Merge tag 'gpio-v4.8-1' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw/linux...
[cascardo/linux.git] / fs / mpage.c
1 /*
2  * fs/mpage.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains functions related to preparing and submitting BIOs which contain
7  * multiple pagecache pages.
8  *
9  * 15May2002    Andrew Morton
10  *              Initial version
11  * 27Jun2002    axboe@suse.de
12  *              use bio_add_page() to build bio's just the right size
13  */
14
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/mm.h>
18 #include <linux/kdev_t.h>
19 #include <linux/gfp.h>
20 #include <linux/bio.h>
21 #include <linux/fs.h>
22 #include <linux/buffer_head.h>
23 #include <linux/blkdev.h>
24 #include <linux/highmem.h>
25 #include <linux/prefetch.h>
26 #include <linux/mpage.h>
27 #include <linux/mm_inline.h>
28 #include <linux/writeback.h>
29 #include <linux/backing-dev.h>
30 #include <linux/pagevec.h>
31 #include <linux/cleancache.h>
32 #include "internal.h"
33
34 /*
35  * I/O completion handler for multipage BIOs.
36  *
37  * The mpage code never puts partial pages into a BIO (except for end-of-file).
38  * If a page does not map to a contiguous run of blocks then it simply falls
39  * back to block_read_full_page().
40  *
41  * Why is this?  If a page's completion depends on a number of different BIOs
42  * which can complete in any order (or at the same time) then determining the
43  * status of that page is hard.  See end_buffer_async_read() for the details.
44  * There is no point in duplicating all that complexity.
45  */
46 static void mpage_end_io(struct bio *bio)
47 {
48         struct bio_vec *bv;
49         int i;
50
51         bio_for_each_segment_all(bv, bio, i) {
52                 struct page *page = bv->bv_page;
53                 page_endio(page, bio_data_dir(bio), bio->bi_error);
54         }
55
56         bio_put(bio);
57 }
58
59 static struct bio *mpage_bio_submit(int op, int op_flags, struct bio *bio)
60 {
61         bio->bi_end_io = mpage_end_io;
62         bio_set_op_attrs(bio, op, op_flags);
63         guard_bio_eod(op, bio);
64         submit_bio(bio);
65         return NULL;
66 }
67
68 static struct bio *
69 mpage_alloc(struct block_device *bdev,
70                 sector_t first_sector, int nr_vecs,
71                 gfp_t gfp_flags)
72 {
73         struct bio *bio;
74
75         bio = bio_alloc(gfp_flags, nr_vecs);
76
77         if (bio == NULL && (current->flags & PF_MEMALLOC)) {
78                 while (!bio && (nr_vecs /= 2))
79                         bio = bio_alloc(gfp_flags, nr_vecs);
80         }
81
82         if (bio) {
83                 bio->bi_bdev = bdev;
84                 bio->bi_iter.bi_sector = first_sector;
85         }
86         return bio;
87 }
88
89 /*
90  * support function for mpage_readpages.  The fs supplied get_block might
91  * return an up to date buffer.  This is used to map that buffer into
92  * the page, which allows readpage to avoid triggering a duplicate call
93  * to get_block.
94  *
95  * The idea is to avoid adding buffers to pages that don't already have
96  * them.  So when the buffer is up to date and the page size == block size,
97  * this marks the page up to date instead of adding new buffers.
98  */
99 static void 
100 map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block) 
101 {
102         struct inode *inode = page->mapping->host;
103         struct buffer_head *page_bh, *head;
104         int block = 0;
105
106         if (!page_has_buffers(page)) {
107                 /*
108                  * don't make any buffers if there is only one buffer on
109                  * the page and the page just needs to be set up to date
110                  */
111                 if (inode->i_blkbits == PAGE_SHIFT &&
112                     buffer_uptodate(bh)) {
113                         SetPageUptodate(page);    
114                         return;
115                 }
116                 create_empty_buffers(page, 1 << inode->i_blkbits, 0);
117         }
118         head = page_buffers(page);
119         page_bh = head;
120         do {
121                 if (block == page_block) {
122                         page_bh->b_state = bh->b_state;
123                         page_bh->b_bdev = bh->b_bdev;
124                         page_bh->b_blocknr = bh->b_blocknr;
125                         break;
126                 }
127                 page_bh = page_bh->b_this_page;
128                 block++;
129         } while (page_bh != head);
130 }
131
132 /*
133  * This is the worker routine which does all the work of mapping the disk
134  * blocks and constructs largest possible bios, submits them for IO if the
135  * blocks are not contiguous on the disk.
136  *
137  * We pass a buffer_head back and forth and use its buffer_mapped() flag to
138  * represent the validity of its disk mapping and to decide when to do the next
139  * get_block() call.
140  */
141 static struct bio *
142 do_mpage_readpage(struct bio *bio, struct page *page, unsigned nr_pages,
143                 sector_t *last_block_in_bio, struct buffer_head *map_bh,
144                 unsigned long *first_logical_block, get_block_t get_block,
145                 gfp_t gfp)
146 {
147         struct inode *inode = page->mapping->host;
148         const unsigned blkbits = inode->i_blkbits;
149         const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
150         const unsigned blocksize = 1 << blkbits;
151         sector_t block_in_file;
152         sector_t last_block;
153         sector_t last_block_in_file;
154         sector_t blocks[MAX_BUF_PER_PAGE];
155         unsigned page_block;
156         unsigned first_hole = blocks_per_page;
157         struct block_device *bdev = NULL;
158         int length;
159         int fully_mapped = 1;
160         unsigned nblocks;
161         unsigned relative_block;
162
163         if (page_has_buffers(page))
164                 goto confused;
165
166         block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
167         last_block = block_in_file + nr_pages * blocks_per_page;
168         last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
169         if (last_block > last_block_in_file)
170                 last_block = last_block_in_file;
171         page_block = 0;
172
173         /*
174          * Map blocks using the result from the previous get_blocks call first.
175          */
176         nblocks = map_bh->b_size >> blkbits;
177         if (buffer_mapped(map_bh) && block_in_file > *first_logical_block &&
178                         block_in_file < (*first_logical_block + nblocks)) {
179                 unsigned map_offset = block_in_file - *first_logical_block;
180                 unsigned last = nblocks - map_offset;
181
182                 for (relative_block = 0; ; relative_block++) {
183                         if (relative_block == last) {
184                                 clear_buffer_mapped(map_bh);
185                                 break;
186                         }
187                         if (page_block == blocks_per_page)
188                                 break;
189                         blocks[page_block] = map_bh->b_blocknr + map_offset +
190                                                 relative_block;
191                         page_block++;
192                         block_in_file++;
193                 }
194                 bdev = map_bh->b_bdev;
195         }
196
197         /*
198          * Then do more get_blocks calls until we are done with this page.
199          */
200         map_bh->b_page = page;
201         while (page_block < blocks_per_page) {
202                 map_bh->b_state = 0;
203                 map_bh->b_size = 0;
204
205                 if (block_in_file < last_block) {
206                         map_bh->b_size = (last_block-block_in_file) << blkbits;
207                         if (get_block(inode, block_in_file, map_bh, 0))
208                                 goto confused;
209                         *first_logical_block = block_in_file;
210                 }
211
212                 if (!buffer_mapped(map_bh)) {
213                         fully_mapped = 0;
214                         if (first_hole == blocks_per_page)
215                                 first_hole = page_block;
216                         page_block++;
217                         block_in_file++;
218                         continue;
219                 }
220
221                 /* some filesystems will copy data into the page during
222                  * the get_block call, in which case we don't want to
223                  * read it again.  map_buffer_to_page copies the data
224                  * we just collected from get_block into the page's buffers
225                  * so readpage doesn't have to repeat the get_block call
226                  */
227                 if (buffer_uptodate(map_bh)) {
228                         map_buffer_to_page(page, map_bh, page_block);
229                         goto confused;
230                 }
231         
232                 if (first_hole != blocks_per_page)
233                         goto confused;          /* hole -> non-hole */
234
235                 /* Contiguous blocks? */
236                 if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1)
237                         goto confused;
238                 nblocks = map_bh->b_size >> blkbits;
239                 for (relative_block = 0; ; relative_block++) {
240                         if (relative_block == nblocks) {
241                                 clear_buffer_mapped(map_bh);
242                                 break;
243                         } else if (page_block == blocks_per_page)
244                                 break;
245                         blocks[page_block] = map_bh->b_blocknr+relative_block;
246                         page_block++;
247                         block_in_file++;
248                 }
249                 bdev = map_bh->b_bdev;
250         }
251
252         if (first_hole != blocks_per_page) {
253                 zero_user_segment(page, first_hole << blkbits, PAGE_SIZE);
254                 if (first_hole == 0) {
255                         SetPageUptodate(page);
256                         unlock_page(page);
257                         goto out;
258                 }
259         } else if (fully_mapped) {
260                 SetPageMappedToDisk(page);
261         }
262
263         if (fully_mapped && blocks_per_page == 1 && !PageUptodate(page) &&
264             cleancache_get_page(page) == 0) {
265                 SetPageUptodate(page);
266                 goto confused;
267         }
268
269         /*
270          * This page will go to BIO.  Do we need to send this BIO off first?
271          */
272         if (bio && (*last_block_in_bio != blocks[0] - 1))
273                 bio = mpage_bio_submit(REQ_OP_READ, 0, bio);
274
275 alloc_new:
276         if (bio == NULL) {
277                 if (first_hole == blocks_per_page) {
278                         if (!bdev_read_page(bdev, blocks[0] << (blkbits - 9),
279                                                                 page))
280                                 goto out;
281                 }
282                 bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
283                                 min_t(int, nr_pages, BIO_MAX_PAGES), gfp);
284                 if (bio == NULL)
285                         goto confused;
286         }
287
288         length = first_hole << blkbits;
289         if (bio_add_page(bio, page, length, 0) < length) {
290                 bio = mpage_bio_submit(REQ_OP_READ, 0, bio);
291                 goto alloc_new;
292         }
293
294         relative_block = block_in_file - *first_logical_block;
295         nblocks = map_bh->b_size >> blkbits;
296         if ((buffer_boundary(map_bh) && relative_block == nblocks) ||
297             (first_hole != blocks_per_page))
298                 bio = mpage_bio_submit(REQ_OP_READ, 0, bio);
299         else
300                 *last_block_in_bio = blocks[blocks_per_page - 1];
301 out:
302         return bio;
303
304 confused:
305         if (bio)
306                 bio = mpage_bio_submit(REQ_OP_READ, 0, bio);
307         if (!PageUptodate(page))
308                 block_read_full_page(page, get_block);
309         else
310                 unlock_page(page);
311         goto out;
312 }
313
314 /**
315  * mpage_readpages - populate an address space with some pages & start reads against them
316  * @mapping: the address_space
317  * @pages: The address of a list_head which contains the target pages.  These
318  *   pages have their ->index populated and are otherwise uninitialised.
319  *   The page at @pages->prev has the lowest file offset, and reads should be
320  *   issued in @pages->prev to @pages->next order.
321  * @nr_pages: The number of pages at *@pages
322  * @get_block: The filesystem's block mapper function.
323  *
324  * This function walks the pages and the blocks within each page, building and
325  * emitting large BIOs.
326  *
327  * If anything unusual happens, such as:
328  *
329  * - encountering a page which has buffers
330  * - encountering a page which has a non-hole after a hole
331  * - encountering a page with non-contiguous blocks
332  *
333  * then this code just gives up and calls the buffer_head-based read function.
334  * It does handle a page which has holes at the end - that is a common case:
335  * the end-of-file on blocksize < PAGE_SIZE setups.
336  *
337  * BH_Boundary explanation:
338  *
339  * There is a problem.  The mpage read code assembles several pages, gets all
340  * their disk mappings, and then submits them all.  That's fine, but obtaining
341  * the disk mappings may require I/O.  Reads of indirect blocks, for example.
342  *
343  * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be
344  * submitted in the following order:
345  *      12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
346  *
347  * because the indirect block has to be read to get the mappings of blocks
348  * 13,14,15,16.  Obviously, this impacts performance.
349  *
350  * So what we do it to allow the filesystem's get_block() function to set
351  * BH_Boundary when it maps block 11.  BH_Boundary says: mapping of the block
352  * after this one will require I/O against a block which is probably close to
353  * this one.  So you should push what I/O you have currently accumulated.
354  *
355  * This all causes the disk requests to be issued in the correct order.
356  */
357 int
358 mpage_readpages(struct address_space *mapping, struct list_head *pages,
359                                 unsigned nr_pages, get_block_t get_block)
360 {
361         struct bio *bio = NULL;
362         unsigned page_idx;
363         sector_t last_block_in_bio = 0;
364         struct buffer_head map_bh;
365         unsigned long first_logical_block = 0;
366         gfp_t gfp = mapping_gfp_constraint(mapping, GFP_KERNEL);
367
368         map_bh.b_state = 0;
369         map_bh.b_size = 0;
370         for (page_idx = 0; page_idx < nr_pages; page_idx++) {
371                 struct page *page = lru_to_page(pages);
372
373                 prefetchw(&page->flags);
374                 list_del(&page->lru);
375                 if (!add_to_page_cache_lru(page, mapping,
376                                         page->index,
377                                         gfp)) {
378                         bio = do_mpage_readpage(bio, page,
379                                         nr_pages - page_idx,
380                                         &last_block_in_bio, &map_bh,
381                                         &first_logical_block,
382                                         get_block, gfp);
383                 }
384                 put_page(page);
385         }
386         BUG_ON(!list_empty(pages));
387         if (bio)
388                 mpage_bio_submit(REQ_OP_READ, 0, bio);
389         return 0;
390 }
391 EXPORT_SYMBOL(mpage_readpages);
392
393 /*
394  * This isn't called much at all
395  */
396 int mpage_readpage(struct page *page, get_block_t get_block)
397 {
398         struct bio *bio = NULL;
399         sector_t last_block_in_bio = 0;
400         struct buffer_head map_bh;
401         unsigned long first_logical_block = 0;
402         gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL);
403
404         map_bh.b_state = 0;
405         map_bh.b_size = 0;
406         bio = do_mpage_readpage(bio, page, 1, &last_block_in_bio,
407                         &map_bh, &first_logical_block, get_block, gfp);
408         if (bio)
409                 mpage_bio_submit(REQ_OP_READ, 0, bio);
410         return 0;
411 }
412 EXPORT_SYMBOL(mpage_readpage);
413
414 /*
415  * Writing is not so simple.
416  *
417  * If the page has buffers then they will be used for obtaining the disk
418  * mapping.  We only support pages which are fully mapped-and-dirty, with a
419  * special case for pages which are unmapped at the end: end-of-file.
420  *
421  * If the page has no buffers (preferred) then the page is mapped here.
422  *
423  * If all blocks are found to be contiguous then the page can go into the
424  * BIO.  Otherwise fall back to the mapping's writepage().
425  * 
426  * FIXME: This code wants an estimate of how many pages are still to be
427  * written, so it can intelligently allocate a suitably-sized BIO.  For now,
428  * just allocate full-size (16-page) BIOs.
429  */
430
431 struct mpage_data {
432         struct bio *bio;
433         sector_t last_block_in_bio;
434         get_block_t *get_block;
435         unsigned use_writepage;
436 };
437
438 /*
439  * We have our BIO, so we can now mark the buffers clean.  Make
440  * sure to only clean buffers which we know we'll be writing.
441  */
442 static void clean_buffers(struct page *page, unsigned first_unmapped)
443 {
444         unsigned buffer_counter = 0;
445         struct buffer_head *bh, *head;
446         if (!page_has_buffers(page))
447                 return;
448         head = page_buffers(page);
449         bh = head;
450
451         do {
452                 if (buffer_counter++ == first_unmapped)
453                         break;
454                 clear_buffer_dirty(bh);
455                 bh = bh->b_this_page;
456         } while (bh != head);
457
458         /*
459          * we cannot drop the bh if the page is not uptodate or a concurrent
460          * readpage would fail to serialize with the bh and it would read from
461          * disk before we reach the platter.
462          */
463         if (buffer_heads_over_limit && PageUptodate(page))
464                 try_to_free_buffers(page);
465 }
466
467 static int __mpage_writepage(struct page *page, struct writeback_control *wbc,
468                       void *data)
469 {
470         struct mpage_data *mpd = data;
471         struct bio *bio = mpd->bio;
472         struct address_space *mapping = page->mapping;
473         struct inode *inode = page->mapping->host;
474         const unsigned blkbits = inode->i_blkbits;
475         unsigned long end_index;
476         const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
477         sector_t last_block;
478         sector_t block_in_file;
479         sector_t blocks[MAX_BUF_PER_PAGE];
480         unsigned page_block;
481         unsigned first_unmapped = blocks_per_page;
482         struct block_device *bdev = NULL;
483         int boundary = 0;
484         sector_t boundary_block = 0;
485         struct block_device *boundary_bdev = NULL;
486         int length;
487         struct buffer_head map_bh;
488         loff_t i_size = i_size_read(inode);
489         int ret = 0;
490         int op_flags = (wbc->sync_mode == WB_SYNC_ALL ?  WRITE_SYNC : 0);
491
492         if (page_has_buffers(page)) {
493                 struct buffer_head *head = page_buffers(page);
494                 struct buffer_head *bh = head;
495
496                 /* If they're all mapped and dirty, do it */
497                 page_block = 0;
498                 do {
499                         BUG_ON(buffer_locked(bh));
500                         if (!buffer_mapped(bh)) {
501                                 /*
502                                  * unmapped dirty buffers are created by
503                                  * __set_page_dirty_buffers -> mmapped data
504                                  */
505                                 if (buffer_dirty(bh))
506                                         goto confused;
507                                 if (first_unmapped == blocks_per_page)
508                                         first_unmapped = page_block;
509                                 continue;
510                         }
511
512                         if (first_unmapped != blocks_per_page)
513                                 goto confused;  /* hole -> non-hole */
514
515                         if (!buffer_dirty(bh) || !buffer_uptodate(bh))
516                                 goto confused;
517                         if (page_block) {
518                                 if (bh->b_blocknr != blocks[page_block-1] + 1)
519                                         goto confused;
520                         }
521                         blocks[page_block++] = bh->b_blocknr;
522                         boundary = buffer_boundary(bh);
523                         if (boundary) {
524                                 boundary_block = bh->b_blocknr;
525                                 boundary_bdev = bh->b_bdev;
526                         }
527                         bdev = bh->b_bdev;
528                 } while ((bh = bh->b_this_page) != head);
529
530                 if (first_unmapped)
531                         goto page_is_mapped;
532
533                 /*
534                  * Page has buffers, but they are all unmapped. The page was
535                  * created by pagein or read over a hole which was handled by
536                  * block_read_full_page().  If this address_space is also
537                  * using mpage_readpages then this can rarely happen.
538                  */
539                 goto confused;
540         }
541
542         /*
543          * The page has no buffers: map it to disk
544          */
545         BUG_ON(!PageUptodate(page));
546         block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
547         last_block = (i_size - 1) >> blkbits;
548         map_bh.b_page = page;
549         for (page_block = 0; page_block < blocks_per_page; ) {
550
551                 map_bh.b_state = 0;
552                 map_bh.b_size = 1 << blkbits;
553                 if (mpd->get_block(inode, block_in_file, &map_bh, 1))
554                         goto confused;
555                 if (buffer_new(&map_bh))
556                         unmap_underlying_metadata(map_bh.b_bdev,
557                                                 map_bh.b_blocknr);
558                 if (buffer_boundary(&map_bh)) {
559                         boundary_block = map_bh.b_blocknr;
560                         boundary_bdev = map_bh.b_bdev;
561                 }
562                 if (page_block) {
563                         if (map_bh.b_blocknr != blocks[page_block-1] + 1)
564                                 goto confused;
565                 }
566                 blocks[page_block++] = map_bh.b_blocknr;
567                 boundary = buffer_boundary(&map_bh);
568                 bdev = map_bh.b_bdev;
569                 if (block_in_file == last_block)
570                         break;
571                 block_in_file++;
572         }
573         BUG_ON(page_block == 0);
574
575         first_unmapped = page_block;
576
577 page_is_mapped:
578         end_index = i_size >> PAGE_SHIFT;
579         if (page->index >= end_index) {
580                 /*
581                  * The page straddles i_size.  It must be zeroed out on each
582                  * and every writepage invocation because it may be mmapped.
583                  * "A file is mapped in multiples of the page size.  For a file
584                  * that is not a multiple of the page size, the remaining memory
585                  * is zeroed when mapped, and writes to that region are not
586                  * written out to the file."
587                  */
588                 unsigned offset = i_size & (PAGE_SIZE - 1);
589
590                 if (page->index > end_index || !offset)
591                         goto confused;
592                 zero_user_segment(page, offset, PAGE_SIZE);
593         }
594
595         /*
596          * This page will go to BIO.  Do we need to send this BIO off first?
597          */
598         if (bio && mpd->last_block_in_bio != blocks[0] - 1)
599                 bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
600
601 alloc_new:
602         if (bio == NULL) {
603                 if (first_unmapped == blocks_per_page) {
604                         if (!bdev_write_page(bdev, blocks[0] << (blkbits - 9),
605                                                                 page, wbc)) {
606                                 clean_buffers(page, first_unmapped);
607                                 goto out;
608                         }
609                 }
610                 bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
611                                 BIO_MAX_PAGES, GFP_NOFS|__GFP_HIGH);
612                 if (bio == NULL)
613                         goto confused;
614
615                 wbc_init_bio(wbc, bio);
616         }
617
618         /*
619          * Must try to add the page before marking the buffer clean or
620          * the confused fail path above (OOM) will be very confused when
621          * it finds all bh marked clean (i.e. it will not write anything)
622          */
623         wbc_account_io(wbc, page, PAGE_SIZE);
624         length = first_unmapped << blkbits;
625         if (bio_add_page(bio, page, length, 0) < length) {
626                 bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
627                 goto alloc_new;
628         }
629
630         clean_buffers(page, first_unmapped);
631
632         BUG_ON(PageWriteback(page));
633         set_page_writeback(page);
634         unlock_page(page);
635         if (boundary || (first_unmapped != blocks_per_page)) {
636                 bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
637                 if (boundary_block) {
638                         write_boundary_block(boundary_bdev,
639                                         boundary_block, 1 << blkbits);
640                 }
641         } else {
642                 mpd->last_block_in_bio = blocks[blocks_per_page - 1];
643         }
644         goto out;
645
646 confused:
647         if (bio)
648                 bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
649
650         if (mpd->use_writepage) {
651                 ret = mapping->a_ops->writepage(page, wbc);
652         } else {
653                 ret = -EAGAIN;
654                 goto out;
655         }
656         /*
657          * The caller has a ref on the inode, so *mapping is stable
658          */
659         mapping_set_error(mapping, ret);
660 out:
661         mpd->bio = bio;
662         return ret;
663 }
664
665 /**
666  * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them
667  * @mapping: address space structure to write
668  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
669  * @get_block: the filesystem's block mapper function.
670  *             If this is NULL then use a_ops->writepage.  Otherwise, go
671  *             direct-to-BIO.
672  *
673  * This is a library function, which implements the writepages()
674  * address_space_operation.
675  *
676  * If a page is already under I/O, generic_writepages() skips it, even
677  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
678  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
679  * and msync() need to guarantee that all the data which was dirty at the time
680  * the call was made get new I/O started against them.  If wbc->sync_mode is
681  * WB_SYNC_ALL then we were called for data integrity and we must wait for
682  * existing IO to complete.
683  */
684 int
685 mpage_writepages(struct address_space *mapping,
686                 struct writeback_control *wbc, get_block_t get_block)
687 {
688         struct blk_plug plug;
689         int ret;
690
691         blk_start_plug(&plug);
692
693         if (!get_block)
694                 ret = generic_writepages(mapping, wbc);
695         else {
696                 struct mpage_data mpd = {
697                         .bio = NULL,
698                         .last_block_in_bio = 0,
699                         .get_block = get_block,
700                         .use_writepage = 1,
701                 };
702
703                 ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd);
704                 if (mpd.bio) {
705                         int op_flags = (wbc->sync_mode == WB_SYNC_ALL ?
706                                   WRITE_SYNC : 0);
707                         mpage_bio_submit(REQ_OP_WRITE, op_flags, mpd.bio);
708                 }
709         }
710         blk_finish_plug(&plug);
711         return ret;
712 }
713 EXPORT_SYMBOL(mpage_writepages);
714
715 int mpage_writepage(struct page *page, get_block_t get_block,
716         struct writeback_control *wbc)
717 {
718         struct mpage_data mpd = {
719                 .bio = NULL,
720                 .last_block_in_bio = 0,
721                 .get_block = get_block,
722                 .use_writepage = 0,
723         };
724         int ret = __mpage_writepage(page, wbc, &mpd);
725         if (mpd.bio) {
726                 int op_flags = (wbc->sync_mode == WB_SYNC_ALL ?
727                           WRITE_SYNC : 0);
728                 mpage_bio_submit(REQ_OP_WRITE, op_flags, mpd.bio);
729         }
730         return ret;
731 }
732 EXPORT_SYMBOL(mpage_writepage);