115 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
116 {
117         if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
118             list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
119                 clear_bit(WB_has_dirty_io, &wb->state);
120                 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
121                                         &wb->bdi->tot_write_bandwidth) < 0);
122         }
123 }
124
125 /**
126  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
127  * @inode: inode to be moved
128  * @wb: target bdi_writeback
129  * @head: one of @wb->b_{dirty|io|more_io}
130  *
131  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
132  * Returns %true if @inode is the first occupant of the !dirty_time IO
133  * lists; otherwise, %false.
134  */
135 static bool inode_io_list_move_locked(struct inode *inode,
136                                       struct bdi_writeback *wb,
137                                       struct list_head *head)
138 {
139         assert_spin_locked(&wb->list_lock);
140
141         list_move(&inode->i_io_list, head);
142
143         /* dirty_time doesn't count as dirty_io until expiration */
144         if (head != &wb->b_dirty_time)
145                 return wb_io_lists_populated(wb);
146
147         wb_io_lists_depopulated(wb);
148         return false;
149 }
150
151 /**
152  * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
153  * @inode: inode to be removed
154  * @wb: bdi_writeback @inode is being removed from
155  *
156  * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
157  * clear %WB_has_dirty_io if all are empty afterwards.
158  */
159 static void inode_io_list_del_locked(struct inode *inode,
160                                      struct bdi_writeback *wb)
161 {
162         assert_spin_locked(&wb->list_lock);
163
164         list_del_init(&inode->i_io_list);
165         wb_io_lists_depopulated(wb);
166 }
167
168 static void wb_wakeup(struct bdi_writeback *wb)
169 {
170         spin_lock_bh(&wb->work_lock);
171         if (test_bit(WB_registered, &wb->state))
172                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
173         spin_unlock_bh(&wb->work_lock);
174 }
175
176 static void wb_queue_work(struct bdi_writeback *wb,
177                           struct wb_writeback_work *work)
178 {
179         trace_writeback_queue(wb, work);
180
181         spin_lock_bh(&wb->work_lock);
182         if (!test_bit(WB_registered, &wb->state))
183                 goto out_unlock;
184         if (work->done)
185                 atomic_inc(&work->done->cnt);
186         list_add_tail(&work->list, &wb->work_list);
187         mod_delayed_work(bdi_wq, &wb->dwork, 0);
188 out_unlock:
189         spin_unlock_bh(&wb->work_lock);
190 }
191
192 /**
193  * wb_wait_for_completion - wait for completion of bdi_writeback_works
194  * @bdi: bdi work items were issued to
195  * @done: target wb_completion
196  *
197  * Wait for one or more work items issued to @bdi with their ->done field
198  * set to @done, which should have been defined with
199  * DEFINE_WB_COMPLETION_ONSTACK().  This function returns after all such
200  * work items are completed.  Work items which are waited upon aren't freed
201  * automatically on completion.
202  */
203 static void wb_wait_for_completion(struct backing_dev_info *bdi,
204                                    struct wb_completion *done)
205 {
206         atomic_dec(&done->cnt);         /* put down the initial count */
207         wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
208 }
209
210 #ifdef CONFIG_CGROUP_WRITEBACK
211
212 /* parameters for foreign inode detection, see wb_detach_inode() */
213 #define WB_FRN_TIME_SHIFT       13      /* 1s = 2^13, upto 8 secs w/ 16bit */
214 #define WB_FRN_TIME_AVG_SHIFT   3       /* avg = avg * 7/8 + new * 1/8 */
215 #define WB_FRN_TIME_CUT_DIV     2       /* ignore rounds < avg / 2 */
216 #define WB_FRN_TIME_PERIOD      (2 * (1 << WB_FRN_TIME_SHIFT))  /* 2s */
217
218 #define WB_FRN_HIST_SLOTS       16      /* inode->i_wb_frn_history is 16bit */
219 #define WB_FRN_HIST_UNIT        (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
220                                         /* each slot's duration is 2s / 16 */
221 #define WB_FRN_HIST_THR_SLOTS   (WB_FRN_HIST_SLOTS / 2)
222                                         /* if foreign slots >= 8, switch */
223 #define WB_FRN_HIST_MAX_SLOTS   (WB_FRN_HIST_THR_SLOTS / 2 + 1)
224                                         /* one round can affect upto 5 slots */
225
226 void __inode_attach_wb(struct inode *inode, struct page *page)
227 {
228         struct backing_dev_info *bdi = inode_to_bdi(inode);
229         struct bdi_writeback *wb = NULL;
230
231         if (inode_cgwb_enabled(inode)) {
232                 struct cgroup_subsys_state *memcg_css;
233
234                 if (page) {
235                         memcg_css = mem_cgroup_css_from_page(page);
236                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
237                 } else {
238                         /* must pin memcg_css, see wb_get_create() */
239                         memcg_css = task_get_css(current, memory_cgrp_id);
240                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
241                         css_put(memcg_css);
242                 }
243         }
244
245         if (!wb)
246                 wb = &bdi->wb;
247
248         /*
249          * There may be multiple instances of this function racing to
250          * update the same inode.  Use cmpxchg() to tell the winner.
251          */
252         if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
253                 wb_put(wb);
254 }
255
256 /**
257  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
258  * @inode: inode of interest with i_lock held
259  *
260  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
261  * held on entry and is released on return.  The returned wb is guaranteed
262  * to stay @inode's associated wb until its list_lock is released.
263  */
264 static struct bdi_writeback *
265 locked_inode_to_wb_and_lock_list(struct inode *inode)
266         __releases(&inode->i_lock)
267         __acquires(&wb->list_lock)
268 {
269         while (true) {
270                 struct bdi_writeback *wb = inode_to_wb(inode);
271
272                 /*
273                  * inode_to_wb() association is protected by both
274                  * @inode->i_lock and @wb->list_lock but list_lock nests
275                  * outside i_lock.  Drop i_lock and verify that the
276                  * association hasn't changed after acquiring list_lock.
277                  */
278                 wb_get(wb);
279                 spin_unlock(&inode->i_lock);
280                 spin_lock(&wb->list_lock);
281                 wb_put(wb);             /* not gonna deref it anymore */
282
283                 /* i_wb may have changed inbetween, can't use inode_to_wb() */
284                 if (likely(wb == inode->i_wb))
285                         return wb;      /* @inode already has ref */
286
287                 spin_unlock(&wb->list_lock);
288                 cpu_relax();
289                 spin_lock(&inode->i_lock);
290         }
291 }
292
293 /**
294  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
295  * @inode: inode of interest
296  *
297  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
298  * on entry.
299  */
300 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
301         __acquires(&wb->list_lock)
302 {
303         spin_lock(&inode->i_lock);
304         return locked_inode_to_wb_and_lock_list(inode);
305 }
306
307 struct inode_switch_wbs_context {
308         struct inode            *inode;
309         struct bdi_writeback    *new_wb;
310
311         struct rcu_head         rcu_head;
312         struct work_struct      work;
313 };
314
315 static void inode_switch_wbs_work_fn(struct work_struct *work)
316 {
317         struct inode_switch_wbs_context *isw =
318                 container_of(work, struct inode_switch_wbs_context, work);
319         struct inode *inode = isw->inode;
320         struct super_block *sb = inode->i_sb;
321         struct address_space *mapping = inode->i_mapping;
322         struct bdi_writeback *old_wb = inode->i_wb;
323         struct bdi_writeback *new_wb = isw->new_wb;
324         struct radix_tree_iter iter;
325         bool switched = false;
326         void **slot;
327
328         /*
329          * By the time control reaches here, RCU grace period has passed
330          * since I_WB_SWITCH assertion and all wb stat update transactions
331          * between unlocked_inode_to_wb_begin/end() are guaranteed to be
332          * synchronizing against mapping->tree_lock.
333          *
334          * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
335          * gives us exclusion against all wb related operations on @inode
336          * including IO list manipulations and stat updates.
337          */
338         if (old_wb < new_wb) {
339                 spin_lock(&old_wb->list_lock);
340                 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
341         } else {
342                 spin_lock(&new_wb->list_lock);
343                 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
344         }
345         spin_lock(&inode->i_lock);
346         spin_lock_irq(&mapping->tree_lock);
347
348         /*
349          * Once I_FREEING is visible under i_lock, the eviction path owns
350          * the inode and we shouldn't modify ->i_io_list.
351          */
352         if (unlikely(inode->i_state & I_FREEING))
353                 goto skip_switch;
354
355         /*
356          * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
357          * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
358          * pages actually under underwriteback.
359          */
360         radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
361                                    PAGECACHE_TAG_DIRTY) {
362                 struct page *page = radix_tree_deref_slot_protected(slot,
363                                                         &mapping->tree_lock);
364                 if (likely(page) && PageDirty(page)) {
365                         __dec_wb_stat(old_wb, WB_RECLAIMABLE);
366                         __inc_wb_stat(new_wb, WB_RECLAIMABLE);
367                 }
368         }
369
370         radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
371                                    PAGECACHE_TAG_WRITEBACK) {
372                 struct page *page = radix_tree_deref_slot_protected(slot,
373                                                         &mapping->tree_lock);
374                 if (likely(page)) {
375                         WARN_ON_ONCE(!PageWriteback(page));
376                         __dec_wb_stat(old_wb, WB_WRITEBACK);
377                         __inc_wb_stat(new_wb, WB_WRITEBACK);
378                 }
379         }
380
381         wb_get(new_wb);
382
383         /*
384          * Transfer to @new_wb's IO list if necessary.  The specific list
385          * @inode was on is ignored and the inode is put on ->b_dirty which
386          * is always correct including from ->b_dirty_time.  The transfer
387          * preserves @inode->dirtied_when ordering.
388          */
389         if (!list_empty(&inode->i_io_list)) {
390                 struct inode *pos;
391
392                 inode_io_list_del_locked(inode, old_wb);
393                 inode->i_wb = new_wb;
394                 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
395                         if (time_after_eq(inode->dirtied_when,
396                                           pos->dirtied_when))
397                                 break;
398                 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
399         } else {
400                 inode->i_wb = new_wb;
401         }
402
403         /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
404         inode->i_wb_frn_winner = 0;
405         inode->i_wb_frn_avg_time = 0;
406         inode->i_wb_frn_history = 0;
407         switched = true;
408 skip_switch:
409         /*
410          * Paired with load_acquire in unlocked_inode_to_wb_begin() and
411          * ensures that the new wb is visible if they see !I_WB_SWITCH.
412          */
413         smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
414
415         spin_unlock_irq(&mapping->tree_lock);
416         spin_unlock(&inode->i_lock);
417         spin_unlock(&new_wb->list_lock);
418         spin_unlock(&old_wb->list_lock);
419
420         if (switched) {
421                 wb_wakeup(new_wb);
422                 wb_put(old_wb);
423         }
424         wb_put(new_wb);
425
426         iput(inode);
427         deactivate_super(sb);
428         kfree(isw);
429 }
430
431 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
432 {
433         struct inode_switch_wbs_context *isw = container_of(rcu_head,
434                                 struct inode_switch_wbs_context, rcu_head);
435
436         /* needs to grab bh-unsafe locks, bounce to work item */
437         INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
438         schedule_work(&isw->work);
439 }
440
441 /**
442  * inode_switch_wbs - change the wb association of an inode
443  * @inode: target inode
444  * @new_wb_id: ID of the new wb
445  *
446  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
447  * switching is performed asynchronously and may fail silently.
448  */
449 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
450 {
451         struct backing_dev_info *bdi = inode_to_bdi(inode);
452         struct cgroup_subsys_state *memcg_css;
453         struct inode_switch_wbs_context *isw;
454
455         /* noop if seems to be already in progress */
456         if (inode->i_state & I_WB_SWITCH)
457                 return;
458
459         isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
460         if (!isw)
461                 return;
462
463         /* find and pin the new wb */
464         rcu_read_lock();
465         memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
466         if (memcg_css)
467                 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
468         rcu_read_unlock();
469         if (!isw->new_wb)
470                 goto out_free;
471
472         /* while holding I_WB_SWITCH, no one else can update the association */
473         spin_lock(&inode->i_lock);
474
475         if (inode->i_state & (I_WB_SWITCH | I_FREEING) ||
476             inode_to_wb(inode) == isw->new_wb)
477                 goto out_unlock;
478
479         if (!atomic_inc_not_zero(&inode->i_sb->s_active))
480                 goto out_unlock;
481
482         inode->i_state |= I_WB_SWITCH;
483         spin_unlock(&inode->i_lock);
484
485         ihold(inode);
486         isw->inode = inode;
487
488         /*
489          * In addition to synchronizing among switchers, I_WB_SWITCH tells
490          * the RCU protected stat update paths to grab the mapping's
491          * tree_lock so that stat transfer can synchronize against them.
492          * Let's continue after I_WB_SWITCH is guaranteed to be visible.
493          */
494         call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
495         return;
496
497 out_unlock:
498         spin_unlock(&inode->i_lock);
499 out_free:
500         if (isw->new_wb)
501                 wb_put(isw->new_wb);
502         kfree(isw);
503 }
504
505 /**
506  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
507  * @wbc: writeback_control of interest
508  * @inode: target inode
509  *
510  * @inode is locked and about to be written back under the control of @wbc.
511  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
512  * writeback completion, wbc_detach_inode() should be called.  This is used
513  * to track the cgroup writeback context.
514  */
515 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
516                                  struct inode *inode)
517 {
518         if (!inode_cgwb_enabled(inode)) {
519                 spin_unlock(&inode->i_lock);
520                 return;
521         }
522
523         wbc->wb = inode_to_wb(inode);
524         wbc->inode = inode;
525
526         wbc->wb_id = wbc->wb->memcg_css->id;
527         wbc->wb_lcand_id = inode->i_wb_frn_winner;
528         wbc->wb_tcand_id = 0;
529         wbc->wb_bytes = 0;
530         wbc->wb_lcand_bytes = 0;
531         wbc->wb_tcand_bytes = 0;
532
533         wb_get(wbc->wb);
534         spin_unlock(&inode->i_lock);
535
536         /*
537          * A dying wb indicates that the memcg-blkcg mapping has changed
538          * and a new wb is already serving the memcg.  Switch immediately.
539          */
540         if (unlikely(wb_dying(wbc->wb)))
541                 inode_switch_wbs(inode, wbc->wb_id);
542 }
543
544 /**
545  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
546  * @wbc: writeback_control of the just finished writeback
547  *
548  * To be called after a writeback attempt of an inode finishes and undoes
549  * wbc_attach_and_unlock_inode().  Can be called under any context.
550  *
551  * As concurrent write sharing of an inode is expected to be very rare and
552  * memcg only tracks page ownership on first-use basis severely confining
553  * the usefulness of such sharing, cgroup writeback tracks ownership
554  * per-inode.  While the support for concurrent write sharing of an inode
555  * is deemed unnecessary, an inode being written to by different cgroups at
556  * different points in time is a lot more common, and, more importantly,
557  * charging only by first-use can too readily lead to grossly incorrect
558  * behaviors (single foreign page can lead to gigabytes of writeback to be
559  * incorrectly attributed).
560  *
561  * To resolve this issue, cgroup writeback detects the majority dirtier of
562  * an inode and transfers the ownership to it.  To avoid unnnecessary
563  * oscillation, the detection mechanism keeps track of history and gives
564  * out the switch verdict only if the foreign usage pattern is stable over
565  * a certain amount of time and/or writeback attempts.
566  *
567  * On each writeback attempt, @wbc tries to detect the majority writer
568  * using Boyer-Moore majority vote algorithm.  In addition to the byte
569  * count from the majority voting, it also counts the bytes written for the
570  * current wb and the last round's winner wb (max of last round's current
571  * wb, the winner from two rounds ago, and the last round's majority
572  * candidate).  Keeping track of the historical winner helps the algorithm
573  * to semi-reliably detect the most active writer even when it's not the
574  * absolute majority.
575  *
576  * Once the winner of the round is determined, whether the winner is
577  * foreign or not and how much IO time the round consumed is recorded in
578  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
579  * over a certain threshold, the switch verdict is given.
580  */
581 void wbc_detach_inode(struct writeback_control *wbc)
582 {
583         struct bdi_writeback *wb = wbc->wb;
584         struct inode *inode = wbc->inode;
585         unsigned long avg_time, max_bytes, max_time;
586         u16 history;
587         int max_id;
588
589         if (!wb)
590                 return;
591
592         history = inode->i_wb_frn_history;
593         avg_time = inode->i_wb_frn_avg_time;
594
595         /* pick the winner of this round */
596         if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
597             wbc->wb_bytes >= wbc->wb_tcand_bytes) {
598                 max_id = wbc->wb_id;
599                 max_bytes = wbc->wb_bytes;
600         } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
601                 max_id = wbc->wb_lcand_id;
602                 max_bytes = wbc->wb_lcand_bytes;
603         } else {
604                 max_id = wbc->wb_tcand_id;
605                 max_bytes = wbc->wb_tcand_bytes;
606         }
607
608         /*
609          * Calculate the amount of IO time the winner consumed and fold it
610          * into the running average kept per inode.  If the consumed IO
611          * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
612          * deciding whether to switch or not.  This is to prevent one-off
613          * small dirtiers from skewing the verdict.
614          */
615         max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
616                                 wb->avg_write_bandwidth);
617         if (avg_time)
618                 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
619                             (avg_time >> WB_FRN_TIME_AVG_SHIFT);
620         else
621                 avg_time = max_time;    /* immediate catch up on first run */
622
623         if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
624                 int slots;
625
626                 /*
627                  * The switch verdict is reached if foreign wb's consume
628                  * more than a certain proportion of IO time in a
629                  * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
630                  * history mask where each bit represents one sixteenth of
631                  * the period.  Determine the number of slots to shift into
632                  * history from @max_time.
633                  */
634                 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
635                             (unsigned long)WB_FRN_HIST_MAX_SLOTS);
636                 history <<= slots;
637                 if (wbc->wb_id != max_id)
638                         history |= (1U << slots) - 1;
639
640                 /*
641                  * Switch if the current wb isn't the consistent winner.
642                  * If there are multiple closely competing dirtiers, the
643                  * inode may switch across them repeatedly over time, which
644                  * is okay.  The main goal is avoiding keeping an inode on
645                  * the wrong wb for an extended period of time.
646                  */
647                 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
648                         inode_switch_wbs(inode, max_id);
649         }
650
651         /*
652          * Multiple instances of this function may race to update the
653          * following fields but we don't mind occassional inaccuracies.
654          */
655         inode->i_wb_frn_winner = max_id;
656         inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
657         inode->i_wb_frn_history = history;
658
659         wb_put(wbc->wb);
660         wbc->wb = NULL;
661 }
662
663 /**
664  * wbc_account_io - account IO issued during writeback
665  * @wbc: writeback_control of the writeback in progress
666  * @page: page being written out
667  * @bytes: number of bytes being written out
668  *
669  * @bytes from @page are about to written out during the writeback
670  * controlled by @wbc.  Keep the book for foreign inode detection.  See
671  * wbc_detach_inode().
672  */
673 void wbc_account_io(struct writeback_control *wbc, struct page *page,
674                     size_t bytes)
675 {
676         int id;
677
678         /*
679          * pageout() path doesn't attach @wbc to the inode being written
680          * out.  This is intentional as we don't want the function to block
681          * behind a slow cgroup.  Ultimately, we want pageout() to kick off
682          * regular writeback instead of writing things out itself.
683          */
684         if (!wbc->wb)
685                 return;
686
687         id = mem_cgroup_css_from_page(page)->id;
688
689         if (id == wbc->wb_id) {
690                 wbc->wb_bytes += bytes;
691                 return;
692         }
693
694         if (id == wbc->wb_lcand_id)
695                 wbc->wb_lcand_bytes += bytes;
696
697         /* Boyer-Moore majority vote algorithm */
698         if (!wbc->wb_tcand_bytes)
699                 wbc->wb_tcand_id = id;
700         if (id == wbc->wb_tcand_id)
701                 wbc->wb_tcand_bytes += bytes;
702         else
703                 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
704 }
705 EXPORT_SYMBOL_GPL(wbc_account_io);
706
707 /**
708  * inode_congested - test whether an inode is congested
709  * @inode: inode to test for congestion (may be NULL)
710  * @cong_bits: mask of WB_[a]sync_congested bits to test
711  *
712  * Tests whether @inode is congested.  @cong_bits is the mask of congestion
713  * bits to test and the return value is the mask of set bits.
714  *
715  * If cgroup writeback is enabled for @inode, the congestion state is
716  * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
717  * associated with @inode is congested; otherwise, the root wb's congestion
718  * state is used.
719  *
720  * @inode is allowed to be NULL as this function is often called on
721  * mapping->host which is NULL for the swapper space.
722  */
723 int inode_congested(struct inode *inode, int cong_bits)
724 {
725         /*
726          * Once set, ->i_wb never becomes NULL while the inode is alive.
727          * Start transaction iff ->i_wb is visible.
728          */
729         if (inode && inode_to_wb_is_valid(inode)) {
730                 struct bdi_writeback *wb;
731                 bool locked, congested;
732
733                 wb = unlocked_inode_to_wb_begin(inode, &locked);
734                 congested = wb_congested(wb, cong_bits);
735                 unlocked_inode_to_wb_end(inode, locked);
736                 return congested;
737         }
738
739         return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
740 }
741 EXPORT_SYMBOL_GPL(inode_congested);
742
743 /**
744  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
745  * @wb: target bdi_writeback to split @nr_pages to
746  * @nr_pages: number of pages to write for the whole bdi
747  *
748  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
749  * relation to the total write bandwidth of all wb's w/ dirty inodes on
750  * @wb->bdi.
751  */
752 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
753 {
754         unsigned long this_bw = wb->avg_write_bandwidth;
755         unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
756
757         if (nr_pages == LONG_MAX)
758                 return LONG_MAX;
759
760         /*
761          * This may be called on clean wb's and proportional distribution
762          * may not make sense, just use the original @nr_pages in those
763          * cases.  In general, we wanna err on the side of writing more.
764          */
765         if (!tot_bw || this_bw >= tot_bw)
766                 return nr_pages;
767         else
768                 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
769 }
770
771 /**
772  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
773  * @bdi: target backing_dev_info
774  * @base_work: wb_writeback_work to issue
775  * @skip_if_busy: skip wb's which already have writeback in progress
776  *
777  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
778  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
779  * distributed to the busy wbs according to each wb's proportion in the
780  * total active write bandwidth of @bdi.
781  */
782 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
783                                   struct wb_writeback_work *base_work,
784                                   bool skip_if_busy)
785 {
786         struct bdi_writeback *last_wb = NULL;
787         struct bdi_writeback *wb = list_entry(&bdi->wb_list,
788                                               struct bdi_writeback, bdi_node);
789
790         might_sleep();
791 restart:
792         rcu_read_lock();
793         list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
794                 DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
795                 struct wb_writeback_work fallback_work;
796                 struct wb_writeback_work *work;
797                 long nr_pages;
798
799                 if (last_wb) {
800                         wb_put(last_wb);
801                         last_wb = NULL;
802                 }
803
804                 /* SYNC_ALL writes out I_DIRTY_TIME too */
805                 if (!wb_has_dirty_io(wb) &&
806                     (base_work->sync_mode == WB_SYNC_NONE ||
807                      list_empty(&wb->b_dirty_time)))
808                         continue;
809                 if (skip_if_busy && writeback_in_progress(wb))
810                         continue;
811
812                 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
813
814                 work = kmalloc(sizeof(*work), GFP_ATOMIC);
815                 if (work) {
816                         *work = *base_work;
817                         work->nr_pages = nr_pages;
818                         work->auto_free = 1;
819                         wb_queue_work(wb, work);
820                         continue;
821                 }
822
823                 /* alloc failed, execute synchronously using on-stack fallback */
824                 work = &fallback_work;
825                 *work = *base_work;
826                 work->nr_pages = nr_pages;
827                 work->auto_free = 0;
828                 work->done = &fallback_work_done;
829
830                 wb_queue_work(wb, work);
831
832                 /*
833                  * Pin @wb so that it stays on @bdi->wb_list.  This allows
834                  * continuing iteration from @wb after dropping and
835                  * regrabbing rcu read lock.
836                  */
837                 wb_get(wb);
838                 last_wb = wb;
839
840                 rcu_read_unlock();
841                 wb_wait_for_completion(bdi, &fallback_work_done);
842                 goto restart;
843         }
844         rcu_read_unlock();
845
846         if (last_wb)
847                 wb_put(last_wb);
848 }
849
850 #else   /* CONFIG_CGROUP_WRITEBACK */
851
852 static struct bdi_writeback *
853 locked_inode_to_wb_and_lock_list(struct inode *inode)
854         __releases(&inode->i_lock)
855         __acquires(&wb->list_lock)
856 {
857         struct bdi_writeback *wb = inode_to_wb(inode);
858
859         spin_unlock(&inode->i_lock);
860         spin_lock(&wb->list_lock);
861         return wb;
862 }
863
864 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
865         __acquires(&wb->list_lock)
866 {
867         struct bdi_writeback *wb = inode_to_wb(inode);
868
869         spin_lock(&wb->list_lock);
870         return wb;
871 }
872
873 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
874 {
875         return nr_pages;
876 }
877
878 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
879                                   struct wb_writeback_work *base_work,
880                                   bool skip_if_busy)
881 {
882         might_sleep();
883
884         if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
885                 base_work->auto_free = 0;
886                 wb_queue_work(&bdi->wb, base_work);
887         }
888 }
889
890 #endif  /* CONFIG_CGROUP_WRITEBACK */
891
892 void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
893                         bool range_cyclic, enum wb_reason reason)
894 {
895         struct wb_writeback_work *work;
896
897         if (!wb_has_dirty_io(wb))
898                 return;
899
900         /*
901          * This is WB_SYNC_NONE writeback, so if allocation fails just
902          * wakeup the thread for old dirty data writeback
903          */
904         work = kzalloc(sizeof(*work), GFP_ATOMIC);
905         if (!work) {
906                 trace_writeback_nowork(wb);
907                 wb_wakeup(wb);
908                 return;
909         }
910
911         work->sync_mode = WB_SYNC_NONE;
912         work->nr_pages  = nr_pages;
913         work->range_cyclic = range_cyclic;
914         work->reason    = reason;
915         work->auto_free = 1;
916
917         wb_queue_work(wb, work);
918 }
919
920 /**
921  * wb_start_background_writeback - start background writeback
922  * @wb: bdi_writback to write from
923  *
924  * Description:
925  *   This makes sure WB_SYNC_NONE background writeback happens. When
926  *   this function returns, it is only guaranteed that for given wb
927  *   some IO is happening if we are over background dirty threshold.
928  *   Caller need not hold sb s_umount semaphore.
929  */
930 void wb_start_background_writeback(struct bdi_writeback *wb)
931 {
932         /*
933          * We just wake up the flusher thread. It will perform background
934          * writeback as soon as there is no other work to do.
935          */
936         trace_writeback_wake_background(wb);
937         wb_wakeup(wb);
938 }
939
940 /*
941  * Remove the inode from the writeback list it is on.
942  */
943 void inode_io_list_del(struct inode *inode)
944 {
945         struct bdi_writeback *wb;
946
947         wb = inode_to_wb_and_lock_list(inode);
948         inode_io_list_del_locked(inode, wb);
949         spin_unlock(&wb->list_lock);
950 }
951
952 /*
953  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
954  * furthest end of its superblock's dirty-inode list.
955  *
956  * Before stamping the inode's ->dirtied_when, we check to see whether it is
957  * already the most-recently-dirtied inode on the b_dirty list.  If that is
958  * the case then the inode must have been redirtied while it was being written
959  * out and we don't reset its dirtied_when.
960  */
961 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
962 {
963         if (!list_empty(&wb->b_dirty)) {
964                 struct inode *tail;
965
966                 tail = wb_inode(wb->b_dirty.next);
967                 if (time_before(inode->dirtied_when, tail->dirtied_when))
968                         inode->dirtied_when = jiffies;
969         }
970         inode_io_list_move_locked(inode, wb, &wb->b_dirty);
971 }
972
973 /*
974  * requeue inode for re-scanning after bdi->b_io list is exhausted.
975  */
976 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
977 {
978         inode_io_list_move_locked(inode, wb, &wb->b_more_io);
979 }
980
981 static void inode_sync_complete(struct inode *inode)
982 {
983         inode->i_state &= ~I_SYNC;
984         /* If inode is clean an unused, put it into LRU now... */
985         inode_add_lru(inode);
986         /* Waiters must see I_SYNC cleared before being woken up */
987         smp_mb();
988         wake_up_bit(&inode->i_state, __I_SYNC);
989 }
990
991 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
992 {
993         bool ret = time_after(inode->dirtied_when, t);
994 #ifndef CONFIG_64BIT
995         /*
996          * For inodes being constantly redirtied, dirtied_when can get stuck.
997          * It _appears_ to be in the future, but is actually in distant past.
998          * This test is necessary to prevent such wrapped-around relative times
999          * from permanently stopping the whole bdi writeback.
1000          */
1001         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1002 #endif
1003         return ret;
1004 }
1005
1006 #define EXPIRE_DIRTY_ATIME 0x0001
1007
1008 /*
1009  * Move expired (dirtied before work->older_than_this) dirty inodes from
1010  * @delaying_queue to @dispatch_queue.
1011  */
1012 static int move_expired_inodes(struct list_head *delaying_queue,
1013                                struct list_head *dispatch_queue,
1014                                int flags,
1015                                struct wb_writeback_work *work)
1016 {
1017         unsigned long *older_than_this = NULL;
1018         unsigned long expire_time;
1019         LIST_HEAD(tmp);
1020         struct list_head *pos, *node;
1021         struct super_block *sb = NULL;
1022         struct inode *inode;
1023         int do_sb_sort = 0;
1024         int moved = 0;
1025
1026         if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1027                 older_than_this = work->older_than_this;
1028         else if (!work->for_sync) {
1029                 expire_time = jiffies - (dirtytime_expire_interval * HZ);
1030                 older_than_this = &expire_time;
1031         }
1032         while (!list_empty(delaying_queue)) {
1033                 inode = wb_inode(delaying_queue->prev);
1034                 if (older_than_this &&
1035                     inode_dirtied_after(inode, *older_than_this))
1036                         break;
1037                 list_move(&inode->i_io_list, &tmp);
1038                 moved++;
1039                 if (flags & EXPIRE_DIRTY_ATIME)
1040                         set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1041                 if (sb_is_blkdev_sb(inode->i_sb))
1042                         continue;
1043                 if (sb && sb != inode->i_sb)
1044                         do_sb_sort = 1;
1045                 sb = inode->i_sb;
1046         }
1047
1048         /* just one sb in list, splice to dispatch_queue and we're done */
1049         if (!do_sb_sort) {
1050                 list_splice(&tmp, dispatch_queue);
1051                 goto out;
1052         }
1053
1054         /* Move inodes from one superblock together */
1055         while (!list_empty(&tmp)) {
1056                 sb = wb_inode(tmp.prev)->i_sb;
1057                 list_for_each_prev_safe(pos, node, &tmp) {
1058                         inode = wb_inode(pos);
1059                         if (inode->i_sb == sb)
1060                                 list_move(&inode->i_io_list, dispatch_queue);
1061                 }
1062         }
1063 out:
1064         return moved;
1065 }
1066
1067 /*
1068  * Queue all expired dirty inodes for io, eldest first.
1069  * Before
1070  *         newly dirtied     b_dirty    b_io    b_more_io
1071  *         =============>    gf         edc     BA
1072  * After
1073  *         newly dirtied     b_dirty    b_io    b_more_io
1074  *         =============>    g          fBAedc
1075  *                                           |
1076  *                                           +--> dequeue for IO
1077  */
1078 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1079 {
1080         int moved;
1081
1082         assert_spin_locked(&wb->list_lock);
1083         list_splice_init(&wb->b_more_io, &wb->b_io);
1084         moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1085         moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1086                                      EXPIRE_DIRTY_ATIME, work);
1087         if (moved)
1088                 wb_io_lists_populated(wb);
1089         trace_writeback_queue_io(wb, work, moved);
1090 }
1091
1092 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1093 {
1094         int ret;
1095
1096         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1097                 trace_writeback_write_inode_start(inode, wbc);
1098                 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1099                 trace_writeback_write_inode(inode, wbc);
1100                 return ret;
1101         }
1102         return 0;
1103 }
1104
1105 /*
1106  * Wait for writeback on an inode to complete. Called with i_lock held.
1107  * Caller must make sure inode cannot go away when we drop i_lock.
1108  */
1109 static void __inode_wait_for_writeback(struct inode *inode)
1110         __releases(inode->i_lock)
1111         __acquires(inode->i_lock)
1112 {
1113         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1114         wait_queue_head_t *wqh;
1115
1116         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1117         while (inode->i_state & I_SYNC) {
1118                 spin_unlock(&inode->i_lock);
1119                 __wait_on_bit(wqh, &wq, bit_wait,
1120                               TASK_UNINTERRUPTIBLE);
1121                 spin_lock(&inode->i_lock);
1122         }
1123 }
1124
1125 /*
1126  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1127  */
1128 void inode_wait_for_writeback(struct inode *inode)
1129 {
1130         spin_lock(&inode->i_lock);
1131         __inode_wait_for_writeback(inode);
1132         spin_unlock(&inode->i_lock);
1133 }
1134
1135 /*
1136  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1137  * held and drops it. It is aimed for callers not holding any inode reference
1138  * so once i_lock is dropped, inode can go away.
1139  */
1140 static void inode_sleep_on_writeback(struct inode *inode)
1141         __releases(inode->i_lock)
1142 {
1143         DEFINE_WAIT(wait);
1144         wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1145         int sleep;
1146
1147         prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1148         sleep = inode->i_state & I_SYNC;
1149         spin_unlock(&inode->i_lock);
1150         if (sleep)
1151                 schedule();
1152         finish_wait(wqh, &wait);
1153 }
1154
1155 /*
1156  * Find proper writeback list for the inode depending on its current state and
1157  * possibly also change of its state while we were doing writeback.  Here we
1158  * handle things such as livelock prevention or fairness of writeback among
1159  * inodes. This function can be called only by flusher thread - noone else
1160  * processes all inodes in writeback lists and requeueing inodes behind flusher
1161  * thread's back can have unexpected consequences.
1162  */
1163 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1164                           struct writeback_control *wbc)
1165 {
1166         if (inode->i_state & I_FREEING)
1167                 return;
1168
1169         /*
1170          * Sync livelock prevention. Each inode is tagged and synced in one
1171          * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1172          * the dirty time to prevent enqueue and sync it again.
1173          */
1174         if ((inode->i_state & I_DIRTY) &&
1175             (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1176                 inode->dirtied_when = jiffies;
1177
1178         if (wbc->pages_skipped) {
1179                 /*
1180                  * writeback is not making progress due to locked
1181                  * buffers. Skip this inode for now.
1182                  */
1183                 redirty_tail(inode, wb);
1184                 return;
1185         }
1186
1187         if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1188                 /*
1189                  * We didn't write back all the pages.  nfs_writepages()
1190                  * sometimes bales out without doing anything.
1191                  */
1192                 if (wbc->nr_to_write <= 0) {
1193                         /* Slice used up. Queue for next turn. */
1194                         requeue_io(inode, wb);
1195                 } else {
1196                         /*
1197                          * Writeback blocked by something other than
1198                          * congestion. Delay the inode for some time to
1199                          * avoid spinning on the CPU (100% iowait)
1200                          * retrying writeback of the dirty page/inode
1201                          * that cannot be performed immediately.
1202                          */
1203                         redirty_tail(inode, wb);
1204                 }
1205         } else if (inode->i_state & I_DIRTY) {
1206                 /*
1207                  * Filesystems can dirty the inode during writeback operations,
1208                  * such as delayed allocation during submission or metadata
1209                  * updates after data IO completion.
1210                  */
1211                 redirty_tail(inode, wb);
1212         } else if (inode->i_state & I_DIRTY_TIME) {
1213                 inode->dirtied_when = jiffies;
1214                 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1215         } else {
1216                 /* The inode is clean. Remove from writeback lists. */
1217                 inode_io_list_del_locked(inode, wb);
1218         }
1219 }
1220
1221 /*
1222  * Write out an inode and its dirty pages. Do not update the writeback list
1223  * linkage. That is left to the caller. The caller is also responsible for
1224  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1225  */
1226 static int
1227 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1228 {
1229         struct address_space *mapping = inode->i_mapping;
1230         long nr_to_write = wbc->nr_to_write;
1231         unsigned dirty;
1232         int ret;
1233
1234         WARN_ON(!(inode->i_state & I_SYNC));
1235
1236         trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1237
1238         ret = do_writepages(mapping, wbc);
1239
1240         /*
1241          * Make sure to wait on the data before writing out the metadata.
1242          * This is important for filesystems that modify metadata on data
1243          * I/O completion. We don't do it for sync(2) writeback because it has a
1244          * separate, external IO completion path and ->sync_fs for guaranteeing
1245          * inode metadata is written back correctly.
1246          */
1247         if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1248                 int err = filemap_fdatawait(mapping);
1249                 if (ret == 0)
1250                         ret = err;
1251         }
1252
1253         /*
1254          * Some filesystems may redirty the inode during the writeback
1255          * due to delalloc, clear dirty metadata flags right before
1256          * write_inode()
1257          */
1258         spin_lock(&inode->i_lock);
1259
1260         dirty = inode->i_state & I_DIRTY;
1261         if (inode->i_state & I_DIRTY_TIME) {
1262                 if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
1263                     unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1264                     unlikely(time_after(jiffies,
1265                                         (inode->dirtied_time_when +
1266                                          dirtytime_expire_interval * HZ)))) {
1267                         dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1268                         trace_writeback_lazytime(inode);
1269                 }
1270         } else
1271                 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1272         inode->i_state &= ~dirty;
1273
1274         /*
1275          * Paired with smp_mb() in __mark_inode_dirty().  This allows
1276          * __mark_inode_dirty() to test i_state without grabbing i_lock -
1277          * either they see the I_DIRTY bits cleared or we see the dirtied
1278          * inode.
1279          *
1280          * I_DIRTY_PAGES is always cleared together above even if @mapping
1281          * still has dirty pages.  The flag is reinstated after smp_mb() if
1282          * necessary.  This guarantees that either __mark_inode_dirty()
1283          * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1284          */
1285         smp_mb();
1286
1287         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1288                 inode->i_state |= I_DIRTY_PAGES;
1289
1290         spin_unlock(&inode->i_lock);
1291
1292         if (dirty & I_DIRTY_TIME)
1293                 mark_inode_dirty_sync(inode);
1294         /* Don't write the inode if only I_DIRTY_PAGES was set */
1295         if (dirty & ~I_DIRTY_PAGES) {
1296                 int err = write_inode(inode, wbc);
1297                 if (ret == 0)
1298                         ret = err;
1299         }
1300         trace_writeback_single_inode(inode, wbc, nr_to_write);
1301         return ret;
1302 }
1303
1304 /*
1305  * Write out an inode's dirty pages. Either the caller has an active reference
1306  * on the inode or the inode has I_WILL_FREE set.
1307  *
1308  * This function is designed to be called for writing back one inode which
1309  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1310  * and does more profound writeback list handling in writeback_sb_inodes().
1311  */
1312 static int
1313 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
1314                        struct writeback_control *wbc)
1315 {
1316         int ret = 0;
1317
1318         spin_lock(&inode->i_lock);
1319         if (!atomic_read(&inode->i_count))
1320                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1321         else
1322                 WARN_ON(inode->i_state & I_WILL_FREE);
1323
1324         if (inode->i_state & I_SYNC) {
1325                 if (wbc->sync_mode != WB_SYNC_ALL)
1326                         goto out;
1327                 /*
1328                  * It's a data-integrity sync. We must wait. Since callers hold
1329                  * inode reference or inode has I_WILL_FREE set, it cannot go
1330                  * away under us.
1331                  */
1332                 __inode_wait_for_writeback(inode);
1333         }
1334         WARN_ON(inode->i_state & I_SYNC);
1335         /*
1336          * Skip inode if it is clean and we have no outstanding writeback in
1337          * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1338          * function since flusher thread may be doing for example sync in
1339          * parallel and if we move the inode, it could get skipped. So here we
1340          * make sure inode is on some writeback list and leave it there unless
1341          * we have completely cleaned the inode.
1342          */
1343         if (!(inode->i_state & I_DIRTY_ALL) &&
1344             (wbc->sync_mode != WB_SYNC_ALL ||
1345              !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1346                 goto out;
1347         inode->i_state |= I_SYNC;
1348         wbc_attach_and_unlock_inode(wbc, inode);
1349
1350         ret = __writeback_single_inode(inode, wbc);
1351
1352         wbc_detach_inode(wbc);
1353         spin_lock(&wb->list_lock);
1354         spin_lock(&inode->i_lock);
1355         /*
1356          * If inode is clean, remove it from writeback lists. Otherwise don't
1357          * touch it. See comment above for explanation.
1358          */
1359         if (!(inode->i_state & I_DIRTY_ALL))
1360                 inode_io_list_del_locked(inode, wb);
1361         spin_unlock(&wb->list_lock);
1362         inode_sync_complete(inode);
1363 out:
1364         spin_unlock(&inode->i_lock);
1365         return ret;
1366 }
1367
1368 static long writeback_chunk_size(struct bdi_writeback *wb,
1369                                  struct wb_writeback_work *work)
1370 {
1371         long pages;
1372
1373         /*
1374          * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1375          * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1376          * here avoids calling into writeback_inodes_wb() more than once.
1377          *
1378          * The intended call sequence for WB_SYNC_ALL writeback is:
1379          *
1380          *      wb_writeback()
1381          *          writeback_sb_inodes()       <== called only once
1382          *              write_cache_pages()     <== called once for each inode
1383          *                   (quickly) tag currently dirty pages
1384          *                   (maybe slowly) sync all tagged pages
1385          */
1386         if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1387                 pages = LONG_MAX;
1388         else {
1389                 pages = min(wb->avg_write_bandwidth / 2,
1390                             global_wb_domain.dirty_limit / DIRTY_SCOPE);
1391                 pages = min(pages, work->nr_pages);
1392                 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1393                                    MIN_WRITEBACK_PAGES);
1394         }
1395
1396         return pages;
1397 }
1398
1399 /*
1400  * Write a portion of b_io inodes which belong to @sb.
1401  *
1402  * Return the number of pages and/or inodes written.
1403  *
1404  * NOTE! This is called with wb->list_lock held, and will
1405  * unlock and relock that for each inode it ends up doing
1406  * IO for.
1407  */
1408 static long writeback_sb_inodes(struct super_block *sb,
1409                                 struct bdi_writeback *wb,
1410                                 struct wb_writeback_work *work)
1411 {
1412         struct writeback_control wbc = {
1413                 .sync_mode              = work->sync_mode,
1414                 .tagged_writepages      = work->tagged_writepages,
1415                 .for_kupdate            = work->for_kupdate,
1416                 .for_background         = work->for_background,
1417                 .for_sync               = work->for_sync,
1418                 .range_cyclic           = work->range_cyclic,
1419                 .range_start            = 0,
1420                 .range_end              = LLONG_MAX,
1421         };
1422         unsigned long start_time = jiffies;
1423         long write_chunk;
1424         long wrote = 0;  /* count both pages and inodes */
1425
1426         while (!list_empty(&wb->b_io)) {
1427                 struct inode *inode = wb_inode(wb->b_io.prev);
1428
1429                 if (inode->i_sb != sb) {
1430                         if (work->sb) {
1431                                 /*
1432                                  * We only want to write back data for this
1433                                  * superblock, move all inodes not belonging
1434                                  * to it back onto the dirty list.
1435                                  */
1436                                 redirty_tail(inode, wb);
1437                                 continue;
1438                         }
1439
1440                         /*
1441                          * The inode belongs to a different superblock.
1442                          * Bounce back to the caller to unpin this and
1443                          * pin the next superblock.
1444                          */
1445                         break;
1446                 }
1447
1448                 /*
1449                  * Don't bother with new inodes or inodes being freed, first
1450                  * kind does not need periodic writeout yet, and for the latter
1451                  * kind writeout is handled by the freer.
1452                  */
1453                 spin_lock(&inode->i_lock);
1454                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1455                         spin_unlock(&inode->i_lock);
1456                         redirty_tail(inode, wb);
1457                         continue;
1458                 }
1459                 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1460                         /*
1461                          * If this inode is locked for writeback and we are not
1462                          * doing writeback-for-data-integrity, move it to
1463                          * b_more_io so that writeback can proceed with the
1464                          * other inodes on s_io.
1465                          *
1466                          * We'll have another go at writing back this inode
1467                          * when we completed a full scan of b_io.
1468                          */
1469                         spin_unlock(&inode->i_lock);
1470                         requeue_io(inode, wb);
1471                         trace_writeback_sb_inodes_requeue(inode);
1472                         continue;
1473                 }
1474                 spin_unlock(&wb->list_lock);
1475
1476                 /*
1477                  * We already requeued the inode if it had I_SYNC set and we
1478                  * are doing WB_SYNC_NONE writeback. So this catches only the
1479                  * WB_SYNC_ALL case.
1480                  */
1481                 if (inode->i_state & I_SYNC) {
1482                         /* Wait for I_SYNC. This function drops i_lock... */
1483                         inode_sleep_on_writeback(inode);
1484                         /* Inode may be gone, start again */
1485                         spin_lock(&wb->list_lock);
1486                         continue;
1487                 }
1488                 inode->i_state |= I_SYNC;
1489                 wbc_attach_and_unlock_inode(&wbc, inode);
1490
1491                 write_chunk = writeback_chunk_size(wb, work);
1492                 wbc.nr_to_write = write_chunk;
1493                 wbc.pages_skipped = 0;
1494
1495                 /*
1496                  * We use I_SYNC to pin the inode in memory. While it is set
1497                  * evict_inode() will wait so the inode cannot be freed.
1498                  */
1499                 __writeback_single_inode(inode, &wbc);
1500
1501                 wbc_detach_inode(&wbc);
1502                 work->nr_pages -= write_chunk - wbc.nr_to_write;
1503                 wrote += write_chunk - wbc.nr_to_write;
1504
1505                 if (need_resched()) {
1506                         /*
1507                          * We're trying to balance between building up a nice
1508                          * long list of IOs to improve our merge rate, and
1509                          * getting those IOs out quickly for anyone throttling
1510                          * in balance_dirty_pages().  cond_resched() doesn't
1511                          * unplug, so get our IOs out the door before we
1512                          * give up the CPU.
1513                          */
1514                         blk_flush_plug(current);
1515                         cond_resched();
1516                 }
1517
1518
1519                 spin_lock(&wb->list_lock);
1520                 spin_lock(&inode->i_lock);
1521                 if (!(inode->i_state & I_DIRTY_ALL))
1522                         wrote++;
1523                 requeue_inode(inode, wb, &wbc);
1524                 inode_sync_complete(inode);
1525                 spin_unlock(&inode->i_lock);
1526
1527                 /*
1528                  * bail out to wb_writeback() often enough to check
1529                  * background threshold and other termination conditions.
1530                  */
1531                 if (wrote) {
1532                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1533                                 break;
1534                         if (work->nr_pages <= 0)
1535                                 break;
1536                 }
1537         }
1538         return wrote;
1539 }
1540
1541 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1542                                   struct wb_writeback_work *work)
1543 {
1544         unsigned long start_time = jiffies;
1545         long wrote = 0;
1546
1547         while (!list_empty(&wb->b_io)) {
1548                 struct inode *inode = wb_inode(wb->b_io.prev);
1549                 struct super_block *sb = inode->i_sb;
1550
1551                 if (!trylock_super(sb)) {
1552                         /*
1553                          * trylock_super() may fail consistently due to
1554                          * s_umount being grabbed by someone else. Don't use
1555                          * requeue_io() to avoid busy retrying the inode/sb.
1556                          */
1557                         redirty_tail(inode, wb);
1558                         continue;
1559                 }
1560                 wrote += writeback_sb_inodes(sb, wb, work);
1561                 up_read(&sb->s_umount);
1562
1563                 /* refer to the same tests at the end of writeback_sb_inodes */
1564                 if (wrote) {
1565                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1566                                 break;
1567                         if (work->nr_pages <= 0)
1568                                 break;
1569                 }
1570         }
1571         /* Leave any unwritten inodes on b_io */
1572         return wrote;
1573 }
1574
1575 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1576                                 enum wb_reason reason)
1577 {
1578         struct wb_writeback_work work = {
1579                 .nr_pages       = nr_pages,
1580                 .sync_mode      = WB_SYNC_NONE,
1581                 .range_cyclic   = 1,
1582                 .reason         = reason,
1583         };
1584         struct blk_plug plug;
1585
1586         blk_start_plug(&plug);
1587         spin_lock(&wb->list_lock);
1588         if (list_empty(&wb->b_io))
1589                 queue_io(wb, &work);
1590         __writeback_inodes_wb(wb, &work);
1591         spin_unlock(&wb->list_lock);
1592         blk_finish_plug(&plug);
1593
1594         return nr_pages - work.nr_pages;
1595 }
1596
1597 /*
1598  * Explicit flushing or periodic writeback of "old" data.
1599  *
1600  * Define "old": the first time one of an inode's pages is dirtied, we mark the
1601  * dirtying-time in the inode's address_space.  So this periodic writeback code
1602  * just walks the superblock inode list, writing back any inodes which are
1603  * older than a specific point in time.
1604  *
1605  * Try to run once per dirty_writeback_interval.  But if a writeback event
1606  * takes longer than a dirty_writeback_interval interval, then leave a
1607  * one-second gap.
1608  *
1609  * older_than_this takes precedence over nr_to_write.  So we'll only write back
1610  * all dirty pages if they are all attached to "old" mappings.
1611  */
1612 static long wb_writeback(struct bdi_writeback *wb,
1613                          struct wb_writeback_work *work)
1614 {
1615         unsigned long wb_start = jiffies;
1616         long nr_pages = work->nr_pages;
1617         unsigned long oldest_jif;
1618         struct inode *inode;
1619         long progress;
1620         struct blk_plug plug;
1621
1622         oldest_jif = jiffies;
1623         work->older_than_this = &oldest_jif;
1624
1625         blk_start_plug(&plug);
1626         spin_lock(&wb->list_lock);
1627         for (;;) {
1628                 /*
1629                  * Stop writeback when nr_pages has been consumed
1630                  */
1631                 if (work->nr_pages <= 0)
1632                         break;
1633
1634                 /*
1635                  * Background writeout and kupdate-style writeback may
1636                  * run forever. Stop them if there is other work to do
1637                  * so that e.g. sync can proceed. They'll be restarted
1638                  * after the other works are all done.
1639                  */
1640                 if ((work->for_background || work->for_kupdate) &&
1641                     !list_empty(&wb->work_list))
1642                         break;
1643
1644                 /*
1645                  * For background writeout, stop when we are below the
1646                  * background dirty threshold
1647                  */
1648                 if (work->for_background && !wb_over_bg_thresh(wb))
1649                         break;
1650
1651                 /*
1652                  * Kupdate and background works are special and we want to
1653                  * include all inodes that need writing. Livelock avoidance is
1654                  * handled by these works yielding to any other work so we are
1655                  * safe.
1656                  */
1657                 if (work->for_kupdate) {
1658                         oldest_jif = jiffies -
1659                                 msecs_to_jiffies(dirty_expire_interval * 10);
1660                 } else if (work->for_background)
1661                         oldest_jif = jiffies;
1662
1663                 trace_writeback_start(wb, work);
1664                 if (list_empty(&wb->b_io))
1665                         queue_io(wb, work);
1666                 if (work->sb)
1667                         progress = writeback_sb_inodes(work->sb, wb, work);
1668                 else
1669                         progress = __writeback_inodes_wb(wb, work);
1670                 trace_writeback_written(wb, work);
1671
1672                 wb_update_bandwidth(wb, wb_start);
1673
1674                 /*
1675                  * Did we write something? Try for more
1676                  *
1677                  * Dirty inodes are moved to b_io for writeback in batches.
1678                  * The completion of the current batch does not necessarily
1679                  * mean the overall work is done. So we keep looping as long
1680                  * as made some progress on cleaning pages or inodes.
1681                  */
1682                 if (progress)
1683                         continue;
1684                 /*
1685                  * No more inodes for IO, bail
1686                  */
1687                 if (list_empty(&wb->b_more_io))
1688                         break;
1689                 /*
1690                  * Nothing written. Wait for some inode to
1691                  * become available for writeback. Otherwise
1692                  * we'll just busyloop.
1693                  */
1694                 if (!list_empty(&wb->b_more_io))  {
1695                         trace_writeback_wait(wb, work);
1696                         inode = wb_inode(wb->b_more_io.prev);
1697                         spin_lock(&inode->i_lock);
1698                         spin_unlock(&wb->list_lock);
1699                         /* This function drops i_lock... */
1700                         inode_sleep_on_writeback(inode);
1701                         spin_lock(&wb->list_lock);
1702                 }
1703         }
1704         spin_unlock(&wb->list_lock);
1705         blk_finish_plug(&plug);
1706
1707         return nr_pages - work->nr_pages;
1708 }
1709
1710 /*
1711  * Return the next wb_writeback_work struct that hasn't been processed yet.
1712  */
1713 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1714 {
1715         struct wb_writeback_work *work = NULL;
1716
1717         spin_lock_bh(&wb->work_lock);
1718         if (!list_empty(&wb->work_list)) {
1719                 work = list_entry(wb->work_list.next,
1720                                   struct wb_writeback_work, list);
1721                 list_del_init(&work->list);
1722         }
1723         spin_unlock_bh(&wb->work_lock);
1724         return work;
1725 }
1726
1727 /*
1728  * Add in the number of potentially dirty inodes, because each inode
1729  * write can dirty pagecache in the underlying blockdev.
1730  */
1731 static unsigned long get_nr_dirty_pages(void)
1732 {
1733         return global_page_state(NR_FILE_DIRTY) +
1734                 global_page_state(NR_UNSTABLE_NFS) +
1735                 get_nr_dirty_inodes();
1736 }
1737
1738 static long wb_check_background_flush(struct bdi_writeback *wb)
1739 {
1740         if (wb_over_bg_thresh(wb)) {
1741
1742                 struct wb_writeback_work work = {
1743                         .nr_pages       = LONG_MAX,
1744                         .sync_mode      = WB_SYNC_NONE,
1745                         .for_background = 1,
1746                         .range_cyclic   = 1,
1747                         .reason         = WB_REASON_BACKGROUND,
1748                 };
1749
1750                 return wb_writeback(wb, &work);
1751         }
1752
1753         return 0;
1754 }
1755
1756 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1757 {
1758         unsigned long expired;
1759         long nr_pages;
1760
1761         /*
1762          * When set to zero, disable periodic writeback
1763          */
1764         if (!dirty_writeback_interval)
1765                 return 0;
1766
1767         expired = wb->last_old_flush +
1768                         msecs_to_jiffies(dirty_writeback_interval * 10);
1769         if (time_before(jiffies, expired))
1770                 return 0;
1771
1772         wb->last_old_flush = jiffies;
1773         nr_pages = get_nr_dirty_pages();
1774
1775         if (nr_pages) {
1776                 struct wb_writeback_work work = {
1777                         .nr_pages       = nr_pages,
1778                         .sync_mode      = WB_SYNC_NONE,
1779                         .for_kupdate    = 1,
1780                         .range_cyclic   = 1,
1781                         .reason         = WB_REASON_PERIODIC,
1782                 };
1783
1784                 return wb_writeback(wb, &work);
1785         }
1786
1787         return 0;
1788 }
1789
1790 /*
1791  * Retrieve work items and do the writeback they describe
1792  */
1793 static long wb_do_writeback(struct bdi_writeback *wb)
1794 {
1795         struct wb_writeback_work *work;
1796         long wrote = 0;
1797
1798         set_bit(WB_writeback_running, &wb->state);
1799         while ((work = get_next_work_item(wb)) != NULL) {
1800                 struct wb_completion *done = work->done;
1801
1802                 trace_writeback_exec(wb, work);
1803
1804                 wrote += wb_writeback(wb, work);
1805
1806                 if (work->auto_free)
1807                         kfree(work);
1808                 if (done && atomic_dec_and_test(&done->cnt))
1809                         wake_up_all(&wb->bdi->wb_waitq);
1810         }
1811
1812         /*
1813          * Check for periodic writeback, kupdated() style
1814          */
1815         wrote += wb_check_old_data_flush(wb);
1816         wrote += wb_check_background_flush(wb);
1817         clear_bit(WB_writeback_running, &wb->state);
1818
1819         return wrote;
1820 }
1821
1822 /*
1823  * Handle writeback of dirty data for the device backed by this bdi. Also
1824  * reschedules periodically and does kupdated style flushing.
1825  */
1826 void wb_workfn(struct work_struct *work)
1827 {
1828         struct bdi_writeback *wb = container_of(to_delayed_work(work),
1829                                                 struct bdi_writeback, dwork);
1830         long pages_written;
1831
1832         set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1833         current->flags |= PF_SWAPWRITE;
1834
1835         if (likely(!current_is_workqueue_rescuer() ||
1836                    !test_bit(WB_registered, &wb->state))) {
1837                 /*
1838                  * The normal path.  Keep writing back @wb until its
1839                  * work_list is empty.  Note that this path is also taken
1840                  * if @wb is shutting down even when we're running off the
1841                  * rescuer as work_list needs to be drained.
1842                  */
1843                 do {
1844                         pages_written = wb_do_writeback(wb);
1845                         trace_writeback_pages_written(pages_written);
1846                 } while (!list_empty(&wb->work_list));
1847         } else {
1848                 /*
1849                  * bdi_wq can't get enough workers and we're running off
1850                  * the emergency worker.  Don't hog it.  Hopefully, 1024 is
1851                  * enough for efficient IO.
1852                  */
1853                 pages_written = writeback_inodes_wb(wb, 1024,
1854                                                     WB_REASON_FORKER_THREAD);
1855                 trace_writeback_pages_written(pages_written);
1856         }
1857
1858         if (!list_empty(&wb->work_list))
1859                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
1860         else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1861                 wb_wakeup_delayed(wb);
1862
1863         current->flags &= ~PF_SWAPWRITE;
1864 }
1865
1866 /*
1867  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
1868  * the whole world.
1869  */
1870 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1871 {
1872         struct backing_dev_info *bdi;
1873
1874         if (!nr_pages)
1875                 nr_pages = get_nr_dirty_pages();
1876
1877         rcu_read_lock();
1878         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1879                 struct bdi_writeback *wb;
1880
1881                 if (!bdi_has_dirty_io(bdi))
1882                         continue;
1883
1884                 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
1885                         wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
1886                                            false, reason);
1887         }
1888         rcu_read_unlock();
1889 }
1890
1891 /*
1892  * Wake up bdi's periodically to make sure dirtytime inodes gets
1893  * written back periodically.  We deliberately do *not* check the
1894  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1895  * kernel to be constantly waking up once there are any dirtytime
1896  * inodes on the system.  So instead we define a separate delayed work
1897  * function which gets called much more rarely.  (By default, only
1898  * once every 12 hours.)
1899  *
1900  * If there is any other write activity going on in the file system,
1901  * this function won't be necessary.  But if the only thing that has
1902  * happened on the file system is a dirtytime inode caused by an atime
1903  * update, we need this infrastructure below to make sure that inode
1904  * eventually gets pushed out to disk.
1905  */
1906 static void wakeup_dirtytime_writeback(struct work_struct *w);
1907 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
1908
1909 static void wakeup_dirtytime_writeback(struct work_struct *w)
1910 {
1911         struct backing_dev_info *bdi;
1912
1913         rcu_read_lock();
1914         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1915                 struct bdi_writeback *wb;
1916
1917                 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
1918                         if (!list_empty(&wb->b_dirty_time))
1919                                 wb_wakeup(wb);
1920         }
1921         rcu_read_unlock();
1922         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1923 }
1924
1925 static int __init start_dirtytime_writeback(void)
1926 {
1927         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1928         return 0;
1929 }
1930 __initcall(start_dirtytime_writeback);
1931
1932 int dirtytime_interval_handler(struct ctl_table *table, int write,
1933                                void __user *buffer, size_t *lenp, loff_t *ppos)
1934 {
1935         int ret;
1936
1937         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1938         if (ret == 0 && write)
1939                 mod_delayed_work(system_wq, &dirtytime_work, 0);
1940         return ret;
1941 }
1942
1943 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1944 {
1945         if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1946                 struct dentry *dentry;
1947                 const char *name = "?";
1948
1949                 dentry = d_find_alias(inode);
1950                 if (dentry) {
1951                         spin_lock(&dentry->d_lock);
1952                         name = (const char *) dentry->d_name.name;
1953                 }
1954                 printk(KERN_DEBUG
1955                        "%s(%d): dirtied inode %lu (%s) on %s\n",
1956                        current->comm, task_pid_nr(current), inode->i_ino,
1957                        name, inode->i_sb->s_id);
1958                 if (dentry) {
1959                         spin_unlock(&dentry->d_lock);
1960                         dput(dentry);
1961                 }
1962         }
1963 }
1964
1965 /**
1966  *      __mark_inode_dirty -    internal function
1967  *      @inode: inode to mark
1968  *      @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1969  *      Mark an inode as dirty. Callers should use mark_inode_dirty or
1970  *      mark_inode_dirty_sync.
1971  *
1972  * Put the inode on the super block's dirty list.
1973  *
1974  * CAREFUL! We mark it dirty unconditionally, but move it onto the
1975  * dirty list only if it is hashed or if it refers to a blockdev.
1976  * If it was not hashed, it will never be added to the dirty list
1977  * even if it is later hashed, as it will have been marked dirty already.
1978  *
1979  * In short, make sure you hash any inodes _before_ you start marking
1980  * them dirty.
1981  *
1982  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1983  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
1984  * the kernel-internal blockdev inode represents the dirtying time of the
1985  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
1986  * page->mapping->host, so the page-dirtying time is recorded in the internal
1987  * blockdev inode.
1988  */
1989 void __mark_inode_dirty(struct inode *inode, int flags)
1990 {
1991 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
1992         struct super_block *sb = inode->i_sb;
1993         int dirtytime;
1994
1995         trace_writeback_mark_inode_dirty(inode, flags);
1996
1997         /*
1998          * Don't do this for I_DIRTY_PAGES - that doesn't actually
1999          * dirty the inode itself
2000          */
2001         if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
2002                 trace_writeback_dirty_inode_start(inode, flags);
2003
2004                 if (sb->s_op->dirty_inode)
2005                         sb->s_op->dirty_inode(inode, flags);
2006
2007                 trace_writeback_dirty_inode(inode, flags);
2008         }
2009         if (flags & I_DIRTY_INODE)
2010                 flags &= ~I_DIRTY_TIME;
2011         dirtytime = flags & I_DIRTY_TIME;
2012
2013         /*
2014          * Paired with smp_mb() in __writeback_single_inode() for the
2015          * following lockless i_state test.  See there for details.
2016          */
2017         smp_mb();
2018
2019         if (((inode->i_state & flags) == flags) ||
2020             (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2021                 return;
2022
2023         if (unlikely(block_dump))
2024                 block_dump___mark_inode_dirty(inode);
2025
2026         spin_lock(&inode->i_lock);
2027         if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2028                 goto out_unlock_inode;
2029         if ((inode->i_state & flags) != flags) {
2030                 const int was_dirty = inode->i_state & I_DIRTY;
2031
2032                 inode_attach_wb(inode, NULL);
2033
2034                 if (flags & I_DIRTY_INODE)
2035                         inode->i_state &= ~I_DIRTY_TIME;
2036                 inode->i_state |= flags;
2037
2038                 /*
2039                  * If the inode is being synced, just update its dirty state.
2040                  * The unlocker will place the inode on the appropriate
2041                  * superblock list, based upon its state.
2042                  */
2043                 if (inode->i_state & I_SYNC)
2044                         goto out_unlock_inode;
2045
2046                 /*
2047                  * Only add valid (hashed) inodes to the superblock's
2048                  * dirty list.  Add blockdev inodes as well.
2049                  */
2050                 if (!S_ISBLK(inode->i_mode)) {
2051                         if (inode_unhashed(inode))
2052                                 goto out_unlock_inode;
2053                 }
2054                 if (inode->i_state & I_FREEING)
2055                         goto out_unlock_inode;
2056
2057                 /*
2058                  * If the inode was already on b_dirty/b_io/b_more_io, don't
2059                  * reposition it (that would break b_dirty time-ordering).
2060                  */
2061                 if (!was_dirty) {
2062                         struct bdi_writeback *wb;
2063                         struct list_head *dirty_list;
2064                         bool wakeup_bdi = false;
2065
2066                         wb = locked_inode_to_wb_and_lock_list(inode);
2067
2068                         WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2069                              !test_bit(WB_registered, &wb->state),
2070                              "bdi-%s not registered\n", wb->bdi->name);
2071
2072                         inode->dirtied_when = jiffies;
2073                         if (dirtytime)
2074                                 inode->dirtied_time_when = jiffies;
2075
2076                         if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
2077                                 dirty_list = &wb->b_dirty;
2078                         else
2079                                 dirty_list = &wb->b_dirty_time;
2080
2081                         wakeup_bdi = inode_io_list_move_locked(inode, wb,
2082                                                                dirty_list);
2083
2084                         spin_unlock(&wb->list_lock);
2085                         trace_writeback_dirty_inode_enqueue(inode);
2086
2087                         /*
2088                          * If this is the first dirty inode for this bdi,
2089                          * we have to wake-up the corresponding bdi thread
2090                          * to make sure background write-back happens
2091                          * later.
2092                          */
2093                         if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2094                                 wb_wakeup_delayed(wb);
2095                         return;
2096                 }
2097         }
2098 out_unlock_inode:
2099         spin_unlock(&inode->i_lock);
2100
2101 #undef I_DIRTY_INODE
2102 }
2103 EXPORT_SYMBOL(__mark_inode_dirty);
2104
2105 /*
2106  * The @s_sync_lock is used to serialise concurrent sync operations
2107  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2108  * Concurrent callers will block on the s_sync_lock rather than doing contending
2109  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2110  * has been issued up to the time this function is enter is guaranteed to be
2111  * completed by the time we have gained the lock and waited for all IO that is
2112  * in progress regardless of the order callers are granted the lock.
2113  */
2114 static void wait_sb_inodes(struct super_block *sb)
2115 {
2116         struct inode *inode, *old_inode = NULL;
2117
2118         /*
2119          * We need to be protected against the filesystem going from
2120          * r/o to r/w or vice versa.
2121          */
2122         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2123
2124         mutex_lock(&sb->s_sync_lock);
2125         spin_lock(&sb->s_inode_list_lock);
2126
2127         /*
2128          * Data integrity sync. Must wait for all pages under writeback,
2129          * because there may have been pages dirtied before our sync
2130          * call, but which had writeout started before we write it out.
2131          * In which case, the inode may not be on the dirty list, but
2132          * we still have to wait for that writeout.
2133          */
2134         list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
2135                 struct address_space *mapping = inode->i_mapping;
2136
2137                 spin_lock(&inode->i_lock);
2138                 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
2139                     (mapping->nrpages == 0)) {
2140                         spin_unlock(&inode->i_lock);
2141                         continue;
2142                 }
2143                 __iget(inode);
2144                 spin_unlock(&inode->i_lock);
2145                 spin_unlock(&sb->s_inode_list_lock);
2146
2147                 /*
2148                  * We hold a reference to 'inode' so it couldn't have been
2149                  * removed from s_inodes list while we dropped the
2150                  * s_inode_list_lock.  We cannot iput the inode now as we can
2151                  * be holding the last reference and we cannot iput it under
2152                  * s_inode_list_lock. So we keep the reference and iput it
2153                  * later.
2154                  */
2155                 iput(old_inode);
2156                 old_inode = inode;
2157
2158                 /*
2159                  * We keep the error status of individual mapping so that
2160                  * applications can catch the writeback error using fsync(2).
2161                  * See filemap_fdatawait_keep_errors() for details.
2162                  */
2163                 filemap_fdatawait_keep_errors(mapping);
2164
2165                 cond_resched();
2166
2167                 spin_lock(&sb->s_inode_list_lock);
2168         }
2169         spin_unlock(&sb->s_inode_list_lock);
2170         iput(old_inode);
2171         mutex_unlock(&sb->s_sync_lock);
2172 }
2173
2174 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2175                                      enum wb_reason reason, bool skip_if_busy)
2176 {
2177         DEFINE_WB_COMPLETION_ONSTACK(done);
2178         struct wb_writeback_work work = {
2179                 .sb                     = sb,
2180                 .sync_mode              = WB_SYNC_NONE,
2181                 .tagged_writepages      = 1,
2182                 .done                   = &done,
2183                 .nr_pages               = nr,
2184                 .reason                 = reason,
2185         };
2186         struct backing_dev_info *bdi = sb->s_bdi;
2187
2188         if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2189                 return;
2190         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2191
2192         bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2193         wb_wait_for_completion(bdi, &done);
2194 }
2195
2196 /**
2197  * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
2198  * @sb: the superblock
2199  * @nr: the number of pages to write
2200  * @reason: reason why some writeback work initiated
2201  *
2202  * Start writeback on some inodes on this super_block. No guarantees are made
2203  * on how many (if any) will be written, and this function does not wait
2204  * for IO completion of submitted IO.
2205  */
2206 void writeback_inodes_sb_nr(struct super_block *sb,
2207                             unsigned long nr,
2208                             enum wb_reason reason)
2209 {
2210         __writeback_inodes_sb_nr(sb, nr, reason, false);
2211 }
2212 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2213
2214 /**
2215  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
2216  * @sb: the superblock
2217  * @reason: reason why some writeback work was initiated
2218  *
2219  * Start writeback on some inodes on this super_block. No guarantees are made
2220  * on how many (if any) will be written, and this function does not wait
2221  * for IO completion of submitted IO.
2222  */
2223 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2224 {
2225         return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2226 }
2227 EXPORT_SYMBOL(writeback_inodes_sb);
2228
2229 /**
2230  * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
2231  * @sb: the superblock
2232  * @nr: the number of pages to write
2233  * @reason: the reason of writeback
2234  *
2235  * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
2236  * Returns 1 if writeback was started, 0 if not.
2237  */
2238 bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2239                                    enum wb_reason reason)
2240 {
2241         if (!down_read_trylock(&sb->s_umount))
2242                 return false;
2243
2244         __writeback_inodes_sb_nr(sb, nr, reason, true);
2245         up_read(&sb->s_umount);
2246         return true;
2247 }
2248 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
2249
2250 /**
2251  * try_to_writeback_inodes_sb - try to start writeback if none underway
2252  * @sb: the superblock
2253  * @reason: reason why some writeback work was initiated
2254  *
2255  * Implement by try_to_writeback_inodes_sb_nr()
2256  * Returns 1 if writeback was started, 0 if not.
2257  */
2258 bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2259 {
2260         return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2261 }
2262 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2263
2264 /**
2265  * sync_inodes_sb       -       sync sb inode pages
2266  * @sb: the superblock
2267  *
2268  * This function writes and waits on any dirty inode belonging to this
2269  * super_block.
2270  */
2271 void sync_inodes_sb(struct super_block *sb)
2272 {
2273         DEFINE_WB_COMPLETION_ONSTACK(done);
2274         struct wb_writeback_work work = {
2275                 .sb             = sb,
2276                 .sync_mode      = WB_SYNC_ALL,
2277                 .nr_pages       = LONG_MAX,
2278                 .range_cyclic   = 0,
2279                 .done           = &done,
2280                 .reason         = WB_REASON_SYNC,
2281                 .for_sync       = 1,
2282         };
2283         struct backing_dev_info *bdi = sb->s_bdi;
2284
2285         /*
2286          * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2287          * inodes under writeback and I_DIRTY_TIME inodes ignored by
2288          * bdi_has_dirty() need to be written out too.
2289          */
2290         if (bdi == &noop_backing_dev_info)
2291                 return;
2292         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2293
2294         bdi_split_work_to_wbs(bdi, &work, false);
2295         wb_wait_for_completion(bdi, &done);
2296
2297         wait_sb_inodes(sb);
2298 }
2299 EXPORT_SYMBOL(sync_inodes_sb);
2300
2301 /**
2302  * write_inode_now      -       write an inode to disk
2303  * @inode: inode to write to disk
2304  * @sync: whether the write should be synchronous or not
2305  *
2306  * This function commits an inode to disk immediately if it is dirty. This is
2307  * primarily needed by knfsd.
2308  *
2309  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2310  */
2311 int write_inode_now(struct inode *inode, int sync)
2312 {
2313         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
2314         struct writeback_control wbc = {
2315                 .nr_to_write = LONG_MAX,
2316                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2317                 .range_start = 0,
2318                 .range_end = LLONG_MAX,
2319         };
2320
2321         if (!mapping_cap_writeback_dirty(inode->i_mapping))
2322                 wbc.nr_to_write = 0;
2323
2324         might_sleep();
2325         return writeback_single_inode(inode, wb, &wbc);
2326 }
2327 EXPORT_SYMBOL(write_inode_now);
2328
2329 /**
2330  * sync_inode - write an inode and its pages to disk.
2331  * @inode: the inode to sync
2332  * @wbc: controls the writeback mode
2333  *
2334  * sync_inode() will write an inode and its pages to disk.  It will also
2335  * correctly update the inode on its superblock's dirty inode lists and will
2336  * update inode->i_state.
2337  *
2338  * The caller must have a ref on the inode.
2339  */
2340 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2341 {
2342         return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
2343 }
2344 EXPORT_SYMBOL(sync_inode);
2345
2346 /**
2347  * sync_inode_metadata - write an inode to disk
2348  * @inode: the inode to sync
2349  * @wait: wait for I/O to complete.
2350  *
2351  * Write an inode to disk and adjust its dirty state after completion.
2352  *
2353  * Note: only writes the actual inode, no associated data or other metadata.
2354  */
2355 int sync_inode_metadata(struct inode *inode, int wait)
2356 {
2357         struct writeback_control wbc = {
2358                 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2359                 .nr_to_write = 0, /* metadata-only */
2360         };
2361
2362         return sync_inode(inode, &wbc);
2363 }
2364 EXPORT_SYMBOL(sync_inode_metadata);