ath6kl: add tx_comp_multi() to struct htc_ep_callbacks
[cascardo/linux.git] / fs / jbd2 / transaction.c
1 /*
2  * linux/fs/jbd2/transaction.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem transaction handling code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages transactions (compound commits managed by the
16  * journaling code) and handles (individual atomic operations by the
17  * filesystem).
18  */
19
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29 #include <linux/backing-dev.h>
30 #include <linux/bug.h>
31 #include <linux/module.h>
32
33 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
34 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
35
36 /*
37  * jbd2_get_transaction: obtain a new transaction_t object.
38  *
39  * Simply allocate and initialise a new transaction.  Create it in
40  * RUNNING state and add it to the current journal (which should not
41  * have an existing running transaction: we only make a new transaction
42  * once we have started to commit the old one).
43  *
44  * Preconditions:
45  *      The journal MUST be locked.  We don't perform atomic mallocs on the
46  *      new transaction and we can't block without protecting against other
47  *      processes trying to touch the journal while it is in transition.
48  *
49  */
50
51 static transaction_t *
52 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
53 {
54         transaction->t_journal = journal;
55         transaction->t_state = T_RUNNING;
56         transaction->t_start_time = ktime_get();
57         transaction->t_tid = journal->j_transaction_sequence++;
58         transaction->t_expires = jiffies + journal->j_commit_interval;
59         spin_lock_init(&transaction->t_handle_lock);
60         atomic_set(&transaction->t_updates, 0);
61         atomic_set(&transaction->t_outstanding_credits, 0);
62         atomic_set(&transaction->t_handle_count, 0);
63         INIT_LIST_HEAD(&transaction->t_inode_list);
64         INIT_LIST_HEAD(&transaction->t_private_list);
65
66         /* Set up the commit timer for the new transaction. */
67         journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
68         add_timer(&journal->j_commit_timer);
69
70         J_ASSERT(journal->j_running_transaction == NULL);
71         journal->j_running_transaction = transaction;
72         transaction->t_max_wait = 0;
73         transaction->t_start = jiffies;
74
75         return transaction;
76 }
77
78 /*
79  * Handle management.
80  *
81  * A handle_t is an object which represents a single atomic update to a
82  * filesystem, and which tracks all of the modifications which form part
83  * of that one update.
84  */
85
86 /*
87  * Update transaction's maximum wait time, if debugging is enabled.
88  *
89  * In order for t_max_wait to be reliable, it must be protected by a
90  * lock.  But doing so will mean that start_this_handle() can not be
91  * run in parallel on SMP systems, which limits our scalability.  So
92  * unless debugging is enabled, we no longer update t_max_wait, which
93  * means that maximum wait time reported by the jbd2_run_stats
94  * tracepoint will always be zero.
95  */
96 static inline void update_t_max_wait(transaction_t *transaction,
97                                      unsigned long ts)
98 {
99 #ifdef CONFIG_JBD2_DEBUG
100         if (jbd2_journal_enable_debug &&
101             time_after(transaction->t_start, ts)) {
102                 ts = jbd2_time_diff(ts, transaction->t_start);
103                 spin_lock(&transaction->t_handle_lock);
104                 if (ts > transaction->t_max_wait)
105                         transaction->t_max_wait = ts;
106                 spin_unlock(&transaction->t_handle_lock);
107         }
108 #endif
109 }
110
111 /*
112  * start_this_handle: Given a handle, deal with any locking or stalling
113  * needed to make sure that there is enough journal space for the handle
114  * to begin.  Attach the handle to a transaction and set up the
115  * transaction's buffer credits.
116  */
117
118 static int start_this_handle(journal_t *journal, handle_t *handle,
119                              gfp_t gfp_mask)
120 {
121         transaction_t   *transaction, *new_transaction = NULL;
122         tid_t           tid;
123         int             needed, need_to_start;
124         int             nblocks = handle->h_buffer_credits;
125         unsigned long ts = jiffies;
126
127         if (nblocks > journal->j_max_transaction_buffers) {
128                 printk(KERN_ERR "JBD2: %s wants too many credits (%d > %d)\n",
129                        current->comm, nblocks,
130                        journal->j_max_transaction_buffers);
131                 return -ENOSPC;
132         }
133
134 alloc_transaction:
135         if (!journal->j_running_transaction) {
136                 new_transaction = kzalloc(sizeof(*new_transaction), gfp_mask);
137                 if (!new_transaction) {
138                         /*
139                          * If __GFP_FS is not present, then we may be
140                          * being called from inside the fs writeback
141                          * layer, so we MUST NOT fail.  Since
142                          * __GFP_NOFAIL is going away, we will arrange
143                          * to retry the allocation ourselves.
144                          */
145                         if ((gfp_mask & __GFP_FS) == 0) {
146                                 congestion_wait(BLK_RW_ASYNC, HZ/50);
147                                 goto alloc_transaction;
148                         }
149                         return -ENOMEM;
150                 }
151         }
152
153         jbd_debug(3, "New handle %p going live.\n", handle);
154
155         /*
156          * We need to hold j_state_lock until t_updates has been incremented,
157          * for proper journal barrier handling
158          */
159 repeat:
160         read_lock(&journal->j_state_lock);
161         BUG_ON(journal->j_flags & JBD2_UNMOUNT);
162         if (is_journal_aborted(journal) ||
163             (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
164                 read_unlock(&journal->j_state_lock);
165                 kfree(new_transaction);
166                 return -EROFS;
167         }
168
169         /* Wait on the journal's transaction barrier if necessary */
170         if (journal->j_barrier_count) {
171                 read_unlock(&journal->j_state_lock);
172                 wait_event(journal->j_wait_transaction_locked,
173                                 journal->j_barrier_count == 0);
174                 goto repeat;
175         }
176
177         if (!journal->j_running_transaction) {
178                 read_unlock(&journal->j_state_lock);
179                 if (!new_transaction)
180                         goto alloc_transaction;
181                 write_lock(&journal->j_state_lock);
182                 if (!journal->j_running_transaction) {
183                         jbd2_get_transaction(journal, new_transaction);
184                         new_transaction = NULL;
185                 }
186                 write_unlock(&journal->j_state_lock);
187                 goto repeat;
188         }
189
190         transaction = journal->j_running_transaction;
191
192         /*
193          * If the current transaction is locked down for commit, wait for the
194          * lock to be released.
195          */
196         if (transaction->t_state == T_LOCKED) {
197                 DEFINE_WAIT(wait);
198
199                 prepare_to_wait(&journal->j_wait_transaction_locked,
200                                         &wait, TASK_UNINTERRUPTIBLE);
201                 read_unlock(&journal->j_state_lock);
202                 schedule();
203                 finish_wait(&journal->j_wait_transaction_locked, &wait);
204                 goto repeat;
205         }
206
207         /*
208          * If there is not enough space left in the log to write all potential
209          * buffers requested by this operation, we need to stall pending a log
210          * checkpoint to free some more log space.
211          */
212         needed = atomic_add_return(nblocks,
213                                    &transaction->t_outstanding_credits);
214
215         if (needed > journal->j_max_transaction_buffers) {
216                 /*
217                  * If the current transaction is already too large, then start
218                  * to commit it: we can then go back and attach this handle to
219                  * a new transaction.
220                  */
221                 DEFINE_WAIT(wait);
222
223                 jbd_debug(2, "Handle %p starting new commit...\n", handle);
224                 atomic_sub(nblocks, &transaction->t_outstanding_credits);
225                 prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
226                                 TASK_UNINTERRUPTIBLE);
227                 tid = transaction->t_tid;
228                 need_to_start = !tid_geq(journal->j_commit_request, tid);
229                 read_unlock(&journal->j_state_lock);
230                 if (need_to_start)
231                         jbd2_log_start_commit(journal, tid);
232                 schedule();
233                 finish_wait(&journal->j_wait_transaction_locked, &wait);
234                 goto repeat;
235         }
236
237         /*
238          * The commit code assumes that it can get enough log space
239          * without forcing a checkpoint.  This is *critical* for
240          * correctness: a checkpoint of a buffer which is also
241          * associated with a committing transaction creates a deadlock,
242          * so commit simply cannot force through checkpoints.
243          *
244          * We must therefore ensure the necessary space in the journal
245          * *before* starting to dirty potentially checkpointed buffers
246          * in the new transaction.
247          *
248          * The worst part is, any transaction currently committing can
249          * reduce the free space arbitrarily.  Be careful to account for
250          * those buffers when checkpointing.
251          */
252
253         /*
254          * @@@ AKPM: This seems rather over-defensive.  We're giving commit
255          * a _lot_ of headroom: 1/4 of the journal plus the size of
256          * the committing transaction.  Really, we only need to give it
257          * committing_transaction->t_outstanding_credits plus "enough" for
258          * the log control blocks.
259          * Also, this test is inconsistent with the matching one in
260          * jbd2_journal_extend().
261          */
262         if (__jbd2_log_space_left(journal) < jbd_space_needed(journal)) {
263                 jbd_debug(2, "Handle %p waiting for checkpoint...\n", handle);
264                 atomic_sub(nblocks, &transaction->t_outstanding_credits);
265                 read_unlock(&journal->j_state_lock);
266                 write_lock(&journal->j_state_lock);
267                 if (__jbd2_log_space_left(journal) < jbd_space_needed(journal))
268                         __jbd2_log_wait_for_space(journal);
269                 write_unlock(&journal->j_state_lock);
270                 goto repeat;
271         }
272
273         /* OK, account for the buffers that this operation expects to
274          * use and add the handle to the running transaction. 
275          */
276         update_t_max_wait(transaction, ts);
277         handle->h_transaction = transaction;
278         atomic_inc(&transaction->t_updates);
279         atomic_inc(&transaction->t_handle_count);
280         jbd_debug(4, "Handle %p given %d credits (total %d, free %d)\n",
281                   handle, nblocks,
282                   atomic_read(&transaction->t_outstanding_credits),
283                   __jbd2_log_space_left(journal));
284         read_unlock(&journal->j_state_lock);
285
286         lock_map_acquire(&handle->h_lockdep_map);
287         kfree(new_transaction);
288         return 0;
289 }
290
291 static struct lock_class_key jbd2_handle_key;
292
293 /* Allocate a new handle.  This should probably be in a slab... */
294 static handle_t *new_handle(int nblocks)
295 {
296         handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
297         if (!handle)
298                 return NULL;
299         memset(handle, 0, sizeof(*handle));
300         handle->h_buffer_credits = nblocks;
301         handle->h_ref = 1;
302
303         lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle",
304                                                 &jbd2_handle_key, 0);
305
306         return handle;
307 }
308
309 /**
310  * handle_t *jbd2_journal_start() - Obtain a new handle.
311  * @journal: Journal to start transaction on.
312  * @nblocks: number of block buffer we might modify
313  *
314  * We make sure that the transaction can guarantee at least nblocks of
315  * modified buffers in the log.  We block until the log can guarantee
316  * that much space.
317  *
318  * This function is visible to journal users (like ext3fs), so is not
319  * called with the journal already locked.
320  *
321  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
322  * on failure.
323  */
324 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, gfp_t gfp_mask)
325 {
326         handle_t *handle = journal_current_handle();
327         int err;
328
329         if (!journal)
330                 return ERR_PTR(-EROFS);
331
332         if (handle) {
333                 J_ASSERT(handle->h_transaction->t_journal == journal);
334                 handle->h_ref++;
335                 return handle;
336         }
337
338         handle = new_handle(nblocks);
339         if (!handle)
340                 return ERR_PTR(-ENOMEM);
341
342         current->journal_info = handle;
343
344         err = start_this_handle(journal, handle, gfp_mask);
345         if (err < 0) {
346                 jbd2_free_handle(handle);
347                 current->journal_info = NULL;
348                 handle = ERR_PTR(err);
349         }
350         return handle;
351 }
352 EXPORT_SYMBOL(jbd2__journal_start);
353
354
355 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
356 {
357         return jbd2__journal_start(journal, nblocks, GFP_NOFS);
358 }
359 EXPORT_SYMBOL(jbd2_journal_start);
360
361
362 /**
363  * int jbd2_journal_extend() - extend buffer credits.
364  * @handle:  handle to 'extend'
365  * @nblocks: nr blocks to try to extend by.
366  *
367  * Some transactions, such as large extends and truncates, can be done
368  * atomically all at once or in several stages.  The operation requests
369  * a credit for a number of buffer modications in advance, but can
370  * extend its credit if it needs more.
371  *
372  * jbd2_journal_extend tries to give the running handle more buffer credits.
373  * It does not guarantee that allocation - this is a best-effort only.
374  * The calling process MUST be able to deal cleanly with a failure to
375  * extend here.
376  *
377  * Return 0 on success, non-zero on failure.
378  *
379  * return code < 0 implies an error
380  * return code > 0 implies normal transaction-full status.
381  */
382 int jbd2_journal_extend(handle_t *handle, int nblocks)
383 {
384         transaction_t *transaction = handle->h_transaction;
385         journal_t *journal = transaction->t_journal;
386         int result;
387         int wanted;
388
389         result = -EIO;
390         if (is_handle_aborted(handle))
391                 goto out;
392
393         result = 1;
394
395         read_lock(&journal->j_state_lock);
396
397         /* Don't extend a locked-down transaction! */
398         if (handle->h_transaction->t_state != T_RUNNING) {
399                 jbd_debug(3, "denied handle %p %d blocks: "
400                           "transaction not running\n", handle, nblocks);
401                 goto error_out;
402         }
403
404         spin_lock(&transaction->t_handle_lock);
405         wanted = atomic_read(&transaction->t_outstanding_credits) + nblocks;
406
407         if (wanted > journal->j_max_transaction_buffers) {
408                 jbd_debug(3, "denied handle %p %d blocks: "
409                           "transaction too large\n", handle, nblocks);
410                 goto unlock;
411         }
412
413         if (wanted > __jbd2_log_space_left(journal)) {
414                 jbd_debug(3, "denied handle %p %d blocks: "
415                           "insufficient log space\n", handle, nblocks);
416                 goto unlock;
417         }
418
419         handle->h_buffer_credits += nblocks;
420         atomic_add(nblocks, &transaction->t_outstanding_credits);
421         result = 0;
422
423         jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
424 unlock:
425         spin_unlock(&transaction->t_handle_lock);
426 error_out:
427         read_unlock(&journal->j_state_lock);
428 out:
429         return result;
430 }
431
432
433 /**
434  * int jbd2_journal_restart() - restart a handle .
435  * @handle:  handle to restart
436  * @nblocks: nr credits requested
437  *
438  * Restart a handle for a multi-transaction filesystem
439  * operation.
440  *
441  * If the jbd2_journal_extend() call above fails to grant new buffer credits
442  * to a running handle, a call to jbd2_journal_restart will commit the
443  * handle's transaction so far and reattach the handle to a new
444  * transaction capabable of guaranteeing the requested number of
445  * credits.
446  */
447 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
448 {
449         transaction_t *transaction = handle->h_transaction;
450         journal_t *journal = transaction->t_journal;
451         tid_t           tid;
452         int             need_to_start, ret;
453
454         /* If we've had an abort of any type, don't even think about
455          * actually doing the restart! */
456         if (is_handle_aborted(handle))
457                 return 0;
458
459         /*
460          * First unlink the handle from its current transaction, and start the
461          * commit on that.
462          */
463         J_ASSERT(atomic_read(&transaction->t_updates) > 0);
464         J_ASSERT(journal_current_handle() == handle);
465
466         read_lock(&journal->j_state_lock);
467         spin_lock(&transaction->t_handle_lock);
468         atomic_sub(handle->h_buffer_credits,
469                    &transaction->t_outstanding_credits);
470         if (atomic_dec_and_test(&transaction->t_updates))
471                 wake_up(&journal->j_wait_updates);
472         spin_unlock(&transaction->t_handle_lock);
473
474         jbd_debug(2, "restarting handle %p\n", handle);
475         tid = transaction->t_tid;
476         need_to_start = !tid_geq(journal->j_commit_request, tid);
477         read_unlock(&journal->j_state_lock);
478         if (need_to_start)
479                 jbd2_log_start_commit(journal, tid);
480
481         lock_map_release(&handle->h_lockdep_map);
482         handle->h_buffer_credits = nblocks;
483         ret = start_this_handle(journal, handle, gfp_mask);
484         return ret;
485 }
486 EXPORT_SYMBOL(jbd2__journal_restart);
487
488
489 int jbd2_journal_restart(handle_t *handle, int nblocks)
490 {
491         return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
492 }
493 EXPORT_SYMBOL(jbd2_journal_restart);
494
495 /**
496  * void jbd2_journal_lock_updates () - establish a transaction barrier.
497  * @journal:  Journal to establish a barrier on.
498  *
499  * This locks out any further updates from being started, and blocks
500  * until all existing updates have completed, returning only once the
501  * journal is in a quiescent state with no updates running.
502  *
503  * The journal lock should not be held on entry.
504  */
505 void jbd2_journal_lock_updates(journal_t *journal)
506 {
507         DEFINE_WAIT(wait);
508
509         write_lock(&journal->j_state_lock);
510         ++journal->j_barrier_count;
511
512         /* Wait until there are no running updates */
513         while (1) {
514                 transaction_t *transaction = journal->j_running_transaction;
515
516                 if (!transaction)
517                         break;
518
519                 spin_lock(&transaction->t_handle_lock);
520                 prepare_to_wait(&journal->j_wait_updates, &wait,
521                                 TASK_UNINTERRUPTIBLE);
522                 if (!atomic_read(&transaction->t_updates)) {
523                         spin_unlock(&transaction->t_handle_lock);
524                         finish_wait(&journal->j_wait_updates, &wait);
525                         break;
526                 }
527                 spin_unlock(&transaction->t_handle_lock);
528                 write_unlock(&journal->j_state_lock);
529                 schedule();
530                 finish_wait(&journal->j_wait_updates, &wait);
531                 write_lock(&journal->j_state_lock);
532         }
533         write_unlock(&journal->j_state_lock);
534
535         /*
536          * We have now established a barrier against other normal updates, but
537          * we also need to barrier against other jbd2_journal_lock_updates() calls
538          * to make sure that we serialise special journal-locked operations
539          * too.
540          */
541         mutex_lock(&journal->j_barrier);
542 }
543
544 /**
545  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
546  * @journal:  Journal to release the barrier on.
547  *
548  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
549  *
550  * Should be called without the journal lock held.
551  */
552 void jbd2_journal_unlock_updates (journal_t *journal)
553 {
554         J_ASSERT(journal->j_barrier_count != 0);
555
556         mutex_unlock(&journal->j_barrier);
557         write_lock(&journal->j_state_lock);
558         --journal->j_barrier_count;
559         write_unlock(&journal->j_state_lock);
560         wake_up(&journal->j_wait_transaction_locked);
561 }
562
563 static void warn_dirty_buffer(struct buffer_head *bh)
564 {
565         char b[BDEVNAME_SIZE];
566
567         printk(KERN_WARNING
568                "JBD2: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). "
569                "There's a risk of filesystem corruption in case of system "
570                "crash.\n",
571                bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr);
572 }
573
574 /*
575  * If the buffer is already part of the current transaction, then there
576  * is nothing we need to do.  If it is already part of a prior
577  * transaction which we are still committing to disk, then we need to
578  * make sure that we do not overwrite the old copy: we do copy-out to
579  * preserve the copy going to disk.  We also account the buffer against
580  * the handle's metadata buffer credits (unless the buffer is already
581  * part of the transaction, that is).
582  *
583  */
584 static int
585 do_get_write_access(handle_t *handle, struct journal_head *jh,
586                         int force_copy)
587 {
588         struct buffer_head *bh;
589         transaction_t *transaction;
590         journal_t *journal;
591         int error;
592         char *frozen_buffer = NULL;
593         int need_copy = 0;
594
595         if (is_handle_aborted(handle))
596                 return -EROFS;
597
598         transaction = handle->h_transaction;
599         journal = transaction->t_journal;
600
601         jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
602
603         JBUFFER_TRACE(jh, "entry");
604 repeat:
605         bh = jh2bh(jh);
606
607         /* @@@ Need to check for errors here at some point. */
608
609         lock_buffer(bh);
610         jbd_lock_bh_state(bh);
611
612         /* We now hold the buffer lock so it is safe to query the buffer
613          * state.  Is the buffer dirty?
614          *
615          * If so, there are two possibilities.  The buffer may be
616          * non-journaled, and undergoing a quite legitimate writeback.
617          * Otherwise, it is journaled, and we don't expect dirty buffers
618          * in that state (the buffers should be marked JBD_Dirty
619          * instead.)  So either the IO is being done under our own
620          * control and this is a bug, or it's a third party IO such as
621          * dump(8) (which may leave the buffer scheduled for read ---
622          * ie. locked but not dirty) or tune2fs (which may actually have
623          * the buffer dirtied, ugh.)  */
624
625         if (buffer_dirty(bh)) {
626                 /*
627                  * First question: is this buffer already part of the current
628                  * transaction or the existing committing transaction?
629                  */
630                 if (jh->b_transaction) {
631                         J_ASSERT_JH(jh,
632                                 jh->b_transaction == transaction ||
633                                 jh->b_transaction ==
634                                         journal->j_committing_transaction);
635                         if (jh->b_next_transaction)
636                                 J_ASSERT_JH(jh, jh->b_next_transaction ==
637                                                         transaction);
638                         warn_dirty_buffer(bh);
639                 }
640                 /*
641                  * In any case we need to clean the dirty flag and we must
642                  * do it under the buffer lock to be sure we don't race
643                  * with running write-out.
644                  */
645                 JBUFFER_TRACE(jh, "Journalling dirty buffer");
646                 clear_buffer_dirty(bh);
647                 set_buffer_jbddirty(bh);
648         }
649
650         unlock_buffer(bh);
651
652         error = -EROFS;
653         if (is_handle_aborted(handle)) {
654                 jbd_unlock_bh_state(bh);
655                 goto out;
656         }
657         error = 0;
658
659         /*
660          * The buffer is already part of this transaction if b_transaction or
661          * b_next_transaction points to it
662          */
663         if (jh->b_transaction == transaction ||
664             jh->b_next_transaction == transaction)
665                 goto done;
666
667         /*
668          * this is the first time this transaction is touching this buffer,
669          * reset the modified flag
670          */
671        jh->b_modified = 0;
672
673         /*
674          * If there is already a copy-out version of this buffer, then we don't
675          * need to make another one
676          */
677         if (jh->b_frozen_data) {
678                 JBUFFER_TRACE(jh, "has frozen data");
679                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
680                 jh->b_next_transaction = transaction;
681                 goto done;
682         }
683
684         /* Is there data here we need to preserve? */
685
686         if (jh->b_transaction && jh->b_transaction != transaction) {
687                 JBUFFER_TRACE(jh, "owned by older transaction");
688                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
689                 J_ASSERT_JH(jh, jh->b_transaction ==
690                                         journal->j_committing_transaction);
691
692                 /* There is one case we have to be very careful about.
693                  * If the committing transaction is currently writing
694                  * this buffer out to disk and has NOT made a copy-out,
695                  * then we cannot modify the buffer contents at all
696                  * right now.  The essence of copy-out is that it is the
697                  * extra copy, not the primary copy, which gets
698                  * journaled.  If the primary copy is already going to
699                  * disk then we cannot do copy-out here. */
700
701                 if (jh->b_jlist == BJ_Shadow) {
702                         DEFINE_WAIT_BIT(wait, &bh->b_state, BH_Unshadow);
703                         wait_queue_head_t *wqh;
704
705                         wqh = bit_waitqueue(&bh->b_state, BH_Unshadow);
706
707                         JBUFFER_TRACE(jh, "on shadow: sleep");
708                         jbd_unlock_bh_state(bh);
709                         /* commit wakes up all shadow buffers after IO */
710                         for ( ; ; ) {
711                                 prepare_to_wait(wqh, &wait.wait,
712                                                 TASK_UNINTERRUPTIBLE);
713                                 if (jh->b_jlist != BJ_Shadow)
714                                         break;
715                                 schedule();
716                         }
717                         finish_wait(wqh, &wait.wait);
718                         goto repeat;
719                 }
720
721                 /* Only do the copy if the currently-owning transaction
722                  * still needs it.  If it is on the Forget list, the
723                  * committing transaction is past that stage.  The
724                  * buffer had better remain locked during the kmalloc,
725                  * but that should be true --- we hold the journal lock
726                  * still and the buffer is already on the BUF_JOURNAL
727                  * list so won't be flushed.
728                  *
729                  * Subtle point, though: if this is a get_undo_access,
730                  * then we will be relying on the frozen_data to contain
731                  * the new value of the committed_data record after the
732                  * transaction, so we HAVE to force the frozen_data copy
733                  * in that case. */
734
735                 if (jh->b_jlist != BJ_Forget || force_copy) {
736                         JBUFFER_TRACE(jh, "generate frozen data");
737                         if (!frozen_buffer) {
738                                 JBUFFER_TRACE(jh, "allocate memory for buffer");
739                                 jbd_unlock_bh_state(bh);
740                                 frozen_buffer =
741                                         jbd2_alloc(jh2bh(jh)->b_size,
742                                                          GFP_NOFS);
743                                 if (!frozen_buffer) {
744                                         printk(KERN_EMERG
745                                                "%s: OOM for frozen_buffer\n",
746                                                __func__);
747                                         JBUFFER_TRACE(jh, "oom!");
748                                         error = -ENOMEM;
749                                         jbd_lock_bh_state(bh);
750                                         goto done;
751                                 }
752                                 goto repeat;
753                         }
754                         jh->b_frozen_data = frozen_buffer;
755                         frozen_buffer = NULL;
756                         need_copy = 1;
757                 }
758                 jh->b_next_transaction = transaction;
759         }
760
761
762         /*
763          * Finally, if the buffer is not journaled right now, we need to make
764          * sure it doesn't get written to disk before the caller actually
765          * commits the new data
766          */
767         if (!jh->b_transaction) {
768                 JBUFFER_TRACE(jh, "no transaction");
769                 J_ASSERT_JH(jh, !jh->b_next_transaction);
770                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
771                 spin_lock(&journal->j_list_lock);
772                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
773                 spin_unlock(&journal->j_list_lock);
774         }
775
776 done:
777         if (need_copy) {
778                 struct page *page;
779                 int offset;
780                 char *source;
781
782                 J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)),
783                             "Possible IO failure.\n");
784                 page = jh2bh(jh)->b_page;
785                 offset = offset_in_page(jh2bh(jh)->b_data);
786                 source = kmap_atomic(page, KM_USER0);
787                 /* Fire data frozen trigger just before we copy the data */
788                 jbd2_buffer_frozen_trigger(jh, source + offset,
789                                            jh->b_triggers);
790                 memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size);
791                 kunmap_atomic(source, KM_USER0);
792
793                 /*
794                  * Now that the frozen data is saved off, we need to store
795                  * any matching triggers.
796                  */
797                 jh->b_frozen_triggers = jh->b_triggers;
798         }
799         jbd_unlock_bh_state(bh);
800
801         /*
802          * If we are about to journal a buffer, then any revoke pending on it is
803          * no longer valid
804          */
805         jbd2_journal_cancel_revoke(handle, jh);
806
807 out:
808         if (unlikely(frozen_buffer))    /* It's usually NULL */
809                 jbd2_free(frozen_buffer, bh->b_size);
810
811         JBUFFER_TRACE(jh, "exit");
812         return error;
813 }
814
815 /**
816  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
817  * @handle: transaction to add buffer modifications to
818  * @bh:     bh to be used for metadata writes
819  *
820  * Returns an error code or 0 on success.
821  *
822  * In full data journalling mode the buffer may be of type BJ_AsyncData,
823  * because we're write()ing a buffer which is also part of a shared mapping.
824  */
825
826 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
827 {
828         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
829         int rc;
830
831         /* We do not want to get caught playing with fields which the
832          * log thread also manipulates.  Make sure that the buffer
833          * completes any outstanding IO before proceeding. */
834         rc = do_get_write_access(handle, jh, 0);
835         jbd2_journal_put_journal_head(jh);
836         return rc;
837 }
838
839
840 /*
841  * When the user wants to journal a newly created buffer_head
842  * (ie. getblk() returned a new buffer and we are going to populate it
843  * manually rather than reading off disk), then we need to keep the
844  * buffer_head locked until it has been completely filled with new
845  * data.  In this case, we should be able to make the assertion that
846  * the bh is not already part of an existing transaction.
847  *
848  * The buffer should already be locked by the caller by this point.
849  * There is no lock ranking violation: it was a newly created,
850  * unlocked buffer beforehand. */
851
852 /**
853  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
854  * @handle: transaction to new buffer to
855  * @bh: new buffer.
856  *
857  * Call this if you create a new bh.
858  */
859 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
860 {
861         transaction_t *transaction = handle->h_transaction;
862         journal_t *journal = transaction->t_journal;
863         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
864         int err;
865
866         jbd_debug(5, "journal_head %p\n", jh);
867         err = -EROFS;
868         if (is_handle_aborted(handle))
869                 goto out;
870         err = 0;
871
872         JBUFFER_TRACE(jh, "entry");
873         /*
874          * The buffer may already belong to this transaction due to pre-zeroing
875          * in the filesystem's new_block code.  It may also be on the previous,
876          * committing transaction's lists, but it HAS to be in Forget state in
877          * that case: the transaction must have deleted the buffer for it to be
878          * reused here.
879          */
880         jbd_lock_bh_state(bh);
881         spin_lock(&journal->j_list_lock);
882         J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
883                 jh->b_transaction == NULL ||
884                 (jh->b_transaction == journal->j_committing_transaction &&
885                           jh->b_jlist == BJ_Forget)));
886
887         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
888         J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
889
890         if (jh->b_transaction == NULL) {
891                 /*
892                  * Previous jbd2_journal_forget() could have left the buffer
893                  * with jbddirty bit set because it was being committed. When
894                  * the commit finished, we've filed the buffer for
895                  * checkpointing and marked it dirty. Now we are reallocating
896                  * the buffer so the transaction freeing it must have
897                  * committed and so it's safe to clear the dirty bit.
898                  */
899                 clear_buffer_dirty(jh2bh(jh));
900                 /* first access by this transaction */
901                 jh->b_modified = 0;
902
903                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
904                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
905         } else if (jh->b_transaction == journal->j_committing_transaction) {
906                 /* first access by this transaction */
907                 jh->b_modified = 0;
908
909                 JBUFFER_TRACE(jh, "set next transaction");
910                 jh->b_next_transaction = transaction;
911         }
912         spin_unlock(&journal->j_list_lock);
913         jbd_unlock_bh_state(bh);
914
915         /*
916          * akpm: I added this.  ext3_alloc_branch can pick up new indirect
917          * blocks which contain freed but then revoked metadata.  We need
918          * to cancel the revoke in case we end up freeing it yet again
919          * and the reallocating as data - this would cause a second revoke,
920          * which hits an assertion error.
921          */
922         JBUFFER_TRACE(jh, "cancelling revoke");
923         jbd2_journal_cancel_revoke(handle, jh);
924 out:
925         jbd2_journal_put_journal_head(jh);
926         return err;
927 }
928
929 /**
930  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
931  *     non-rewindable consequences
932  * @handle: transaction
933  * @bh: buffer to undo
934  *
935  * Sometimes there is a need to distinguish between metadata which has
936  * been committed to disk and that which has not.  The ext3fs code uses
937  * this for freeing and allocating space, we have to make sure that we
938  * do not reuse freed space until the deallocation has been committed,
939  * since if we overwrote that space we would make the delete
940  * un-rewindable in case of a crash.
941  *
942  * To deal with that, jbd2_journal_get_undo_access requests write access to a
943  * buffer for parts of non-rewindable operations such as delete
944  * operations on the bitmaps.  The journaling code must keep a copy of
945  * the buffer's contents prior to the undo_access call until such time
946  * as we know that the buffer has definitely been committed to disk.
947  *
948  * We never need to know which transaction the committed data is part
949  * of, buffers touched here are guaranteed to be dirtied later and so
950  * will be committed to a new transaction in due course, at which point
951  * we can discard the old committed data pointer.
952  *
953  * Returns error number or 0 on success.
954  */
955 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
956 {
957         int err;
958         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
959         char *committed_data = NULL;
960
961         JBUFFER_TRACE(jh, "entry");
962
963         /*
964          * Do this first --- it can drop the journal lock, so we want to
965          * make sure that obtaining the committed_data is done
966          * atomically wrt. completion of any outstanding commits.
967          */
968         err = do_get_write_access(handle, jh, 1);
969         if (err)
970                 goto out;
971
972 repeat:
973         if (!jh->b_committed_data) {
974                 committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
975                 if (!committed_data) {
976                         printk(KERN_EMERG "%s: No memory for committed data\n",
977                                 __func__);
978                         err = -ENOMEM;
979                         goto out;
980                 }
981         }
982
983         jbd_lock_bh_state(bh);
984         if (!jh->b_committed_data) {
985                 /* Copy out the current buffer contents into the
986                  * preserved, committed copy. */
987                 JBUFFER_TRACE(jh, "generate b_committed data");
988                 if (!committed_data) {
989                         jbd_unlock_bh_state(bh);
990                         goto repeat;
991                 }
992
993                 jh->b_committed_data = committed_data;
994                 committed_data = NULL;
995                 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
996         }
997         jbd_unlock_bh_state(bh);
998 out:
999         jbd2_journal_put_journal_head(jh);
1000         if (unlikely(committed_data))
1001                 jbd2_free(committed_data, bh->b_size);
1002         return err;
1003 }
1004
1005 /**
1006  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1007  * @bh: buffer to trigger on
1008  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1009  *
1010  * Set any triggers on this journal_head.  This is always safe, because
1011  * triggers for a committing buffer will be saved off, and triggers for
1012  * a running transaction will match the buffer in that transaction.
1013  *
1014  * Call with NULL to clear the triggers.
1015  */
1016 void jbd2_journal_set_triggers(struct buffer_head *bh,
1017                                struct jbd2_buffer_trigger_type *type)
1018 {
1019         struct journal_head *jh = bh2jh(bh);
1020
1021         jh->b_triggers = type;
1022 }
1023
1024 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1025                                 struct jbd2_buffer_trigger_type *triggers)
1026 {
1027         struct buffer_head *bh = jh2bh(jh);
1028
1029         if (!triggers || !triggers->t_frozen)
1030                 return;
1031
1032         triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1033 }
1034
1035 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1036                                struct jbd2_buffer_trigger_type *triggers)
1037 {
1038         if (!triggers || !triggers->t_abort)
1039                 return;
1040
1041         triggers->t_abort(triggers, jh2bh(jh));
1042 }
1043
1044
1045
1046 /**
1047  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1048  * @handle: transaction to add buffer to.
1049  * @bh: buffer to mark
1050  *
1051  * mark dirty metadata which needs to be journaled as part of the current
1052  * transaction.
1053  *
1054  * The buffer must have previously had jbd2_journal_get_write_access()
1055  * called so that it has a valid journal_head attached to the buffer
1056  * head.
1057  *
1058  * The buffer is placed on the transaction's metadata list and is marked
1059  * as belonging to the transaction.
1060  *
1061  * Returns error number or 0 on success.
1062  *
1063  * Special care needs to be taken if the buffer already belongs to the
1064  * current committing transaction (in which case we should have frozen
1065  * data present for that commit).  In that case, we don't relink the
1066  * buffer: that only gets done when the old transaction finally
1067  * completes its commit.
1068  */
1069 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1070 {
1071         transaction_t *transaction = handle->h_transaction;
1072         journal_t *journal = transaction->t_journal;
1073         struct journal_head *jh = bh2jh(bh);
1074         int ret = 0;
1075
1076         jbd_debug(5, "journal_head %p\n", jh);
1077         JBUFFER_TRACE(jh, "entry");
1078         if (is_handle_aborted(handle))
1079                 goto out;
1080         if (!buffer_jbd(bh)) {
1081                 ret = -EUCLEAN;
1082                 goto out;
1083         }
1084
1085         jbd_lock_bh_state(bh);
1086
1087         if (jh->b_modified == 0) {
1088                 /*
1089                  * This buffer's got modified and becoming part
1090                  * of the transaction. This needs to be done
1091                  * once a transaction -bzzz
1092                  */
1093                 jh->b_modified = 1;
1094                 J_ASSERT_JH(jh, handle->h_buffer_credits > 0);
1095                 handle->h_buffer_credits--;
1096         }
1097
1098         /*
1099          * fastpath, to avoid expensive locking.  If this buffer is already
1100          * on the running transaction's metadata list there is nothing to do.
1101          * Nobody can take it off again because there is a handle open.
1102          * I _think_ we're OK here with SMP barriers - a mistaken decision will
1103          * result in this test being false, so we go in and take the locks.
1104          */
1105         if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1106                 JBUFFER_TRACE(jh, "fastpath");
1107                 if (unlikely(jh->b_transaction !=
1108                              journal->j_running_transaction)) {
1109                         printk(KERN_EMERG "JBD: %s: "
1110                                "jh->b_transaction (%llu, %p, %u) != "
1111                                "journal->j_running_transaction (%p, %u)",
1112                                journal->j_devname,
1113                                (unsigned long long) bh->b_blocknr,
1114                                jh->b_transaction,
1115                                jh->b_transaction ? jh->b_transaction->t_tid : 0,
1116                                journal->j_running_transaction,
1117                                journal->j_running_transaction ?
1118                                journal->j_running_transaction->t_tid : 0);
1119                         ret = -EINVAL;
1120                 }
1121                 goto out_unlock_bh;
1122         }
1123
1124         set_buffer_jbddirty(bh);
1125
1126         /*
1127          * Metadata already on the current transaction list doesn't
1128          * need to be filed.  Metadata on another transaction's list must
1129          * be committing, and will be refiled once the commit completes:
1130          * leave it alone for now.
1131          */
1132         if (jh->b_transaction != transaction) {
1133                 JBUFFER_TRACE(jh, "already on other transaction");
1134                 if (unlikely(jh->b_transaction !=
1135                              journal->j_committing_transaction)) {
1136                         printk(KERN_EMERG "JBD: %s: "
1137                                "jh->b_transaction (%llu, %p, %u) != "
1138                                "journal->j_committing_transaction (%p, %u)",
1139                                journal->j_devname,
1140                                (unsigned long long) bh->b_blocknr,
1141                                jh->b_transaction,
1142                                jh->b_transaction ? jh->b_transaction->t_tid : 0,
1143                                journal->j_committing_transaction,
1144                                journal->j_committing_transaction ?
1145                                journal->j_committing_transaction->t_tid : 0);
1146                         ret = -EINVAL;
1147                 }
1148                 if (unlikely(jh->b_next_transaction != transaction)) {
1149                         printk(KERN_EMERG "JBD: %s: "
1150                                "jh->b_next_transaction (%llu, %p, %u) != "
1151                                "transaction (%p, %u)",
1152                                journal->j_devname,
1153                                (unsigned long long) bh->b_blocknr,
1154                                jh->b_next_transaction,
1155                                jh->b_next_transaction ?
1156                                jh->b_next_transaction->t_tid : 0,
1157                                transaction, transaction->t_tid);
1158                         ret = -EINVAL;
1159                 }
1160                 /* And this case is illegal: we can't reuse another
1161                  * transaction's data buffer, ever. */
1162                 goto out_unlock_bh;
1163         }
1164
1165         /* That test should have eliminated the following case: */
1166         J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1167
1168         JBUFFER_TRACE(jh, "file as BJ_Metadata");
1169         spin_lock(&journal->j_list_lock);
1170         __jbd2_journal_file_buffer(jh, handle->h_transaction, BJ_Metadata);
1171         spin_unlock(&journal->j_list_lock);
1172 out_unlock_bh:
1173         jbd_unlock_bh_state(bh);
1174 out:
1175         JBUFFER_TRACE(jh, "exit");
1176         WARN_ON(ret);   /* All errors are bugs, so dump the stack */
1177         return ret;
1178 }
1179
1180 /*
1181  * jbd2_journal_release_buffer: undo a get_write_access without any buffer
1182  * updates, if the update decided in the end that it didn't need access.
1183  *
1184  */
1185 void
1186 jbd2_journal_release_buffer(handle_t *handle, struct buffer_head *bh)
1187 {
1188         BUFFER_TRACE(bh, "entry");
1189 }
1190
1191 /**
1192  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1193  * @handle: transaction handle
1194  * @bh:     bh to 'forget'
1195  *
1196  * We can only do the bforget if there are no commits pending against the
1197  * buffer.  If the buffer is dirty in the current running transaction we
1198  * can safely unlink it.
1199  *
1200  * bh may not be a journalled buffer at all - it may be a non-JBD
1201  * buffer which came off the hashtable.  Check for this.
1202  *
1203  * Decrements bh->b_count by one.
1204  *
1205  * Allow this call even if the handle has aborted --- it may be part of
1206  * the caller's cleanup after an abort.
1207  */
1208 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1209 {
1210         transaction_t *transaction = handle->h_transaction;
1211         journal_t *journal = transaction->t_journal;
1212         struct journal_head *jh;
1213         int drop_reserve = 0;
1214         int err = 0;
1215         int was_modified = 0;
1216
1217         BUFFER_TRACE(bh, "entry");
1218
1219         jbd_lock_bh_state(bh);
1220         spin_lock(&journal->j_list_lock);
1221
1222         if (!buffer_jbd(bh))
1223                 goto not_jbd;
1224         jh = bh2jh(bh);
1225
1226         /* Critical error: attempting to delete a bitmap buffer, maybe?
1227          * Don't do any jbd operations, and return an error. */
1228         if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1229                          "inconsistent data on disk")) {
1230                 err = -EIO;
1231                 goto not_jbd;
1232         }
1233
1234         /* keep track of wether or not this transaction modified us */
1235         was_modified = jh->b_modified;
1236
1237         /*
1238          * The buffer's going from the transaction, we must drop
1239          * all references -bzzz
1240          */
1241         jh->b_modified = 0;
1242
1243         if (jh->b_transaction == handle->h_transaction) {
1244                 J_ASSERT_JH(jh, !jh->b_frozen_data);
1245
1246                 /* If we are forgetting a buffer which is already part
1247                  * of this transaction, then we can just drop it from
1248                  * the transaction immediately. */
1249                 clear_buffer_dirty(bh);
1250                 clear_buffer_jbddirty(bh);
1251
1252                 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1253
1254                 /*
1255                  * we only want to drop a reference if this transaction
1256                  * modified the buffer
1257                  */
1258                 if (was_modified)
1259                         drop_reserve = 1;
1260
1261                 /*
1262                  * We are no longer going to journal this buffer.
1263                  * However, the commit of this transaction is still
1264                  * important to the buffer: the delete that we are now
1265                  * processing might obsolete an old log entry, so by
1266                  * committing, we can satisfy the buffer's checkpoint.
1267                  *
1268                  * So, if we have a checkpoint on the buffer, we should
1269                  * now refile the buffer on our BJ_Forget list so that
1270                  * we know to remove the checkpoint after we commit.
1271                  */
1272
1273                 if (jh->b_cp_transaction) {
1274                         __jbd2_journal_temp_unlink_buffer(jh);
1275                         __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1276                 } else {
1277                         __jbd2_journal_unfile_buffer(jh);
1278                         if (!buffer_jbd(bh)) {
1279                                 spin_unlock(&journal->j_list_lock);
1280                                 jbd_unlock_bh_state(bh);
1281                                 __bforget(bh);
1282                                 goto drop;
1283                         }
1284                 }
1285         } else if (jh->b_transaction) {
1286                 J_ASSERT_JH(jh, (jh->b_transaction ==
1287                                  journal->j_committing_transaction));
1288                 /* However, if the buffer is still owned by a prior
1289                  * (committing) transaction, we can't drop it yet... */
1290                 JBUFFER_TRACE(jh, "belongs to older transaction");
1291                 /* ... but we CAN drop it from the new transaction if we
1292                  * have also modified it since the original commit. */
1293
1294                 if (jh->b_next_transaction) {
1295                         J_ASSERT(jh->b_next_transaction == transaction);
1296                         jh->b_next_transaction = NULL;
1297
1298                         /*
1299                          * only drop a reference if this transaction modified
1300                          * the buffer
1301                          */
1302                         if (was_modified)
1303                                 drop_reserve = 1;
1304                 }
1305         }
1306
1307 not_jbd:
1308         spin_unlock(&journal->j_list_lock);
1309         jbd_unlock_bh_state(bh);
1310         __brelse(bh);
1311 drop:
1312         if (drop_reserve) {
1313                 /* no need to reserve log space for this block -bzzz */
1314                 handle->h_buffer_credits++;
1315         }
1316         return err;
1317 }
1318
1319 /**
1320  * int jbd2_journal_stop() - complete a transaction
1321  * @handle: tranaction to complete.
1322  *
1323  * All done for a particular handle.
1324  *
1325  * There is not much action needed here.  We just return any remaining
1326  * buffer credits to the transaction and remove the handle.  The only
1327  * complication is that we need to start a commit operation if the
1328  * filesystem is marked for synchronous update.
1329  *
1330  * jbd2_journal_stop itself will not usually return an error, but it may
1331  * do so in unusual circumstances.  In particular, expect it to
1332  * return -EIO if a jbd2_journal_abort has been executed since the
1333  * transaction began.
1334  */
1335 int jbd2_journal_stop(handle_t *handle)
1336 {
1337         transaction_t *transaction = handle->h_transaction;
1338         journal_t *journal = transaction->t_journal;
1339         int err, wait_for_commit = 0;
1340         tid_t tid;
1341         pid_t pid;
1342
1343         J_ASSERT(journal_current_handle() == handle);
1344
1345         if (is_handle_aborted(handle))
1346                 err = -EIO;
1347         else {
1348                 J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1349                 err = 0;
1350         }
1351
1352         if (--handle->h_ref > 0) {
1353                 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1354                           handle->h_ref);
1355                 return err;
1356         }
1357
1358         jbd_debug(4, "Handle %p going down\n", handle);
1359
1360         /*
1361          * Implement synchronous transaction batching.  If the handle
1362          * was synchronous, don't force a commit immediately.  Let's
1363          * yield and let another thread piggyback onto this
1364          * transaction.  Keep doing that while new threads continue to
1365          * arrive.  It doesn't cost much - we're about to run a commit
1366          * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1367          * operations by 30x or more...
1368          *
1369          * We try and optimize the sleep time against what the
1370          * underlying disk can do, instead of having a static sleep
1371          * time.  This is useful for the case where our storage is so
1372          * fast that it is more optimal to go ahead and force a flush
1373          * and wait for the transaction to be committed than it is to
1374          * wait for an arbitrary amount of time for new writers to
1375          * join the transaction.  We achieve this by measuring how
1376          * long it takes to commit a transaction, and compare it with
1377          * how long this transaction has been running, and if run time
1378          * < commit time then we sleep for the delta and commit.  This
1379          * greatly helps super fast disks that would see slowdowns as
1380          * more threads started doing fsyncs.
1381          *
1382          * But don't do this if this process was the most recent one
1383          * to perform a synchronous write.  We do this to detect the
1384          * case where a single process is doing a stream of sync
1385          * writes.  No point in waiting for joiners in that case.
1386          */
1387         pid = current->pid;
1388         if (handle->h_sync && journal->j_last_sync_writer != pid) {
1389                 u64 commit_time, trans_time;
1390
1391                 journal->j_last_sync_writer = pid;
1392
1393                 read_lock(&journal->j_state_lock);
1394                 commit_time = journal->j_average_commit_time;
1395                 read_unlock(&journal->j_state_lock);
1396
1397                 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1398                                                    transaction->t_start_time));
1399
1400                 commit_time = max_t(u64, commit_time,
1401                                     1000*journal->j_min_batch_time);
1402                 commit_time = min_t(u64, commit_time,
1403                                     1000*journal->j_max_batch_time);
1404
1405                 if (trans_time < commit_time) {
1406                         ktime_t expires = ktime_add_ns(ktime_get(),
1407                                                        commit_time);
1408                         set_current_state(TASK_UNINTERRUPTIBLE);
1409                         schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1410                 }
1411         }
1412
1413         if (handle->h_sync)
1414                 transaction->t_synchronous_commit = 1;
1415         current->journal_info = NULL;
1416         atomic_sub(handle->h_buffer_credits,
1417                    &transaction->t_outstanding_credits);
1418
1419         /*
1420          * If the handle is marked SYNC, we need to set another commit
1421          * going!  We also want to force a commit if the current
1422          * transaction is occupying too much of the log, or if the
1423          * transaction is too old now.
1424          */
1425         if (handle->h_sync ||
1426             (atomic_read(&transaction->t_outstanding_credits) >
1427              journal->j_max_transaction_buffers) ||
1428             time_after_eq(jiffies, transaction->t_expires)) {
1429                 /* Do this even for aborted journals: an abort still
1430                  * completes the commit thread, it just doesn't write
1431                  * anything to disk. */
1432
1433                 jbd_debug(2, "transaction too old, requesting commit for "
1434                                         "handle %p\n", handle);
1435                 /* This is non-blocking */
1436                 jbd2_log_start_commit(journal, transaction->t_tid);
1437
1438                 /*
1439                  * Special case: JBD2_SYNC synchronous updates require us
1440                  * to wait for the commit to complete.
1441                  */
1442                 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1443                         wait_for_commit = 1;
1444         }
1445
1446         /*
1447          * Once we drop t_updates, if it goes to zero the transaction
1448          * could start committing on us and eventually disappear.  So
1449          * once we do this, we must not dereference transaction
1450          * pointer again.
1451          */
1452         tid = transaction->t_tid;
1453         if (atomic_dec_and_test(&transaction->t_updates)) {
1454                 wake_up(&journal->j_wait_updates);
1455                 if (journal->j_barrier_count)
1456                         wake_up(&journal->j_wait_transaction_locked);
1457         }
1458
1459         if (wait_for_commit)
1460                 err = jbd2_log_wait_commit(journal, tid);
1461
1462         lock_map_release(&handle->h_lockdep_map);
1463
1464         jbd2_free_handle(handle);
1465         return err;
1466 }
1467
1468 /**
1469  * int jbd2_journal_force_commit() - force any uncommitted transactions
1470  * @journal: journal to force
1471  *
1472  * For synchronous operations: force any uncommitted transactions
1473  * to disk.  May seem kludgy, but it reuses all the handle batching
1474  * code in a very simple manner.
1475  */
1476 int jbd2_journal_force_commit(journal_t *journal)
1477 {
1478         handle_t *handle;
1479         int ret;
1480
1481         handle = jbd2_journal_start(journal, 1);
1482         if (IS_ERR(handle)) {
1483                 ret = PTR_ERR(handle);
1484         } else {
1485                 handle->h_sync = 1;
1486                 ret = jbd2_journal_stop(handle);
1487         }
1488         return ret;
1489 }
1490
1491 /*
1492  *
1493  * List management code snippets: various functions for manipulating the
1494  * transaction buffer lists.
1495  *
1496  */
1497
1498 /*
1499  * Append a buffer to a transaction list, given the transaction's list head
1500  * pointer.
1501  *
1502  * j_list_lock is held.
1503  *
1504  * jbd_lock_bh_state(jh2bh(jh)) is held.
1505  */
1506
1507 static inline void
1508 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1509 {
1510         if (!*list) {
1511                 jh->b_tnext = jh->b_tprev = jh;
1512                 *list = jh;
1513         } else {
1514                 /* Insert at the tail of the list to preserve order */
1515                 struct journal_head *first = *list, *last = first->b_tprev;
1516                 jh->b_tprev = last;
1517                 jh->b_tnext = first;
1518                 last->b_tnext = first->b_tprev = jh;
1519         }
1520 }
1521
1522 /*
1523  * Remove a buffer from a transaction list, given the transaction's list
1524  * head pointer.
1525  *
1526  * Called with j_list_lock held, and the journal may not be locked.
1527  *
1528  * jbd_lock_bh_state(jh2bh(jh)) is held.
1529  */
1530
1531 static inline void
1532 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1533 {
1534         if (*list == jh) {
1535                 *list = jh->b_tnext;
1536                 if (*list == jh)
1537                         *list = NULL;
1538         }
1539         jh->b_tprev->b_tnext = jh->b_tnext;
1540         jh->b_tnext->b_tprev = jh->b_tprev;
1541 }
1542
1543 /*
1544  * Remove a buffer from the appropriate transaction list.
1545  *
1546  * Note that this function can *change* the value of
1547  * bh->b_transaction->t_buffers, t_forget, t_iobuf_list, t_shadow_list,
1548  * t_log_list or t_reserved_list.  If the caller is holding onto a copy of one
1549  * of these pointers, it could go bad.  Generally the caller needs to re-read
1550  * the pointer from the transaction_t.
1551  *
1552  * Called under j_list_lock.  The journal may not be locked.
1553  */
1554 void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1555 {
1556         struct journal_head **list = NULL;
1557         transaction_t *transaction;
1558         struct buffer_head *bh = jh2bh(jh);
1559
1560         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1561         transaction = jh->b_transaction;
1562         if (transaction)
1563                 assert_spin_locked(&transaction->t_journal->j_list_lock);
1564
1565         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1566         if (jh->b_jlist != BJ_None)
1567                 J_ASSERT_JH(jh, transaction != NULL);
1568
1569         switch (jh->b_jlist) {
1570         case BJ_None:
1571                 return;
1572         case BJ_Metadata:
1573                 transaction->t_nr_buffers--;
1574                 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1575                 list = &transaction->t_buffers;
1576                 break;
1577         case BJ_Forget:
1578                 list = &transaction->t_forget;
1579                 break;
1580         case BJ_IO:
1581                 list = &transaction->t_iobuf_list;
1582                 break;
1583         case BJ_Shadow:
1584                 list = &transaction->t_shadow_list;
1585                 break;
1586         case BJ_LogCtl:
1587                 list = &transaction->t_log_list;
1588                 break;
1589         case BJ_Reserved:
1590                 list = &transaction->t_reserved_list;
1591                 break;
1592         }
1593
1594         __blist_del_buffer(list, jh);
1595         jh->b_jlist = BJ_None;
1596         if (test_clear_buffer_jbddirty(bh))
1597                 mark_buffer_dirty(bh);  /* Expose it to the VM */
1598 }
1599
1600 /*
1601  * Remove buffer from all transactions.
1602  *
1603  * Called with bh_state lock and j_list_lock
1604  *
1605  * jh and bh may be already freed when this function returns.
1606  */
1607 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1608 {
1609         __jbd2_journal_temp_unlink_buffer(jh);
1610         jh->b_transaction = NULL;
1611         jbd2_journal_put_journal_head(jh);
1612 }
1613
1614 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1615 {
1616         struct buffer_head *bh = jh2bh(jh);
1617
1618         /* Get reference so that buffer cannot be freed before we unlock it */
1619         get_bh(bh);
1620         jbd_lock_bh_state(bh);
1621         spin_lock(&journal->j_list_lock);
1622         __jbd2_journal_unfile_buffer(jh);
1623         spin_unlock(&journal->j_list_lock);
1624         jbd_unlock_bh_state(bh);
1625         __brelse(bh);
1626 }
1627
1628 /*
1629  * Called from jbd2_journal_try_to_free_buffers().
1630  *
1631  * Called under jbd_lock_bh_state(bh)
1632  */
1633 static void
1634 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1635 {
1636         struct journal_head *jh;
1637
1638         jh = bh2jh(bh);
1639
1640         if (buffer_locked(bh) || buffer_dirty(bh))
1641                 goto out;
1642
1643         if (jh->b_next_transaction != NULL)
1644                 goto out;
1645
1646         spin_lock(&journal->j_list_lock);
1647         if (jh->b_cp_transaction != NULL && jh->b_transaction == NULL) {
1648                 /* written-back checkpointed metadata buffer */
1649                 if (jh->b_jlist == BJ_None) {
1650                         JBUFFER_TRACE(jh, "remove from checkpoint list");
1651                         __jbd2_journal_remove_checkpoint(jh);
1652                 }
1653         }
1654         spin_unlock(&journal->j_list_lock);
1655 out:
1656         return;
1657 }
1658
1659 /**
1660  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1661  * @journal: journal for operation
1662  * @page: to try and free
1663  * @gfp_mask: we use the mask to detect how hard should we try to release
1664  * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to
1665  * release the buffers.
1666  *
1667  *
1668  * For all the buffers on this page,
1669  * if they are fully written out ordered data, move them onto BUF_CLEAN
1670  * so try_to_free_buffers() can reap them.
1671  *
1672  * This function returns non-zero if we wish try_to_free_buffers()
1673  * to be called. We do this if the page is releasable by try_to_free_buffers().
1674  * We also do it if the page has locked or dirty buffers and the caller wants
1675  * us to perform sync or async writeout.
1676  *
1677  * This complicates JBD locking somewhat.  We aren't protected by the
1678  * BKL here.  We wish to remove the buffer from its committing or
1679  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1680  *
1681  * This may *change* the value of transaction_t->t_datalist, so anyone
1682  * who looks at t_datalist needs to lock against this function.
1683  *
1684  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1685  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1686  * will come out of the lock with the buffer dirty, which makes it
1687  * ineligible for release here.
1688  *
1689  * Who else is affected by this?  hmm...  Really the only contender
1690  * is do_get_write_access() - it could be looking at the buffer while
1691  * journal_try_to_free_buffer() is changing its state.  But that
1692  * cannot happen because we never reallocate freed data as metadata
1693  * while the data is part of a transaction.  Yes?
1694  *
1695  * Return 0 on failure, 1 on success
1696  */
1697 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1698                                 struct page *page, gfp_t gfp_mask)
1699 {
1700         struct buffer_head *head;
1701         struct buffer_head *bh;
1702         int ret = 0;
1703
1704         J_ASSERT(PageLocked(page));
1705
1706         head = page_buffers(page);
1707         bh = head;
1708         do {
1709                 struct journal_head *jh;
1710
1711                 /*
1712                  * We take our own ref against the journal_head here to avoid
1713                  * having to add tons of locking around each instance of
1714                  * jbd2_journal_put_journal_head().
1715                  */
1716                 jh = jbd2_journal_grab_journal_head(bh);
1717                 if (!jh)
1718                         continue;
1719
1720                 jbd_lock_bh_state(bh);
1721                 __journal_try_to_free_buffer(journal, bh);
1722                 jbd2_journal_put_journal_head(jh);
1723                 jbd_unlock_bh_state(bh);
1724                 if (buffer_jbd(bh))
1725                         goto busy;
1726         } while ((bh = bh->b_this_page) != head);
1727
1728         ret = try_to_free_buffers(page);
1729
1730 busy:
1731         return ret;
1732 }
1733
1734 /*
1735  * This buffer is no longer needed.  If it is on an older transaction's
1736  * checkpoint list we need to record it on this transaction's forget list
1737  * to pin this buffer (and hence its checkpointing transaction) down until
1738  * this transaction commits.  If the buffer isn't on a checkpoint list, we
1739  * release it.
1740  * Returns non-zero if JBD no longer has an interest in the buffer.
1741  *
1742  * Called under j_list_lock.
1743  *
1744  * Called under jbd_lock_bh_state(bh).
1745  */
1746 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
1747 {
1748         int may_free = 1;
1749         struct buffer_head *bh = jh2bh(jh);
1750
1751         if (jh->b_cp_transaction) {
1752                 JBUFFER_TRACE(jh, "on running+cp transaction");
1753                 __jbd2_journal_temp_unlink_buffer(jh);
1754                 /*
1755                  * We don't want to write the buffer anymore, clear the
1756                  * bit so that we don't confuse checks in
1757                  * __journal_file_buffer
1758                  */
1759                 clear_buffer_dirty(bh);
1760                 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1761                 may_free = 0;
1762         } else {
1763                 JBUFFER_TRACE(jh, "on running transaction");
1764                 __jbd2_journal_unfile_buffer(jh);
1765         }
1766         return may_free;
1767 }
1768
1769 /*
1770  * jbd2_journal_invalidatepage
1771  *
1772  * This code is tricky.  It has a number of cases to deal with.
1773  *
1774  * There are two invariants which this code relies on:
1775  *
1776  * i_size must be updated on disk before we start calling invalidatepage on the
1777  * data.
1778  *
1779  *  This is done in ext3 by defining an ext3_setattr method which
1780  *  updates i_size before truncate gets going.  By maintaining this
1781  *  invariant, we can be sure that it is safe to throw away any buffers
1782  *  attached to the current transaction: once the transaction commits,
1783  *  we know that the data will not be needed.
1784  *
1785  *  Note however that we can *not* throw away data belonging to the
1786  *  previous, committing transaction!
1787  *
1788  * Any disk blocks which *are* part of the previous, committing
1789  * transaction (and which therefore cannot be discarded immediately) are
1790  * not going to be reused in the new running transaction
1791  *
1792  *  The bitmap committed_data images guarantee this: any block which is
1793  *  allocated in one transaction and removed in the next will be marked
1794  *  as in-use in the committed_data bitmap, so cannot be reused until
1795  *  the next transaction to delete the block commits.  This means that
1796  *  leaving committing buffers dirty is quite safe: the disk blocks
1797  *  cannot be reallocated to a different file and so buffer aliasing is
1798  *  not possible.
1799  *
1800  *
1801  * The above applies mainly to ordered data mode.  In writeback mode we
1802  * don't make guarantees about the order in which data hits disk --- in
1803  * particular we don't guarantee that new dirty data is flushed before
1804  * transaction commit --- so it is always safe just to discard data
1805  * immediately in that mode.  --sct
1806  */
1807
1808 /*
1809  * The journal_unmap_buffer helper function returns zero if the buffer
1810  * concerned remains pinned as an anonymous buffer belonging to an older
1811  * transaction.
1812  *
1813  * We're outside-transaction here.  Either or both of j_running_transaction
1814  * and j_committing_transaction may be NULL.
1815  */
1816 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh)
1817 {
1818         transaction_t *transaction;
1819         struct journal_head *jh;
1820         int may_free = 1;
1821         int ret;
1822
1823         BUFFER_TRACE(bh, "entry");
1824
1825         /*
1826          * It is safe to proceed here without the j_list_lock because the
1827          * buffers cannot be stolen by try_to_free_buffers as long as we are
1828          * holding the page lock. --sct
1829          */
1830
1831         if (!buffer_jbd(bh))
1832                 goto zap_buffer_unlocked;
1833
1834         /* OK, we have data buffer in journaled mode */
1835         write_lock(&journal->j_state_lock);
1836         jbd_lock_bh_state(bh);
1837         spin_lock(&journal->j_list_lock);
1838
1839         jh = jbd2_journal_grab_journal_head(bh);
1840         if (!jh)
1841                 goto zap_buffer_no_jh;
1842
1843         /*
1844          * We cannot remove the buffer from checkpoint lists until the
1845          * transaction adding inode to orphan list (let's call it T)
1846          * is committed.  Otherwise if the transaction changing the
1847          * buffer would be cleaned from the journal before T is
1848          * committed, a crash will cause that the correct contents of
1849          * the buffer will be lost.  On the other hand we have to
1850          * clear the buffer dirty bit at latest at the moment when the
1851          * transaction marking the buffer as freed in the filesystem
1852          * structures is committed because from that moment on the
1853          * buffer can be reallocated and used by a different page.
1854          * Since the block hasn't been freed yet but the inode has
1855          * already been added to orphan list, it is safe for us to add
1856          * the buffer to BJ_Forget list of the newest transaction.
1857          */
1858         transaction = jh->b_transaction;
1859         if (transaction == NULL) {
1860                 /* First case: not on any transaction.  If it
1861                  * has no checkpoint link, then we can zap it:
1862                  * it's a writeback-mode buffer so we don't care
1863                  * if it hits disk safely. */
1864                 if (!jh->b_cp_transaction) {
1865                         JBUFFER_TRACE(jh, "not on any transaction: zap");
1866                         goto zap_buffer;
1867                 }
1868
1869                 if (!buffer_dirty(bh)) {
1870                         /* bdflush has written it.  We can drop it now */
1871                         goto zap_buffer;
1872                 }
1873
1874                 /* OK, it must be in the journal but still not
1875                  * written fully to disk: it's metadata or
1876                  * journaled data... */
1877
1878                 if (journal->j_running_transaction) {
1879                         /* ... and once the current transaction has
1880                          * committed, the buffer won't be needed any
1881                          * longer. */
1882                         JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
1883                         ret = __dispose_buffer(jh,
1884                                         journal->j_running_transaction);
1885                         jbd2_journal_put_journal_head(jh);
1886                         spin_unlock(&journal->j_list_lock);
1887                         jbd_unlock_bh_state(bh);
1888                         write_unlock(&journal->j_state_lock);
1889                         return ret;
1890                 } else {
1891                         /* There is no currently-running transaction. So the
1892                          * orphan record which we wrote for this file must have
1893                          * passed into commit.  We must attach this buffer to
1894                          * the committing transaction, if it exists. */
1895                         if (journal->j_committing_transaction) {
1896                                 JBUFFER_TRACE(jh, "give to committing trans");
1897                                 ret = __dispose_buffer(jh,
1898                                         journal->j_committing_transaction);
1899                                 jbd2_journal_put_journal_head(jh);
1900                                 spin_unlock(&journal->j_list_lock);
1901                                 jbd_unlock_bh_state(bh);
1902                                 write_unlock(&journal->j_state_lock);
1903                                 return ret;
1904                         } else {
1905                                 /* The orphan record's transaction has
1906                                  * committed.  We can cleanse this buffer */
1907                                 clear_buffer_jbddirty(bh);
1908                                 goto zap_buffer;
1909                         }
1910                 }
1911         } else if (transaction == journal->j_committing_transaction) {
1912                 JBUFFER_TRACE(jh, "on committing transaction");
1913                 /*
1914                  * The buffer is committing, we simply cannot touch
1915                  * it. So we just set j_next_transaction to the
1916                  * running transaction (if there is one) and mark
1917                  * buffer as freed so that commit code knows it should
1918                  * clear dirty bits when it is done with the buffer.
1919                  */
1920                 set_buffer_freed(bh);
1921                 if (journal->j_running_transaction && buffer_jbddirty(bh))
1922                         jh->b_next_transaction = journal->j_running_transaction;
1923                 jbd2_journal_put_journal_head(jh);
1924                 spin_unlock(&journal->j_list_lock);
1925                 jbd_unlock_bh_state(bh);
1926                 write_unlock(&journal->j_state_lock);
1927                 return 0;
1928         } else {
1929                 /* Good, the buffer belongs to the running transaction.
1930                  * We are writing our own transaction's data, not any
1931                  * previous one's, so it is safe to throw it away
1932                  * (remember that we expect the filesystem to have set
1933                  * i_size already for this truncate so recovery will not
1934                  * expose the disk blocks we are discarding here.) */
1935                 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
1936                 JBUFFER_TRACE(jh, "on running transaction");
1937                 may_free = __dispose_buffer(jh, transaction);
1938         }
1939
1940 zap_buffer:
1941         jbd2_journal_put_journal_head(jh);
1942 zap_buffer_no_jh:
1943         spin_unlock(&journal->j_list_lock);
1944         jbd_unlock_bh_state(bh);
1945         write_unlock(&journal->j_state_lock);
1946 zap_buffer_unlocked:
1947         clear_buffer_dirty(bh);
1948         J_ASSERT_BH(bh, !buffer_jbddirty(bh));
1949         clear_buffer_mapped(bh);
1950         clear_buffer_req(bh);
1951         clear_buffer_new(bh);
1952         bh->b_bdev = NULL;
1953         return may_free;
1954 }
1955
1956 /**
1957  * void jbd2_journal_invalidatepage()
1958  * @journal: journal to use for flush...
1959  * @page:    page to flush
1960  * @offset:  length of page to invalidate.
1961  *
1962  * Reap page buffers containing data after offset in page.
1963  *
1964  */
1965 void jbd2_journal_invalidatepage(journal_t *journal,
1966                       struct page *page,
1967                       unsigned long offset)
1968 {
1969         struct buffer_head *head, *bh, *next;
1970         unsigned int curr_off = 0;
1971         int may_free = 1;
1972
1973         if (!PageLocked(page))
1974                 BUG();
1975         if (!page_has_buffers(page))
1976                 return;
1977
1978         /* We will potentially be playing with lists other than just the
1979          * data lists (especially for journaled data mode), so be
1980          * cautious in our locking. */
1981
1982         head = bh = page_buffers(page);
1983         do {
1984                 unsigned int next_off = curr_off + bh->b_size;
1985                 next = bh->b_this_page;
1986
1987                 if (offset <= curr_off) {
1988                         /* This block is wholly outside the truncation point */
1989                         lock_buffer(bh);
1990                         may_free &= journal_unmap_buffer(journal, bh);
1991                         unlock_buffer(bh);
1992                 }
1993                 curr_off = next_off;
1994                 bh = next;
1995
1996         } while (bh != head);
1997
1998         if (!offset) {
1999                 if (may_free && try_to_free_buffers(page))
2000                         J_ASSERT(!page_has_buffers(page));
2001         }
2002 }
2003
2004 /*
2005  * File a buffer on the given transaction list.
2006  */
2007 void __jbd2_journal_file_buffer(struct journal_head *jh,
2008                         transaction_t *transaction, int jlist)
2009 {
2010         struct journal_head **list = NULL;
2011         int was_dirty = 0;
2012         struct buffer_head *bh = jh2bh(jh);
2013
2014         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2015         assert_spin_locked(&transaction->t_journal->j_list_lock);
2016
2017         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2018         J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2019                                 jh->b_transaction == NULL);
2020
2021         if (jh->b_transaction && jh->b_jlist == jlist)
2022                 return;
2023
2024         if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2025             jlist == BJ_Shadow || jlist == BJ_Forget) {
2026                 /*
2027                  * For metadata buffers, we track dirty bit in buffer_jbddirty
2028                  * instead of buffer_dirty. We should not see a dirty bit set
2029                  * here because we clear it in do_get_write_access but e.g.
2030                  * tune2fs can modify the sb and set the dirty bit at any time
2031                  * so we try to gracefully handle that.
2032                  */
2033                 if (buffer_dirty(bh))
2034                         warn_dirty_buffer(bh);
2035                 if (test_clear_buffer_dirty(bh) ||
2036                     test_clear_buffer_jbddirty(bh))
2037                         was_dirty = 1;
2038         }
2039
2040         if (jh->b_transaction)
2041                 __jbd2_journal_temp_unlink_buffer(jh);
2042         else
2043                 jbd2_journal_grab_journal_head(bh);
2044         jh->b_transaction = transaction;
2045
2046         switch (jlist) {
2047         case BJ_None:
2048                 J_ASSERT_JH(jh, !jh->b_committed_data);
2049                 J_ASSERT_JH(jh, !jh->b_frozen_data);
2050                 return;
2051         case BJ_Metadata:
2052                 transaction->t_nr_buffers++;
2053                 list = &transaction->t_buffers;
2054                 break;
2055         case BJ_Forget:
2056                 list = &transaction->t_forget;
2057                 break;
2058         case BJ_IO:
2059                 list = &transaction->t_iobuf_list;
2060                 break;
2061         case BJ_Shadow:
2062                 list = &transaction->t_shadow_list;
2063                 break;
2064         case BJ_LogCtl:
2065                 list = &transaction->t_log_list;
2066                 break;
2067         case BJ_Reserved:
2068                 list = &transaction->t_reserved_list;
2069                 break;
2070         }
2071
2072         __blist_add_buffer(list, jh);
2073         jh->b_jlist = jlist;
2074
2075         if (was_dirty)
2076                 set_buffer_jbddirty(bh);
2077 }
2078
2079 void jbd2_journal_file_buffer(struct journal_head *jh,
2080                                 transaction_t *transaction, int jlist)
2081 {
2082         jbd_lock_bh_state(jh2bh(jh));
2083         spin_lock(&transaction->t_journal->j_list_lock);
2084         __jbd2_journal_file_buffer(jh, transaction, jlist);
2085         spin_unlock(&transaction->t_journal->j_list_lock);
2086         jbd_unlock_bh_state(jh2bh(jh));
2087 }
2088
2089 /*
2090  * Remove a buffer from its current buffer list in preparation for
2091  * dropping it from its current transaction entirely.  If the buffer has
2092  * already started to be used by a subsequent transaction, refile the
2093  * buffer on that transaction's metadata list.
2094  *
2095  * Called under j_list_lock
2096  * Called under jbd_lock_bh_state(jh2bh(jh))
2097  *
2098  * jh and bh may be already free when this function returns
2099  */
2100 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2101 {
2102         int was_dirty, jlist;
2103         struct buffer_head *bh = jh2bh(jh);
2104
2105         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2106         if (jh->b_transaction)
2107                 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2108
2109         /* If the buffer is now unused, just drop it. */
2110         if (jh->b_next_transaction == NULL) {
2111                 __jbd2_journal_unfile_buffer(jh);
2112                 return;
2113         }
2114
2115         /*
2116          * It has been modified by a later transaction: add it to the new
2117          * transaction's metadata list.
2118          */
2119
2120         was_dirty = test_clear_buffer_jbddirty(bh);
2121         __jbd2_journal_temp_unlink_buffer(jh);
2122         /*
2123          * We set b_transaction here because b_next_transaction will inherit
2124          * our jh reference and thus __jbd2_journal_file_buffer() must not
2125          * take a new one.
2126          */
2127         jh->b_transaction = jh->b_next_transaction;
2128         jh->b_next_transaction = NULL;
2129         if (buffer_freed(bh))
2130                 jlist = BJ_Forget;
2131         else if (jh->b_modified)
2132                 jlist = BJ_Metadata;
2133         else
2134                 jlist = BJ_Reserved;
2135         __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2136         J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2137
2138         if (was_dirty)
2139                 set_buffer_jbddirty(bh);
2140 }
2141
2142 /*
2143  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2144  * bh reference so that we can safely unlock bh.
2145  *
2146  * The jh and bh may be freed by this call.
2147  */
2148 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2149 {
2150         struct buffer_head *bh = jh2bh(jh);
2151
2152         /* Get reference so that buffer cannot be freed before we unlock it */
2153         get_bh(bh);
2154         jbd_lock_bh_state(bh);
2155         spin_lock(&journal->j_list_lock);
2156         __jbd2_journal_refile_buffer(jh);
2157         jbd_unlock_bh_state(bh);
2158         spin_unlock(&journal->j_list_lock);
2159         __brelse(bh);
2160 }
2161
2162 /*
2163  * File inode in the inode list of the handle's transaction
2164  */
2165 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode)
2166 {
2167         transaction_t *transaction = handle->h_transaction;
2168         journal_t *journal = transaction->t_journal;
2169
2170         if (is_handle_aborted(handle))
2171                 return -EIO;
2172
2173         jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2174                         transaction->t_tid);
2175
2176         /*
2177          * First check whether inode isn't already on the transaction's
2178          * lists without taking the lock. Note that this check is safe
2179          * without the lock as we cannot race with somebody removing inode
2180          * from the transaction. The reason is that we remove inode from the
2181          * transaction only in journal_release_jbd_inode() and when we commit
2182          * the transaction. We are guarded from the first case by holding
2183          * a reference to the inode. We are safe against the second case
2184          * because if jinode->i_transaction == transaction, commit code
2185          * cannot touch the transaction because we hold reference to it,
2186          * and if jinode->i_next_transaction == transaction, commit code
2187          * will only file the inode where we want it.
2188          */
2189         if (jinode->i_transaction == transaction ||
2190             jinode->i_next_transaction == transaction)
2191                 return 0;
2192
2193         spin_lock(&journal->j_list_lock);
2194
2195         if (jinode->i_transaction == transaction ||
2196             jinode->i_next_transaction == transaction)
2197                 goto done;
2198
2199         /*
2200          * We only ever set this variable to 1 so the test is safe. Since
2201          * t_need_data_flush is likely to be set, we do the test to save some
2202          * cacheline bouncing
2203          */
2204         if (!transaction->t_need_data_flush)
2205                 transaction->t_need_data_flush = 1;
2206         /* On some different transaction's list - should be
2207          * the committing one */
2208         if (jinode->i_transaction) {
2209                 J_ASSERT(jinode->i_next_transaction == NULL);
2210                 J_ASSERT(jinode->i_transaction ==
2211                                         journal->j_committing_transaction);
2212                 jinode->i_next_transaction = transaction;
2213                 goto done;
2214         }
2215         /* Not on any transaction list... */
2216         J_ASSERT(!jinode->i_next_transaction);
2217         jinode->i_transaction = transaction;
2218         list_add(&jinode->i_list, &transaction->t_inode_list);
2219 done:
2220         spin_unlock(&journal->j_list_lock);
2221
2222         return 0;
2223 }
2224
2225 /*
2226  * File truncate and transaction commit interact with each other in a
2227  * non-trivial way.  If a transaction writing data block A is
2228  * committing, we cannot discard the data by truncate until we have
2229  * written them.  Otherwise if we crashed after the transaction with
2230  * write has committed but before the transaction with truncate has
2231  * committed, we could see stale data in block A.  This function is a
2232  * helper to solve this problem.  It starts writeout of the truncated
2233  * part in case it is in the committing transaction.
2234  *
2235  * Filesystem code must call this function when inode is journaled in
2236  * ordered mode before truncation happens and after the inode has been
2237  * placed on orphan list with the new inode size. The second condition
2238  * avoids the race that someone writes new data and we start
2239  * committing the transaction after this function has been called but
2240  * before a transaction for truncate is started (and furthermore it
2241  * allows us to optimize the case where the addition to orphan list
2242  * happens in the same transaction as write --- we don't have to write
2243  * any data in such case).
2244  */
2245 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2246                                         struct jbd2_inode *jinode,
2247                                         loff_t new_size)
2248 {
2249         transaction_t *inode_trans, *commit_trans;
2250         int ret = 0;
2251
2252         /* This is a quick check to avoid locking if not necessary */
2253         if (!jinode->i_transaction)
2254                 goto out;
2255         /* Locks are here just to force reading of recent values, it is
2256          * enough that the transaction was not committing before we started
2257          * a transaction adding the inode to orphan list */
2258         read_lock(&journal->j_state_lock);
2259         commit_trans = journal->j_committing_transaction;
2260         read_unlock(&journal->j_state_lock);
2261         spin_lock(&journal->j_list_lock);
2262         inode_trans = jinode->i_transaction;
2263         spin_unlock(&journal->j_list_lock);
2264         if (inode_trans == commit_trans) {
2265                 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2266                         new_size, LLONG_MAX);
2267                 if (ret)
2268                         jbd2_journal_abort(journal, ret);
2269         }
2270 out:
2271         return ret;
2272 }