ocfs2: do not use ocfs2_zero_extend during direct IO
[cascardo/linux.git] / fs / ocfs2 / aops.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public
17  * License along with this program; if not, write to the
18  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19  * Boston, MA 021110-1307, USA.
20  */
21
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
31 #include <linux/blkdev.h>
32
33 #include <cluster/masklog.h>
34
35 #include "ocfs2.h"
36
37 #include "alloc.h"
38 #include "aops.h"
39 #include "dlmglue.h"
40 #include "extent_map.h"
41 #include "file.h"
42 #include "inode.h"
43 #include "journal.h"
44 #include "suballoc.h"
45 #include "super.h"
46 #include "symlink.h"
47 #include "refcounttree.h"
48 #include "ocfs2_trace.h"
49
50 #include "buffer_head_io.h"
51 #include "dir.h"
52 #include "namei.h"
53 #include "sysfile.h"
54
55 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
56                                    struct buffer_head *bh_result, int create)
57 {
58         int err = -EIO;
59         int status;
60         struct ocfs2_dinode *fe = NULL;
61         struct buffer_head *bh = NULL;
62         struct buffer_head *buffer_cache_bh = NULL;
63         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
64         void *kaddr;
65
66         trace_ocfs2_symlink_get_block(
67                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
68                         (unsigned long long)iblock, bh_result, create);
69
70         BUG_ON(ocfs2_inode_is_fast_symlink(inode));
71
72         if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
73                 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
74                      (unsigned long long)iblock);
75                 goto bail;
76         }
77
78         status = ocfs2_read_inode_block(inode, &bh);
79         if (status < 0) {
80                 mlog_errno(status);
81                 goto bail;
82         }
83         fe = (struct ocfs2_dinode *) bh->b_data;
84
85         if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
86                                                     le32_to_cpu(fe->i_clusters))) {
87                 err = -ENOMEM;
88                 mlog(ML_ERROR, "block offset is outside the allocated size: "
89                      "%llu\n", (unsigned long long)iblock);
90                 goto bail;
91         }
92
93         /* We don't use the page cache to create symlink data, so if
94          * need be, copy it over from the buffer cache. */
95         if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
96                 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
97                             iblock;
98                 buffer_cache_bh = sb_getblk(osb->sb, blkno);
99                 if (!buffer_cache_bh) {
100                         err = -ENOMEM;
101                         mlog(ML_ERROR, "couldn't getblock for symlink!\n");
102                         goto bail;
103                 }
104
105                 /* we haven't locked out transactions, so a commit
106                  * could've happened. Since we've got a reference on
107                  * the bh, even if it commits while we're doing the
108                  * copy, the data is still good. */
109                 if (buffer_jbd(buffer_cache_bh)
110                     && ocfs2_inode_is_new(inode)) {
111                         kaddr = kmap_atomic(bh_result->b_page);
112                         if (!kaddr) {
113                                 mlog(ML_ERROR, "couldn't kmap!\n");
114                                 goto bail;
115                         }
116                         memcpy(kaddr + (bh_result->b_size * iblock),
117                                buffer_cache_bh->b_data,
118                                bh_result->b_size);
119                         kunmap_atomic(kaddr);
120                         set_buffer_uptodate(bh_result);
121                 }
122                 brelse(buffer_cache_bh);
123         }
124
125         map_bh(bh_result, inode->i_sb,
126                le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
127
128         err = 0;
129
130 bail:
131         brelse(bh);
132
133         return err;
134 }
135
136 int ocfs2_get_block(struct inode *inode, sector_t iblock,
137                     struct buffer_head *bh_result, int create)
138 {
139         int err = 0;
140         unsigned int ext_flags;
141         u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
142         u64 p_blkno, count, past_eof;
143         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
144
145         trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
146                               (unsigned long long)iblock, bh_result, create);
147
148         if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
149                 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
150                      inode, inode->i_ino);
151
152         if (S_ISLNK(inode->i_mode)) {
153                 /* this always does I/O for some reason. */
154                 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
155                 goto bail;
156         }
157
158         err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
159                                           &ext_flags);
160         if (err) {
161                 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
162                      "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
163                      (unsigned long long)p_blkno);
164                 goto bail;
165         }
166
167         if (max_blocks < count)
168                 count = max_blocks;
169
170         /*
171          * ocfs2 never allocates in this function - the only time we
172          * need to use BH_New is when we're extending i_size on a file
173          * system which doesn't support holes, in which case BH_New
174          * allows __block_write_begin() to zero.
175          *
176          * If we see this on a sparse file system, then a truncate has
177          * raced us and removed the cluster. In this case, we clear
178          * the buffers dirty and uptodate bits and let the buffer code
179          * ignore it as a hole.
180          */
181         if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
182                 clear_buffer_dirty(bh_result);
183                 clear_buffer_uptodate(bh_result);
184                 goto bail;
185         }
186
187         /* Treat the unwritten extent as a hole for zeroing purposes. */
188         if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
189                 map_bh(bh_result, inode->i_sb, p_blkno);
190
191         bh_result->b_size = count << inode->i_blkbits;
192
193         if (!ocfs2_sparse_alloc(osb)) {
194                 if (p_blkno == 0) {
195                         err = -EIO;
196                         mlog(ML_ERROR,
197                              "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
198                              (unsigned long long)iblock,
199                              (unsigned long long)p_blkno,
200                              (unsigned long long)OCFS2_I(inode)->ip_blkno);
201                         mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
202                         dump_stack();
203                         goto bail;
204                 }
205         }
206
207         past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
208
209         trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
210                                   (unsigned long long)past_eof);
211         if (create && (iblock >= past_eof))
212                 set_buffer_new(bh_result);
213
214 bail:
215         if (err < 0)
216                 err = -EIO;
217
218         return err;
219 }
220
221 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
222                            struct buffer_head *di_bh)
223 {
224         void *kaddr;
225         loff_t size;
226         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
227
228         if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
229                 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
230                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
231                 return -EROFS;
232         }
233
234         size = i_size_read(inode);
235
236         if (size > PAGE_CACHE_SIZE ||
237             size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
238                 ocfs2_error(inode->i_sb,
239                             "Inode %llu has with inline data has bad size: %Lu",
240                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
241                             (unsigned long long)size);
242                 return -EROFS;
243         }
244
245         kaddr = kmap_atomic(page);
246         if (size)
247                 memcpy(kaddr, di->id2.i_data.id_data, size);
248         /* Clear the remaining part of the page */
249         memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
250         flush_dcache_page(page);
251         kunmap_atomic(kaddr);
252
253         SetPageUptodate(page);
254
255         return 0;
256 }
257
258 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
259 {
260         int ret;
261         struct buffer_head *di_bh = NULL;
262
263         BUG_ON(!PageLocked(page));
264         BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
265
266         ret = ocfs2_read_inode_block(inode, &di_bh);
267         if (ret) {
268                 mlog_errno(ret);
269                 goto out;
270         }
271
272         ret = ocfs2_read_inline_data(inode, page, di_bh);
273 out:
274         unlock_page(page);
275
276         brelse(di_bh);
277         return ret;
278 }
279
280 static int ocfs2_readpage(struct file *file, struct page *page)
281 {
282         struct inode *inode = page->mapping->host;
283         struct ocfs2_inode_info *oi = OCFS2_I(inode);
284         loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
285         int ret, unlock = 1;
286
287         trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
288                              (page ? page->index : 0));
289
290         ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
291         if (ret != 0) {
292                 if (ret == AOP_TRUNCATED_PAGE)
293                         unlock = 0;
294                 mlog_errno(ret);
295                 goto out;
296         }
297
298         if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
299                 /*
300                  * Unlock the page and cycle ip_alloc_sem so that we don't
301                  * busyloop waiting for ip_alloc_sem to unlock
302                  */
303                 ret = AOP_TRUNCATED_PAGE;
304                 unlock_page(page);
305                 unlock = 0;
306                 down_read(&oi->ip_alloc_sem);
307                 up_read(&oi->ip_alloc_sem);
308                 goto out_inode_unlock;
309         }
310
311         /*
312          * i_size might have just been updated as we grabed the meta lock.  We
313          * might now be discovering a truncate that hit on another node.
314          * block_read_full_page->get_block freaks out if it is asked to read
315          * beyond the end of a file, so we check here.  Callers
316          * (generic_file_read, vm_ops->fault) are clever enough to check i_size
317          * and notice that the page they just read isn't needed.
318          *
319          * XXX sys_readahead() seems to get that wrong?
320          */
321         if (start >= i_size_read(inode)) {
322                 zero_user(page, 0, PAGE_SIZE);
323                 SetPageUptodate(page);
324                 ret = 0;
325                 goto out_alloc;
326         }
327
328         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
329                 ret = ocfs2_readpage_inline(inode, page);
330         else
331                 ret = block_read_full_page(page, ocfs2_get_block);
332         unlock = 0;
333
334 out_alloc:
335         up_read(&OCFS2_I(inode)->ip_alloc_sem);
336 out_inode_unlock:
337         ocfs2_inode_unlock(inode, 0);
338 out:
339         if (unlock)
340                 unlock_page(page);
341         return ret;
342 }
343
344 /*
345  * This is used only for read-ahead. Failures or difficult to handle
346  * situations are safe to ignore.
347  *
348  * Right now, we don't bother with BH_Boundary - in-inode extent lists
349  * are quite large (243 extents on 4k blocks), so most inodes don't
350  * grow out to a tree. If need be, detecting boundary extents could
351  * trivially be added in a future version of ocfs2_get_block().
352  */
353 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
354                            struct list_head *pages, unsigned nr_pages)
355 {
356         int ret, err = -EIO;
357         struct inode *inode = mapping->host;
358         struct ocfs2_inode_info *oi = OCFS2_I(inode);
359         loff_t start;
360         struct page *last;
361
362         /*
363          * Use the nonblocking flag for the dlm code to avoid page
364          * lock inversion, but don't bother with retrying.
365          */
366         ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
367         if (ret)
368                 return err;
369
370         if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
371                 ocfs2_inode_unlock(inode, 0);
372                 return err;
373         }
374
375         /*
376          * Don't bother with inline-data. There isn't anything
377          * to read-ahead in that case anyway...
378          */
379         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
380                 goto out_unlock;
381
382         /*
383          * Check whether a remote node truncated this file - we just
384          * drop out in that case as it's not worth handling here.
385          */
386         last = list_entry(pages->prev, struct page, lru);
387         start = (loff_t)last->index << PAGE_CACHE_SHIFT;
388         if (start >= i_size_read(inode))
389                 goto out_unlock;
390
391         err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
392
393 out_unlock:
394         up_read(&oi->ip_alloc_sem);
395         ocfs2_inode_unlock(inode, 0);
396
397         return err;
398 }
399
400 /* Note: Because we don't support holes, our allocation has
401  * already happened (allocation writes zeros to the file data)
402  * so we don't have to worry about ordered writes in
403  * ocfs2_writepage.
404  *
405  * ->writepage is called during the process of invalidating the page cache
406  * during blocked lock processing.  It can't block on any cluster locks
407  * to during block mapping.  It's relying on the fact that the block
408  * mapping can't have disappeared under the dirty pages that it is
409  * being asked to write back.
410  */
411 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
412 {
413         trace_ocfs2_writepage(
414                 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
415                 page->index);
416
417         return block_write_full_page(page, ocfs2_get_block, wbc);
418 }
419
420 /* Taken from ext3. We don't necessarily need the full blown
421  * functionality yet, but IMHO it's better to cut and paste the whole
422  * thing so we can avoid introducing our own bugs (and easily pick up
423  * their fixes when they happen) --Mark */
424 int walk_page_buffers(  handle_t *handle,
425                         struct buffer_head *head,
426                         unsigned from,
427                         unsigned to,
428                         int *partial,
429                         int (*fn)(      handle_t *handle,
430                                         struct buffer_head *bh))
431 {
432         struct buffer_head *bh;
433         unsigned block_start, block_end;
434         unsigned blocksize = head->b_size;
435         int err, ret = 0;
436         struct buffer_head *next;
437
438         for (   bh = head, block_start = 0;
439                 ret == 0 && (bh != head || !block_start);
440                 block_start = block_end, bh = next)
441         {
442                 next = bh->b_this_page;
443                 block_end = block_start + blocksize;
444                 if (block_end <= from || block_start >= to) {
445                         if (partial && !buffer_uptodate(bh))
446                                 *partial = 1;
447                         continue;
448                 }
449                 err = (*fn)(handle, bh);
450                 if (!ret)
451                         ret = err;
452         }
453         return ret;
454 }
455
456 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
457 {
458         sector_t status;
459         u64 p_blkno = 0;
460         int err = 0;
461         struct inode *inode = mapping->host;
462
463         trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
464                          (unsigned long long)block);
465
466         /* We don't need to lock journal system files, since they aren't
467          * accessed concurrently from multiple nodes.
468          */
469         if (!INODE_JOURNAL(inode)) {
470                 err = ocfs2_inode_lock(inode, NULL, 0);
471                 if (err) {
472                         if (err != -ENOENT)
473                                 mlog_errno(err);
474                         goto bail;
475                 }
476                 down_read(&OCFS2_I(inode)->ip_alloc_sem);
477         }
478
479         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
480                 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
481                                                   NULL);
482
483         if (!INODE_JOURNAL(inode)) {
484                 up_read(&OCFS2_I(inode)->ip_alloc_sem);
485                 ocfs2_inode_unlock(inode, 0);
486         }
487
488         if (err) {
489                 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
490                      (unsigned long long)block);
491                 mlog_errno(err);
492                 goto bail;
493         }
494
495 bail:
496         status = err ? 0 : p_blkno;
497
498         return status;
499 }
500
501 /*
502  * TODO: Make this into a generic get_blocks function.
503  *
504  * From do_direct_io in direct-io.c:
505  *  "So what we do is to permit the ->get_blocks function to populate
506  *   bh.b_size with the size of IO which is permitted at this offset and
507  *   this i_blkbits."
508  *
509  * This function is called directly from get_more_blocks in direct-io.c.
510  *
511  * called like this: dio->get_blocks(dio->inode, fs_startblk,
512  *                                      fs_count, map_bh, dio->rw == WRITE);
513  */
514 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
515                                      struct buffer_head *bh_result, int create)
516 {
517         int ret;
518         u32 cpos = 0;
519         int alloc_locked = 0;
520         u64 p_blkno, inode_blocks, contig_blocks;
521         unsigned int ext_flags;
522         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
523         unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
524         unsigned long len = bh_result->b_size;
525         unsigned int clusters_to_alloc = 0;
526
527         cpos = ocfs2_blocks_to_clusters(inode->i_sb, iblock);
528
529         /* This function won't even be called if the request isn't all
530          * nicely aligned and of the right size, so there's no need
531          * for us to check any of that. */
532
533         inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
534
535         /* This figures out the size of the next contiguous block, and
536          * our logical offset */
537         ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
538                                           &contig_blocks, &ext_flags);
539         if (ret) {
540                 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
541                      (unsigned long long)iblock);
542                 ret = -EIO;
543                 goto bail;
544         }
545
546         /* We should already CoW the refcounted extent in case of create. */
547         BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
548
549         /* allocate blocks if no p_blkno is found, and create == 1 */
550         if (!p_blkno && create) {
551                 ret = ocfs2_inode_lock(inode, NULL, 1);
552                 if (ret < 0) {
553                         mlog_errno(ret);
554                         goto bail;
555                 }
556
557                 alloc_locked = 1;
558
559                 /* fill hole, allocate blocks can't be larger than the size
560                  * of the hole */
561                 clusters_to_alloc = ocfs2_clusters_for_bytes(inode->i_sb, len);
562                 if (clusters_to_alloc > contig_blocks)
563                         clusters_to_alloc = contig_blocks;
564
565                 /* allocate extent and insert them into the extent tree */
566                 ret = ocfs2_extend_allocation(inode, cpos,
567                                 clusters_to_alloc, 0);
568                 if (ret < 0) {
569                         mlog_errno(ret);
570                         goto bail;
571                 }
572
573                 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
574                                 &contig_blocks, &ext_flags);
575                 if (ret < 0) {
576                         mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
577                                         (unsigned long long)iblock);
578                         ret = -EIO;
579                         goto bail;
580                 }
581         }
582
583         /*
584          * get_more_blocks() expects us to describe a hole by clearing
585          * the mapped bit on bh_result().
586          *
587          * Consider an unwritten extent as a hole.
588          */
589         if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
590                 map_bh(bh_result, inode->i_sb, p_blkno);
591         else
592                 clear_buffer_mapped(bh_result);
593
594         /* make sure we don't map more than max_blocks blocks here as
595            that's all the kernel will handle at this point. */
596         if (max_blocks < contig_blocks)
597                 contig_blocks = max_blocks;
598         bh_result->b_size = contig_blocks << blocksize_bits;
599 bail:
600         if (alloc_locked)
601                 ocfs2_inode_unlock(inode, 1);
602         return ret;
603 }
604
605 /*
606  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
607  * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
608  * to protect io on one node from truncation on another.
609  */
610 static void ocfs2_dio_end_io(struct kiocb *iocb,
611                              loff_t offset,
612                              ssize_t bytes,
613                              void *private)
614 {
615         struct inode *inode = file_inode(iocb->ki_filp);
616         int level;
617
618         /* this io's submitter should not have unlocked this before we could */
619         BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
620
621         if (ocfs2_iocb_is_sem_locked(iocb))
622                 ocfs2_iocb_clear_sem_locked(iocb);
623
624         if (ocfs2_iocb_is_unaligned_aio(iocb)) {
625                 ocfs2_iocb_clear_unaligned_aio(iocb);
626
627                 mutex_unlock(&OCFS2_I(inode)->ip_unaligned_aio);
628         }
629
630         ocfs2_iocb_clear_rw_locked(iocb);
631
632         level = ocfs2_iocb_rw_locked_level(iocb);
633         ocfs2_rw_unlock(inode, level);
634 }
635
636 static int ocfs2_releasepage(struct page *page, gfp_t wait)
637 {
638         if (!page_has_buffers(page))
639                 return 0;
640         return try_to_free_buffers(page);
641 }
642
643 static int ocfs2_is_overwrite(struct ocfs2_super *osb,
644                 struct inode *inode, loff_t offset)
645 {
646         int ret = 0;
647         u32 v_cpos = 0;
648         u32 p_cpos = 0;
649         unsigned int num_clusters = 0;
650         unsigned int ext_flags = 0;
651
652         v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
653         ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
654                         &num_clusters, &ext_flags);
655         if (ret < 0) {
656                 mlog_errno(ret);
657                 return ret;
658         }
659
660         if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN))
661                 return 1;
662
663         return 0;
664 }
665
666 static int ocfs2_direct_IO_zero_extend(struct ocfs2_super *osb,
667                 struct inode *inode, loff_t offset,
668                 u64 zero_len, int cluster_align)
669 {
670         u32 p_cpos = 0;
671         u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, i_size_read(inode));
672         unsigned int num_clusters = 0;
673         unsigned int ext_flags = 0;
674         int ret = 0;
675
676         if (offset <= i_size_read(inode) || cluster_align)
677                 return 0;
678
679         ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, &num_clusters,
680                         &ext_flags);
681         if (ret < 0) {
682                 mlog_errno(ret);
683                 return ret;
684         }
685
686         if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
687                 u64 s = i_size_read(inode);
688                 sector_t sector = (p_cpos << (osb->s_clustersize_bits - 9)) +
689                         (do_div(s, osb->s_clustersize) >> 9);
690
691                 ret = blkdev_issue_zeroout(osb->sb->s_bdev, sector,
692                                 zero_len >> 9, GFP_NOFS, false);
693                 if (ret < 0)
694                         mlog_errno(ret);
695         }
696
697         return ret;
698 }
699
700 static int ocfs2_direct_IO_extend_no_holes(struct ocfs2_super *osb,
701                 struct inode *inode, loff_t offset)
702 {
703         u64 zero_start, zero_len, total_zero_len;
704         u32 p_cpos = 0, clusters_to_add;
705         u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, i_size_read(inode));
706         unsigned int num_clusters = 0;
707         unsigned int ext_flags = 0;
708         u32 size_div, offset_div;
709         int ret = 0;
710
711         {
712                 u64 o = offset;
713                 u64 s = i_size_read(inode);
714
715                 offset_div = do_div(o, osb->s_clustersize);
716                 size_div = do_div(s, osb->s_clustersize);
717         }
718
719         if (offset <= i_size_read(inode))
720                 return 0;
721
722         clusters_to_add = ocfs2_bytes_to_clusters(inode->i_sb, offset) -
723                 ocfs2_bytes_to_clusters(inode->i_sb, i_size_read(inode));
724         total_zero_len = offset - i_size_read(inode);
725         if (clusters_to_add)
726                 total_zero_len -= offset_div;
727
728         /* Allocate clusters to fill out holes, and this is only needed
729          * when we add more than one clusters. Otherwise the cluster will
730          * be allocated during direct IO */
731         if (clusters_to_add > 1) {
732                 ret = ocfs2_extend_allocation(inode,
733                                 OCFS2_I(inode)->ip_clusters,
734                                 clusters_to_add - 1, 0);
735                 if (ret) {
736                         mlog_errno(ret);
737                         goto out;
738                 }
739         }
740
741         while (total_zero_len) {
742                 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, &num_clusters,
743                                 &ext_flags);
744                 if (ret < 0) {
745                         mlog_errno(ret);
746                         goto out;
747                 }
748
749                 zero_start = ocfs2_clusters_to_bytes(osb->sb, p_cpos) +
750                         size_div;
751                 zero_len = ocfs2_clusters_to_bytes(osb->sb, num_clusters) -
752                         size_div;
753                 zero_len = min(total_zero_len, zero_len);
754
755                 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
756                         ret = blkdev_issue_zeroout(osb->sb->s_bdev,
757                                         zero_start >> 9, zero_len >> 9,
758                                         GFP_NOFS, false);
759                         if (ret < 0) {
760                                 mlog_errno(ret);
761                                 goto out;
762                         }
763                 }
764
765                 total_zero_len -= zero_len;
766                 v_cpos += ocfs2_bytes_to_clusters(osb->sb, zero_len + size_div);
767
768                 /* Only at first iteration can be cluster not aligned.
769                  * So set size_div to 0 for the rest */
770                 size_div = 0;
771         }
772
773 out:
774         return ret;
775 }
776
777 static ssize_t ocfs2_direct_IO_write(struct kiocb *iocb,
778                 struct iov_iter *iter,
779                 loff_t offset)
780 {
781         ssize_t ret = 0;
782         ssize_t written = 0;
783         bool orphaned = false;
784         int is_overwrite = 0;
785         struct file *file = iocb->ki_filp;
786         struct inode *inode = file_inode(file)->i_mapping->host;
787         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
788         struct buffer_head *di_bh = NULL;
789         size_t count = iter->count;
790         journal_t *journal = osb->journal->j_journal;
791         u64 zero_len_head, zero_len_tail;
792         int cluster_align_head, cluster_align_tail;
793         loff_t final_size = offset + count;
794         int append_write = offset >= i_size_read(inode) ? 1 : 0;
795         unsigned int num_clusters = 0;
796         unsigned int ext_flags = 0;
797
798         {
799                 u64 o = offset;
800                 u64 s = i_size_read(inode);
801
802                 zero_len_head = do_div(o, 1 << osb->s_clustersize_bits);
803                 cluster_align_head = !zero_len_head;
804
805                 zero_len_tail = osb->s_clustersize -
806                         do_div(s, osb->s_clustersize);
807                 if ((offset - i_size_read(inode)) < zero_len_tail)
808                         zero_len_tail = offset - i_size_read(inode);
809                 cluster_align_tail = !zero_len_tail;
810         }
811
812         /*
813          * when final_size > inode->i_size, inode->i_size will be
814          * updated after direct write, so add the inode to orphan
815          * dir first.
816          */
817         if (final_size > i_size_read(inode)) {
818                 ret = ocfs2_add_inode_to_orphan(osb, inode);
819                 if (ret < 0) {
820                         mlog_errno(ret);
821                         goto out;
822                 }
823                 orphaned = true;
824         }
825
826         if (append_write) {
827                 ret = ocfs2_inode_lock(inode, NULL, 1);
828                 if (ret < 0) {
829                         mlog_errno(ret);
830                         goto clean_orphan;
831                 }
832
833                 /* zeroing out the previously allocated cluster tail
834                  * that but not zeroed */
835                 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
836                         ret = ocfs2_direct_IO_zero_extend(osb, inode, offset,
837                                         zero_len_tail, cluster_align_tail);
838                 else
839                         ret = ocfs2_direct_IO_extend_no_holes(osb, inode,
840                                         offset);
841                 if (ret < 0) {
842                         mlog_errno(ret);
843                         ocfs2_inode_unlock(inode, 1);
844                         goto clean_orphan;
845                 }
846
847                 is_overwrite = ocfs2_is_overwrite(osb, inode, offset);
848                 if (is_overwrite < 0) {
849                         mlog_errno(is_overwrite);
850                         ocfs2_inode_unlock(inode, 1);
851                         goto clean_orphan;
852                 }
853
854                 ocfs2_inode_unlock(inode, 1);
855         }
856
857         written = __blockdev_direct_IO(WRITE, iocb, inode, inode->i_sb->s_bdev,
858                         iter, offset,
859                         ocfs2_direct_IO_get_blocks,
860                         ocfs2_dio_end_io, NULL, 0);
861         if (unlikely(written < 0)) {
862                 loff_t i_size = i_size_read(inode);
863
864                 if (offset + count > i_size) {
865                         ret = ocfs2_inode_lock(inode, &di_bh, 1);
866                         if (ret < 0) {
867                                 mlog_errno(ret);
868                                 goto clean_orphan;
869                         }
870
871                         if (i_size == i_size_read(inode)) {
872                                 ret = ocfs2_truncate_file(inode, di_bh,
873                                                 i_size);
874                                 if (ret < 0) {
875                                         if (ret != -ENOSPC)
876                                                 mlog_errno(ret);
877
878                                         ocfs2_inode_unlock(inode, 1);
879                                         brelse(di_bh);
880                                         goto clean_orphan;
881                                 }
882                         }
883
884                         ocfs2_inode_unlock(inode, 1);
885                         brelse(di_bh);
886
887                         ret = jbd2_journal_force_commit(journal);
888                         if (ret < 0)
889                                 mlog_errno(ret);
890                 }
891         } else if (written > 0 && append_write && !is_overwrite &&
892                         !cluster_align_head) {
893                 /* zeroing out the allocated cluster head */
894                 u32 p_cpos = 0;
895                 u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
896
897                 ret = ocfs2_inode_lock(inode, NULL, 0);
898                 if (ret < 0) {
899                         mlog_errno(ret);
900                         goto clean_orphan;
901                 }
902
903                 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
904                                 &num_clusters, &ext_flags);
905                 if (ret < 0) {
906                         mlog_errno(ret);
907                         ocfs2_inode_unlock(inode, 0);
908                         goto clean_orphan;
909                 }
910
911                 BUG_ON(!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN));
912
913                 ret = blkdev_issue_zeroout(osb->sb->s_bdev,
914                                 p_cpos << (osb->s_clustersize_bits - 9),
915                                 zero_len_head >> 9, GFP_NOFS, false);
916                 if (ret < 0)
917                         mlog_errno(ret);
918
919                 ocfs2_inode_unlock(inode, 0);
920         }
921
922 clean_orphan:
923         if (orphaned) {
924                 int tmp_ret;
925                 int update_isize = written > 0 ? 1 : 0;
926                 loff_t end = update_isize ? offset + written : 0;
927
928                 tmp_ret = ocfs2_del_inode_from_orphan(osb, inode,
929                                 update_isize, end);
930                 if (tmp_ret < 0) {
931                         ret = tmp_ret;
932                         goto out;
933                 }
934
935                 tmp_ret = jbd2_journal_force_commit(journal);
936                 if (tmp_ret < 0) {
937                         ret = tmp_ret;
938                         mlog_errno(tmp_ret);
939                 }
940         }
941
942 out:
943         if (ret >= 0)
944                 ret = written;
945         return ret;
946 }
947
948 static ssize_t ocfs2_direct_IO(int rw,
949                                struct kiocb *iocb,
950                                struct iov_iter *iter,
951                                loff_t offset)
952 {
953         struct file *file = iocb->ki_filp;
954         struct inode *inode = file_inode(file)->i_mapping->host;
955         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
956         int full_coherency = !(osb->s_mount_opt &
957                         OCFS2_MOUNT_COHERENCY_BUFFERED);
958
959         /*
960          * Fallback to buffered I/O if we see an inode without
961          * extents.
962          */
963         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
964                 return 0;
965
966         /* Fallback to buffered I/O if we are appending and
967          * concurrent O_DIRECT writes are allowed.
968          */
969         if (i_size_read(inode) <= offset && !full_coherency)
970                 return 0;
971
972         if (rw == READ)
973                 return __blockdev_direct_IO(rw, iocb, inode,
974                                     inode->i_sb->s_bdev,
975                                     iter, offset,
976                                     ocfs2_direct_IO_get_blocks,
977                                     ocfs2_dio_end_io, NULL, 0);
978         else
979                 return ocfs2_direct_IO_write(iocb, iter, offset);
980 }
981
982 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
983                                             u32 cpos,
984                                             unsigned int *start,
985                                             unsigned int *end)
986 {
987         unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
988
989         if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
990                 unsigned int cpp;
991
992                 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
993
994                 cluster_start = cpos % cpp;
995                 cluster_start = cluster_start << osb->s_clustersize_bits;
996
997                 cluster_end = cluster_start + osb->s_clustersize;
998         }
999
1000         BUG_ON(cluster_start > PAGE_SIZE);
1001         BUG_ON(cluster_end > PAGE_SIZE);
1002
1003         if (start)
1004                 *start = cluster_start;
1005         if (end)
1006                 *end = cluster_end;
1007 }
1008
1009 /*
1010  * 'from' and 'to' are the region in the page to avoid zeroing.
1011  *
1012  * If pagesize > clustersize, this function will avoid zeroing outside
1013  * of the cluster boundary.
1014  *
1015  * from == to == 0 is code for "zero the entire cluster region"
1016  */
1017 static void ocfs2_clear_page_regions(struct page *page,
1018                                      struct ocfs2_super *osb, u32 cpos,
1019                                      unsigned from, unsigned to)
1020 {
1021         void *kaddr;
1022         unsigned int cluster_start, cluster_end;
1023
1024         ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
1025
1026         kaddr = kmap_atomic(page);
1027
1028         if (from || to) {
1029                 if (from > cluster_start)
1030                         memset(kaddr + cluster_start, 0, from - cluster_start);
1031                 if (to < cluster_end)
1032                         memset(kaddr + to, 0, cluster_end - to);
1033         } else {
1034                 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
1035         }
1036
1037         kunmap_atomic(kaddr);
1038 }
1039
1040 /*
1041  * Nonsparse file systems fully allocate before we get to the write
1042  * code. This prevents ocfs2_write() from tagging the write as an
1043  * allocating one, which means ocfs2_map_page_blocks() might try to
1044  * read-in the blocks at the tail of our file. Avoid reading them by
1045  * testing i_size against each block offset.
1046  */
1047 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
1048                                  unsigned int block_start)
1049 {
1050         u64 offset = page_offset(page) + block_start;
1051
1052         if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1053                 return 1;
1054
1055         if (i_size_read(inode) > offset)
1056                 return 1;
1057
1058         return 0;
1059 }
1060
1061 /*
1062  * Some of this taken from __block_write_begin(). We already have our
1063  * mapping by now though, and the entire write will be allocating or
1064  * it won't, so not much need to use BH_New.
1065  *
1066  * This will also skip zeroing, which is handled externally.
1067  */
1068 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
1069                           struct inode *inode, unsigned int from,
1070                           unsigned int to, int new)
1071 {
1072         int ret = 0;
1073         struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
1074         unsigned int block_end, block_start;
1075         unsigned int bsize = 1 << inode->i_blkbits;
1076
1077         if (!page_has_buffers(page))
1078                 create_empty_buffers(page, bsize, 0);
1079
1080         head = page_buffers(page);
1081         for (bh = head, block_start = 0; bh != head || !block_start;
1082              bh = bh->b_this_page, block_start += bsize) {
1083                 block_end = block_start + bsize;
1084
1085                 clear_buffer_new(bh);
1086
1087                 /*
1088                  * Ignore blocks outside of our i/o range -
1089                  * they may belong to unallocated clusters.
1090                  */
1091                 if (block_start >= to || block_end <= from) {
1092                         if (PageUptodate(page))
1093                                 set_buffer_uptodate(bh);
1094                         continue;
1095                 }
1096
1097                 /*
1098                  * For an allocating write with cluster size >= page
1099                  * size, we always write the entire page.
1100                  */
1101                 if (new)
1102                         set_buffer_new(bh);
1103
1104                 if (!buffer_mapped(bh)) {
1105                         map_bh(bh, inode->i_sb, *p_blkno);
1106                         unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
1107                 }
1108
1109                 if (PageUptodate(page)) {
1110                         if (!buffer_uptodate(bh))
1111                                 set_buffer_uptodate(bh);
1112                 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1113                            !buffer_new(bh) &&
1114                            ocfs2_should_read_blk(inode, page, block_start) &&
1115                            (block_start < from || block_end > to)) {
1116                         ll_rw_block(READ, 1, &bh);
1117                         *wait_bh++=bh;
1118                 }
1119
1120                 *p_blkno = *p_blkno + 1;
1121         }
1122
1123         /*
1124          * If we issued read requests - let them complete.
1125          */
1126         while(wait_bh > wait) {
1127                 wait_on_buffer(*--wait_bh);
1128                 if (!buffer_uptodate(*wait_bh))
1129                         ret = -EIO;
1130         }
1131
1132         if (ret == 0 || !new)
1133                 return ret;
1134
1135         /*
1136          * If we get -EIO above, zero out any newly allocated blocks
1137          * to avoid exposing stale data.
1138          */
1139         bh = head;
1140         block_start = 0;
1141         do {
1142                 block_end = block_start + bsize;
1143                 if (block_end <= from)
1144                         goto next_bh;
1145                 if (block_start >= to)
1146                         break;
1147
1148                 zero_user(page, block_start, bh->b_size);
1149                 set_buffer_uptodate(bh);
1150                 mark_buffer_dirty(bh);
1151
1152 next_bh:
1153                 block_start = block_end;
1154                 bh = bh->b_this_page;
1155         } while (bh != head);
1156
1157         return ret;
1158 }
1159
1160 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
1161 #define OCFS2_MAX_CTXT_PAGES    1
1162 #else
1163 #define OCFS2_MAX_CTXT_PAGES    (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
1164 #endif
1165
1166 #define OCFS2_MAX_CLUSTERS_PER_PAGE     (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
1167
1168 /*
1169  * Describe the state of a single cluster to be written to.
1170  */
1171 struct ocfs2_write_cluster_desc {
1172         u32             c_cpos;
1173         u32             c_phys;
1174         /*
1175          * Give this a unique field because c_phys eventually gets
1176          * filled.
1177          */
1178         unsigned        c_new;
1179         unsigned        c_unwritten;
1180         unsigned        c_needs_zero;
1181 };
1182
1183 struct ocfs2_write_ctxt {
1184         /* Logical cluster position / len of write */
1185         u32                             w_cpos;
1186         u32                             w_clen;
1187
1188         /* First cluster allocated in a nonsparse extend */
1189         u32                             w_first_new_cpos;
1190
1191         struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
1192
1193         /*
1194          * This is true if page_size > cluster_size.
1195          *
1196          * It triggers a set of special cases during write which might
1197          * have to deal with allocating writes to partial pages.
1198          */
1199         unsigned int                    w_large_pages;
1200
1201         /*
1202          * Pages involved in this write.
1203          *
1204          * w_target_page is the page being written to by the user.
1205          *
1206          * w_pages is an array of pages which always contains
1207          * w_target_page, and in the case of an allocating write with
1208          * page_size < cluster size, it will contain zero'd and mapped
1209          * pages adjacent to w_target_page which need to be written
1210          * out in so that future reads from that region will get
1211          * zero's.
1212          */
1213         unsigned int                    w_num_pages;
1214         struct page                     *w_pages[OCFS2_MAX_CTXT_PAGES];
1215         struct page                     *w_target_page;
1216
1217         /*
1218          * w_target_locked is used for page_mkwrite path indicating no unlocking
1219          * against w_target_page in ocfs2_write_end_nolock.
1220          */
1221         unsigned int                    w_target_locked:1;
1222
1223         /*
1224          * ocfs2_write_end() uses this to know what the real range to
1225          * write in the target should be.
1226          */
1227         unsigned int                    w_target_from;
1228         unsigned int                    w_target_to;
1229
1230         /*
1231          * We could use journal_current_handle() but this is cleaner,
1232          * IMHO -Mark
1233          */
1234         handle_t                        *w_handle;
1235
1236         struct buffer_head              *w_di_bh;
1237
1238         struct ocfs2_cached_dealloc_ctxt w_dealloc;
1239 };
1240
1241 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
1242 {
1243         int i;
1244
1245         for(i = 0; i < num_pages; i++) {
1246                 if (pages[i]) {
1247                         unlock_page(pages[i]);
1248                         mark_page_accessed(pages[i]);
1249                         page_cache_release(pages[i]);
1250                 }
1251         }
1252 }
1253
1254 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
1255 {
1256         int i;
1257
1258         /*
1259          * w_target_locked is only set to true in the page_mkwrite() case.
1260          * The intent is to allow us to lock the target page from write_begin()
1261          * to write_end(). The caller must hold a ref on w_target_page.
1262          */
1263         if (wc->w_target_locked) {
1264                 BUG_ON(!wc->w_target_page);
1265                 for (i = 0; i < wc->w_num_pages; i++) {
1266                         if (wc->w_target_page == wc->w_pages[i]) {
1267                                 wc->w_pages[i] = NULL;
1268                                 break;
1269                         }
1270                 }
1271                 mark_page_accessed(wc->w_target_page);
1272                 page_cache_release(wc->w_target_page);
1273         }
1274         ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
1275 }
1276
1277 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
1278 {
1279         ocfs2_unlock_pages(wc);
1280         brelse(wc->w_di_bh);
1281         kfree(wc);
1282 }
1283
1284 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
1285                                   struct ocfs2_super *osb, loff_t pos,
1286                                   unsigned len, struct buffer_head *di_bh)
1287 {
1288         u32 cend;
1289         struct ocfs2_write_ctxt *wc;
1290
1291         wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
1292         if (!wc)
1293                 return -ENOMEM;
1294
1295         wc->w_cpos = pos >> osb->s_clustersize_bits;
1296         wc->w_first_new_cpos = UINT_MAX;
1297         cend = (pos + len - 1) >> osb->s_clustersize_bits;
1298         wc->w_clen = cend - wc->w_cpos + 1;
1299         get_bh(di_bh);
1300         wc->w_di_bh = di_bh;
1301
1302         if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
1303                 wc->w_large_pages = 1;
1304         else
1305                 wc->w_large_pages = 0;
1306
1307         ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
1308
1309         *wcp = wc;
1310
1311         return 0;
1312 }
1313
1314 /*
1315  * If a page has any new buffers, zero them out here, and mark them uptodate
1316  * and dirty so they'll be written out (in order to prevent uninitialised
1317  * block data from leaking). And clear the new bit.
1318  */
1319 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1320 {
1321         unsigned int block_start, block_end;
1322         struct buffer_head *head, *bh;
1323
1324         BUG_ON(!PageLocked(page));
1325         if (!page_has_buffers(page))
1326                 return;
1327
1328         bh = head = page_buffers(page);
1329         block_start = 0;
1330         do {
1331                 block_end = block_start + bh->b_size;
1332
1333                 if (buffer_new(bh)) {
1334                         if (block_end > from && block_start < to) {
1335                                 if (!PageUptodate(page)) {
1336                                         unsigned start, end;
1337
1338                                         start = max(from, block_start);
1339                                         end = min(to, block_end);
1340
1341                                         zero_user_segment(page, start, end);
1342                                         set_buffer_uptodate(bh);
1343                                 }
1344
1345                                 clear_buffer_new(bh);
1346                                 mark_buffer_dirty(bh);
1347                         }
1348                 }
1349
1350                 block_start = block_end;
1351                 bh = bh->b_this_page;
1352         } while (bh != head);
1353 }
1354
1355 /*
1356  * Only called when we have a failure during allocating write to write
1357  * zero's to the newly allocated region.
1358  */
1359 static void ocfs2_write_failure(struct inode *inode,
1360                                 struct ocfs2_write_ctxt *wc,
1361                                 loff_t user_pos, unsigned user_len)
1362 {
1363         int i;
1364         unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1365                 to = user_pos + user_len;
1366         struct page *tmppage;
1367
1368         ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1369
1370         for(i = 0; i < wc->w_num_pages; i++) {
1371                 tmppage = wc->w_pages[i];
1372
1373                 if (page_has_buffers(tmppage)) {
1374                         if (ocfs2_should_order_data(inode))
1375                                 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1376
1377                         block_commit_write(tmppage, from, to);
1378                 }
1379         }
1380 }
1381
1382 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1383                                         struct ocfs2_write_ctxt *wc,
1384                                         struct page *page, u32 cpos,
1385                                         loff_t user_pos, unsigned user_len,
1386                                         int new)
1387 {
1388         int ret;
1389         unsigned int map_from = 0, map_to = 0;
1390         unsigned int cluster_start, cluster_end;
1391         unsigned int user_data_from = 0, user_data_to = 0;
1392
1393         ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1394                                         &cluster_start, &cluster_end);
1395
1396         /* treat the write as new if the a hole/lseek spanned across
1397          * the page boundary.
1398          */
1399         new = new | ((i_size_read(inode) <= page_offset(page)) &&
1400                         (page_offset(page) <= user_pos));
1401
1402         if (page == wc->w_target_page) {
1403                 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1404                 map_to = map_from + user_len;
1405
1406                 if (new)
1407                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1408                                                     cluster_start, cluster_end,
1409                                                     new);
1410                 else
1411                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1412                                                     map_from, map_to, new);
1413                 if (ret) {
1414                         mlog_errno(ret);
1415                         goto out;
1416                 }
1417
1418                 user_data_from = map_from;
1419                 user_data_to = map_to;
1420                 if (new) {
1421                         map_from = cluster_start;
1422                         map_to = cluster_end;
1423                 }
1424         } else {
1425                 /*
1426                  * If we haven't allocated the new page yet, we
1427                  * shouldn't be writing it out without copying user
1428                  * data. This is likely a math error from the caller.
1429                  */
1430                 BUG_ON(!new);
1431
1432                 map_from = cluster_start;
1433                 map_to = cluster_end;
1434
1435                 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1436                                             cluster_start, cluster_end, new);
1437                 if (ret) {
1438                         mlog_errno(ret);
1439                         goto out;
1440                 }
1441         }
1442
1443         /*
1444          * Parts of newly allocated pages need to be zero'd.
1445          *
1446          * Above, we have also rewritten 'to' and 'from' - as far as
1447          * the rest of the function is concerned, the entire cluster
1448          * range inside of a page needs to be written.
1449          *
1450          * We can skip this if the page is up to date - it's already
1451          * been zero'd from being read in as a hole.
1452          */
1453         if (new && !PageUptodate(page))
1454                 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1455                                          cpos, user_data_from, user_data_to);
1456
1457         flush_dcache_page(page);
1458
1459 out:
1460         return ret;
1461 }
1462
1463 /*
1464  * This function will only grab one clusters worth of pages.
1465  */
1466 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1467                                       struct ocfs2_write_ctxt *wc,
1468                                       u32 cpos, loff_t user_pos,
1469                                       unsigned user_len, int new,
1470                                       struct page *mmap_page)
1471 {
1472         int ret = 0, i;
1473         unsigned long start, target_index, end_index, index;
1474         struct inode *inode = mapping->host;
1475         loff_t last_byte;
1476
1477         target_index = user_pos >> PAGE_CACHE_SHIFT;
1478
1479         /*
1480          * Figure out how many pages we'll be manipulating here. For
1481          * non allocating write, we just change the one
1482          * page. Otherwise, we'll need a whole clusters worth.  If we're
1483          * writing past i_size, we only need enough pages to cover the
1484          * last page of the write.
1485          */
1486         if (new) {
1487                 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1488                 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1489                 /*
1490                  * We need the index *past* the last page we could possibly
1491                  * touch.  This is the page past the end of the write or
1492                  * i_size, whichever is greater.
1493                  */
1494                 last_byte = max(user_pos + user_len, i_size_read(inode));
1495                 BUG_ON(last_byte < 1);
1496                 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1497                 if ((start + wc->w_num_pages) > end_index)
1498                         wc->w_num_pages = end_index - start;
1499         } else {
1500                 wc->w_num_pages = 1;
1501                 start = target_index;
1502         }
1503
1504         for(i = 0; i < wc->w_num_pages; i++) {
1505                 index = start + i;
1506
1507                 if (index == target_index && mmap_page) {
1508                         /*
1509                          * ocfs2_pagemkwrite() is a little different
1510                          * and wants us to directly use the page
1511                          * passed in.
1512                          */
1513                         lock_page(mmap_page);
1514
1515                         /* Exit and let the caller retry */
1516                         if (mmap_page->mapping != mapping) {
1517                                 WARN_ON(mmap_page->mapping);
1518                                 unlock_page(mmap_page);
1519                                 ret = -EAGAIN;
1520                                 goto out;
1521                         }
1522
1523                         page_cache_get(mmap_page);
1524                         wc->w_pages[i] = mmap_page;
1525                         wc->w_target_locked = true;
1526                 } else {
1527                         wc->w_pages[i] = find_or_create_page(mapping, index,
1528                                                              GFP_NOFS);
1529                         if (!wc->w_pages[i]) {
1530                                 ret = -ENOMEM;
1531                                 mlog_errno(ret);
1532                                 goto out;
1533                         }
1534                 }
1535                 wait_for_stable_page(wc->w_pages[i]);
1536
1537                 if (index == target_index)
1538                         wc->w_target_page = wc->w_pages[i];
1539         }
1540 out:
1541         if (ret)
1542                 wc->w_target_locked = false;
1543         return ret;
1544 }
1545
1546 /*
1547  * Prepare a single cluster for write one cluster into the file.
1548  */
1549 static int ocfs2_write_cluster(struct address_space *mapping,
1550                                u32 phys, unsigned int unwritten,
1551                                unsigned int should_zero,
1552                                struct ocfs2_alloc_context *data_ac,
1553                                struct ocfs2_alloc_context *meta_ac,
1554                                struct ocfs2_write_ctxt *wc, u32 cpos,
1555                                loff_t user_pos, unsigned user_len)
1556 {
1557         int ret, i, new;
1558         u64 v_blkno, p_blkno;
1559         struct inode *inode = mapping->host;
1560         struct ocfs2_extent_tree et;
1561
1562         new = phys == 0 ? 1 : 0;
1563         if (new) {
1564                 u32 tmp_pos;
1565
1566                 /*
1567                  * This is safe to call with the page locks - it won't take
1568                  * any additional semaphores or cluster locks.
1569                  */
1570                 tmp_pos = cpos;
1571                 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1572                                            &tmp_pos, 1, 0, wc->w_di_bh,
1573                                            wc->w_handle, data_ac,
1574                                            meta_ac, NULL);
1575                 /*
1576                  * This shouldn't happen because we must have already
1577                  * calculated the correct meta data allocation required. The
1578                  * internal tree allocation code should know how to increase
1579                  * transaction credits itself.
1580                  *
1581                  * If need be, we could handle -EAGAIN for a
1582                  * RESTART_TRANS here.
1583                  */
1584                 mlog_bug_on_msg(ret == -EAGAIN,
1585                                 "Inode %llu: EAGAIN return during allocation.\n",
1586                                 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1587                 if (ret < 0) {
1588                         mlog_errno(ret);
1589                         goto out;
1590                 }
1591         } else if (unwritten) {
1592                 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1593                                               wc->w_di_bh);
1594                 ret = ocfs2_mark_extent_written(inode, &et,
1595                                                 wc->w_handle, cpos, 1, phys,
1596                                                 meta_ac, &wc->w_dealloc);
1597                 if (ret < 0) {
1598                         mlog_errno(ret);
1599                         goto out;
1600                 }
1601         }
1602
1603         if (should_zero)
1604                 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1605         else
1606                 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1607
1608         /*
1609          * The only reason this should fail is due to an inability to
1610          * find the extent added.
1611          */
1612         ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1613                                           NULL);
1614         if (ret < 0) {
1615                 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1616                             "at logical block %llu",
1617                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
1618                             (unsigned long long)v_blkno);
1619                 goto out;
1620         }
1621
1622         BUG_ON(p_blkno == 0);
1623
1624         for(i = 0; i < wc->w_num_pages; i++) {
1625                 int tmpret;
1626
1627                 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1628                                                       wc->w_pages[i], cpos,
1629                                                       user_pos, user_len,
1630                                                       should_zero);
1631                 if (tmpret) {
1632                         mlog_errno(tmpret);
1633                         if (ret == 0)
1634                                 ret = tmpret;
1635                 }
1636         }
1637
1638         /*
1639          * We only have cleanup to do in case of allocating write.
1640          */
1641         if (ret && new)
1642                 ocfs2_write_failure(inode, wc, user_pos, user_len);
1643
1644 out:
1645
1646         return ret;
1647 }
1648
1649 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1650                                        struct ocfs2_alloc_context *data_ac,
1651                                        struct ocfs2_alloc_context *meta_ac,
1652                                        struct ocfs2_write_ctxt *wc,
1653                                        loff_t pos, unsigned len)
1654 {
1655         int ret, i;
1656         loff_t cluster_off;
1657         unsigned int local_len = len;
1658         struct ocfs2_write_cluster_desc *desc;
1659         struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1660
1661         for (i = 0; i < wc->w_clen; i++) {
1662                 desc = &wc->w_desc[i];
1663
1664                 /*
1665                  * We have to make sure that the total write passed in
1666                  * doesn't extend past a single cluster.
1667                  */
1668                 local_len = len;
1669                 cluster_off = pos & (osb->s_clustersize - 1);
1670                 if ((cluster_off + local_len) > osb->s_clustersize)
1671                         local_len = osb->s_clustersize - cluster_off;
1672
1673                 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1674                                           desc->c_unwritten,
1675                                           desc->c_needs_zero,
1676                                           data_ac, meta_ac,
1677                                           wc, desc->c_cpos, pos, local_len);
1678                 if (ret) {
1679                         mlog_errno(ret);
1680                         goto out;
1681                 }
1682
1683                 len -= local_len;
1684                 pos += local_len;
1685         }
1686
1687         ret = 0;
1688 out:
1689         return ret;
1690 }
1691
1692 /*
1693  * ocfs2_write_end() wants to know which parts of the target page it
1694  * should complete the write on. It's easiest to compute them ahead of
1695  * time when a more complete view of the write is available.
1696  */
1697 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1698                                         struct ocfs2_write_ctxt *wc,
1699                                         loff_t pos, unsigned len, int alloc)
1700 {
1701         struct ocfs2_write_cluster_desc *desc;
1702
1703         wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1704         wc->w_target_to = wc->w_target_from + len;
1705
1706         if (alloc == 0)
1707                 return;
1708
1709         /*
1710          * Allocating write - we may have different boundaries based
1711          * on page size and cluster size.
1712          *
1713          * NOTE: We can no longer compute one value from the other as
1714          * the actual write length and user provided length may be
1715          * different.
1716          */
1717
1718         if (wc->w_large_pages) {
1719                 /*
1720                  * We only care about the 1st and last cluster within
1721                  * our range and whether they should be zero'd or not. Either
1722                  * value may be extended out to the start/end of a
1723                  * newly allocated cluster.
1724                  */
1725                 desc = &wc->w_desc[0];
1726                 if (desc->c_needs_zero)
1727                         ocfs2_figure_cluster_boundaries(osb,
1728                                                         desc->c_cpos,
1729                                                         &wc->w_target_from,
1730                                                         NULL);
1731
1732                 desc = &wc->w_desc[wc->w_clen - 1];
1733                 if (desc->c_needs_zero)
1734                         ocfs2_figure_cluster_boundaries(osb,
1735                                                         desc->c_cpos,
1736                                                         NULL,
1737                                                         &wc->w_target_to);
1738         } else {
1739                 wc->w_target_from = 0;
1740                 wc->w_target_to = PAGE_CACHE_SIZE;
1741         }
1742 }
1743
1744 /*
1745  * Populate each single-cluster write descriptor in the write context
1746  * with information about the i/o to be done.
1747  *
1748  * Returns the number of clusters that will have to be allocated, as
1749  * well as a worst case estimate of the number of extent records that
1750  * would have to be created during a write to an unwritten region.
1751  */
1752 static int ocfs2_populate_write_desc(struct inode *inode,
1753                                      struct ocfs2_write_ctxt *wc,
1754                                      unsigned int *clusters_to_alloc,
1755                                      unsigned int *extents_to_split)
1756 {
1757         int ret;
1758         struct ocfs2_write_cluster_desc *desc;
1759         unsigned int num_clusters = 0;
1760         unsigned int ext_flags = 0;
1761         u32 phys = 0;
1762         int i;
1763
1764         *clusters_to_alloc = 0;
1765         *extents_to_split = 0;
1766
1767         for (i = 0; i < wc->w_clen; i++) {
1768                 desc = &wc->w_desc[i];
1769                 desc->c_cpos = wc->w_cpos + i;
1770
1771                 if (num_clusters == 0) {
1772                         /*
1773                          * Need to look up the next extent record.
1774                          */
1775                         ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1776                                                  &num_clusters, &ext_flags);
1777                         if (ret) {
1778                                 mlog_errno(ret);
1779                                 goto out;
1780                         }
1781
1782                         /* We should already CoW the refcountd extent. */
1783                         BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1784
1785                         /*
1786                          * Assume worst case - that we're writing in
1787                          * the middle of the extent.
1788                          *
1789                          * We can assume that the write proceeds from
1790                          * left to right, in which case the extent
1791                          * insert code is smart enough to coalesce the
1792                          * next splits into the previous records created.
1793                          */
1794                         if (ext_flags & OCFS2_EXT_UNWRITTEN)
1795                                 *extents_to_split = *extents_to_split + 2;
1796                 } else if (phys) {
1797                         /*
1798                          * Only increment phys if it doesn't describe
1799                          * a hole.
1800                          */
1801                         phys++;
1802                 }
1803
1804                 /*
1805                  * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1806                  * file that got extended.  w_first_new_cpos tells us
1807                  * where the newly allocated clusters are so we can
1808                  * zero them.
1809                  */
1810                 if (desc->c_cpos >= wc->w_first_new_cpos) {
1811                         BUG_ON(phys == 0);
1812                         desc->c_needs_zero = 1;
1813                 }
1814
1815                 desc->c_phys = phys;
1816                 if (phys == 0) {
1817                         desc->c_new = 1;
1818                         desc->c_needs_zero = 1;
1819                         *clusters_to_alloc = *clusters_to_alloc + 1;
1820                 }
1821
1822                 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1823                         desc->c_unwritten = 1;
1824                         desc->c_needs_zero = 1;
1825                 }
1826
1827                 num_clusters--;
1828         }
1829
1830         ret = 0;
1831 out:
1832         return ret;
1833 }
1834
1835 static int ocfs2_write_begin_inline(struct address_space *mapping,
1836                                     struct inode *inode,
1837                                     struct ocfs2_write_ctxt *wc)
1838 {
1839         int ret;
1840         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1841         struct page *page;
1842         handle_t *handle;
1843         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1844
1845         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1846         if (IS_ERR(handle)) {
1847                 ret = PTR_ERR(handle);
1848                 mlog_errno(ret);
1849                 goto out;
1850         }
1851
1852         page = find_or_create_page(mapping, 0, GFP_NOFS);
1853         if (!page) {
1854                 ocfs2_commit_trans(osb, handle);
1855                 ret = -ENOMEM;
1856                 mlog_errno(ret);
1857                 goto out;
1858         }
1859         /*
1860          * If we don't set w_num_pages then this page won't get unlocked
1861          * and freed on cleanup of the write context.
1862          */
1863         wc->w_pages[0] = wc->w_target_page = page;
1864         wc->w_num_pages = 1;
1865
1866         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1867                                       OCFS2_JOURNAL_ACCESS_WRITE);
1868         if (ret) {
1869                 ocfs2_commit_trans(osb, handle);
1870
1871                 mlog_errno(ret);
1872                 goto out;
1873         }
1874
1875         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1876                 ocfs2_set_inode_data_inline(inode, di);
1877
1878         if (!PageUptodate(page)) {
1879                 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1880                 if (ret) {
1881                         ocfs2_commit_trans(osb, handle);
1882
1883                         goto out;
1884                 }
1885         }
1886
1887         wc->w_handle = handle;
1888 out:
1889         return ret;
1890 }
1891
1892 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1893 {
1894         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1895
1896         if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1897                 return 1;
1898         return 0;
1899 }
1900
1901 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1902                                           struct inode *inode, loff_t pos,
1903                                           unsigned len, struct page *mmap_page,
1904                                           struct ocfs2_write_ctxt *wc)
1905 {
1906         int ret, written = 0;
1907         loff_t end = pos + len;
1908         struct ocfs2_inode_info *oi = OCFS2_I(inode);
1909         struct ocfs2_dinode *di = NULL;
1910
1911         trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1912                                              len, (unsigned long long)pos,
1913                                              oi->ip_dyn_features);
1914
1915         /*
1916          * Handle inodes which already have inline data 1st.
1917          */
1918         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1919                 if (mmap_page == NULL &&
1920                     ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1921                         goto do_inline_write;
1922
1923                 /*
1924                  * The write won't fit - we have to give this inode an
1925                  * inline extent list now.
1926                  */
1927                 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1928                 if (ret)
1929                         mlog_errno(ret);
1930                 goto out;
1931         }
1932
1933         /*
1934          * Check whether the inode can accept inline data.
1935          */
1936         if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1937                 return 0;
1938
1939         /*
1940          * Check whether the write can fit.
1941          */
1942         di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1943         if (mmap_page ||
1944             end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1945                 return 0;
1946
1947 do_inline_write:
1948         ret = ocfs2_write_begin_inline(mapping, inode, wc);
1949         if (ret) {
1950                 mlog_errno(ret);
1951                 goto out;
1952         }
1953
1954         /*
1955          * This signals to the caller that the data can be written
1956          * inline.
1957          */
1958         written = 1;
1959 out:
1960         return written ? written : ret;
1961 }
1962
1963 /*
1964  * This function only does anything for file systems which can't
1965  * handle sparse files.
1966  *
1967  * What we want to do here is fill in any hole between the current end
1968  * of allocation and the end of our write. That way the rest of the
1969  * write path can treat it as an non-allocating write, which has no
1970  * special case code for sparse/nonsparse files.
1971  */
1972 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1973                                         struct buffer_head *di_bh,
1974                                         loff_t pos, unsigned len,
1975                                         struct ocfs2_write_ctxt *wc)
1976 {
1977         int ret;
1978         loff_t newsize = pos + len;
1979
1980         BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1981
1982         if (newsize <= i_size_read(inode))
1983                 return 0;
1984
1985         ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1986         if (ret)
1987                 mlog_errno(ret);
1988
1989         wc->w_first_new_cpos =
1990                 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1991
1992         return ret;
1993 }
1994
1995 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1996                            loff_t pos)
1997 {
1998         int ret = 0;
1999
2000         BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
2001         if (pos > i_size_read(inode))
2002                 ret = ocfs2_zero_extend(inode, di_bh, pos);
2003
2004         return ret;
2005 }
2006
2007 /*
2008  * Try to flush truncate logs if we can free enough clusters from it.
2009  * As for return value, "< 0" means error, "0" no space and "1" means
2010  * we have freed enough spaces and let the caller try to allocate again.
2011  */
2012 static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
2013                                           unsigned int needed)
2014 {
2015         tid_t target;
2016         int ret = 0;
2017         unsigned int truncated_clusters;
2018
2019         mutex_lock(&osb->osb_tl_inode->i_mutex);
2020         truncated_clusters = osb->truncated_clusters;
2021         mutex_unlock(&osb->osb_tl_inode->i_mutex);
2022
2023         /*
2024          * Check whether we can succeed in allocating if we free
2025          * the truncate log.
2026          */
2027         if (truncated_clusters < needed)
2028                 goto out;
2029
2030         ret = ocfs2_flush_truncate_log(osb);
2031         if (ret) {
2032                 mlog_errno(ret);
2033                 goto out;
2034         }
2035
2036         if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
2037                 jbd2_log_wait_commit(osb->journal->j_journal, target);
2038                 ret = 1;
2039         }
2040 out:
2041         return ret;
2042 }
2043
2044 int ocfs2_write_begin_nolock(struct file *filp,
2045                              struct address_space *mapping,
2046                              loff_t pos, unsigned len, unsigned flags,
2047                              struct page **pagep, void **fsdata,
2048                              struct buffer_head *di_bh, struct page *mmap_page)
2049 {
2050         int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
2051         unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
2052         struct ocfs2_write_ctxt *wc;
2053         struct inode *inode = mapping->host;
2054         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2055         struct ocfs2_dinode *di;
2056         struct ocfs2_alloc_context *data_ac = NULL;
2057         struct ocfs2_alloc_context *meta_ac = NULL;
2058         handle_t *handle;
2059         struct ocfs2_extent_tree et;
2060         int try_free = 1, ret1;
2061
2062 try_again:
2063         ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
2064         if (ret) {
2065                 mlog_errno(ret);
2066                 return ret;
2067         }
2068
2069         if (ocfs2_supports_inline_data(osb)) {
2070                 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
2071                                                      mmap_page, wc);
2072                 if (ret == 1) {
2073                         ret = 0;
2074                         goto success;
2075                 }
2076                 if (ret < 0) {
2077                         mlog_errno(ret);
2078                         goto out;
2079                 }
2080         }
2081
2082         if (ocfs2_sparse_alloc(osb))
2083                 ret = ocfs2_zero_tail(inode, di_bh, pos);
2084         else
2085                 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
2086                                                    wc);
2087         if (ret) {
2088                 mlog_errno(ret);
2089                 goto out;
2090         }
2091
2092         ret = ocfs2_check_range_for_refcount(inode, pos, len);
2093         if (ret < 0) {
2094                 mlog_errno(ret);
2095                 goto out;
2096         } else if (ret == 1) {
2097                 clusters_need = wc->w_clen;
2098                 ret = ocfs2_refcount_cow(inode, di_bh,
2099                                          wc->w_cpos, wc->w_clen, UINT_MAX);
2100                 if (ret) {
2101                         mlog_errno(ret);
2102                         goto out;
2103                 }
2104         }
2105
2106         ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
2107                                         &extents_to_split);
2108         if (ret) {
2109                 mlog_errno(ret);
2110                 goto out;
2111         }
2112         clusters_need += clusters_to_alloc;
2113
2114         di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2115
2116         trace_ocfs2_write_begin_nolock(
2117                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
2118                         (long long)i_size_read(inode),
2119                         le32_to_cpu(di->i_clusters),
2120                         pos, len, flags, mmap_page,
2121                         clusters_to_alloc, extents_to_split);
2122
2123         /*
2124          * We set w_target_from, w_target_to here so that
2125          * ocfs2_write_end() knows which range in the target page to
2126          * write out. An allocation requires that we write the entire
2127          * cluster range.
2128          */
2129         if (clusters_to_alloc || extents_to_split) {
2130                 /*
2131                  * XXX: We are stretching the limits of
2132                  * ocfs2_lock_allocators(). It greatly over-estimates
2133                  * the work to be done.
2134                  */
2135                 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
2136                                               wc->w_di_bh);
2137                 ret = ocfs2_lock_allocators(inode, &et,
2138                                             clusters_to_alloc, extents_to_split,
2139                                             &data_ac, &meta_ac);
2140                 if (ret) {
2141                         mlog_errno(ret);
2142                         goto out;
2143                 }
2144
2145                 if (data_ac)
2146                         data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
2147
2148                 credits = ocfs2_calc_extend_credits(inode->i_sb,
2149                                                     &di->id2.i_list);
2150
2151         }
2152
2153         /*
2154          * We have to zero sparse allocated clusters, unwritten extent clusters,
2155          * and non-sparse clusters we just extended.  For non-sparse writes,
2156          * we know zeros will only be needed in the first and/or last cluster.
2157          */
2158         if (clusters_to_alloc || extents_to_split ||
2159             (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
2160                             wc->w_desc[wc->w_clen - 1].c_needs_zero)))
2161                 cluster_of_pages = 1;
2162         else
2163                 cluster_of_pages = 0;
2164
2165         ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
2166
2167         handle = ocfs2_start_trans(osb, credits);
2168         if (IS_ERR(handle)) {
2169                 ret = PTR_ERR(handle);
2170                 mlog_errno(ret);
2171                 goto out;
2172         }
2173
2174         wc->w_handle = handle;
2175
2176         if (clusters_to_alloc) {
2177                 ret = dquot_alloc_space_nodirty(inode,
2178                         ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2179                 if (ret)
2180                         goto out_commit;
2181         }
2182         /*
2183          * We don't want this to fail in ocfs2_write_end(), so do it
2184          * here.
2185          */
2186         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
2187                                       OCFS2_JOURNAL_ACCESS_WRITE);
2188         if (ret) {
2189                 mlog_errno(ret);
2190                 goto out_quota;
2191         }
2192
2193         /*
2194          * Fill our page array first. That way we've grabbed enough so
2195          * that we can zero and flush if we error after adding the
2196          * extent.
2197          */
2198         ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
2199                                          cluster_of_pages, mmap_page);
2200         if (ret && ret != -EAGAIN) {
2201                 mlog_errno(ret);
2202                 goto out_quota;
2203         }
2204
2205         /*
2206          * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
2207          * the target page. In this case, we exit with no error and no target
2208          * page. This will trigger the caller, page_mkwrite(), to re-try
2209          * the operation.
2210          */
2211         if (ret == -EAGAIN) {
2212                 BUG_ON(wc->w_target_page);
2213                 ret = 0;
2214                 goto out_quota;
2215         }
2216
2217         ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
2218                                           len);
2219         if (ret) {
2220                 mlog_errno(ret);
2221                 goto out_quota;
2222         }
2223
2224         if (data_ac)
2225                 ocfs2_free_alloc_context(data_ac);
2226         if (meta_ac)
2227                 ocfs2_free_alloc_context(meta_ac);
2228
2229 success:
2230         *pagep = wc->w_target_page;
2231         *fsdata = wc;
2232         return 0;
2233 out_quota:
2234         if (clusters_to_alloc)
2235                 dquot_free_space(inode,
2236                           ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2237 out_commit:
2238         ocfs2_commit_trans(osb, handle);
2239
2240 out:
2241         ocfs2_free_write_ctxt(wc);
2242
2243         if (data_ac) {
2244                 ocfs2_free_alloc_context(data_ac);
2245                 data_ac = NULL;
2246         }
2247         if (meta_ac) {
2248                 ocfs2_free_alloc_context(meta_ac);
2249                 meta_ac = NULL;
2250         }
2251
2252         if (ret == -ENOSPC && try_free) {
2253                 /*
2254                  * Try to free some truncate log so that we can have enough
2255                  * clusters to allocate.
2256                  */
2257                 try_free = 0;
2258
2259                 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
2260                 if (ret1 == 1)
2261                         goto try_again;
2262
2263                 if (ret1 < 0)
2264                         mlog_errno(ret1);
2265         }
2266
2267         return ret;
2268 }
2269
2270 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
2271                              loff_t pos, unsigned len, unsigned flags,
2272                              struct page **pagep, void **fsdata)
2273 {
2274         int ret;
2275         struct buffer_head *di_bh = NULL;
2276         struct inode *inode = mapping->host;
2277
2278         ret = ocfs2_inode_lock(inode, &di_bh, 1);
2279         if (ret) {
2280                 mlog_errno(ret);
2281                 return ret;
2282         }
2283
2284         /*
2285          * Take alloc sem here to prevent concurrent lookups. That way
2286          * the mapping, zeroing and tree manipulation within
2287          * ocfs2_write() will be safe against ->readpage(). This
2288          * should also serve to lock out allocation from a shared
2289          * writeable region.
2290          */
2291         down_write(&OCFS2_I(inode)->ip_alloc_sem);
2292
2293         ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
2294                                        fsdata, di_bh, NULL);
2295         if (ret) {
2296                 mlog_errno(ret);
2297                 goto out_fail;
2298         }
2299
2300         brelse(di_bh);
2301
2302         return 0;
2303
2304 out_fail:
2305         up_write(&OCFS2_I(inode)->ip_alloc_sem);
2306
2307         brelse(di_bh);
2308         ocfs2_inode_unlock(inode, 1);
2309
2310         return ret;
2311 }
2312
2313 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
2314                                    unsigned len, unsigned *copied,
2315                                    struct ocfs2_dinode *di,
2316                                    struct ocfs2_write_ctxt *wc)
2317 {
2318         void *kaddr;
2319
2320         if (unlikely(*copied < len)) {
2321                 if (!PageUptodate(wc->w_target_page)) {
2322                         *copied = 0;
2323                         return;
2324                 }
2325         }
2326
2327         kaddr = kmap_atomic(wc->w_target_page);
2328         memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
2329         kunmap_atomic(kaddr);
2330
2331         trace_ocfs2_write_end_inline(
2332              (unsigned long long)OCFS2_I(inode)->ip_blkno,
2333              (unsigned long long)pos, *copied,
2334              le16_to_cpu(di->id2.i_data.id_count),
2335              le16_to_cpu(di->i_dyn_features));
2336 }
2337
2338 int ocfs2_write_end_nolock(struct address_space *mapping,
2339                            loff_t pos, unsigned len, unsigned copied,
2340                            struct page *page, void *fsdata)
2341 {
2342         int i;
2343         unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
2344         struct inode *inode = mapping->host;
2345         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2346         struct ocfs2_write_ctxt *wc = fsdata;
2347         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2348         handle_t *handle = wc->w_handle;
2349         struct page *tmppage;
2350
2351         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2352                 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2353                 goto out_write_size;
2354         }
2355
2356         if (unlikely(copied < len)) {
2357                 if (!PageUptodate(wc->w_target_page))
2358                         copied = 0;
2359
2360                 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2361                                        start+len);
2362         }
2363         flush_dcache_page(wc->w_target_page);
2364
2365         for(i = 0; i < wc->w_num_pages; i++) {
2366                 tmppage = wc->w_pages[i];
2367
2368                 if (tmppage == wc->w_target_page) {
2369                         from = wc->w_target_from;
2370                         to = wc->w_target_to;
2371
2372                         BUG_ON(from > PAGE_CACHE_SIZE ||
2373                                to > PAGE_CACHE_SIZE ||
2374                                to < from);
2375                 } else {
2376                         /*
2377                          * Pages adjacent to the target (if any) imply
2378                          * a hole-filling write in which case we want
2379                          * to flush their entire range.
2380                          */
2381                         from = 0;
2382                         to = PAGE_CACHE_SIZE;
2383                 }
2384
2385                 if (page_has_buffers(tmppage)) {
2386                         if (ocfs2_should_order_data(inode))
2387                                 ocfs2_jbd2_file_inode(wc->w_handle, inode);
2388                         block_commit_write(tmppage, from, to);
2389                 }
2390         }
2391
2392 out_write_size:
2393         pos += copied;
2394         if (pos > i_size_read(inode)) {
2395                 i_size_write(inode, pos);
2396                 mark_inode_dirty(inode);
2397         }
2398         inode->i_blocks = ocfs2_inode_sector_count(inode);
2399         di->i_size = cpu_to_le64((u64)i_size_read(inode));
2400         inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2401         di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2402         di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2403         ocfs2_update_inode_fsync_trans(handle, inode, 1);
2404         ocfs2_journal_dirty(handle, wc->w_di_bh);
2405
2406         /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2407          * lock, or it will cause a deadlock since journal commit threads holds
2408          * this lock and will ask for the page lock when flushing the data.
2409          * put it here to preserve the unlock order.
2410          */
2411         ocfs2_unlock_pages(wc);
2412
2413         ocfs2_commit_trans(osb, handle);
2414
2415         ocfs2_run_deallocs(osb, &wc->w_dealloc);
2416
2417         brelse(wc->w_di_bh);
2418         kfree(wc);
2419
2420         return copied;
2421 }
2422
2423 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2424                            loff_t pos, unsigned len, unsigned copied,
2425                            struct page *page, void *fsdata)
2426 {
2427         int ret;
2428         struct inode *inode = mapping->host;
2429
2430         ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2431
2432         up_write(&OCFS2_I(inode)->ip_alloc_sem);
2433         ocfs2_inode_unlock(inode, 1);
2434
2435         return ret;
2436 }
2437
2438 const struct address_space_operations ocfs2_aops = {
2439         .readpage               = ocfs2_readpage,
2440         .readpages              = ocfs2_readpages,
2441         .writepage              = ocfs2_writepage,
2442         .write_begin            = ocfs2_write_begin,
2443         .write_end              = ocfs2_write_end,
2444         .bmap                   = ocfs2_bmap,
2445         .direct_IO              = ocfs2_direct_IO,
2446         .invalidatepage         = block_invalidatepage,
2447         .releasepage            = ocfs2_releasepage,
2448         .migratepage            = buffer_migrate_page,
2449         .is_partially_uptodate  = block_is_partially_uptodate,
2450         .error_remove_page      = generic_error_remove_page,
2451 };