51c8a5b14cdfa1968808a4be164be7a39925cd4b
[cascardo/linux.git] / fs / fs-writeback.c
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002    Andrew Morton
12  *              Split out of fs/inode.c
13  *              Additions for address_space-based writeback
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include "internal.h"
31
32 /*
33  * 4MB minimal write chunk size
34  */
35 #define MIN_WRITEBACK_PAGES     (4096UL >> (PAGE_CACHE_SHIFT - 10))
36
37 struct wb_completion {
38         atomic_t                cnt;
39 };
40
41 /*
42  * Passed into wb_writeback(), essentially a subset of writeback_control
43  */
44 struct wb_writeback_work {
45         long nr_pages;
46         struct super_block *sb;
47         unsigned long *older_than_this;
48         enum writeback_sync_modes sync_mode;
49         unsigned int tagged_writepages:1;
50         unsigned int for_kupdate:1;
51         unsigned int range_cyclic:1;
52         unsigned int for_background:1;
53         unsigned int for_sync:1;        /* sync(2) WB_SYNC_ALL writeback */
54         unsigned int auto_free:1;       /* free on completion */
55         unsigned int single_wait:1;
56         unsigned int single_done:1;
57         enum wb_reason reason;          /* why was writeback initiated? */
58
59         struct list_head list;          /* pending work list */
60         struct wb_completion *done;     /* set if the caller waits */
61 };
62
63 /*
64  * If one wants to wait for one or more wb_writeback_works, each work's
65  * ->done should be set to a wb_completion defined using the following
66  * macro.  Once all work items are issued with wb_queue_work(), the caller
67  * can wait for the completion of all using wb_wait_for_completion().  Work
68  * items which are waited upon aren't freed automatically on completion.
69  */
70 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl)                              \
71         struct wb_completion cmpl = {                                   \
72                 .cnt            = ATOMIC_INIT(1),                       \
73         }
74
75
76 /*
77  * If an inode is constantly having its pages dirtied, but then the
78  * updates stop dirtytime_expire_interval seconds in the past, it's
79  * possible for the worst case time between when an inode has its
80  * timestamps updated and when they finally get written out to be two
81  * dirtytime_expire_intervals.  We set the default to 12 hours (in
82  * seconds), which means most of the time inodes will have their
83  * timestamps written to disk after 12 hours, but in the worst case a
84  * few inodes might not their timestamps updated for 24 hours.
85  */
86 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
87
88 static inline struct inode *wb_inode(struct list_head *head)
89 {
90         return list_entry(head, struct inode, i_wb_list);
91 }
92
93 /*
94  * Include the creation of the trace points after defining the
95  * wb_writeback_work structure and inline functions so that the definition
96  * remains local to this file.
97  */
98 #define CREATE_TRACE_POINTS
99 #include <trace/events/writeback.h>
100
101 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
102
103 static bool wb_io_lists_populated(struct bdi_writeback *wb)
104 {
105         if (wb_has_dirty_io(wb)) {
106                 return false;
107         } else {
108                 set_bit(WB_has_dirty_io, &wb->state);
109                 WARN_ON_ONCE(!wb->avg_write_bandwidth);
110                 atomic_long_add(wb->avg_write_bandwidth,
111                                 &wb->bdi->tot_write_bandwidth);
112                 return true;
113         }
114 }
115
116 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
117 {
118         if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
119             list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
120                 clear_bit(WB_has_dirty_io, &wb->state);
121                 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
122                                         &wb->bdi->tot_write_bandwidth) < 0);
123         }
124 }
125
126 /**
127  * inode_wb_list_move_locked - move an inode onto a bdi_writeback IO list
128  * @inode: inode to be moved
129  * @wb: target bdi_writeback
130  * @head: one of @wb->b_{dirty|io|more_io}
131  *
132  * Move @inode->i_wb_list to @list of @wb and set %WB_has_dirty_io.
133  * Returns %true if @inode is the first occupant of the !dirty_time IO
134  * lists; otherwise, %false.
135  */
136 static bool inode_wb_list_move_locked(struct inode *inode,
137                                       struct bdi_writeback *wb,
138                                       struct list_head *head)
139 {
140         assert_spin_locked(&wb->list_lock);
141
142         list_move(&inode->i_wb_list, head);
143
144         /* dirty_time doesn't count as dirty_io until expiration */
145         if (head != &wb->b_dirty_time)
146                 return wb_io_lists_populated(wb);
147
148         wb_io_lists_depopulated(wb);
149         return false;
150 }
151
152 /**
153  * inode_wb_list_del_locked - remove an inode from its bdi_writeback IO list
154  * @inode: inode to be removed
155  * @wb: bdi_writeback @inode is being removed from
156  *
157  * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
158  * clear %WB_has_dirty_io if all are empty afterwards.
159  */
160 static void inode_wb_list_del_locked(struct inode *inode,
161                                      struct bdi_writeback *wb)
162 {
163         assert_spin_locked(&wb->list_lock);
164
165         list_del_init(&inode->i_wb_list);
166         wb_io_lists_depopulated(wb);
167 }
168
169 static void wb_wakeup(struct bdi_writeback *wb)
170 {
171         spin_lock_bh(&wb->work_lock);
172         if (test_bit(WB_registered, &wb->state))
173                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
174         spin_unlock_bh(&wb->work_lock);
175 }
176
177 static void wb_queue_work(struct bdi_writeback *wb,
178                           struct wb_writeback_work *work)
179 {
180         trace_writeback_queue(wb->bdi, work);
181
182         spin_lock_bh(&wb->work_lock);
183         if (!test_bit(WB_registered, &wb->state)) {
184                 if (work->single_wait)
185                         work->single_done = 1;
186                 goto out_unlock;
187         }
188         if (work->done)
189                 atomic_inc(&work->done->cnt);
190         list_add_tail(&work->list, &wb->work_list);
191         mod_delayed_work(bdi_wq, &wb->dwork, 0);
192 out_unlock:
193         spin_unlock_bh(&wb->work_lock);
194 }
195
196 /**
197  * wb_wait_for_completion - wait for completion of bdi_writeback_works
198  * @bdi: bdi work items were issued to
199  * @done: target wb_completion
200  *
201  * Wait for one or more work items issued to @bdi with their ->done field
202  * set to @done, which should have been defined with
203  * DEFINE_WB_COMPLETION_ONSTACK().  This function returns after all such
204  * work items are completed.  Work items which are waited upon aren't freed
205  * automatically on completion.
206  */
207 static void wb_wait_for_completion(struct backing_dev_info *bdi,
208                                    struct wb_completion *done)
209 {
210         atomic_dec(&done->cnt);         /* put down the initial count */
211         wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
212 }
213
214 #ifdef CONFIG_CGROUP_WRITEBACK
215
216 /**
217  * inode_congested - test whether an inode is congested
218  * @inode: inode to test for congestion
219  * @cong_bits: mask of WB_[a]sync_congested bits to test
220  *
221  * Tests whether @inode is congested.  @cong_bits is the mask of congestion
222  * bits to test and the return value is the mask of set bits.
223  *
224  * If cgroup writeback is enabled for @inode, the congestion state is
225  * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
226  * associated with @inode is congested; otherwise, the root wb's congestion
227  * state is used.
228  */
229 int inode_congested(struct inode *inode, int cong_bits)
230 {
231         if (inode) {
232                 struct bdi_writeback *wb = inode_to_wb(inode);
233                 if (wb)
234                         return wb_congested(wb, cong_bits);
235         }
236
237         return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
238 }
239 EXPORT_SYMBOL_GPL(inode_congested);
240
241 /**
242  * wb_wait_for_single_work - wait for completion of a single bdi_writeback_work
243  * @bdi: bdi the work item was issued to
244  * @work: work item to wait for
245  *
246  * Wait for the completion of @work which was issued to one of @bdi's
247  * bdi_writeback's.  The caller must have set @work->single_wait before
248  * issuing it.  This wait operates independently fo
249  * wb_wait_for_completion() and also disables automatic freeing of @work.
250  */
251 static void wb_wait_for_single_work(struct backing_dev_info *bdi,
252                                     struct wb_writeback_work *work)
253 {
254         if (WARN_ON_ONCE(!work->single_wait))
255                 return;
256
257         wait_event(bdi->wb_waitq, work->single_done);
258
259         /*
260          * Paired with smp_wmb() in wb_do_writeback() and ensures that all
261          * modifications to @work prior to assertion of ->single_done is
262          * visible to the caller once this function returns.
263          */
264         smp_rmb();
265 }
266
267 /**
268  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
269  * @wb: target bdi_writeback to split @nr_pages to
270  * @nr_pages: number of pages to write for the whole bdi
271  *
272  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
273  * relation to the total write bandwidth of all wb's w/ dirty inodes on
274  * @wb->bdi.
275  */
276 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
277 {
278         unsigned long this_bw = wb->avg_write_bandwidth;
279         unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
280
281         if (nr_pages == LONG_MAX)
282                 return LONG_MAX;
283
284         /*
285          * This may be called on clean wb's and proportional distribution
286          * may not make sense, just use the original @nr_pages in those
287          * cases.  In general, we wanna err on the side of writing more.
288          */
289         if (!tot_bw || this_bw >= tot_bw)
290                 return nr_pages;
291         else
292                 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
293 }
294
295 /**
296  * wb_clone_and_queue_work - clone a wb_writeback_work and issue it to a wb
297  * @wb: target bdi_writeback
298  * @base_work: source wb_writeback_work
299  *
300  * Try to make a clone of @base_work and issue it to @wb.  If cloning
301  * succeeds, %true is returned; otherwise, @base_work is issued directly
302  * and %false is returned.  In the latter case, the caller is required to
303  * wait for @base_work's completion using wb_wait_for_single_work().
304  *
305  * A clone is auto-freed on completion.  @base_work never is.
306  */
307 static bool wb_clone_and_queue_work(struct bdi_writeback *wb,
308                                     struct wb_writeback_work *base_work)
309 {
310         struct wb_writeback_work *work;
311
312         work = kmalloc(sizeof(*work), GFP_ATOMIC);
313         if (work) {
314                 *work = *base_work;
315                 work->auto_free = 1;
316                 work->single_wait = 0;
317         } else {
318                 work = base_work;
319                 work->auto_free = 0;
320                 work->single_wait = 1;
321         }
322         work->single_done = 0;
323         wb_queue_work(wb, work);
324         return work != base_work;
325 }
326
327 /**
328  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
329  * @bdi: target backing_dev_info
330  * @base_work: wb_writeback_work to issue
331  * @skip_if_busy: skip wb's which already have writeback in progress
332  *
333  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
334  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
335  * distributed to the busy wbs according to each wb's proportion in the
336  * total active write bandwidth of @bdi.
337  */
338 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
339                                   struct wb_writeback_work *base_work,
340                                   bool skip_if_busy)
341 {
342         long nr_pages = base_work->nr_pages;
343         int next_blkcg_id = 0;
344         struct bdi_writeback *wb;
345         struct wb_iter iter;
346
347         might_sleep();
348
349         if (!bdi_has_dirty_io(bdi))
350                 return;
351 restart:
352         rcu_read_lock();
353         bdi_for_each_wb(wb, bdi, &iter, next_blkcg_id) {
354                 if (!wb_has_dirty_io(wb) ||
355                     (skip_if_busy && writeback_in_progress(wb)))
356                         continue;
357
358                 base_work->nr_pages = wb_split_bdi_pages(wb, nr_pages);
359                 if (!wb_clone_and_queue_work(wb, base_work)) {
360                         next_blkcg_id = wb->blkcg_css->id + 1;
361                         rcu_read_unlock();
362                         wb_wait_for_single_work(bdi, base_work);
363                         goto restart;
364                 }
365         }
366         rcu_read_unlock();
367 }
368
369 #else   /* CONFIG_CGROUP_WRITEBACK */
370
371 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
372 {
373         return nr_pages;
374 }
375
376 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
377                                   struct wb_writeback_work *base_work,
378                                   bool skip_if_busy)
379 {
380         might_sleep();
381
382         if (bdi_has_dirty_io(bdi) &&
383             (!skip_if_busy || !writeback_in_progress(&bdi->wb))) {
384                 base_work->auto_free = 0;
385                 base_work->single_wait = 0;
386                 base_work->single_done = 0;
387                 wb_queue_work(&bdi->wb, base_work);
388         }
389 }
390
391 #endif  /* CONFIG_CGROUP_WRITEBACK */
392
393 void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
394                         bool range_cyclic, enum wb_reason reason)
395 {
396         struct wb_writeback_work *work;
397
398         if (!wb_has_dirty_io(wb))
399                 return;
400
401         /*
402          * This is WB_SYNC_NONE writeback, so if allocation fails just
403          * wakeup the thread for old dirty data writeback
404          */
405         work = kzalloc(sizeof(*work), GFP_ATOMIC);
406         if (!work) {
407                 trace_writeback_nowork(wb->bdi);
408                 wb_wakeup(wb);
409                 return;
410         }
411
412         work->sync_mode = WB_SYNC_NONE;
413         work->nr_pages  = nr_pages;
414         work->range_cyclic = range_cyclic;
415         work->reason    = reason;
416         work->auto_free = 1;
417
418         wb_queue_work(wb, work);
419 }
420
421 /**
422  * wb_start_background_writeback - start background writeback
423  * @wb: bdi_writback to write from
424  *
425  * Description:
426  *   This makes sure WB_SYNC_NONE background writeback happens. When
427  *   this function returns, it is only guaranteed that for given wb
428  *   some IO is happening if we are over background dirty threshold.
429  *   Caller need not hold sb s_umount semaphore.
430  */
431 void wb_start_background_writeback(struct bdi_writeback *wb)
432 {
433         /*
434          * We just wake up the flusher thread. It will perform background
435          * writeback as soon as there is no other work to do.
436          */
437         trace_writeback_wake_background(wb->bdi);
438         wb_wakeup(wb);
439 }
440
441 /*
442  * Remove the inode from the writeback list it is on.
443  */
444 void inode_wb_list_del(struct inode *inode)
445 {
446         struct bdi_writeback *wb = inode_to_wb(inode);
447
448         spin_lock(&wb->list_lock);
449         inode_wb_list_del_locked(inode, wb);
450         spin_unlock(&wb->list_lock);
451 }
452
453 /*
454  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
455  * furthest end of its superblock's dirty-inode list.
456  *
457  * Before stamping the inode's ->dirtied_when, we check to see whether it is
458  * already the most-recently-dirtied inode on the b_dirty list.  If that is
459  * the case then the inode must have been redirtied while it was being written
460  * out and we don't reset its dirtied_when.
461  */
462 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
463 {
464         if (!list_empty(&wb->b_dirty)) {
465                 struct inode *tail;
466
467                 tail = wb_inode(wb->b_dirty.next);
468                 if (time_before(inode->dirtied_when, tail->dirtied_when))
469                         inode->dirtied_when = jiffies;
470         }
471         inode_wb_list_move_locked(inode, wb, &wb->b_dirty);
472 }
473
474 /*
475  * requeue inode for re-scanning after bdi->b_io list is exhausted.
476  */
477 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
478 {
479         inode_wb_list_move_locked(inode, wb, &wb->b_more_io);
480 }
481
482 static void inode_sync_complete(struct inode *inode)
483 {
484         inode->i_state &= ~I_SYNC;
485         /* If inode is clean an unused, put it into LRU now... */
486         inode_add_lru(inode);
487         /* Waiters must see I_SYNC cleared before being woken up */
488         smp_mb();
489         wake_up_bit(&inode->i_state, __I_SYNC);
490 }
491
492 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
493 {
494         bool ret = time_after(inode->dirtied_when, t);
495 #ifndef CONFIG_64BIT
496         /*
497          * For inodes being constantly redirtied, dirtied_when can get stuck.
498          * It _appears_ to be in the future, but is actually in distant past.
499          * This test is necessary to prevent such wrapped-around relative times
500          * from permanently stopping the whole bdi writeback.
501          */
502         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
503 #endif
504         return ret;
505 }
506
507 #define EXPIRE_DIRTY_ATIME 0x0001
508
509 /*
510  * Move expired (dirtied before work->older_than_this) dirty inodes from
511  * @delaying_queue to @dispatch_queue.
512  */
513 static int move_expired_inodes(struct list_head *delaying_queue,
514                                struct list_head *dispatch_queue,
515                                int flags,
516                                struct wb_writeback_work *work)
517 {
518         unsigned long *older_than_this = NULL;
519         unsigned long expire_time;
520         LIST_HEAD(tmp);
521         struct list_head *pos, *node;
522         struct super_block *sb = NULL;
523         struct inode *inode;
524         int do_sb_sort = 0;
525         int moved = 0;
526
527         if ((flags & EXPIRE_DIRTY_ATIME) == 0)
528                 older_than_this = work->older_than_this;
529         else if (!work->for_sync) {
530                 expire_time = jiffies - (dirtytime_expire_interval * HZ);
531                 older_than_this = &expire_time;
532         }
533         while (!list_empty(delaying_queue)) {
534                 inode = wb_inode(delaying_queue->prev);
535                 if (older_than_this &&
536                     inode_dirtied_after(inode, *older_than_this))
537                         break;
538                 list_move(&inode->i_wb_list, &tmp);
539                 moved++;
540                 if (flags & EXPIRE_DIRTY_ATIME)
541                         set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
542                 if (sb_is_blkdev_sb(inode->i_sb))
543                         continue;
544                 if (sb && sb != inode->i_sb)
545                         do_sb_sort = 1;
546                 sb = inode->i_sb;
547         }
548
549         /* just one sb in list, splice to dispatch_queue and we're done */
550         if (!do_sb_sort) {
551                 list_splice(&tmp, dispatch_queue);
552                 goto out;
553         }
554
555         /* Move inodes from one superblock together */
556         while (!list_empty(&tmp)) {
557                 sb = wb_inode(tmp.prev)->i_sb;
558                 list_for_each_prev_safe(pos, node, &tmp) {
559                         inode = wb_inode(pos);
560                         if (inode->i_sb == sb)
561                                 list_move(&inode->i_wb_list, dispatch_queue);
562                 }
563         }
564 out:
565         return moved;
566 }
567
568 /*
569  * Queue all expired dirty inodes for io, eldest first.
570  * Before
571  *         newly dirtied     b_dirty    b_io    b_more_io
572  *         =============>    gf         edc     BA
573  * After
574  *         newly dirtied     b_dirty    b_io    b_more_io
575  *         =============>    g          fBAedc
576  *                                           |
577  *                                           +--> dequeue for IO
578  */
579 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
580 {
581         int moved;
582
583         assert_spin_locked(&wb->list_lock);
584         list_splice_init(&wb->b_more_io, &wb->b_io);
585         moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
586         moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
587                                      EXPIRE_DIRTY_ATIME, work);
588         if (moved)
589                 wb_io_lists_populated(wb);
590         trace_writeback_queue_io(wb, work, moved);
591 }
592
593 static int write_inode(struct inode *inode, struct writeback_control *wbc)
594 {
595         int ret;
596
597         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
598                 trace_writeback_write_inode_start(inode, wbc);
599                 ret = inode->i_sb->s_op->write_inode(inode, wbc);
600                 trace_writeback_write_inode(inode, wbc);
601                 return ret;
602         }
603         return 0;
604 }
605
606 /*
607  * Wait for writeback on an inode to complete. Called with i_lock held.
608  * Caller must make sure inode cannot go away when we drop i_lock.
609  */
610 static void __inode_wait_for_writeback(struct inode *inode)
611         __releases(inode->i_lock)
612         __acquires(inode->i_lock)
613 {
614         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
615         wait_queue_head_t *wqh;
616
617         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
618         while (inode->i_state & I_SYNC) {
619                 spin_unlock(&inode->i_lock);
620                 __wait_on_bit(wqh, &wq, bit_wait,
621                               TASK_UNINTERRUPTIBLE);
622                 spin_lock(&inode->i_lock);
623         }
624 }
625
626 /*
627  * Wait for writeback on an inode to complete. Caller must have inode pinned.
628  */
629 void inode_wait_for_writeback(struct inode *inode)
630 {
631         spin_lock(&inode->i_lock);
632         __inode_wait_for_writeback(inode);
633         spin_unlock(&inode->i_lock);
634 }
635
636 /*
637  * Sleep until I_SYNC is cleared. This function must be called with i_lock
638  * held and drops it. It is aimed for callers not holding any inode reference
639  * so once i_lock is dropped, inode can go away.
640  */
641 static void inode_sleep_on_writeback(struct inode *inode)
642         __releases(inode->i_lock)
643 {
644         DEFINE_WAIT(wait);
645         wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
646         int sleep;
647
648         prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
649         sleep = inode->i_state & I_SYNC;
650         spin_unlock(&inode->i_lock);
651         if (sleep)
652                 schedule();
653         finish_wait(wqh, &wait);
654 }
655
656 /*
657  * Find proper writeback list for the inode depending on its current state and
658  * possibly also change of its state while we were doing writeback.  Here we
659  * handle things such as livelock prevention or fairness of writeback among
660  * inodes. This function can be called only by flusher thread - noone else
661  * processes all inodes in writeback lists and requeueing inodes behind flusher
662  * thread's back can have unexpected consequences.
663  */
664 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
665                           struct writeback_control *wbc)
666 {
667         if (inode->i_state & I_FREEING)
668                 return;
669
670         /*
671          * Sync livelock prevention. Each inode is tagged and synced in one
672          * shot. If still dirty, it will be redirty_tail()'ed below.  Update
673          * the dirty time to prevent enqueue and sync it again.
674          */
675         if ((inode->i_state & I_DIRTY) &&
676             (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
677                 inode->dirtied_when = jiffies;
678
679         if (wbc->pages_skipped) {
680                 /*
681                  * writeback is not making progress due to locked
682                  * buffers. Skip this inode for now.
683                  */
684                 redirty_tail(inode, wb);
685                 return;
686         }
687
688         if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
689                 /*
690                  * We didn't write back all the pages.  nfs_writepages()
691                  * sometimes bales out without doing anything.
692                  */
693                 if (wbc->nr_to_write <= 0) {
694                         /* Slice used up. Queue for next turn. */
695                         requeue_io(inode, wb);
696                 } else {
697                         /*
698                          * Writeback blocked by something other than
699                          * congestion. Delay the inode for some time to
700                          * avoid spinning on the CPU (100% iowait)
701                          * retrying writeback of the dirty page/inode
702                          * that cannot be performed immediately.
703                          */
704                         redirty_tail(inode, wb);
705                 }
706         } else if (inode->i_state & I_DIRTY) {
707                 /*
708                  * Filesystems can dirty the inode during writeback operations,
709                  * such as delayed allocation during submission or metadata
710                  * updates after data IO completion.
711                  */
712                 redirty_tail(inode, wb);
713         } else if (inode->i_state & I_DIRTY_TIME) {
714                 inode->dirtied_when = jiffies;
715                 inode_wb_list_move_locked(inode, wb, &wb->b_dirty_time);
716         } else {
717                 /* The inode is clean. Remove from writeback lists. */
718                 inode_wb_list_del_locked(inode, wb);
719         }
720 }
721
722 /*
723  * Write out an inode and its dirty pages. Do not update the writeback list
724  * linkage. That is left to the caller. The caller is also responsible for
725  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
726  */
727 static int
728 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
729 {
730         struct address_space *mapping = inode->i_mapping;
731         long nr_to_write = wbc->nr_to_write;
732         unsigned dirty;
733         int ret;
734
735         WARN_ON(!(inode->i_state & I_SYNC));
736
737         trace_writeback_single_inode_start(inode, wbc, nr_to_write);
738
739         ret = do_writepages(mapping, wbc);
740
741         /*
742          * Make sure to wait on the data before writing out the metadata.
743          * This is important for filesystems that modify metadata on data
744          * I/O completion. We don't do it for sync(2) writeback because it has a
745          * separate, external IO completion path and ->sync_fs for guaranteeing
746          * inode metadata is written back correctly.
747          */
748         if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
749                 int err = filemap_fdatawait(mapping);
750                 if (ret == 0)
751                         ret = err;
752         }
753
754         /*
755          * Some filesystems may redirty the inode during the writeback
756          * due to delalloc, clear dirty metadata flags right before
757          * write_inode()
758          */
759         spin_lock(&inode->i_lock);
760
761         dirty = inode->i_state & I_DIRTY;
762         if (inode->i_state & I_DIRTY_TIME) {
763                 if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
764                     unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
765                     unlikely(time_after(jiffies,
766                                         (inode->dirtied_time_when +
767                                          dirtytime_expire_interval * HZ)))) {
768                         dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
769                         trace_writeback_lazytime(inode);
770                 }
771         } else
772                 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
773         inode->i_state &= ~dirty;
774
775         /*
776          * Paired with smp_mb() in __mark_inode_dirty().  This allows
777          * __mark_inode_dirty() to test i_state without grabbing i_lock -
778          * either they see the I_DIRTY bits cleared or we see the dirtied
779          * inode.
780          *
781          * I_DIRTY_PAGES is always cleared together above even if @mapping
782          * still has dirty pages.  The flag is reinstated after smp_mb() if
783          * necessary.  This guarantees that either __mark_inode_dirty()
784          * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
785          */
786         smp_mb();
787
788         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
789                 inode->i_state |= I_DIRTY_PAGES;
790
791         spin_unlock(&inode->i_lock);
792
793         if (dirty & I_DIRTY_TIME)
794                 mark_inode_dirty_sync(inode);
795         /* Don't write the inode if only I_DIRTY_PAGES was set */
796         if (dirty & ~I_DIRTY_PAGES) {
797                 int err = write_inode(inode, wbc);
798                 if (ret == 0)
799                         ret = err;
800         }
801         trace_writeback_single_inode(inode, wbc, nr_to_write);
802         return ret;
803 }
804
805 /*
806  * Write out an inode's dirty pages. Either the caller has an active reference
807  * on the inode or the inode has I_WILL_FREE set.
808  *
809  * This function is designed to be called for writing back one inode which
810  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
811  * and does more profound writeback list handling in writeback_sb_inodes().
812  */
813 static int
814 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
815                        struct writeback_control *wbc)
816 {
817         int ret = 0;
818
819         spin_lock(&inode->i_lock);
820         if (!atomic_read(&inode->i_count))
821                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
822         else
823                 WARN_ON(inode->i_state & I_WILL_FREE);
824
825         if (inode->i_state & I_SYNC) {
826                 if (wbc->sync_mode != WB_SYNC_ALL)
827                         goto out;
828                 /*
829                  * It's a data-integrity sync. We must wait. Since callers hold
830                  * inode reference or inode has I_WILL_FREE set, it cannot go
831                  * away under us.
832                  */
833                 __inode_wait_for_writeback(inode);
834         }
835         WARN_ON(inode->i_state & I_SYNC);
836         /*
837          * Skip inode if it is clean and we have no outstanding writeback in
838          * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
839          * function since flusher thread may be doing for example sync in
840          * parallel and if we move the inode, it could get skipped. So here we
841          * make sure inode is on some writeback list and leave it there unless
842          * we have completely cleaned the inode.
843          */
844         if (!(inode->i_state & I_DIRTY_ALL) &&
845             (wbc->sync_mode != WB_SYNC_ALL ||
846              !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
847                 goto out;
848         inode->i_state |= I_SYNC;
849         spin_unlock(&inode->i_lock);
850
851         ret = __writeback_single_inode(inode, wbc);
852
853         spin_lock(&wb->list_lock);
854         spin_lock(&inode->i_lock);
855         /*
856          * If inode is clean, remove it from writeback lists. Otherwise don't
857          * touch it. See comment above for explanation.
858          */
859         if (!(inode->i_state & I_DIRTY_ALL))
860                 inode_wb_list_del_locked(inode, wb);
861         spin_unlock(&wb->list_lock);
862         inode_sync_complete(inode);
863 out:
864         spin_unlock(&inode->i_lock);
865         return ret;
866 }
867
868 static long writeback_chunk_size(struct bdi_writeback *wb,
869                                  struct wb_writeback_work *work)
870 {
871         long pages;
872
873         /*
874          * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
875          * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
876          * here avoids calling into writeback_inodes_wb() more than once.
877          *
878          * The intended call sequence for WB_SYNC_ALL writeback is:
879          *
880          *      wb_writeback()
881          *          writeback_sb_inodes()       <== called only once
882          *              write_cache_pages()     <== called once for each inode
883          *                   (quickly) tag currently dirty pages
884          *                   (maybe slowly) sync all tagged pages
885          */
886         if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
887                 pages = LONG_MAX;
888         else {
889                 pages = min(wb->avg_write_bandwidth / 2,
890                             global_wb_domain.dirty_limit / DIRTY_SCOPE);
891                 pages = min(pages, work->nr_pages);
892                 pages = round_down(pages + MIN_WRITEBACK_PAGES,
893                                    MIN_WRITEBACK_PAGES);
894         }
895
896         return pages;
897 }
898
899 /*
900  * Write a portion of b_io inodes which belong to @sb.
901  *
902  * Return the number of pages and/or inodes written.
903  */
904 static long writeback_sb_inodes(struct super_block *sb,
905                                 struct bdi_writeback *wb,
906                                 struct wb_writeback_work *work)
907 {
908         struct writeback_control wbc = {
909                 .sync_mode              = work->sync_mode,
910                 .tagged_writepages      = work->tagged_writepages,
911                 .for_kupdate            = work->for_kupdate,
912                 .for_background         = work->for_background,
913                 .for_sync               = work->for_sync,
914                 .range_cyclic           = work->range_cyclic,
915                 .range_start            = 0,
916                 .range_end              = LLONG_MAX,
917         };
918         unsigned long start_time = jiffies;
919         long write_chunk;
920         long wrote = 0;  /* count both pages and inodes */
921
922         while (!list_empty(&wb->b_io)) {
923                 struct inode *inode = wb_inode(wb->b_io.prev);
924
925                 if (inode->i_sb != sb) {
926                         if (work->sb) {
927                                 /*
928                                  * We only want to write back data for this
929                                  * superblock, move all inodes not belonging
930                                  * to it back onto the dirty list.
931                                  */
932                                 redirty_tail(inode, wb);
933                                 continue;
934                         }
935
936                         /*
937                          * The inode belongs to a different superblock.
938                          * Bounce back to the caller to unpin this and
939                          * pin the next superblock.
940                          */
941                         break;
942                 }
943
944                 /*
945                  * Don't bother with new inodes or inodes being freed, first
946                  * kind does not need periodic writeout yet, and for the latter
947                  * kind writeout is handled by the freer.
948                  */
949                 spin_lock(&inode->i_lock);
950                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
951                         spin_unlock(&inode->i_lock);
952                         redirty_tail(inode, wb);
953                         continue;
954                 }
955                 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
956                         /*
957                          * If this inode is locked for writeback and we are not
958                          * doing writeback-for-data-integrity, move it to
959                          * b_more_io so that writeback can proceed with the
960                          * other inodes on s_io.
961                          *
962                          * We'll have another go at writing back this inode
963                          * when we completed a full scan of b_io.
964                          */
965                         spin_unlock(&inode->i_lock);
966                         requeue_io(inode, wb);
967                         trace_writeback_sb_inodes_requeue(inode);
968                         continue;
969                 }
970                 spin_unlock(&wb->list_lock);
971
972                 /*
973                  * We already requeued the inode if it had I_SYNC set and we
974                  * are doing WB_SYNC_NONE writeback. So this catches only the
975                  * WB_SYNC_ALL case.
976                  */
977                 if (inode->i_state & I_SYNC) {
978                         /* Wait for I_SYNC. This function drops i_lock... */
979                         inode_sleep_on_writeback(inode);
980                         /* Inode may be gone, start again */
981                         spin_lock(&wb->list_lock);
982                         continue;
983                 }
984                 inode->i_state |= I_SYNC;
985                 spin_unlock(&inode->i_lock);
986
987                 write_chunk = writeback_chunk_size(wb, work);
988                 wbc.nr_to_write = write_chunk;
989                 wbc.pages_skipped = 0;
990
991                 /*
992                  * We use I_SYNC to pin the inode in memory. While it is set
993                  * evict_inode() will wait so the inode cannot be freed.
994                  */
995                 __writeback_single_inode(inode, &wbc);
996
997                 work->nr_pages -= write_chunk - wbc.nr_to_write;
998                 wrote += write_chunk - wbc.nr_to_write;
999                 spin_lock(&wb->list_lock);
1000                 spin_lock(&inode->i_lock);
1001                 if (!(inode->i_state & I_DIRTY_ALL))
1002                         wrote++;
1003                 requeue_inode(inode, wb, &wbc);
1004                 inode_sync_complete(inode);
1005                 spin_unlock(&inode->i_lock);
1006                 cond_resched_lock(&wb->list_lock);
1007                 /*
1008                  * bail out to wb_writeback() often enough to check
1009                  * background threshold and other termination conditions.
1010                  */
1011                 if (wrote) {
1012                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1013                                 break;
1014                         if (work->nr_pages <= 0)
1015                                 break;
1016                 }
1017         }
1018         return wrote;
1019 }
1020
1021 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1022                                   struct wb_writeback_work *work)
1023 {
1024         unsigned long start_time = jiffies;
1025         long wrote = 0;
1026
1027         while (!list_empty(&wb->b_io)) {
1028                 struct inode *inode = wb_inode(wb->b_io.prev);
1029                 struct super_block *sb = inode->i_sb;
1030
1031                 if (!trylock_super(sb)) {
1032                         /*
1033                          * trylock_super() may fail consistently due to
1034                          * s_umount being grabbed by someone else. Don't use
1035                          * requeue_io() to avoid busy retrying the inode/sb.
1036                          */
1037                         redirty_tail(inode, wb);
1038                         continue;
1039                 }
1040                 wrote += writeback_sb_inodes(sb, wb, work);
1041                 up_read(&sb->s_umount);
1042
1043                 /* refer to the same tests at the end of writeback_sb_inodes */
1044                 if (wrote) {
1045                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1046                                 break;
1047                         if (work->nr_pages <= 0)
1048                                 break;
1049                 }
1050         }
1051         /* Leave any unwritten inodes on b_io */
1052         return wrote;
1053 }
1054
1055 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1056                                 enum wb_reason reason)
1057 {
1058         struct wb_writeback_work work = {
1059                 .nr_pages       = nr_pages,
1060                 .sync_mode      = WB_SYNC_NONE,
1061                 .range_cyclic   = 1,
1062                 .reason         = reason,
1063         };
1064
1065         spin_lock(&wb->list_lock);
1066         if (list_empty(&wb->b_io))
1067                 queue_io(wb, &work);
1068         __writeback_inodes_wb(wb, &work);
1069         spin_unlock(&wb->list_lock);
1070
1071         return nr_pages - work.nr_pages;
1072 }
1073
1074 static bool over_bground_thresh(struct bdi_writeback *wb)
1075 {
1076         unsigned long background_thresh, dirty_thresh;
1077
1078         global_dirty_limits(&background_thresh, &dirty_thresh);
1079
1080         if (global_page_state(NR_FILE_DIRTY) +
1081             global_page_state(NR_UNSTABLE_NFS) > background_thresh)
1082                 return true;
1083
1084         if (wb_stat(wb, WB_RECLAIMABLE) > wb_calc_thresh(wb, background_thresh))
1085                 return true;
1086
1087         return false;
1088 }
1089
1090 /*
1091  * Explicit flushing or periodic writeback of "old" data.
1092  *
1093  * Define "old": the first time one of an inode's pages is dirtied, we mark the
1094  * dirtying-time in the inode's address_space.  So this periodic writeback code
1095  * just walks the superblock inode list, writing back any inodes which are
1096  * older than a specific point in time.
1097  *
1098  * Try to run once per dirty_writeback_interval.  But if a writeback event
1099  * takes longer than a dirty_writeback_interval interval, then leave a
1100  * one-second gap.
1101  *
1102  * older_than_this takes precedence over nr_to_write.  So we'll only write back
1103  * all dirty pages if they are all attached to "old" mappings.
1104  */
1105 static long wb_writeback(struct bdi_writeback *wb,
1106                          struct wb_writeback_work *work)
1107 {
1108         unsigned long wb_start = jiffies;
1109         long nr_pages = work->nr_pages;
1110         unsigned long oldest_jif;
1111         struct inode *inode;
1112         long progress;
1113
1114         oldest_jif = jiffies;
1115         work->older_than_this = &oldest_jif;
1116
1117         spin_lock(&wb->list_lock);
1118         for (;;) {
1119                 /*
1120                  * Stop writeback when nr_pages has been consumed
1121                  */
1122                 if (work->nr_pages <= 0)
1123                         break;
1124
1125                 /*
1126                  * Background writeout and kupdate-style writeback may
1127                  * run forever. Stop them if there is other work to do
1128                  * so that e.g. sync can proceed. They'll be restarted
1129                  * after the other works are all done.
1130                  */
1131                 if ((work->for_background || work->for_kupdate) &&
1132                     !list_empty(&wb->work_list))
1133                         break;
1134
1135                 /*
1136                  * For background writeout, stop when we are below the
1137                  * background dirty threshold
1138                  */
1139                 if (work->for_background && !over_bground_thresh(wb))
1140                         break;
1141
1142                 /*
1143                  * Kupdate and background works are special and we want to
1144                  * include all inodes that need writing. Livelock avoidance is
1145                  * handled by these works yielding to any other work so we are
1146                  * safe.
1147                  */
1148                 if (work->for_kupdate) {
1149                         oldest_jif = jiffies -
1150                                 msecs_to_jiffies(dirty_expire_interval * 10);
1151                 } else if (work->for_background)
1152                         oldest_jif = jiffies;
1153
1154                 trace_writeback_start(wb->bdi, work);
1155                 if (list_empty(&wb->b_io))
1156                         queue_io(wb, work);
1157                 if (work->sb)
1158                         progress = writeback_sb_inodes(work->sb, wb, work);
1159                 else
1160                         progress = __writeback_inodes_wb(wb, work);
1161                 trace_writeback_written(wb->bdi, work);
1162
1163                 wb_update_bandwidth(wb, wb_start);
1164
1165                 /*
1166                  * Did we write something? Try for more
1167                  *
1168                  * Dirty inodes are moved to b_io for writeback in batches.
1169                  * The completion of the current batch does not necessarily
1170                  * mean the overall work is done. So we keep looping as long
1171                  * as made some progress on cleaning pages or inodes.
1172                  */
1173                 if (progress)
1174                         continue;
1175                 /*
1176                  * No more inodes for IO, bail
1177                  */
1178                 if (list_empty(&wb->b_more_io))
1179                         break;
1180                 /*
1181                  * Nothing written. Wait for some inode to
1182                  * become available for writeback. Otherwise
1183                  * we'll just busyloop.
1184                  */
1185                 if (!list_empty(&wb->b_more_io))  {
1186                         trace_writeback_wait(wb->bdi, work);
1187                         inode = wb_inode(wb->b_more_io.prev);
1188                         spin_lock(&inode->i_lock);
1189                         spin_unlock(&wb->list_lock);
1190                         /* This function drops i_lock... */
1191                         inode_sleep_on_writeback(inode);
1192                         spin_lock(&wb->list_lock);
1193                 }
1194         }
1195         spin_unlock(&wb->list_lock);
1196
1197         return nr_pages - work->nr_pages;
1198 }
1199
1200 /*
1201  * Return the next wb_writeback_work struct that hasn't been processed yet.
1202  */
1203 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1204 {
1205         struct wb_writeback_work *work = NULL;
1206
1207         spin_lock_bh(&wb->work_lock);
1208         if (!list_empty(&wb->work_list)) {
1209                 work = list_entry(wb->work_list.next,
1210                                   struct wb_writeback_work, list);
1211                 list_del_init(&work->list);
1212         }
1213         spin_unlock_bh(&wb->work_lock);
1214         return work;
1215 }
1216
1217 /*
1218  * Add in the number of potentially dirty inodes, because each inode
1219  * write can dirty pagecache in the underlying blockdev.
1220  */
1221 static unsigned long get_nr_dirty_pages(void)
1222 {
1223         return global_page_state(NR_FILE_DIRTY) +
1224                 global_page_state(NR_UNSTABLE_NFS) +
1225                 get_nr_dirty_inodes();
1226 }
1227
1228 static long wb_check_background_flush(struct bdi_writeback *wb)
1229 {
1230         if (over_bground_thresh(wb)) {
1231
1232                 struct wb_writeback_work work = {
1233                         .nr_pages       = LONG_MAX,
1234                         .sync_mode      = WB_SYNC_NONE,
1235                         .for_background = 1,
1236                         .range_cyclic   = 1,
1237                         .reason         = WB_REASON_BACKGROUND,
1238                 };
1239
1240                 return wb_writeback(wb, &work);
1241         }
1242
1243         return 0;
1244 }
1245
1246 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1247 {
1248         unsigned long expired;
1249         long nr_pages;
1250
1251         /*
1252          * When set to zero, disable periodic writeback
1253          */
1254         if (!dirty_writeback_interval)
1255                 return 0;
1256
1257         expired = wb->last_old_flush +
1258                         msecs_to_jiffies(dirty_writeback_interval * 10);
1259         if (time_before(jiffies, expired))
1260                 return 0;
1261
1262         wb->last_old_flush = jiffies;
1263         nr_pages = get_nr_dirty_pages();
1264
1265         if (nr_pages) {
1266                 struct wb_writeback_work work = {
1267                         .nr_pages       = nr_pages,
1268                         .sync_mode      = WB_SYNC_NONE,
1269                         .for_kupdate    = 1,
1270                         .range_cyclic   = 1,
1271                         .reason         = WB_REASON_PERIODIC,
1272                 };
1273
1274                 return wb_writeback(wb, &work);
1275         }
1276
1277         return 0;
1278 }
1279
1280 /*
1281  * Retrieve work items and do the writeback they describe
1282  */
1283 static long wb_do_writeback(struct bdi_writeback *wb)
1284 {
1285         struct wb_writeback_work *work;
1286         long wrote = 0;
1287
1288         set_bit(WB_writeback_running, &wb->state);
1289         while ((work = get_next_work_item(wb)) != NULL) {
1290                 struct wb_completion *done = work->done;
1291                 bool need_wake_up = false;
1292
1293                 trace_writeback_exec(wb->bdi, work);
1294
1295                 wrote += wb_writeback(wb, work);
1296
1297                 if (work->single_wait) {
1298                         WARN_ON_ONCE(work->auto_free);
1299                         /* paired w/ rmb in wb_wait_for_single_work() */
1300                         smp_wmb();
1301                         work->single_done = 1;
1302                         need_wake_up = true;
1303                 } else if (work->auto_free) {
1304                         kfree(work);
1305                 }
1306
1307                 if (done && atomic_dec_and_test(&done->cnt))
1308                         need_wake_up = true;
1309
1310                 if (need_wake_up)
1311                         wake_up_all(&wb->bdi->wb_waitq);
1312         }
1313
1314         /*
1315          * Check for periodic writeback, kupdated() style
1316          */
1317         wrote += wb_check_old_data_flush(wb);
1318         wrote += wb_check_background_flush(wb);
1319         clear_bit(WB_writeback_running, &wb->state);
1320
1321         return wrote;
1322 }
1323
1324 /*
1325  * Handle writeback of dirty data for the device backed by this bdi. Also
1326  * reschedules periodically and does kupdated style flushing.
1327  */
1328 void wb_workfn(struct work_struct *work)
1329 {
1330         struct bdi_writeback *wb = container_of(to_delayed_work(work),
1331                                                 struct bdi_writeback, dwork);
1332         long pages_written;
1333
1334         set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1335         current->flags |= PF_SWAPWRITE;
1336
1337         if (likely(!current_is_workqueue_rescuer() ||
1338                    !test_bit(WB_registered, &wb->state))) {
1339                 /*
1340                  * The normal path.  Keep writing back @wb until its
1341                  * work_list is empty.  Note that this path is also taken
1342                  * if @wb is shutting down even when we're running off the
1343                  * rescuer as work_list needs to be drained.
1344                  */
1345                 do {
1346                         pages_written = wb_do_writeback(wb);
1347                         trace_writeback_pages_written(pages_written);
1348                 } while (!list_empty(&wb->work_list));
1349         } else {
1350                 /*
1351                  * bdi_wq can't get enough workers and we're running off
1352                  * the emergency worker.  Don't hog it.  Hopefully, 1024 is
1353                  * enough for efficient IO.
1354                  */
1355                 pages_written = writeback_inodes_wb(wb, 1024,
1356                                                     WB_REASON_FORKER_THREAD);
1357                 trace_writeback_pages_written(pages_written);
1358         }
1359
1360         if (!list_empty(&wb->work_list))
1361                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
1362         else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1363                 wb_wakeup_delayed(wb);
1364
1365         current->flags &= ~PF_SWAPWRITE;
1366 }
1367
1368 /*
1369  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
1370  * the whole world.
1371  */
1372 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1373 {
1374         struct backing_dev_info *bdi;
1375
1376         if (!nr_pages)
1377                 nr_pages = get_nr_dirty_pages();
1378
1379         rcu_read_lock();
1380         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1381                 struct bdi_writeback *wb;
1382                 struct wb_iter iter;
1383
1384                 if (!bdi_has_dirty_io(bdi))
1385                         continue;
1386
1387                 bdi_for_each_wb(wb, bdi, &iter, 0)
1388                         wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
1389                                            false, reason);
1390         }
1391         rcu_read_unlock();
1392 }
1393
1394 /*
1395  * Wake up bdi's periodically to make sure dirtytime inodes gets
1396  * written back periodically.  We deliberately do *not* check the
1397  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1398  * kernel to be constantly waking up once there are any dirtytime
1399  * inodes on the system.  So instead we define a separate delayed work
1400  * function which gets called much more rarely.  (By default, only
1401  * once every 12 hours.)
1402  *
1403  * If there is any other write activity going on in the file system,
1404  * this function won't be necessary.  But if the only thing that has
1405  * happened on the file system is a dirtytime inode caused by an atime
1406  * update, we need this infrastructure below to make sure that inode
1407  * eventually gets pushed out to disk.
1408  */
1409 static void wakeup_dirtytime_writeback(struct work_struct *w);
1410 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
1411
1412 static void wakeup_dirtytime_writeback(struct work_struct *w)
1413 {
1414         struct backing_dev_info *bdi;
1415
1416         rcu_read_lock();
1417         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1418                 struct bdi_writeback *wb;
1419                 struct wb_iter iter;
1420
1421                 bdi_for_each_wb(wb, bdi, &iter, 0)
1422                         if (!list_empty(&bdi->wb.b_dirty_time))
1423                                 wb_wakeup(&bdi->wb);
1424         }
1425         rcu_read_unlock();
1426         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1427 }
1428
1429 static int __init start_dirtytime_writeback(void)
1430 {
1431         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1432         return 0;
1433 }
1434 __initcall(start_dirtytime_writeback);
1435
1436 int dirtytime_interval_handler(struct ctl_table *table, int write,
1437                                void __user *buffer, size_t *lenp, loff_t *ppos)
1438 {
1439         int ret;
1440
1441         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1442         if (ret == 0 && write)
1443                 mod_delayed_work(system_wq, &dirtytime_work, 0);
1444         return ret;
1445 }
1446
1447 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1448 {
1449         if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1450                 struct dentry *dentry;
1451                 const char *name = "?";
1452
1453                 dentry = d_find_alias(inode);
1454                 if (dentry) {
1455                         spin_lock(&dentry->d_lock);
1456                         name = (const char *) dentry->d_name.name;
1457                 }
1458                 printk(KERN_DEBUG
1459                        "%s(%d): dirtied inode %lu (%s) on %s\n",
1460                        current->comm, task_pid_nr(current), inode->i_ino,
1461                        name, inode->i_sb->s_id);
1462                 if (dentry) {
1463                         spin_unlock(&dentry->d_lock);
1464                         dput(dentry);
1465                 }
1466         }
1467 }
1468
1469 /**
1470  *      __mark_inode_dirty -    internal function
1471  *      @inode: inode to mark
1472  *      @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1473  *      Mark an inode as dirty. Callers should use mark_inode_dirty or
1474  *      mark_inode_dirty_sync.
1475  *
1476  * Put the inode on the super block's dirty list.
1477  *
1478  * CAREFUL! We mark it dirty unconditionally, but move it onto the
1479  * dirty list only if it is hashed or if it refers to a blockdev.
1480  * If it was not hashed, it will never be added to the dirty list
1481  * even if it is later hashed, as it will have been marked dirty already.
1482  *
1483  * In short, make sure you hash any inodes _before_ you start marking
1484  * them dirty.
1485  *
1486  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1487  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
1488  * the kernel-internal blockdev inode represents the dirtying time of the
1489  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
1490  * page->mapping->host, so the page-dirtying time is recorded in the internal
1491  * blockdev inode.
1492  */
1493 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
1494 void __mark_inode_dirty(struct inode *inode, int flags)
1495 {
1496         struct super_block *sb = inode->i_sb;
1497         int dirtytime;
1498
1499         trace_writeback_mark_inode_dirty(inode, flags);
1500
1501         /*
1502          * Don't do this for I_DIRTY_PAGES - that doesn't actually
1503          * dirty the inode itself
1504          */
1505         if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
1506                 trace_writeback_dirty_inode_start(inode, flags);
1507
1508                 if (sb->s_op->dirty_inode)
1509                         sb->s_op->dirty_inode(inode, flags);
1510
1511                 trace_writeback_dirty_inode(inode, flags);
1512         }
1513         if (flags & I_DIRTY_INODE)
1514                 flags &= ~I_DIRTY_TIME;
1515         dirtytime = flags & I_DIRTY_TIME;
1516
1517         /*
1518          * Paired with smp_mb() in __writeback_single_inode() for the
1519          * following lockless i_state test.  See there for details.
1520          */
1521         smp_mb();
1522
1523         if (((inode->i_state & flags) == flags) ||
1524             (dirtytime && (inode->i_state & I_DIRTY_INODE)))
1525                 return;
1526
1527         if (unlikely(block_dump))
1528                 block_dump___mark_inode_dirty(inode);
1529
1530         spin_lock(&inode->i_lock);
1531         if (dirtytime && (inode->i_state & I_DIRTY_INODE))
1532                 goto out_unlock_inode;
1533         if ((inode->i_state & flags) != flags) {
1534                 const int was_dirty = inode->i_state & I_DIRTY;
1535
1536                 inode_attach_wb(inode, NULL);
1537
1538                 if (flags & I_DIRTY_INODE)
1539                         inode->i_state &= ~I_DIRTY_TIME;
1540                 inode->i_state |= flags;
1541
1542                 /*
1543                  * If the inode is being synced, just update its dirty state.
1544                  * The unlocker will place the inode on the appropriate
1545                  * superblock list, based upon its state.
1546                  */
1547                 if (inode->i_state & I_SYNC)
1548                         goto out_unlock_inode;
1549
1550                 /*
1551                  * Only add valid (hashed) inodes to the superblock's
1552                  * dirty list.  Add blockdev inodes as well.
1553                  */
1554                 if (!S_ISBLK(inode->i_mode)) {
1555                         if (inode_unhashed(inode))
1556                                 goto out_unlock_inode;
1557                 }
1558                 if (inode->i_state & I_FREEING)
1559                         goto out_unlock_inode;
1560
1561                 /*
1562                  * If the inode was already on b_dirty/b_io/b_more_io, don't
1563                  * reposition it (that would break b_dirty time-ordering).
1564                  */
1565                 if (!was_dirty) {
1566                         struct bdi_writeback *wb = inode_to_wb(inode);
1567                         struct list_head *dirty_list;
1568                         bool wakeup_bdi = false;
1569
1570                         spin_unlock(&inode->i_lock);
1571                         spin_lock(&wb->list_lock);
1572
1573                         WARN(bdi_cap_writeback_dirty(wb->bdi) &&
1574                              !test_bit(WB_registered, &wb->state),
1575                              "bdi-%s not registered\n", wb->bdi->name);
1576
1577                         inode->dirtied_when = jiffies;
1578                         if (dirtytime)
1579                                 inode->dirtied_time_when = jiffies;
1580
1581                         if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
1582                                 dirty_list = &wb->b_dirty;
1583                         else
1584                                 dirty_list = &wb->b_dirty_time;
1585
1586                         wakeup_bdi = inode_wb_list_move_locked(inode, wb,
1587                                                                dirty_list);
1588
1589                         spin_unlock(&wb->list_lock);
1590                         trace_writeback_dirty_inode_enqueue(inode);
1591
1592                         /*
1593                          * If this is the first dirty inode for this bdi,
1594                          * we have to wake-up the corresponding bdi thread
1595                          * to make sure background write-back happens
1596                          * later.
1597                          */
1598                         if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
1599                                 wb_wakeup_delayed(wb);
1600                         return;
1601                 }
1602         }
1603 out_unlock_inode:
1604         spin_unlock(&inode->i_lock);
1605
1606 }
1607 EXPORT_SYMBOL(__mark_inode_dirty);
1608
1609 static void wait_sb_inodes(struct super_block *sb)
1610 {
1611         struct inode *inode, *old_inode = NULL;
1612
1613         /*
1614          * We need to be protected against the filesystem going from
1615          * r/o to r/w or vice versa.
1616          */
1617         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1618
1619         spin_lock(&inode_sb_list_lock);
1620
1621         /*
1622          * Data integrity sync. Must wait for all pages under writeback,
1623          * because there may have been pages dirtied before our sync
1624          * call, but which had writeout started before we write it out.
1625          * In which case, the inode may not be on the dirty list, but
1626          * we still have to wait for that writeout.
1627          */
1628         list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1629                 struct address_space *mapping = inode->i_mapping;
1630
1631                 spin_lock(&inode->i_lock);
1632                 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1633                     (mapping->nrpages == 0)) {
1634                         spin_unlock(&inode->i_lock);
1635                         continue;
1636                 }
1637                 __iget(inode);
1638                 spin_unlock(&inode->i_lock);
1639                 spin_unlock(&inode_sb_list_lock);
1640
1641                 /*
1642                  * We hold a reference to 'inode' so it couldn't have been
1643                  * removed from s_inodes list while we dropped the
1644                  * inode_sb_list_lock.  We cannot iput the inode now as we can
1645                  * be holding the last reference and we cannot iput it under
1646                  * inode_sb_list_lock. So we keep the reference and iput it
1647                  * later.
1648                  */
1649                 iput(old_inode);
1650                 old_inode = inode;
1651
1652                 filemap_fdatawait(mapping);
1653
1654                 cond_resched();
1655
1656                 spin_lock(&inode_sb_list_lock);
1657         }
1658         spin_unlock(&inode_sb_list_lock);
1659         iput(old_inode);
1660 }
1661
1662 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
1663                                      enum wb_reason reason, bool skip_if_busy)
1664 {
1665         DEFINE_WB_COMPLETION_ONSTACK(done);
1666         struct wb_writeback_work work = {
1667                 .sb                     = sb,
1668                 .sync_mode              = WB_SYNC_NONE,
1669                 .tagged_writepages      = 1,
1670                 .done                   = &done,
1671                 .nr_pages               = nr,
1672                 .reason                 = reason,
1673         };
1674         struct backing_dev_info *bdi = sb->s_bdi;
1675
1676         if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
1677                 return;
1678         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1679
1680         bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
1681         wb_wait_for_completion(bdi, &done);
1682 }
1683
1684 /**
1685  * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
1686  * @sb: the superblock
1687  * @nr: the number of pages to write
1688  * @reason: reason why some writeback work initiated
1689  *
1690  * Start writeback on some inodes on this super_block. No guarantees are made
1691  * on how many (if any) will be written, and this function does not wait
1692  * for IO completion of submitted IO.
1693  */
1694 void writeback_inodes_sb_nr(struct super_block *sb,
1695                             unsigned long nr,
1696                             enum wb_reason reason)
1697 {
1698         __writeback_inodes_sb_nr(sb, nr, reason, false);
1699 }
1700 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1701
1702 /**
1703  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
1704  * @sb: the superblock
1705  * @reason: reason why some writeback work was initiated
1706  *
1707  * Start writeback on some inodes on this super_block. No guarantees are made
1708  * on how many (if any) will be written, and this function does not wait
1709  * for IO completion of submitted IO.
1710  */
1711 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1712 {
1713         return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1714 }
1715 EXPORT_SYMBOL(writeback_inodes_sb);
1716
1717 /**
1718  * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
1719  * @sb: the superblock
1720  * @nr: the number of pages to write
1721  * @reason: the reason of writeback
1722  *
1723  * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
1724  * Returns 1 if writeback was started, 0 if not.
1725  */
1726 bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
1727                                    enum wb_reason reason)
1728 {
1729         if (!down_read_trylock(&sb->s_umount))
1730                 return false;
1731
1732         __writeback_inodes_sb_nr(sb, nr, reason, true);
1733         up_read(&sb->s_umount);
1734         return true;
1735 }
1736 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
1737
1738 /**
1739  * try_to_writeback_inodes_sb - try to start writeback if none underway
1740  * @sb: the superblock
1741  * @reason: reason why some writeback work was initiated
1742  *
1743  * Implement by try_to_writeback_inodes_sb_nr()
1744  * Returns 1 if writeback was started, 0 if not.
1745  */
1746 bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1747 {
1748         return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1749 }
1750 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
1751
1752 /**
1753  * sync_inodes_sb       -       sync sb inode pages
1754  * @sb: the superblock
1755  *
1756  * This function writes and waits on any dirty inode belonging to this
1757  * super_block.
1758  */
1759 void sync_inodes_sb(struct super_block *sb)
1760 {
1761         DEFINE_WB_COMPLETION_ONSTACK(done);
1762         struct wb_writeback_work work = {
1763                 .sb             = sb,
1764                 .sync_mode      = WB_SYNC_ALL,
1765                 .nr_pages       = LONG_MAX,
1766                 .range_cyclic   = 0,
1767                 .done           = &done,
1768                 .reason         = WB_REASON_SYNC,
1769                 .for_sync       = 1,
1770         };
1771         struct backing_dev_info *bdi = sb->s_bdi;
1772
1773         /* Nothing to do? */
1774         if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
1775                 return;
1776         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1777
1778         bdi_split_work_to_wbs(bdi, &work, false);
1779         wb_wait_for_completion(bdi, &done);
1780
1781         wait_sb_inodes(sb);
1782 }
1783 EXPORT_SYMBOL(sync_inodes_sb);
1784
1785 /**
1786  * write_inode_now      -       write an inode to disk
1787  * @inode: inode to write to disk
1788  * @sync: whether the write should be synchronous or not
1789  *
1790  * This function commits an inode to disk immediately if it is dirty. This is
1791  * primarily needed by knfsd.
1792  *
1793  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1794  */
1795 int write_inode_now(struct inode *inode, int sync)
1796 {
1797         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1798         struct writeback_control wbc = {
1799                 .nr_to_write = LONG_MAX,
1800                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1801                 .range_start = 0,
1802                 .range_end = LLONG_MAX,
1803         };
1804
1805         if (!mapping_cap_writeback_dirty(inode->i_mapping))
1806                 wbc.nr_to_write = 0;
1807
1808         might_sleep();
1809         return writeback_single_inode(inode, wb, &wbc);
1810 }
1811 EXPORT_SYMBOL(write_inode_now);
1812
1813 /**
1814  * sync_inode - write an inode and its pages to disk.
1815  * @inode: the inode to sync
1816  * @wbc: controls the writeback mode
1817  *
1818  * sync_inode() will write an inode and its pages to disk.  It will also
1819  * correctly update the inode on its superblock's dirty inode lists and will
1820  * update inode->i_state.
1821  *
1822  * The caller must have a ref on the inode.
1823  */
1824 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1825 {
1826         return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1827 }
1828 EXPORT_SYMBOL(sync_inode);
1829
1830 /**
1831  * sync_inode_metadata - write an inode to disk
1832  * @inode: the inode to sync
1833  * @wait: wait for I/O to complete.
1834  *
1835  * Write an inode to disk and adjust its dirty state after completion.
1836  *
1837  * Note: only writes the actual inode, no associated data or other metadata.
1838  */
1839 int sync_inode_metadata(struct inode *inode, int wait)
1840 {
1841         struct writeback_control wbc = {
1842                 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1843                 .nr_to_write = 0, /* metadata-only */
1844         };
1845
1846         return sync_inode(inode, &wbc);
1847 }
1848 EXPORT_SYMBOL(sync_inode_metadata);