Merge branches 'acpi-ec', 'acpi-soc', 'acpi-video' and 'acpi-resources'
[cascardo/linux.git] / fs / ocfs2 / aops.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public
17  * License along with this program; if not, write to the
18  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19  * Boston, MA 021110-1307, USA.
20  */
21
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
31 #include <linux/blkdev.h>
32
33 #include <cluster/masklog.h>
34
35 #include "ocfs2.h"
36
37 #include "alloc.h"
38 #include "aops.h"
39 #include "dlmglue.h"
40 #include "extent_map.h"
41 #include "file.h"
42 #include "inode.h"
43 #include "journal.h"
44 #include "suballoc.h"
45 #include "super.h"
46 #include "symlink.h"
47 #include "refcounttree.h"
48 #include "ocfs2_trace.h"
49
50 #include "buffer_head_io.h"
51 #include "dir.h"
52 #include "namei.h"
53 #include "sysfile.h"
54
55 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
56                                    struct buffer_head *bh_result, int create)
57 {
58         int err = -EIO;
59         int status;
60         struct ocfs2_dinode *fe = NULL;
61         struct buffer_head *bh = NULL;
62         struct buffer_head *buffer_cache_bh = NULL;
63         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
64         void *kaddr;
65
66         trace_ocfs2_symlink_get_block(
67                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
68                         (unsigned long long)iblock, bh_result, create);
69
70         BUG_ON(ocfs2_inode_is_fast_symlink(inode));
71
72         if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
73                 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
74                      (unsigned long long)iblock);
75                 goto bail;
76         }
77
78         status = ocfs2_read_inode_block(inode, &bh);
79         if (status < 0) {
80                 mlog_errno(status);
81                 goto bail;
82         }
83         fe = (struct ocfs2_dinode *) bh->b_data;
84
85         if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
86                                                     le32_to_cpu(fe->i_clusters))) {
87                 err = -ENOMEM;
88                 mlog(ML_ERROR, "block offset is outside the allocated size: "
89                      "%llu\n", (unsigned long long)iblock);
90                 goto bail;
91         }
92
93         /* We don't use the page cache to create symlink data, so if
94          * need be, copy it over from the buffer cache. */
95         if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
96                 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
97                             iblock;
98                 buffer_cache_bh = sb_getblk(osb->sb, blkno);
99                 if (!buffer_cache_bh) {
100                         err = -ENOMEM;
101                         mlog(ML_ERROR, "couldn't getblock for symlink!\n");
102                         goto bail;
103                 }
104
105                 /* we haven't locked out transactions, so a commit
106                  * could've happened. Since we've got a reference on
107                  * the bh, even if it commits while we're doing the
108                  * copy, the data is still good. */
109                 if (buffer_jbd(buffer_cache_bh)
110                     && ocfs2_inode_is_new(inode)) {
111                         kaddr = kmap_atomic(bh_result->b_page);
112                         if (!kaddr) {
113                                 mlog(ML_ERROR, "couldn't kmap!\n");
114                                 goto bail;
115                         }
116                         memcpy(kaddr + (bh_result->b_size * iblock),
117                                buffer_cache_bh->b_data,
118                                bh_result->b_size);
119                         kunmap_atomic(kaddr);
120                         set_buffer_uptodate(bh_result);
121                 }
122                 brelse(buffer_cache_bh);
123         }
124
125         map_bh(bh_result, inode->i_sb,
126                le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
127
128         err = 0;
129
130 bail:
131         brelse(bh);
132
133         return err;
134 }
135
136 int ocfs2_get_block(struct inode *inode, sector_t iblock,
137                     struct buffer_head *bh_result, int create)
138 {
139         int err = 0;
140         unsigned int ext_flags;
141         u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
142         u64 p_blkno, count, past_eof;
143         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
144
145         trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
146                               (unsigned long long)iblock, bh_result, create);
147
148         if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
149                 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
150                      inode, inode->i_ino);
151
152         if (S_ISLNK(inode->i_mode)) {
153                 /* this always does I/O for some reason. */
154                 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
155                 goto bail;
156         }
157
158         err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
159                                           &ext_flags);
160         if (err) {
161                 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
162                      "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
163                      (unsigned long long)p_blkno);
164                 goto bail;
165         }
166
167         if (max_blocks < count)
168                 count = max_blocks;
169
170         /*
171          * ocfs2 never allocates in this function - the only time we
172          * need to use BH_New is when we're extending i_size on a file
173          * system which doesn't support holes, in which case BH_New
174          * allows __block_write_begin() to zero.
175          *
176          * If we see this on a sparse file system, then a truncate has
177          * raced us and removed the cluster. In this case, we clear
178          * the buffers dirty and uptodate bits and let the buffer code
179          * ignore it as a hole.
180          */
181         if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
182                 clear_buffer_dirty(bh_result);
183                 clear_buffer_uptodate(bh_result);
184                 goto bail;
185         }
186
187         /* Treat the unwritten extent as a hole for zeroing purposes. */
188         if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
189                 map_bh(bh_result, inode->i_sb, p_blkno);
190
191         bh_result->b_size = count << inode->i_blkbits;
192
193         if (!ocfs2_sparse_alloc(osb)) {
194                 if (p_blkno == 0) {
195                         err = -EIO;
196                         mlog(ML_ERROR,
197                              "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
198                              (unsigned long long)iblock,
199                              (unsigned long long)p_blkno,
200                              (unsigned long long)OCFS2_I(inode)->ip_blkno);
201                         mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
202                         dump_stack();
203                         goto bail;
204                 }
205         }
206
207         past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
208
209         trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
210                                   (unsigned long long)past_eof);
211         if (create && (iblock >= past_eof))
212                 set_buffer_new(bh_result);
213
214 bail:
215         if (err < 0)
216                 err = -EIO;
217
218         return err;
219 }
220
221 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
222                            struct buffer_head *di_bh)
223 {
224         void *kaddr;
225         loff_t size;
226         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
227
228         if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
229                 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
230                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
231                 return -EROFS;
232         }
233
234         size = i_size_read(inode);
235
236         if (size > PAGE_CACHE_SIZE ||
237             size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
238                 ocfs2_error(inode->i_sb,
239                             "Inode %llu has with inline data has bad size: %Lu",
240                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
241                             (unsigned long long)size);
242                 return -EROFS;
243         }
244
245         kaddr = kmap_atomic(page);
246         if (size)
247                 memcpy(kaddr, di->id2.i_data.id_data, size);
248         /* Clear the remaining part of the page */
249         memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
250         flush_dcache_page(page);
251         kunmap_atomic(kaddr);
252
253         SetPageUptodate(page);
254
255         return 0;
256 }
257
258 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
259 {
260         int ret;
261         struct buffer_head *di_bh = NULL;
262
263         BUG_ON(!PageLocked(page));
264         BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
265
266         ret = ocfs2_read_inode_block(inode, &di_bh);
267         if (ret) {
268                 mlog_errno(ret);
269                 goto out;
270         }
271
272         ret = ocfs2_read_inline_data(inode, page, di_bh);
273 out:
274         unlock_page(page);
275
276         brelse(di_bh);
277         return ret;
278 }
279
280 static int ocfs2_readpage(struct file *file, struct page *page)
281 {
282         struct inode *inode = page->mapping->host;
283         struct ocfs2_inode_info *oi = OCFS2_I(inode);
284         loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
285         int ret, unlock = 1;
286
287         trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
288                              (page ? page->index : 0));
289
290         ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
291         if (ret != 0) {
292                 if (ret == AOP_TRUNCATED_PAGE)
293                         unlock = 0;
294                 mlog_errno(ret);
295                 goto out;
296         }
297
298         if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
299                 /*
300                  * Unlock the page and cycle ip_alloc_sem so that we don't
301                  * busyloop waiting for ip_alloc_sem to unlock
302                  */
303                 ret = AOP_TRUNCATED_PAGE;
304                 unlock_page(page);
305                 unlock = 0;
306                 down_read(&oi->ip_alloc_sem);
307                 up_read(&oi->ip_alloc_sem);
308                 goto out_inode_unlock;
309         }
310
311         /*
312          * i_size might have just been updated as we grabed the meta lock.  We
313          * might now be discovering a truncate that hit on another node.
314          * block_read_full_page->get_block freaks out if it is asked to read
315          * beyond the end of a file, so we check here.  Callers
316          * (generic_file_read, vm_ops->fault) are clever enough to check i_size
317          * and notice that the page they just read isn't needed.
318          *
319          * XXX sys_readahead() seems to get that wrong?
320          */
321         if (start >= i_size_read(inode)) {
322                 zero_user(page, 0, PAGE_SIZE);
323                 SetPageUptodate(page);
324                 ret = 0;
325                 goto out_alloc;
326         }
327
328         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
329                 ret = ocfs2_readpage_inline(inode, page);
330         else
331                 ret = block_read_full_page(page, ocfs2_get_block);
332         unlock = 0;
333
334 out_alloc:
335         up_read(&OCFS2_I(inode)->ip_alloc_sem);
336 out_inode_unlock:
337         ocfs2_inode_unlock(inode, 0);
338 out:
339         if (unlock)
340                 unlock_page(page);
341         return ret;
342 }
343
344 /*
345  * This is used only for read-ahead. Failures or difficult to handle
346  * situations are safe to ignore.
347  *
348  * Right now, we don't bother with BH_Boundary - in-inode extent lists
349  * are quite large (243 extents on 4k blocks), so most inodes don't
350  * grow out to a tree. If need be, detecting boundary extents could
351  * trivially be added in a future version of ocfs2_get_block().
352  */
353 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
354                            struct list_head *pages, unsigned nr_pages)
355 {
356         int ret, err = -EIO;
357         struct inode *inode = mapping->host;
358         struct ocfs2_inode_info *oi = OCFS2_I(inode);
359         loff_t start;
360         struct page *last;
361
362         /*
363          * Use the nonblocking flag for the dlm code to avoid page
364          * lock inversion, but don't bother with retrying.
365          */
366         ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
367         if (ret)
368                 return err;
369
370         if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
371                 ocfs2_inode_unlock(inode, 0);
372                 return err;
373         }
374
375         /*
376          * Don't bother with inline-data. There isn't anything
377          * to read-ahead in that case anyway...
378          */
379         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
380                 goto out_unlock;
381
382         /*
383          * Check whether a remote node truncated this file - we just
384          * drop out in that case as it's not worth handling here.
385          */
386         last = list_entry(pages->prev, struct page, lru);
387         start = (loff_t)last->index << PAGE_CACHE_SHIFT;
388         if (start >= i_size_read(inode))
389                 goto out_unlock;
390
391         err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
392
393 out_unlock:
394         up_read(&oi->ip_alloc_sem);
395         ocfs2_inode_unlock(inode, 0);
396
397         return err;
398 }
399
400 /* Note: Because we don't support holes, our allocation has
401  * already happened (allocation writes zeros to the file data)
402  * so we don't have to worry about ordered writes in
403  * ocfs2_writepage.
404  *
405  * ->writepage is called during the process of invalidating the page cache
406  * during blocked lock processing.  It can't block on any cluster locks
407  * to during block mapping.  It's relying on the fact that the block
408  * mapping can't have disappeared under the dirty pages that it is
409  * being asked to write back.
410  */
411 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
412 {
413         trace_ocfs2_writepage(
414                 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
415                 page->index);
416
417         return block_write_full_page(page, ocfs2_get_block, wbc);
418 }
419
420 /* Taken from ext3. We don't necessarily need the full blown
421  * functionality yet, but IMHO it's better to cut and paste the whole
422  * thing so we can avoid introducing our own bugs (and easily pick up
423  * their fixes when they happen) --Mark */
424 int walk_page_buffers(  handle_t *handle,
425                         struct buffer_head *head,
426                         unsigned from,
427                         unsigned to,
428                         int *partial,
429                         int (*fn)(      handle_t *handle,
430                                         struct buffer_head *bh))
431 {
432         struct buffer_head *bh;
433         unsigned block_start, block_end;
434         unsigned blocksize = head->b_size;
435         int err, ret = 0;
436         struct buffer_head *next;
437
438         for (   bh = head, block_start = 0;
439                 ret == 0 && (bh != head || !block_start);
440                 block_start = block_end, bh = next)
441         {
442                 next = bh->b_this_page;
443                 block_end = block_start + blocksize;
444                 if (block_end <= from || block_start >= to) {
445                         if (partial && !buffer_uptodate(bh))
446                                 *partial = 1;
447                         continue;
448                 }
449                 err = (*fn)(handle, bh);
450                 if (!ret)
451                         ret = err;
452         }
453         return ret;
454 }
455
456 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
457 {
458         sector_t status;
459         u64 p_blkno = 0;
460         int err = 0;
461         struct inode *inode = mapping->host;
462
463         trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
464                          (unsigned long long)block);
465
466         /* We don't need to lock journal system files, since they aren't
467          * accessed concurrently from multiple nodes.
468          */
469         if (!INODE_JOURNAL(inode)) {
470                 err = ocfs2_inode_lock(inode, NULL, 0);
471                 if (err) {
472                         if (err != -ENOENT)
473                                 mlog_errno(err);
474                         goto bail;
475                 }
476                 down_read(&OCFS2_I(inode)->ip_alloc_sem);
477         }
478
479         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
480                 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
481                                                   NULL);
482
483         if (!INODE_JOURNAL(inode)) {
484                 up_read(&OCFS2_I(inode)->ip_alloc_sem);
485                 ocfs2_inode_unlock(inode, 0);
486         }
487
488         if (err) {
489                 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
490                      (unsigned long long)block);
491                 mlog_errno(err);
492                 goto bail;
493         }
494
495 bail:
496         status = err ? 0 : p_blkno;
497
498         return status;
499 }
500
501 /*
502  * TODO: Make this into a generic get_blocks function.
503  *
504  * From do_direct_io in direct-io.c:
505  *  "So what we do is to permit the ->get_blocks function to populate
506  *   bh.b_size with the size of IO which is permitted at this offset and
507  *   this i_blkbits."
508  *
509  * This function is called directly from get_more_blocks in direct-io.c.
510  *
511  * called like this: dio->get_blocks(dio->inode, fs_startblk,
512  *                                      fs_count, map_bh, dio->rw == WRITE);
513  */
514 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
515                                      struct buffer_head *bh_result, int create)
516 {
517         int ret;
518         u32 cpos = 0;
519         int alloc_locked = 0;
520         u64 p_blkno, inode_blocks, contig_blocks;
521         unsigned int ext_flags;
522         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
523         unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
524         unsigned long len = bh_result->b_size;
525         unsigned int clusters_to_alloc = 0;
526
527         cpos = ocfs2_blocks_to_clusters(inode->i_sb, iblock);
528
529         /* This function won't even be called if the request isn't all
530          * nicely aligned and of the right size, so there's no need
531          * for us to check any of that. */
532
533         inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
534
535         /* This figures out the size of the next contiguous block, and
536          * our logical offset */
537         ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
538                                           &contig_blocks, &ext_flags);
539         if (ret) {
540                 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
541                      (unsigned long long)iblock);
542                 ret = -EIO;
543                 goto bail;
544         }
545
546         /* We should already CoW the refcounted extent in case of create. */
547         BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
548
549         /* allocate blocks if no p_blkno is found, and create == 1 */
550         if (!p_blkno && create) {
551                 ret = ocfs2_inode_lock(inode, NULL, 1);
552                 if (ret < 0) {
553                         mlog_errno(ret);
554                         goto bail;
555                 }
556
557                 alloc_locked = 1;
558
559                 /* fill hole, allocate blocks can't be larger than the size
560                  * of the hole */
561                 clusters_to_alloc = ocfs2_clusters_for_bytes(inode->i_sb, len);
562                 if (clusters_to_alloc > contig_blocks)
563                         clusters_to_alloc = contig_blocks;
564
565                 /* allocate extent and insert them into the extent tree */
566                 ret = ocfs2_extend_allocation(inode, cpos,
567                                 clusters_to_alloc, 0);
568                 if (ret < 0) {
569                         mlog_errno(ret);
570                         goto bail;
571                 }
572
573                 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
574                                 &contig_blocks, &ext_flags);
575                 if (ret < 0) {
576                         mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
577                                         (unsigned long long)iblock);
578                         ret = -EIO;
579                         goto bail;
580                 }
581         }
582
583         /*
584          * get_more_blocks() expects us to describe a hole by clearing
585          * the mapped bit on bh_result().
586          *
587          * Consider an unwritten extent as a hole.
588          */
589         if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
590                 map_bh(bh_result, inode->i_sb, p_blkno);
591         else
592                 clear_buffer_mapped(bh_result);
593
594         /* make sure we don't map more than max_blocks blocks here as
595            that's all the kernel will handle at this point. */
596         if (max_blocks < contig_blocks)
597                 contig_blocks = max_blocks;
598         bh_result->b_size = contig_blocks << blocksize_bits;
599 bail:
600         if (alloc_locked)
601                 ocfs2_inode_unlock(inode, 1);
602         return ret;
603 }
604
605 /*
606  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
607  * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
608  * to protect io on one node from truncation on another.
609  */
610 static void ocfs2_dio_end_io(struct kiocb *iocb,
611                              loff_t offset,
612                              ssize_t bytes,
613                              void *private)
614 {
615         struct inode *inode = file_inode(iocb->ki_filp);
616         int level;
617
618         /* this io's submitter should not have unlocked this before we could */
619         BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
620
621         if (ocfs2_iocb_is_sem_locked(iocb))
622                 ocfs2_iocb_clear_sem_locked(iocb);
623
624         if (ocfs2_iocb_is_unaligned_aio(iocb)) {
625                 ocfs2_iocb_clear_unaligned_aio(iocb);
626
627                 mutex_unlock(&OCFS2_I(inode)->ip_unaligned_aio);
628         }
629
630         ocfs2_iocb_clear_rw_locked(iocb);
631
632         level = ocfs2_iocb_rw_locked_level(iocb);
633         ocfs2_rw_unlock(inode, level);
634 }
635
636 static int ocfs2_releasepage(struct page *page, gfp_t wait)
637 {
638         if (!page_has_buffers(page))
639                 return 0;
640         return try_to_free_buffers(page);
641 }
642
643 static int ocfs2_is_overwrite(struct ocfs2_super *osb,
644                 struct inode *inode, loff_t offset)
645 {
646         int ret = 0;
647         u32 v_cpos = 0;
648         u32 p_cpos = 0;
649         unsigned int num_clusters = 0;
650         unsigned int ext_flags = 0;
651
652         v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
653         ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
654                         &num_clusters, &ext_flags);
655         if (ret < 0) {
656                 mlog_errno(ret);
657                 return ret;
658         }
659
660         if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN))
661                 return 1;
662
663         return 0;
664 }
665
666 static ssize_t ocfs2_direct_IO_write(struct kiocb *iocb,
667                 struct iov_iter *iter,
668                 loff_t offset)
669 {
670         ssize_t ret = 0;
671         ssize_t written = 0;
672         bool orphaned = false;
673         int is_overwrite = 0;
674         struct file *file = iocb->ki_filp;
675         struct inode *inode = file_inode(file)->i_mapping->host;
676         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
677         struct buffer_head *di_bh = NULL;
678         size_t count = iter->count;
679         journal_t *journal = osb->journal->j_journal;
680         u32 zero_len;
681         int cluster_align;
682         loff_t final_size = offset + count;
683         int append_write = offset >= i_size_read(inode) ? 1 : 0;
684         unsigned int num_clusters = 0;
685         unsigned int ext_flags = 0;
686
687         {
688                 u64 o = offset;
689
690                 zero_len = do_div(o, 1 << osb->s_clustersize_bits);
691                 cluster_align = !zero_len;
692         }
693
694         /*
695          * when final_size > inode->i_size, inode->i_size will be
696          * updated after direct write, so add the inode to orphan
697          * dir first.
698          */
699         if (final_size > i_size_read(inode)) {
700                 ret = ocfs2_add_inode_to_orphan(osb, inode);
701                 if (ret < 0) {
702                         mlog_errno(ret);
703                         goto out;
704                 }
705                 orphaned = true;
706         }
707
708         if (append_write) {
709                 ret = ocfs2_inode_lock(inode, &di_bh, 1);
710                 if (ret < 0) {
711                         mlog_errno(ret);
712                         goto clean_orphan;
713                 }
714
715                 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
716                         ret = ocfs2_zero_extend(inode, di_bh, offset);
717                 else
718                         ret = ocfs2_extend_no_holes(inode, di_bh, offset,
719                                         offset);
720                 if (ret < 0) {
721                         mlog_errno(ret);
722                         ocfs2_inode_unlock(inode, 1);
723                         brelse(di_bh);
724                         goto clean_orphan;
725                 }
726
727                 is_overwrite = ocfs2_is_overwrite(osb, inode, offset);
728                 if (is_overwrite < 0) {
729                         mlog_errno(is_overwrite);
730                         ocfs2_inode_unlock(inode, 1);
731                         brelse(di_bh);
732                         goto clean_orphan;
733                 }
734
735                 ocfs2_inode_unlock(inode, 1);
736                 brelse(di_bh);
737                 di_bh = NULL;
738         }
739
740         written = __blockdev_direct_IO(WRITE, iocb, inode, inode->i_sb->s_bdev,
741                         iter, offset,
742                         ocfs2_direct_IO_get_blocks,
743                         ocfs2_dio_end_io, NULL, 0);
744         if (unlikely(written < 0)) {
745                 loff_t i_size = i_size_read(inode);
746
747                 if (offset + count > i_size) {
748                         ret = ocfs2_inode_lock(inode, &di_bh, 1);
749                         if (ret < 0) {
750                                 mlog_errno(ret);
751                                 goto clean_orphan;
752                         }
753
754                         if (i_size == i_size_read(inode)) {
755                                 ret = ocfs2_truncate_file(inode, di_bh,
756                                                 i_size);
757                                 if (ret < 0) {
758                                         if (ret != -ENOSPC)
759                                                 mlog_errno(ret);
760
761                                         ocfs2_inode_unlock(inode, 1);
762                                         brelse(di_bh);
763                                         goto clean_orphan;
764                                 }
765                         }
766
767                         ocfs2_inode_unlock(inode, 1);
768                         brelse(di_bh);
769
770                         ret = jbd2_journal_force_commit(journal);
771                         if (ret < 0)
772                                 mlog_errno(ret);
773                 }
774         } else if (written < 0 && append_write && !is_overwrite &&
775                         !cluster_align) {
776                 u32 p_cpos = 0;
777                 u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
778
779                 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
780                                 &num_clusters, &ext_flags);
781                 if (ret < 0) {
782                         mlog_errno(ret);
783                         goto clean_orphan;
784                 }
785
786                 BUG_ON(!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN));
787
788                 ret = blkdev_issue_zeroout(osb->sb->s_bdev,
789                                 p_cpos << (osb->s_clustersize_bits - 9),
790                                 zero_len >> 9, GFP_KERNEL, false);
791                 if (ret < 0)
792                         mlog_errno(ret);
793         }
794
795 clean_orphan:
796         if (orphaned) {
797                 int tmp_ret;
798                 int update_isize = written > 0 ? 1 : 0;
799                 loff_t end = update_isize ? offset + written : 0;
800
801                 tmp_ret = ocfs2_del_inode_from_orphan(osb, inode,
802                                 update_isize, end);
803                 if (tmp_ret < 0) {
804                         ret = tmp_ret;
805                         goto out;
806                 }
807
808                 tmp_ret = jbd2_journal_force_commit(journal);
809                 if (tmp_ret < 0) {
810                         ret = tmp_ret;
811                         mlog_errno(tmp_ret);
812                 }
813         }
814
815 out:
816         if (ret >= 0)
817                 ret = written;
818         return ret;
819 }
820
821 static ssize_t ocfs2_direct_IO(int rw,
822                                struct kiocb *iocb,
823                                struct iov_iter *iter,
824                                loff_t offset)
825 {
826         struct file *file = iocb->ki_filp;
827         struct inode *inode = file_inode(file)->i_mapping->host;
828         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
829         int full_coherency = !(osb->s_mount_opt &
830                         OCFS2_MOUNT_COHERENCY_BUFFERED);
831
832         /*
833          * Fallback to buffered I/O if we see an inode without
834          * extents.
835          */
836         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
837                 return 0;
838
839         /* Fallback to buffered I/O if we are appending and
840          * concurrent O_DIRECT writes are allowed.
841          */
842         if (i_size_read(inode) <= offset && !full_coherency)
843                 return 0;
844
845         if (rw == READ)
846                 return __blockdev_direct_IO(rw, iocb, inode,
847                                     inode->i_sb->s_bdev,
848                                     iter, offset,
849                                     ocfs2_direct_IO_get_blocks,
850                                     ocfs2_dio_end_io, NULL, 0);
851         else
852                 return ocfs2_direct_IO_write(iocb, iter, offset);
853 }
854
855 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
856                                             u32 cpos,
857                                             unsigned int *start,
858                                             unsigned int *end)
859 {
860         unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
861
862         if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
863                 unsigned int cpp;
864
865                 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
866
867                 cluster_start = cpos % cpp;
868                 cluster_start = cluster_start << osb->s_clustersize_bits;
869
870                 cluster_end = cluster_start + osb->s_clustersize;
871         }
872
873         BUG_ON(cluster_start > PAGE_SIZE);
874         BUG_ON(cluster_end > PAGE_SIZE);
875
876         if (start)
877                 *start = cluster_start;
878         if (end)
879                 *end = cluster_end;
880 }
881
882 /*
883  * 'from' and 'to' are the region in the page to avoid zeroing.
884  *
885  * If pagesize > clustersize, this function will avoid zeroing outside
886  * of the cluster boundary.
887  *
888  * from == to == 0 is code for "zero the entire cluster region"
889  */
890 static void ocfs2_clear_page_regions(struct page *page,
891                                      struct ocfs2_super *osb, u32 cpos,
892                                      unsigned from, unsigned to)
893 {
894         void *kaddr;
895         unsigned int cluster_start, cluster_end;
896
897         ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
898
899         kaddr = kmap_atomic(page);
900
901         if (from || to) {
902                 if (from > cluster_start)
903                         memset(kaddr + cluster_start, 0, from - cluster_start);
904                 if (to < cluster_end)
905                         memset(kaddr + to, 0, cluster_end - to);
906         } else {
907                 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
908         }
909
910         kunmap_atomic(kaddr);
911 }
912
913 /*
914  * Nonsparse file systems fully allocate before we get to the write
915  * code. This prevents ocfs2_write() from tagging the write as an
916  * allocating one, which means ocfs2_map_page_blocks() might try to
917  * read-in the blocks at the tail of our file. Avoid reading them by
918  * testing i_size against each block offset.
919  */
920 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
921                                  unsigned int block_start)
922 {
923         u64 offset = page_offset(page) + block_start;
924
925         if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
926                 return 1;
927
928         if (i_size_read(inode) > offset)
929                 return 1;
930
931         return 0;
932 }
933
934 /*
935  * Some of this taken from __block_write_begin(). We already have our
936  * mapping by now though, and the entire write will be allocating or
937  * it won't, so not much need to use BH_New.
938  *
939  * This will also skip zeroing, which is handled externally.
940  */
941 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
942                           struct inode *inode, unsigned int from,
943                           unsigned int to, int new)
944 {
945         int ret = 0;
946         struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
947         unsigned int block_end, block_start;
948         unsigned int bsize = 1 << inode->i_blkbits;
949
950         if (!page_has_buffers(page))
951                 create_empty_buffers(page, bsize, 0);
952
953         head = page_buffers(page);
954         for (bh = head, block_start = 0; bh != head || !block_start;
955              bh = bh->b_this_page, block_start += bsize) {
956                 block_end = block_start + bsize;
957
958                 clear_buffer_new(bh);
959
960                 /*
961                  * Ignore blocks outside of our i/o range -
962                  * they may belong to unallocated clusters.
963                  */
964                 if (block_start >= to || block_end <= from) {
965                         if (PageUptodate(page))
966                                 set_buffer_uptodate(bh);
967                         continue;
968                 }
969
970                 /*
971                  * For an allocating write with cluster size >= page
972                  * size, we always write the entire page.
973                  */
974                 if (new)
975                         set_buffer_new(bh);
976
977                 if (!buffer_mapped(bh)) {
978                         map_bh(bh, inode->i_sb, *p_blkno);
979                         unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
980                 }
981
982                 if (PageUptodate(page)) {
983                         if (!buffer_uptodate(bh))
984                                 set_buffer_uptodate(bh);
985                 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
986                            !buffer_new(bh) &&
987                            ocfs2_should_read_blk(inode, page, block_start) &&
988                            (block_start < from || block_end > to)) {
989                         ll_rw_block(READ, 1, &bh);
990                         *wait_bh++=bh;
991                 }
992
993                 *p_blkno = *p_blkno + 1;
994         }
995
996         /*
997          * If we issued read requests - let them complete.
998          */
999         while(wait_bh > wait) {
1000                 wait_on_buffer(*--wait_bh);
1001                 if (!buffer_uptodate(*wait_bh))
1002                         ret = -EIO;
1003         }
1004
1005         if (ret == 0 || !new)
1006                 return ret;
1007
1008         /*
1009          * If we get -EIO above, zero out any newly allocated blocks
1010          * to avoid exposing stale data.
1011          */
1012         bh = head;
1013         block_start = 0;
1014         do {
1015                 block_end = block_start + bsize;
1016                 if (block_end <= from)
1017                         goto next_bh;
1018                 if (block_start >= to)
1019                         break;
1020
1021                 zero_user(page, block_start, bh->b_size);
1022                 set_buffer_uptodate(bh);
1023                 mark_buffer_dirty(bh);
1024
1025 next_bh:
1026                 block_start = block_end;
1027                 bh = bh->b_this_page;
1028         } while (bh != head);
1029
1030         return ret;
1031 }
1032
1033 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
1034 #define OCFS2_MAX_CTXT_PAGES    1
1035 #else
1036 #define OCFS2_MAX_CTXT_PAGES    (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
1037 #endif
1038
1039 #define OCFS2_MAX_CLUSTERS_PER_PAGE     (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
1040
1041 /*
1042  * Describe the state of a single cluster to be written to.
1043  */
1044 struct ocfs2_write_cluster_desc {
1045         u32             c_cpos;
1046         u32             c_phys;
1047         /*
1048          * Give this a unique field because c_phys eventually gets
1049          * filled.
1050          */
1051         unsigned        c_new;
1052         unsigned        c_unwritten;
1053         unsigned        c_needs_zero;
1054 };
1055
1056 struct ocfs2_write_ctxt {
1057         /* Logical cluster position / len of write */
1058         u32                             w_cpos;
1059         u32                             w_clen;
1060
1061         /* First cluster allocated in a nonsparse extend */
1062         u32                             w_first_new_cpos;
1063
1064         struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
1065
1066         /*
1067          * This is true if page_size > cluster_size.
1068          *
1069          * It triggers a set of special cases during write which might
1070          * have to deal with allocating writes to partial pages.
1071          */
1072         unsigned int                    w_large_pages;
1073
1074         /*
1075          * Pages involved in this write.
1076          *
1077          * w_target_page is the page being written to by the user.
1078          *
1079          * w_pages is an array of pages which always contains
1080          * w_target_page, and in the case of an allocating write with
1081          * page_size < cluster size, it will contain zero'd and mapped
1082          * pages adjacent to w_target_page which need to be written
1083          * out in so that future reads from that region will get
1084          * zero's.
1085          */
1086         unsigned int                    w_num_pages;
1087         struct page                     *w_pages[OCFS2_MAX_CTXT_PAGES];
1088         struct page                     *w_target_page;
1089
1090         /*
1091          * w_target_locked is used for page_mkwrite path indicating no unlocking
1092          * against w_target_page in ocfs2_write_end_nolock.
1093          */
1094         unsigned int                    w_target_locked:1;
1095
1096         /*
1097          * ocfs2_write_end() uses this to know what the real range to
1098          * write in the target should be.
1099          */
1100         unsigned int                    w_target_from;
1101         unsigned int                    w_target_to;
1102
1103         /*
1104          * We could use journal_current_handle() but this is cleaner,
1105          * IMHO -Mark
1106          */
1107         handle_t                        *w_handle;
1108
1109         struct buffer_head              *w_di_bh;
1110
1111         struct ocfs2_cached_dealloc_ctxt w_dealloc;
1112 };
1113
1114 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
1115 {
1116         int i;
1117
1118         for(i = 0; i < num_pages; i++) {
1119                 if (pages[i]) {
1120                         unlock_page(pages[i]);
1121                         mark_page_accessed(pages[i]);
1122                         page_cache_release(pages[i]);
1123                 }
1124         }
1125 }
1126
1127 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
1128 {
1129         int i;
1130
1131         /*
1132          * w_target_locked is only set to true in the page_mkwrite() case.
1133          * The intent is to allow us to lock the target page from write_begin()
1134          * to write_end(). The caller must hold a ref on w_target_page.
1135          */
1136         if (wc->w_target_locked) {
1137                 BUG_ON(!wc->w_target_page);
1138                 for (i = 0; i < wc->w_num_pages; i++) {
1139                         if (wc->w_target_page == wc->w_pages[i]) {
1140                                 wc->w_pages[i] = NULL;
1141                                 break;
1142                         }
1143                 }
1144                 mark_page_accessed(wc->w_target_page);
1145                 page_cache_release(wc->w_target_page);
1146         }
1147         ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
1148 }
1149
1150 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
1151 {
1152         ocfs2_unlock_pages(wc);
1153         brelse(wc->w_di_bh);
1154         kfree(wc);
1155 }
1156
1157 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
1158                                   struct ocfs2_super *osb, loff_t pos,
1159                                   unsigned len, struct buffer_head *di_bh)
1160 {
1161         u32 cend;
1162         struct ocfs2_write_ctxt *wc;
1163
1164         wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
1165         if (!wc)
1166                 return -ENOMEM;
1167
1168         wc->w_cpos = pos >> osb->s_clustersize_bits;
1169         wc->w_first_new_cpos = UINT_MAX;
1170         cend = (pos + len - 1) >> osb->s_clustersize_bits;
1171         wc->w_clen = cend - wc->w_cpos + 1;
1172         get_bh(di_bh);
1173         wc->w_di_bh = di_bh;
1174
1175         if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
1176                 wc->w_large_pages = 1;
1177         else
1178                 wc->w_large_pages = 0;
1179
1180         ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
1181
1182         *wcp = wc;
1183
1184         return 0;
1185 }
1186
1187 /*
1188  * If a page has any new buffers, zero them out here, and mark them uptodate
1189  * and dirty so they'll be written out (in order to prevent uninitialised
1190  * block data from leaking). And clear the new bit.
1191  */
1192 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1193 {
1194         unsigned int block_start, block_end;
1195         struct buffer_head *head, *bh;
1196
1197         BUG_ON(!PageLocked(page));
1198         if (!page_has_buffers(page))
1199                 return;
1200
1201         bh = head = page_buffers(page);
1202         block_start = 0;
1203         do {
1204                 block_end = block_start + bh->b_size;
1205
1206                 if (buffer_new(bh)) {
1207                         if (block_end > from && block_start < to) {
1208                                 if (!PageUptodate(page)) {
1209                                         unsigned start, end;
1210
1211                                         start = max(from, block_start);
1212                                         end = min(to, block_end);
1213
1214                                         zero_user_segment(page, start, end);
1215                                         set_buffer_uptodate(bh);
1216                                 }
1217
1218                                 clear_buffer_new(bh);
1219                                 mark_buffer_dirty(bh);
1220                         }
1221                 }
1222
1223                 block_start = block_end;
1224                 bh = bh->b_this_page;
1225         } while (bh != head);
1226 }
1227
1228 /*
1229  * Only called when we have a failure during allocating write to write
1230  * zero's to the newly allocated region.
1231  */
1232 static void ocfs2_write_failure(struct inode *inode,
1233                                 struct ocfs2_write_ctxt *wc,
1234                                 loff_t user_pos, unsigned user_len)
1235 {
1236         int i;
1237         unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1238                 to = user_pos + user_len;
1239         struct page *tmppage;
1240
1241         ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1242
1243         for(i = 0; i < wc->w_num_pages; i++) {
1244                 tmppage = wc->w_pages[i];
1245
1246                 if (page_has_buffers(tmppage)) {
1247                         if (ocfs2_should_order_data(inode))
1248                                 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1249
1250                         block_commit_write(tmppage, from, to);
1251                 }
1252         }
1253 }
1254
1255 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1256                                         struct ocfs2_write_ctxt *wc,
1257                                         struct page *page, u32 cpos,
1258                                         loff_t user_pos, unsigned user_len,
1259                                         int new)
1260 {
1261         int ret;
1262         unsigned int map_from = 0, map_to = 0;
1263         unsigned int cluster_start, cluster_end;
1264         unsigned int user_data_from = 0, user_data_to = 0;
1265
1266         ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1267                                         &cluster_start, &cluster_end);
1268
1269         /* treat the write as new if the a hole/lseek spanned across
1270          * the page boundary.
1271          */
1272         new = new | ((i_size_read(inode) <= page_offset(page)) &&
1273                         (page_offset(page) <= user_pos));
1274
1275         if (page == wc->w_target_page) {
1276                 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1277                 map_to = map_from + user_len;
1278
1279                 if (new)
1280                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1281                                                     cluster_start, cluster_end,
1282                                                     new);
1283                 else
1284                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1285                                                     map_from, map_to, new);
1286                 if (ret) {
1287                         mlog_errno(ret);
1288                         goto out;
1289                 }
1290
1291                 user_data_from = map_from;
1292                 user_data_to = map_to;
1293                 if (new) {
1294                         map_from = cluster_start;
1295                         map_to = cluster_end;
1296                 }
1297         } else {
1298                 /*
1299                  * If we haven't allocated the new page yet, we
1300                  * shouldn't be writing it out without copying user
1301                  * data. This is likely a math error from the caller.
1302                  */
1303                 BUG_ON(!new);
1304
1305                 map_from = cluster_start;
1306                 map_to = cluster_end;
1307
1308                 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1309                                             cluster_start, cluster_end, new);
1310                 if (ret) {
1311                         mlog_errno(ret);
1312                         goto out;
1313                 }
1314         }
1315
1316         /*
1317          * Parts of newly allocated pages need to be zero'd.
1318          *
1319          * Above, we have also rewritten 'to' and 'from' - as far as
1320          * the rest of the function is concerned, the entire cluster
1321          * range inside of a page needs to be written.
1322          *
1323          * We can skip this if the page is up to date - it's already
1324          * been zero'd from being read in as a hole.
1325          */
1326         if (new && !PageUptodate(page))
1327                 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1328                                          cpos, user_data_from, user_data_to);
1329
1330         flush_dcache_page(page);
1331
1332 out:
1333         return ret;
1334 }
1335
1336 /*
1337  * This function will only grab one clusters worth of pages.
1338  */
1339 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1340                                       struct ocfs2_write_ctxt *wc,
1341                                       u32 cpos, loff_t user_pos,
1342                                       unsigned user_len, int new,
1343                                       struct page *mmap_page)
1344 {
1345         int ret = 0, i;
1346         unsigned long start, target_index, end_index, index;
1347         struct inode *inode = mapping->host;
1348         loff_t last_byte;
1349
1350         target_index = user_pos >> PAGE_CACHE_SHIFT;
1351
1352         /*
1353          * Figure out how many pages we'll be manipulating here. For
1354          * non allocating write, we just change the one
1355          * page. Otherwise, we'll need a whole clusters worth.  If we're
1356          * writing past i_size, we only need enough pages to cover the
1357          * last page of the write.
1358          */
1359         if (new) {
1360                 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1361                 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1362                 /*
1363                  * We need the index *past* the last page we could possibly
1364                  * touch.  This is the page past the end of the write or
1365                  * i_size, whichever is greater.
1366                  */
1367                 last_byte = max(user_pos + user_len, i_size_read(inode));
1368                 BUG_ON(last_byte < 1);
1369                 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1370                 if ((start + wc->w_num_pages) > end_index)
1371                         wc->w_num_pages = end_index - start;
1372         } else {
1373                 wc->w_num_pages = 1;
1374                 start = target_index;
1375         }
1376
1377         for(i = 0; i < wc->w_num_pages; i++) {
1378                 index = start + i;
1379
1380                 if (index == target_index && mmap_page) {
1381                         /*
1382                          * ocfs2_pagemkwrite() is a little different
1383                          * and wants us to directly use the page
1384                          * passed in.
1385                          */
1386                         lock_page(mmap_page);
1387
1388                         /* Exit and let the caller retry */
1389                         if (mmap_page->mapping != mapping) {
1390                                 WARN_ON(mmap_page->mapping);
1391                                 unlock_page(mmap_page);
1392                                 ret = -EAGAIN;
1393                                 goto out;
1394                         }
1395
1396                         page_cache_get(mmap_page);
1397                         wc->w_pages[i] = mmap_page;
1398                         wc->w_target_locked = true;
1399                 } else {
1400                         wc->w_pages[i] = find_or_create_page(mapping, index,
1401                                                              GFP_NOFS);
1402                         if (!wc->w_pages[i]) {
1403                                 ret = -ENOMEM;
1404                                 mlog_errno(ret);
1405                                 goto out;
1406                         }
1407                 }
1408                 wait_for_stable_page(wc->w_pages[i]);
1409
1410                 if (index == target_index)
1411                         wc->w_target_page = wc->w_pages[i];
1412         }
1413 out:
1414         if (ret)
1415                 wc->w_target_locked = false;
1416         return ret;
1417 }
1418
1419 /*
1420  * Prepare a single cluster for write one cluster into the file.
1421  */
1422 static int ocfs2_write_cluster(struct address_space *mapping,
1423                                u32 phys, unsigned int unwritten,
1424                                unsigned int should_zero,
1425                                struct ocfs2_alloc_context *data_ac,
1426                                struct ocfs2_alloc_context *meta_ac,
1427                                struct ocfs2_write_ctxt *wc, u32 cpos,
1428                                loff_t user_pos, unsigned user_len)
1429 {
1430         int ret, i, new;
1431         u64 v_blkno, p_blkno;
1432         struct inode *inode = mapping->host;
1433         struct ocfs2_extent_tree et;
1434
1435         new = phys == 0 ? 1 : 0;
1436         if (new) {
1437                 u32 tmp_pos;
1438
1439                 /*
1440                  * This is safe to call with the page locks - it won't take
1441                  * any additional semaphores or cluster locks.
1442                  */
1443                 tmp_pos = cpos;
1444                 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1445                                            &tmp_pos, 1, 0, wc->w_di_bh,
1446                                            wc->w_handle, data_ac,
1447                                            meta_ac, NULL);
1448                 /*
1449                  * This shouldn't happen because we must have already
1450                  * calculated the correct meta data allocation required. The
1451                  * internal tree allocation code should know how to increase
1452                  * transaction credits itself.
1453                  *
1454                  * If need be, we could handle -EAGAIN for a
1455                  * RESTART_TRANS here.
1456                  */
1457                 mlog_bug_on_msg(ret == -EAGAIN,
1458                                 "Inode %llu: EAGAIN return during allocation.\n",
1459                                 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1460                 if (ret < 0) {
1461                         mlog_errno(ret);
1462                         goto out;
1463                 }
1464         } else if (unwritten) {
1465                 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1466                                               wc->w_di_bh);
1467                 ret = ocfs2_mark_extent_written(inode, &et,
1468                                                 wc->w_handle, cpos, 1, phys,
1469                                                 meta_ac, &wc->w_dealloc);
1470                 if (ret < 0) {
1471                         mlog_errno(ret);
1472                         goto out;
1473                 }
1474         }
1475
1476         if (should_zero)
1477                 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1478         else
1479                 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1480
1481         /*
1482          * The only reason this should fail is due to an inability to
1483          * find the extent added.
1484          */
1485         ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1486                                           NULL);
1487         if (ret < 0) {
1488                 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1489                             "at logical block %llu",
1490                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
1491                             (unsigned long long)v_blkno);
1492                 goto out;
1493         }
1494
1495         BUG_ON(p_blkno == 0);
1496
1497         for(i = 0; i < wc->w_num_pages; i++) {
1498                 int tmpret;
1499
1500                 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1501                                                       wc->w_pages[i], cpos,
1502                                                       user_pos, user_len,
1503                                                       should_zero);
1504                 if (tmpret) {
1505                         mlog_errno(tmpret);
1506                         if (ret == 0)
1507                                 ret = tmpret;
1508                 }
1509         }
1510
1511         /*
1512          * We only have cleanup to do in case of allocating write.
1513          */
1514         if (ret && new)
1515                 ocfs2_write_failure(inode, wc, user_pos, user_len);
1516
1517 out:
1518
1519         return ret;
1520 }
1521
1522 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1523                                        struct ocfs2_alloc_context *data_ac,
1524                                        struct ocfs2_alloc_context *meta_ac,
1525                                        struct ocfs2_write_ctxt *wc,
1526                                        loff_t pos, unsigned len)
1527 {
1528         int ret, i;
1529         loff_t cluster_off;
1530         unsigned int local_len = len;
1531         struct ocfs2_write_cluster_desc *desc;
1532         struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1533
1534         for (i = 0; i < wc->w_clen; i++) {
1535                 desc = &wc->w_desc[i];
1536
1537                 /*
1538                  * We have to make sure that the total write passed in
1539                  * doesn't extend past a single cluster.
1540                  */
1541                 local_len = len;
1542                 cluster_off = pos & (osb->s_clustersize - 1);
1543                 if ((cluster_off + local_len) > osb->s_clustersize)
1544                         local_len = osb->s_clustersize - cluster_off;
1545
1546                 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1547                                           desc->c_unwritten,
1548                                           desc->c_needs_zero,
1549                                           data_ac, meta_ac,
1550                                           wc, desc->c_cpos, pos, local_len);
1551                 if (ret) {
1552                         mlog_errno(ret);
1553                         goto out;
1554                 }
1555
1556                 len -= local_len;
1557                 pos += local_len;
1558         }
1559
1560         ret = 0;
1561 out:
1562         return ret;
1563 }
1564
1565 /*
1566  * ocfs2_write_end() wants to know which parts of the target page it
1567  * should complete the write on. It's easiest to compute them ahead of
1568  * time when a more complete view of the write is available.
1569  */
1570 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1571                                         struct ocfs2_write_ctxt *wc,
1572                                         loff_t pos, unsigned len, int alloc)
1573 {
1574         struct ocfs2_write_cluster_desc *desc;
1575
1576         wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1577         wc->w_target_to = wc->w_target_from + len;
1578
1579         if (alloc == 0)
1580                 return;
1581
1582         /*
1583          * Allocating write - we may have different boundaries based
1584          * on page size and cluster size.
1585          *
1586          * NOTE: We can no longer compute one value from the other as
1587          * the actual write length and user provided length may be
1588          * different.
1589          */
1590
1591         if (wc->w_large_pages) {
1592                 /*
1593                  * We only care about the 1st and last cluster within
1594                  * our range and whether they should be zero'd or not. Either
1595                  * value may be extended out to the start/end of a
1596                  * newly allocated cluster.
1597                  */
1598                 desc = &wc->w_desc[0];
1599                 if (desc->c_needs_zero)
1600                         ocfs2_figure_cluster_boundaries(osb,
1601                                                         desc->c_cpos,
1602                                                         &wc->w_target_from,
1603                                                         NULL);
1604
1605                 desc = &wc->w_desc[wc->w_clen - 1];
1606                 if (desc->c_needs_zero)
1607                         ocfs2_figure_cluster_boundaries(osb,
1608                                                         desc->c_cpos,
1609                                                         NULL,
1610                                                         &wc->w_target_to);
1611         } else {
1612                 wc->w_target_from = 0;
1613                 wc->w_target_to = PAGE_CACHE_SIZE;
1614         }
1615 }
1616
1617 /*
1618  * Populate each single-cluster write descriptor in the write context
1619  * with information about the i/o to be done.
1620  *
1621  * Returns the number of clusters that will have to be allocated, as
1622  * well as a worst case estimate of the number of extent records that
1623  * would have to be created during a write to an unwritten region.
1624  */
1625 static int ocfs2_populate_write_desc(struct inode *inode,
1626                                      struct ocfs2_write_ctxt *wc,
1627                                      unsigned int *clusters_to_alloc,
1628                                      unsigned int *extents_to_split)
1629 {
1630         int ret;
1631         struct ocfs2_write_cluster_desc *desc;
1632         unsigned int num_clusters = 0;
1633         unsigned int ext_flags = 0;
1634         u32 phys = 0;
1635         int i;
1636
1637         *clusters_to_alloc = 0;
1638         *extents_to_split = 0;
1639
1640         for (i = 0; i < wc->w_clen; i++) {
1641                 desc = &wc->w_desc[i];
1642                 desc->c_cpos = wc->w_cpos + i;
1643
1644                 if (num_clusters == 0) {
1645                         /*
1646                          * Need to look up the next extent record.
1647                          */
1648                         ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1649                                                  &num_clusters, &ext_flags);
1650                         if (ret) {
1651                                 mlog_errno(ret);
1652                                 goto out;
1653                         }
1654
1655                         /* We should already CoW the refcountd extent. */
1656                         BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1657
1658                         /*
1659                          * Assume worst case - that we're writing in
1660                          * the middle of the extent.
1661                          *
1662                          * We can assume that the write proceeds from
1663                          * left to right, in which case the extent
1664                          * insert code is smart enough to coalesce the
1665                          * next splits into the previous records created.
1666                          */
1667                         if (ext_flags & OCFS2_EXT_UNWRITTEN)
1668                                 *extents_to_split = *extents_to_split + 2;
1669                 } else if (phys) {
1670                         /*
1671                          * Only increment phys if it doesn't describe
1672                          * a hole.
1673                          */
1674                         phys++;
1675                 }
1676
1677                 /*
1678                  * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1679                  * file that got extended.  w_first_new_cpos tells us
1680                  * where the newly allocated clusters are so we can
1681                  * zero them.
1682                  */
1683                 if (desc->c_cpos >= wc->w_first_new_cpos) {
1684                         BUG_ON(phys == 0);
1685                         desc->c_needs_zero = 1;
1686                 }
1687
1688                 desc->c_phys = phys;
1689                 if (phys == 0) {
1690                         desc->c_new = 1;
1691                         desc->c_needs_zero = 1;
1692                         *clusters_to_alloc = *clusters_to_alloc + 1;
1693                 }
1694
1695                 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1696                         desc->c_unwritten = 1;
1697                         desc->c_needs_zero = 1;
1698                 }
1699
1700                 num_clusters--;
1701         }
1702
1703         ret = 0;
1704 out:
1705         return ret;
1706 }
1707
1708 static int ocfs2_write_begin_inline(struct address_space *mapping,
1709                                     struct inode *inode,
1710                                     struct ocfs2_write_ctxt *wc)
1711 {
1712         int ret;
1713         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1714         struct page *page;
1715         handle_t *handle;
1716         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1717
1718         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1719         if (IS_ERR(handle)) {
1720                 ret = PTR_ERR(handle);
1721                 mlog_errno(ret);
1722                 goto out;
1723         }
1724
1725         page = find_or_create_page(mapping, 0, GFP_NOFS);
1726         if (!page) {
1727                 ocfs2_commit_trans(osb, handle);
1728                 ret = -ENOMEM;
1729                 mlog_errno(ret);
1730                 goto out;
1731         }
1732         /*
1733          * If we don't set w_num_pages then this page won't get unlocked
1734          * and freed on cleanup of the write context.
1735          */
1736         wc->w_pages[0] = wc->w_target_page = page;
1737         wc->w_num_pages = 1;
1738
1739         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1740                                       OCFS2_JOURNAL_ACCESS_WRITE);
1741         if (ret) {
1742                 ocfs2_commit_trans(osb, handle);
1743
1744                 mlog_errno(ret);
1745                 goto out;
1746         }
1747
1748         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1749                 ocfs2_set_inode_data_inline(inode, di);
1750
1751         if (!PageUptodate(page)) {
1752                 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1753                 if (ret) {
1754                         ocfs2_commit_trans(osb, handle);
1755
1756                         goto out;
1757                 }
1758         }
1759
1760         wc->w_handle = handle;
1761 out:
1762         return ret;
1763 }
1764
1765 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1766 {
1767         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1768
1769         if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1770                 return 1;
1771         return 0;
1772 }
1773
1774 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1775                                           struct inode *inode, loff_t pos,
1776                                           unsigned len, struct page *mmap_page,
1777                                           struct ocfs2_write_ctxt *wc)
1778 {
1779         int ret, written = 0;
1780         loff_t end = pos + len;
1781         struct ocfs2_inode_info *oi = OCFS2_I(inode);
1782         struct ocfs2_dinode *di = NULL;
1783
1784         trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1785                                              len, (unsigned long long)pos,
1786                                              oi->ip_dyn_features);
1787
1788         /*
1789          * Handle inodes which already have inline data 1st.
1790          */
1791         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1792                 if (mmap_page == NULL &&
1793                     ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1794                         goto do_inline_write;
1795
1796                 /*
1797                  * The write won't fit - we have to give this inode an
1798                  * inline extent list now.
1799                  */
1800                 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1801                 if (ret)
1802                         mlog_errno(ret);
1803                 goto out;
1804         }
1805
1806         /*
1807          * Check whether the inode can accept inline data.
1808          */
1809         if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1810                 return 0;
1811
1812         /*
1813          * Check whether the write can fit.
1814          */
1815         di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1816         if (mmap_page ||
1817             end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1818                 return 0;
1819
1820 do_inline_write:
1821         ret = ocfs2_write_begin_inline(mapping, inode, wc);
1822         if (ret) {
1823                 mlog_errno(ret);
1824                 goto out;
1825         }
1826
1827         /*
1828          * This signals to the caller that the data can be written
1829          * inline.
1830          */
1831         written = 1;
1832 out:
1833         return written ? written : ret;
1834 }
1835
1836 /*
1837  * This function only does anything for file systems which can't
1838  * handle sparse files.
1839  *
1840  * What we want to do here is fill in any hole between the current end
1841  * of allocation and the end of our write. That way the rest of the
1842  * write path can treat it as an non-allocating write, which has no
1843  * special case code for sparse/nonsparse files.
1844  */
1845 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1846                                         struct buffer_head *di_bh,
1847                                         loff_t pos, unsigned len,
1848                                         struct ocfs2_write_ctxt *wc)
1849 {
1850         int ret;
1851         loff_t newsize = pos + len;
1852
1853         BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1854
1855         if (newsize <= i_size_read(inode))
1856                 return 0;
1857
1858         ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1859         if (ret)
1860                 mlog_errno(ret);
1861
1862         wc->w_first_new_cpos =
1863                 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1864
1865         return ret;
1866 }
1867
1868 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1869                            loff_t pos)
1870 {
1871         int ret = 0;
1872
1873         BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1874         if (pos > i_size_read(inode))
1875                 ret = ocfs2_zero_extend(inode, di_bh, pos);
1876
1877         return ret;
1878 }
1879
1880 /*
1881  * Try to flush truncate logs if we can free enough clusters from it.
1882  * As for return value, "< 0" means error, "0" no space and "1" means
1883  * we have freed enough spaces and let the caller try to allocate again.
1884  */
1885 static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
1886                                           unsigned int needed)
1887 {
1888         tid_t target;
1889         int ret = 0;
1890         unsigned int truncated_clusters;
1891
1892         mutex_lock(&osb->osb_tl_inode->i_mutex);
1893         truncated_clusters = osb->truncated_clusters;
1894         mutex_unlock(&osb->osb_tl_inode->i_mutex);
1895
1896         /*
1897          * Check whether we can succeed in allocating if we free
1898          * the truncate log.
1899          */
1900         if (truncated_clusters < needed)
1901                 goto out;
1902
1903         ret = ocfs2_flush_truncate_log(osb);
1904         if (ret) {
1905                 mlog_errno(ret);
1906                 goto out;
1907         }
1908
1909         if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
1910                 jbd2_log_wait_commit(osb->journal->j_journal, target);
1911                 ret = 1;
1912         }
1913 out:
1914         return ret;
1915 }
1916
1917 int ocfs2_write_begin_nolock(struct file *filp,
1918                              struct address_space *mapping,
1919                              loff_t pos, unsigned len, unsigned flags,
1920                              struct page **pagep, void **fsdata,
1921                              struct buffer_head *di_bh, struct page *mmap_page)
1922 {
1923         int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1924         unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1925         struct ocfs2_write_ctxt *wc;
1926         struct inode *inode = mapping->host;
1927         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1928         struct ocfs2_dinode *di;
1929         struct ocfs2_alloc_context *data_ac = NULL;
1930         struct ocfs2_alloc_context *meta_ac = NULL;
1931         handle_t *handle;
1932         struct ocfs2_extent_tree et;
1933         int try_free = 1, ret1;
1934
1935 try_again:
1936         ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1937         if (ret) {
1938                 mlog_errno(ret);
1939                 return ret;
1940         }
1941
1942         if (ocfs2_supports_inline_data(osb)) {
1943                 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1944                                                      mmap_page, wc);
1945                 if (ret == 1) {
1946                         ret = 0;
1947                         goto success;
1948                 }
1949                 if (ret < 0) {
1950                         mlog_errno(ret);
1951                         goto out;
1952                 }
1953         }
1954
1955         if (ocfs2_sparse_alloc(osb))
1956                 ret = ocfs2_zero_tail(inode, di_bh, pos);
1957         else
1958                 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
1959                                                    wc);
1960         if (ret) {
1961                 mlog_errno(ret);
1962                 goto out;
1963         }
1964
1965         ret = ocfs2_check_range_for_refcount(inode, pos, len);
1966         if (ret < 0) {
1967                 mlog_errno(ret);
1968                 goto out;
1969         } else if (ret == 1) {
1970                 clusters_need = wc->w_clen;
1971                 ret = ocfs2_refcount_cow(inode, di_bh,
1972                                          wc->w_cpos, wc->w_clen, UINT_MAX);
1973                 if (ret) {
1974                         mlog_errno(ret);
1975                         goto out;
1976                 }
1977         }
1978
1979         ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1980                                         &extents_to_split);
1981         if (ret) {
1982                 mlog_errno(ret);
1983                 goto out;
1984         }
1985         clusters_need += clusters_to_alloc;
1986
1987         di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1988
1989         trace_ocfs2_write_begin_nolock(
1990                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
1991                         (long long)i_size_read(inode),
1992                         le32_to_cpu(di->i_clusters),
1993                         pos, len, flags, mmap_page,
1994                         clusters_to_alloc, extents_to_split);
1995
1996         /*
1997          * We set w_target_from, w_target_to here so that
1998          * ocfs2_write_end() knows which range in the target page to
1999          * write out. An allocation requires that we write the entire
2000          * cluster range.
2001          */
2002         if (clusters_to_alloc || extents_to_split) {
2003                 /*
2004                  * XXX: We are stretching the limits of
2005                  * ocfs2_lock_allocators(). It greatly over-estimates
2006                  * the work to be done.
2007                  */
2008                 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
2009                                               wc->w_di_bh);
2010                 ret = ocfs2_lock_allocators(inode, &et,
2011                                             clusters_to_alloc, extents_to_split,
2012                                             &data_ac, &meta_ac);
2013                 if (ret) {
2014                         mlog_errno(ret);
2015                         goto out;
2016                 }
2017
2018                 if (data_ac)
2019                         data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
2020
2021                 credits = ocfs2_calc_extend_credits(inode->i_sb,
2022                                                     &di->id2.i_list);
2023
2024         }
2025
2026         /*
2027          * We have to zero sparse allocated clusters, unwritten extent clusters,
2028          * and non-sparse clusters we just extended.  For non-sparse writes,
2029          * we know zeros will only be needed in the first and/or last cluster.
2030          */
2031         if (clusters_to_alloc || extents_to_split ||
2032             (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
2033                             wc->w_desc[wc->w_clen - 1].c_needs_zero)))
2034                 cluster_of_pages = 1;
2035         else
2036                 cluster_of_pages = 0;
2037
2038         ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
2039
2040         handle = ocfs2_start_trans(osb, credits);
2041         if (IS_ERR(handle)) {
2042                 ret = PTR_ERR(handle);
2043                 mlog_errno(ret);
2044                 goto out;
2045         }
2046
2047         wc->w_handle = handle;
2048
2049         if (clusters_to_alloc) {
2050                 ret = dquot_alloc_space_nodirty(inode,
2051                         ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2052                 if (ret)
2053                         goto out_commit;
2054         }
2055         /*
2056          * We don't want this to fail in ocfs2_write_end(), so do it
2057          * here.
2058          */
2059         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
2060                                       OCFS2_JOURNAL_ACCESS_WRITE);
2061         if (ret) {
2062                 mlog_errno(ret);
2063                 goto out_quota;
2064         }
2065
2066         /*
2067          * Fill our page array first. That way we've grabbed enough so
2068          * that we can zero and flush if we error after adding the
2069          * extent.
2070          */
2071         ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
2072                                          cluster_of_pages, mmap_page);
2073         if (ret && ret != -EAGAIN) {
2074                 mlog_errno(ret);
2075                 goto out_quota;
2076         }
2077
2078         /*
2079          * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
2080          * the target page. In this case, we exit with no error and no target
2081          * page. This will trigger the caller, page_mkwrite(), to re-try
2082          * the operation.
2083          */
2084         if (ret == -EAGAIN) {
2085                 BUG_ON(wc->w_target_page);
2086                 ret = 0;
2087                 goto out_quota;
2088         }
2089
2090         ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
2091                                           len);
2092         if (ret) {
2093                 mlog_errno(ret);
2094                 goto out_quota;
2095         }
2096
2097         if (data_ac)
2098                 ocfs2_free_alloc_context(data_ac);
2099         if (meta_ac)
2100                 ocfs2_free_alloc_context(meta_ac);
2101
2102 success:
2103         *pagep = wc->w_target_page;
2104         *fsdata = wc;
2105         return 0;
2106 out_quota:
2107         if (clusters_to_alloc)
2108                 dquot_free_space(inode,
2109                           ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2110 out_commit:
2111         ocfs2_commit_trans(osb, handle);
2112
2113 out:
2114         ocfs2_free_write_ctxt(wc);
2115
2116         if (data_ac) {
2117                 ocfs2_free_alloc_context(data_ac);
2118                 data_ac = NULL;
2119         }
2120         if (meta_ac) {
2121                 ocfs2_free_alloc_context(meta_ac);
2122                 meta_ac = NULL;
2123         }
2124
2125         if (ret == -ENOSPC && try_free) {
2126                 /*
2127                  * Try to free some truncate log so that we can have enough
2128                  * clusters to allocate.
2129                  */
2130                 try_free = 0;
2131
2132                 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
2133                 if (ret1 == 1)
2134                         goto try_again;
2135
2136                 if (ret1 < 0)
2137                         mlog_errno(ret1);
2138         }
2139
2140         return ret;
2141 }
2142
2143 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
2144                              loff_t pos, unsigned len, unsigned flags,
2145                              struct page **pagep, void **fsdata)
2146 {
2147         int ret;
2148         struct buffer_head *di_bh = NULL;
2149         struct inode *inode = mapping->host;
2150
2151         ret = ocfs2_inode_lock(inode, &di_bh, 1);
2152         if (ret) {
2153                 mlog_errno(ret);
2154                 return ret;
2155         }
2156
2157         /*
2158          * Take alloc sem here to prevent concurrent lookups. That way
2159          * the mapping, zeroing and tree manipulation within
2160          * ocfs2_write() will be safe against ->readpage(). This
2161          * should also serve to lock out allocation from a shared
2162          * writeable region.
2163          */
2164         down_write(&OCFS2_I(inode)->ip_alloc_sem);
2165
2166         ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
2167                                        fsdata, di_bh, NULL);
2168         if (ret) {
2169                 mlog_errno(ret);
2170                 goto out_fail;
2171         }
2172
2173         brelse(di_bh);
2174
2175         return 0;
2176
2177 out_fail:
2178         up_write(&OCFS2_I(inode)->ip_alloc_sem);
2179
2180         brelse(di_bh);
2181         ocfs2_inode_unlock(inode, 1);
2182
2183         return ret;
2184 }
2185
2186 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
2187                                    unsigned len, unsigned *copied,
2188                                    struct ocfs2_dinode *di,
2189                                    struct ocfs2_write_ctxt *wc)
2190 {
2191         void *kaddr;
2192
2193         if (unlikely(*copied < len)) {
2194                 if (!PageUptodate(wc->w_target_page)) {
2195                         *copied = 0;
2196                         return;
2197                 }
2198         }
2199
2200         kaddr = kmap_atomic(wc->w_target_page);
2201         memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
2202         kunmap_atomic(kaddr);
2203
2204         trace_ocfs2_write_end_inline(
2205              (unsigned long long)OCFS2_I(inode)->ip_blkno,
2206              (unsigned long long)pos, *copied,
2207              le16_to_cpu(di->id2.i_data.id_count),
2208              le16_to_cpu(di->i_dyn_features));
2209 }
2210
2211 int ocfs2_write_end_nolock(struct address_space *mapping,
2212                            loff_t pos, unsigned len, unsigned copied,
2213                            struct page *page, void *fsdata)
2214 {
2215         int i;
2216         unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
2217         struct inode *inode = mapping->host;
2218         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2219         struct ocfs2_write_ctxt *wc = fsdata;
2220         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2221         handle_t *handle = wc->w_handle;
2222         struct page *tmppage;
2223
2224         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2225                 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2226                 goto out_write_size;
2227         }
2228
2229         if (unlikely(copied < len)) {
2230                 if (!PageUptodate(wc->w_target_page))
2231                         copied = 0;
2232
2233                 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2234                                        start+len);
2235         }
2236         flush_dcache_page(wc->w_target_page);
2237
2238         for(i = 0; i < wc->w_num_pages; i++) {
2239                 tmppage = wc->w_pages[i];
2240
2241                 if (tmppage == wc->w_target_page) {
2242                         from = wc->w_target_from;
2243                         to = wc->w_target_to;
2244
2245                         BUG_ON(from > PAGE_CACHE_SIZE ||
2246                                to > PAGE_CACHE_SIZE ||
2247                                to < from);
2248                 } else {
2249                         /*
2250                          * Pages adjacent to the target (if any) imply
2251                          * a hole-filling write in which case we want
2252                          * to flush their entire range.
2253                          */
2254                         from = 0;
2255                         to = PAGE_CACHE_SIZE;
2256                 }
2257
2258                 if (page_has_buffers(tmppage)) {
2259                         if (ocfs2_should_order_data(inode))
2260                                 ocfs2_jbd2_file_inode(wc->w_handle, inode);
2261                         block_commit_write(tmppage, from, to);
2262                 }
2263         }
2264
2265 out_write_size:
2266         pos += copied;
2267         if (pos > i_size_read(inode)) {
2268                 i_size_write(inode, pos);
2269                 mark_inode_dirty(inode);
2270         }
2271         inode->i_blocks = ocfs2_inode_sector_count(inode);
2272         di->i_size = cpu_to_le64((u64)i_size_read(inode));
2273         inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2274         di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2275         di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2276         ocfs2_update_inode_fsync_trans(handle, inode, 1);
2277         ocfs2_journal_dirty(handle, wc->w_di_bh);
2278
2279         /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2280          * lock, or it will cause a deadlock since journal commit threads holds
2281          * this lock and will ask for the page lock when flushing the data.
2282          * put it here to preserve the unlock order.
2283          */
2284         ocfs2_unlock_pages(wc);
2285
2286         ocfs2_commit_trans(osb, handle);
2287
2288         ocfs2_run_deallocs(osb, &wc->w_dealloc);
2289
2290         brelse(wc->w_di_bh);
2291         kfree(wc);
2292
2293         return copied;
2294 }
2295
2296 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2297                            loff_t pos, unsigned len, unsigned copied,
2298                            struct page *page, void *fsdata)
2299 {
2300         int ret;
2301         struct inode *inode = mapping->host;
2302
2303         ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2304
2305         up_write(&OCFS2_I(inode)->ip_alloc_sem);
2306         ocfs2_inode_unlock(inode, 1);
2307
2308         return ret;
2309 }
2310
2311 const struct address_space_operations ocfs2_aops = {
2312         .readpage               = ocfs2_readpage,
2313         .readpages              = ocfs2_readpages,
2314         .writepage              = ocfs2_writepage,
2315         .write_begin            = ocfs2_write_begin,
2316         .write_end              = ocfs2_write_end,
2317         .bmap                   = ocfs2_bmap,
2318         .direct_IO              = ocfs2_direct_IO,
2319         .invalidatepage         = block_invalidatepage,
2320         .releasepage            = ocfs2_releasepage,
2321         .migratepage            = buffer_migrate_page,
2322         .is_partially_uptodate  = block_is_partially_uptodate,
2323         .error_remove_page      = generic_error_remove_page,
2324 };