41c0a0a500f70351bc63b0e9cad47e930c33a2a2
[cascardo/linux.git] / fs / proc / task_mmu.c
1 #include <linux/mm.h>
2 #include <linux/vmacache.h>
3 #include <linux/hugetlb.h>
4 #include <linux/huge_mm.h>
5 #include <linux/mount.h>
6 #include <linux/seq_file.h>
7 #include <linux/highmem.h>
8 #include <linux/ptrace.h>
9 #include <linux/slab.h>
10 #include <linux/pagemap.h>
11 #include <linux/mempolicy.h>
12 #include <linux/rmap.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/mmu_notifier.h>
16
17 #include <asm/elf.h>
18 #include <asm/uaccess.h>
19 #include <asm/tlbflush.h>
20 #include "internal.h"
21
22 void task_mem(struct seq_file *m, struct mm_struct *mm)
23 {
24         unsigned long data, text, lib, swap, ptes, pmds;
25         unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
26
27         /*
28          * Note: to minimize their overhead, mm maintains hiwater_vm and
29          * hiwater_rss only when about to *lower* total_vm or rss.  Any
30          * collector of these hiwater stats must therefore get total_vm
31          * and rss too, which will usually be the higher.  Barriers? not
32          * worth the effort, such snapshots can always be inconsistent.
33          */
34         hiwater_vm = total_vm = mm->total_vm;
35         if (hiwater_vm < mm->hiwater_vm)
36                 hiwater_vm = mm->hiwater_vm;
37         hiwater_rss = total_rss = get_mm_rss(mm);
38         if (hiwater_rss < mm->hiwater_rss)
39                 hiwater_rss = mm->hiwater_rss;
40
41         data = mm->total_vm - mm->shared_vm - mm->stack_vm;
42         text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
43         lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
44         swap = get_mm_counter(mm, MM_SWAPENTS);
45         ptes = PTRS_PER_PTE * sizeof(pte_t) * atomic_long_read(&mm->nr_ptes);
46         pmds = PTRS_PER_PMD * sizeof(pmd_t) * mm_nr_pmds(mm);
47         seq_printf(m,
48                 "VmPeak:\t%8lu kB\n"
49                 "VmSize:\t%8lu kB\n"
50                 "VmLck:\t%8lu kB\n"
51                 "VmPin:\t%8lu kB\n"
52                 "VmHWM:\t%8lu kB\n"
53                 "VmRSS:\t%8lu kB\n"
54                 "VmData:\t%8lu kB\n"
55                 "VmStk:\t%8lu kB\n"
56                 "VmExe:\t%8lu kB\n"
57                 "VmLib:\t%8lu kB\n"
58                 "VmPTE:\t%8lu kB\n"
59                 "VmPMD:\t%8lu kB\n"
60                 "VmSwap:\t%8lu kB\n",
61                 hiwater_vm << (PAGE_SHIFT-10),
62                 total_vm << (PAGE_SHIFT-10),
63                 mm->locked_vm << (PAGE_SHIFT-10),
64                 mm->pinned_vm << (PAGE_SHIFT-10),
65                 hiwater_rss << (PAGE_SHIFT-10),
66                 total_rss << (PAGE_SHIFT-10),
67                 data << (PAGE_SHIFT-10),
68                 mm->stack_vm << (PAGE_SHIFT-10), text, lib,
69                 ptes >> 10,
70                 pmds >> 10,
71                 swap << (PAGE_SHIFT-10));
72 }
73
74 unsigned long task_vsize(struct mm_struct *mm)
75 {
76         return PAGE_SIZE * mm->total_vm;
77 }
78
79 unsigned long task_statm(struct mm_struct *mm,
80                          unsigned long *shared, unsigned long *text,
81                          unsigned long *data, unsigned long *resident)
82 {
83         *shared = get_mm_counter(mm, MM_FILEPAGES);
84         *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
85                                                                 >> PAGE_SHIFT;
86         *data = mm->total_vm - mm->shared_vm;
87         *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
88         return mm->total_vm;
89 }
90
91 #ifdef CONFIG_NUMA
92 /*
93  * Save get_task_policy() for show_numa_map().
94  */
95 static void hold_task_mempolicy(struct proc_maps_private *priv)
96 {
97         struct task_struct *task = priv->task;
98
99         task_lock(task);
100         priv->task_mempolicy = get_task_policy(task);
101         mpol_get(priv->task_mempolicy);
102         task_unlock(task);
103 }
104 static void release_task_mempolicy(struct proc_maps_private *priv)
105 {
106         mpol_put(priv->task_mempolicy);
107 }
108 #else
109 static void hold_task_mempolicy(struct proc_maps_private *priv)
110 {
111 }
112 static void release_task_mempolicy(struct proc_maps_private *priv)
113 {
114 }
115 #endif
116
117 static void vma_stop(struct proc_maps_private *priv)
118 {
119         struct mm_struct *mm = priv->mm;
120
121         release_task_mempolicy(priv);
122         up_read(&mm->mmap_sem);
123         mmput(mm);
124 }
125
126 static struct vm_area_struct *
127 m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
128 {
129         if (vma == priv->tail_vma)
130                 return NULL;
131         return vma->vm_next ?: priv->tail_vma;
132 }
133
134 static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
135 {
136         if (m->count < m->size) /* vma is copied successfully */
137                 m->version = m_next_vma(m->private, vma) ? vma->vm_start : -1UL;
138 }
139
140 static void *m_start(struct seq_file *m, loff_t *ppos)
141 {
142         struct proc_maps_private *priv = m->private;
143         unsigned long last_addr = m->version;
144         struct mm_struct *mm;
145         struct vm_area_struct *vma;
146         unsigned int pos = *ppos;
147
148         /* See m_cache_vma(). Zero at the start or after lseek. */
149         if (last_addr == -1UL)
150                 return NULL;
151
152         priv->task = get_proc_task(priv->inode);
153         if (!priv->task)
154                 return ERR_PTR(-ESRCH);
155
156         mm = priv->mm;
157         if (!mm || !atomic_inc_not_zero(&mm->mm_users))
158                 return NULL;
159
160         down_read(&mm->mmap_sem);
161         hold_task_mempolicy(priv);
162         priv->tail_vma = get_gate_vma(mm);
163
164         if (last_addr) {
165                 vma = find_vma(mm, last_addr);
166                 if (vma && (vma = m_next_vma(priv, vma)))
167                         return vma;
168         }
169
170         m->version = 0;
171         if (pos < mm->map_count) {
172                 for (vma = mm->mmap; pos; pos--) {
173                         m->version = vma->vm_start;
174                         vma = vma->vm_next;
175                 }
176                 return vma;
177         }
178
179         /* we do not bother to update m->version in this case */
180         if (pos == mm->map_count && priv->tail_vma)
181                 return priv->tail_vma;
182
183         vma_stop(priv);
184         return NULL;
185 }
186
187 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
188 {
189         struct proc_maps_private *priv = m->private;
190         struct vm_area_struct *next;
191
192         (*pos)++;
193         next = m_next_vma(priv, v);
194         if (!next)
195                 vma_stop(priv);
196         return next;
197 }
198
199 static void m_stop(struct seq_file *m, void *v)
200 {
201         struct proc_maps_private *priv = m->private;
202
203         if (!IS_ERR_OR_NULL(v))
204                 vma_stop(priv);
205         if (priv->task) {
206                 put_task_struct(priv->task);
207                 priv->task = NULL;
208         }
209 }
210
211 static int proc_maps_open(struct inode *inode, struct file *file,
212                         const struct seq_operations *ops, int psize)
213 {
214         struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
215
216         if (!priv)
217                 return -ENOMEM;
218
219         priv->inode = inode;
220         priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
221         if (IS_ERR(priv->mm)) {
222                 int err = PTR_ERR(priv->mm);
223
224                 seq_release_private(inode, file);
225                 return err;
226         }
227
228         return 0;
229 }
230
231 static int proc_map_release(struct inode *inode, struct file *file)
232 {
233         struct seq_file *seq = file->private_data;
234         struct proc_maps_private *priv = seq->private;
235
236         if (priv->mm)
237                 mmdrop(priv->mm);
238
239         return seq_release_private(inode, file);
240 }
241
242 static int do_maps_open(struct inode *inode, struct file *file,
243                         const struct seq_operations *ops)
244 {
245         return proc_maps_open(inode, file, ops,
246                                 sizeof(struct proc_maps_private));
247 }
248
249 static pid_t pid_of_stack(struct proc_maps_private *priv,
250                                 struct vm_area_struct *vma, bool is_pid)
251 {
252         struct inode *inode = priv->inode;
253         struct task_struct *task;
254         pid_t ret = 0;
255
256         rcu_read_lock();
257         task = pid_task(proc_pid(inode), PIDTYPE_PID);
258         if (task) {
259                 task = task_of_stack(task, vma, is_pid);
260                 if (task)
261                         ret = task_pid_nr_ns(task, inode->i_sb->s_fs_info);
262         }
263         rcu_read_unlock();
264
265         return ret;
266 }
267
268 static void
269 show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
270 {
271         struct mm_struct *mm = vma->vm_mm;
272         struct file *file = vma->vm_file;
273         struct proc_maps_private *priv = m->private;
274         vm_flags_t flags = vma->vm_flags;
275         unsigned long ino = 0;
276         unsigned long long pgoff = 0;
277         unsigned long start, end;
278         dev_t dev = 0;
279         const char *name = NULL;
280
281         if (file) {
282                 struct inode *inode = file_inode(vma->vm_file);
283                 dev = inode->i_sb->s_dev;
284                 ino = inode->i_ino;
285                 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
286         }
287
288         /* We don't show the stack guard page in /proc/maps */
289         start = vma->vm_start;
290         if (stack_guard_page_start(vma, start))
291                 start += PAGE_SIZE;
292         end = vma->vm_end;
293         if (stack_guard_page_end(vma, end))
294                 end -= PAGE_SIZE;
295
296         seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
297         seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
298                         start,
299                         end,
300                         flags & VM_READ ? 'r' : '-',
301                         flags & VM_WRITE ? 'w' : '-',
302                         flags & VM_EXEC ? 'x' : '-',
303                         flags & VM_MAYSHARE ? 's' : 'p',
304                         pgoff,
305                         MAJOR(dev), MINOR(dev), ino);
306
307         /*
308          * Print the dentry name for named mappings, and a
309          * special [heap] marker for the heap:
310          */
311         if (file) {
312                 seq_pad(m, ' ');
313                 seq_file_path(m, file, "\n");
314                 goto done;
315         }
316
317         if (vma->vm_ops && vma->vm_ops->name) {
318                 name = vma->vm_ops->name(vma);
319                 if (name)
320                         goto done;
321         }
322
323         name = arch_vma_name(vma);
324         if (!name) {
325                 pid_t tid;
326
327                 if (!mm) {
328                         name = "[vdso]";
329                         goto done;
330                 }
331
332                 if (vma->vm_start <= mm->brk &&
333                     vma->vm_end >= mm->start_brk) {
334                         name = "[heap]";
335                         goto done;
336                 }
337
338                 tid = pid_of_stack(priv, vma, is_pid);
339                 if (tid != 0) {
340                         /*
341                          * Thread stack in /proc/PID/task/TID/maps or
342                          * the main process stack.
343                          */
344                         if (!is_pid || (vma->vm_start <= mm->start_stack &&
345                             vma->vm_end >= mm->start_stack)) {
346                                 name = "[stack]";
347                         } else {
348                                 /* Thread stack in /proc/PID/maps */
349                                 seq_pad(m, ' ');
350                                 seq_printf(m, "[stack:%d]", tid);
351                         }
352                 }
353         }
354
355 done:
356         if (name) {
357                 seq_pad(m, ' ');
358                 seq_puts(m, name);
359         }
360         seq_putc(m, '\n');
361 }
362
363 static int show_map(struct seq_file *m, void *v, int is_pid)
364 {
365         show_map_vma(m, v, is_pid);
366         m_cache_vma(m, v);
367         return 0;
368 }
369
370 static int show_pid_map(struct seq_file *m, void *v)
371 {
372         return show_map(m, v, 1);
373 }
374
375 static int show_tid_map(struct seq_file *m, void *v)
376 {
377         return show_map(m, v, 0);
378 }
379
380 static const struct seq_operations proc_pid_maps_op = {
381         .start  = m_start,
382         .next   = m_next,
383         .stop   = m_stop,
384         .show   = show_pid_map
385 };
386
387 static const struct seq_operations proc_tid_maps_op = {
388         .start  = m_start,
389         .next   = m_next,
390         .stop   = m_stop,
391         .show   = show_tid_map
392 };
393
394 static int pid_maps_open(struct inode *inode, struct file *file)
395 {
396         return do_maps_open(inode, file, &proc_pid_maps_op);
397 }
398
399 static int tid_maps_open(struct inode *inode, struct file *file)
400 {
401         return do_maps_open(inode, file, &proc_tid_maps_op);
402 }
403
404 const struct file_operations proc_pid_maps_operations = {
405         .open           = pid_maps_open,
406         .read           = seq_read,
407         .llseek         = seq_lseek,
408         .release        = proc_map_release,
409 };
410
411 const struct file_operations proc_tid_maps_operations = {
412         .open           = tid_maps_open,
413         .read           = seq_read,
414         .llseek         = seq_lseek,
415         .release        = proc_map_release,
416 };
417
418 /*
419  * Proportional Set Size(PSS): my share of RSS.
420  *
421  * PSS of a process is the count of pages it has in memory, where each
422  * page is divided by the number of processes sharing it.  So if a
423  * process has 1000 pages all to itself, and 1000 shared with one other
424  * process, its PSS will be 1500.
425  *
426  * To keep (accumulated) division errors low, we adopt a 64bit
427  * fixed-point pss counter to minimize division errors. So (pss >>
428  * PSS_SHIFT) would be the real byte count.
429  *
430  * A shift of 12 before division means (assuming 4K page size):
431  *      - 1M 3-user-pages add up to 8KB errors;
432  *      - supports mapcount up to 2^24, or 16M;
433  *      - supports PSS up to 2^52 bytes, or 4PB.
434  */
435 #define PSS_SHIFT 12
436
437 #ifdef CONFIG_PROC_PAGE_MONITOR
438 struct mem_size_stats {
439         unsigned long resident;
440         unsigned long shared_clean;
441         unsigned long shared_dirty;
442         unsigned long private_clean;
443         unsigned long private_dirty;
444         unsigned long referenced;
445         unsigned long anonymous;
446         unsigned long anonymous_thp;
447         unsigned long swap;
448         u64 pss;
449 };
450
451 static void smaps_account(struct mem_size_stats *mss, struct page *page,
452                 unsigned long size, bool young, bool dirty)
453 {
454         int mapcount;
455
456         if (PageAnon(page))
457                 mss->anonymous += size;
458
459         mss->resident += size;
460         /* Accumulate the size in pages that have been accessed. */
461         if (young || PageReferenced(page))
462                 mss->referenced += size;
463         mapcount = page_mapcount(page);
464         if (mapcount >= 2) {
465                 u64 pss_delta;
466
467                 if (dirty || PageDirty(page))
468                         mss->shared_dirty += size;
469                 else
470                         mss->shared_clean += size;
471                 pss_delta = (u64)size << PSS_SHIFT;
472                 do_div(pss_delta, mapcount);
473                 mss->pss += pss_delta;
474         } else {
475                 if (dirty || PageDirty(page))
476                         mss->private_dirty += size;
477                 else
478                         mss->private_clean += size;
479                 mss->pss += (u64)size << PSS_SHIFT;
480         }
481 }
482
483 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
484                 struct mm_walk *walk)
485 {
486         struct mem_size_stats *mss = walk->private;
487         struct vm_area_struct *vma = walk->vma;
488         struct page *page = NULL;
489
490         if (pte_present(*pte)) {
491                 page = vm_normal_page(vma, addr, *pte);
492         } else if (is_swap_pte(*pte)) {
493                 swp_entry_t swpent = pte_to_swp_entry(*pte);
494
495                 if (!non_swap_entry(swpent))
496                         mss->swap += PAGE_SIZE;
497                 else if (is_migration_entry(swpent))
498                         page = migration_entry_to_page(swpent);
499         }
500
501         if (!page)
502                 return;
503         smaps_account(mss, page, PAGE_SIZE, pte_young(*pte), pte_dirty(*pte));
504 }
505
506 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
507 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
508                 struct mm_walk *walk)
509 {
510         struct mem_size_stats *mss = walk->private;
511         struct vm_area_struct *vma = walk->vma;
512         struct page *page;
513
514         /* FOLL_DUMP will return -EFAULT on huge zero page */
515         page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
516         if (IS_ERR_OR_NULL(page))
517                 return;
518         mss->anonymous_thp += HPAGE_PMD_SIZE;
519         smaps_account(mss, page, HPAGE_PMD_SIZE,
520                         pmd_young(*pmd), pmd_dirty(*pmd));
521 }
522 #else
523 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
524                 struct mm_walk *walk)
525 {
526 }
527 #endif
528
529 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
530                            struct mm_walk *walk)
531 {
532         struct vm_area_struct *vma = walk->vma;
533         pte_t *pte;
534         spinlock_t *ptl;
535
536         if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
537                 smaps_pmd_entry(pmd, addr, walk);
538                 spin_unlock(ptl);
539                 return 0;
540         }
541
542         if (pmd_trans_unstable(pmd))
543                 return 0;
544         /*
545          * The mmap_sem held all the way back in m_start() is what
546          * keeps khugepaged out of here and from collapsing things
547          * in here.
548          */
549         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
550         for (; addr != end; pte++, addr += PAGE_SIZE)
551                 smaps_pte_entry(pte, addr, walk);
552         pte_unmap_unlock(pte - 1, ptl);
553         cond_resched();
554         return 0;
555 }
556
557 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
558 {
559         /*
560          * Don't forget to update Documentation/ on changes.
561          */
562         static const char mnemonics[BITS_PER_LONG][2] = {
563                 /*
564                  * In case if we meet a flag we don't know about.
565                  */
566                 [0 ... (BITS_PER_LONG-1)] = "??",
567
568                 [ilog2(VM_READ)]        = "rd",
569                 [ilog2(VM_WRITE)]       = "wr",
570                 [ilog2(VM_EXEC)]        = "ex",
571                 [ilog2(VM_SHARED)]      = "sh",
572                 [ilog2(VM_MAYREAD)]     = "mr",
573                 [ilog2(VM_MAYWRITE)]    = "mw",
574                 [ilog2(VM_MAYEXEC)]     = "me",
575                 [ilog2(VM_MAYSHARE)]    = "ms",
576                 [ilog2(VM_GROWSDOWN)]   = "gd",
577                 [ilog2(VM_PFNMAP)]      = "pf",
578                 [ilog2(VM_DENYWRITE)]   = "dw",
579 #ifdef CONFIG_X86_INTEL_MPX
580                 [ilog2(VM_MPX)]         = "mp",
581 #endif
582                 [ilog2(VM_LOCKED)]      = "lo",
583                 [ilog2(VM_IO)]          = "io",
584                 [ilog2(VM_SEQ_READ)]    = "sr",
585                 [ilog2(VM_RAND_READ)]   = "rr",
586                 [ilog2(VM_DONTCOPY)]    = "dc",
587                 [ilog2(VM_DONTEXPAND)]  = "de",
588                 [ilog2(VM_ACCOUNT)]     = "ac",
589                 [ilog2(VM_NORESERVE)]   = "nr",
590                 [ilog2(VM_HUGETLB)]     = "ht",
591                 [ilog2(VM_ARCH_1)]      = "ar",
592                 [ilog2(VM_DONTDUMP)]    = "dd",
593 #ifdef CONFIG_MEM_SOFT_DIRTY
594                 [ilog2(VM_SOFTDIRTY)]   = "sd",
595 #endif
596                 [ilog2(VM_MIXEDMAP)]    = "mm",
597                 [ilog2(VM_HUGEPAGE)]    = "hg",
598                 [ilog2(VM_NOHUGEPAGE)]  = "nh",
599                 [ilog2(VM_MERGEABLE)]   = "mg",
600                 [ilog2(VM_UFFD_MISSING)]= "um",
601                 [ilog2(VM_UFFD_WP)]     = "uw",
602         };
603         size_t i;
604
605         seq_puts(m, "VmFlags: ");
606         for (i = 0; i < BITS_PER_LONG; i++) {
607                 if (vma->vm_flags & (1UL << i)) {
608                         seq_printf(m, "%c%c ",
609                                    mnemonics[i][0], mnemonics[i][1]);
610                 }
611         }
612         seq_putc(m, '\n');
613 }
614
615 static int show_smap(struct seq_file *m, void *v, int is_pid)
616 {
617         struct vm_area_struct *vma = v;
618         struct mem_size_stats mss;
619         struct mm_walk smaps_walk = {
620                 .pmd_entry = smaps_pte_range,
621                 .mm = vma->vm_mm,
622                 .private = &mss,
623         };
624
625         memset(&mss, 0, sizeof mss);
626         /* mmap_sem is held in m_start */
627         walk_page_vma(vma, &smaps_walk);
628
629         show_map_vma(m, vma, is_pid);
630
631         seq_printf(m,
632                    "Size:           %8lu kB\n"
633                    "Rss:            %8lu kB\n"
634                    "Pss:            %8lu kB\n"
635                    "Shared_Clean:   %8lu kB\n"
636                    "Shared_Dirty:   %8lu kB\n"
637                    "Private_Clean:  %8lu kB\n"
638                    "Private_Dirty:  %8lu kB\n"
639                    "Referenced:     %8lu kB\n"
640                    "Anonymous:      %8lu kB\n"
641                    "AnonHugePages:  %8lu kB\n"
642                    "Swap:           %8lu kB\n"
643                    "KernelPageSize: %8lu kB\n"
644                    "MMUPageSize:    %8lu kB\n"
645                    "Locked:         %8lu kB\n",
646                    (vma->vm_end - vma->vm_start) >> 10,
647                    mss.resident >> 10,
648                    (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
649                    mss.shared_clean  >> 10,
650                    mss.shared_dirty  >> 10,
651                    mss.private_clean >> 10,
652                    mss.private_dirty >> 10,
653                    mss.referenced >> 10,
654                    mss.anonymous >> 10,
655                    mss.anonymous_thp >> 10,
656                    mss.swap >> 10,
657                    vma_kernel_pagesize(vma) >> 10,
658                    vma_mmu_pagesize(vma) >> 10,
659                    (vma->vm_flags & VM_LOCKED) ?
660                         (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
661
662         show_smap_vma_flags(m, vma);
663         m_cache_vma(m, vma);
664         return 0;
665 }
666
667 static int show_pid_smap(struct seq_file *m, void *v)
668 {
669         return show_smap(m, v, 1);
670 }
671
672 static int show_tid_smap(struct seq_file *m, void *v)
673 {
674         return show_smap(m, v, 0);
675 }
676
677 static const struct seq_operations proc_pid_smaps_op = {
678         .start  = m_start,
679         .next   = m_next,
680         .stop   = m_stop,
681         .show   = show_pid_smap
682 };
683
684 static const struct seq_operations proc_tid_smaps_op = {
685         .start  = m_start,
686         .next   = m_next,
687         .stop   = m_stop,
688         .show   = show_tid_smap
689 };
690
691 static int pid_smaps_open(struct inode *inode, struct file *file)
692 {
693         return do_maps_open(inode, file, &proc_pid_smaps_op);
694 }
695
696 static int tid_smaps_open(struct inode *inode, struct file *file)
697 {
698         return do_maps_open(inode, file, &proc_tid_smaps_op);
699 }
700
701 const struct file_operations proc_pid_smaps_operations = {
702         .open           = pid_smaps_open,
703         .read           = seq_read,
704         .llseek         = seq_lseek,
705         .release        = proc_map_release,
706 };
707
708 const struct file_operations proc_tid_smaps_operations = {
709         .open           = tid_smaps_open,
710         .read           = seq_read,
711         .llseek         = seq_lseek,
712         .release        = proc_map_release,
713 };
714
715 enum clear_refs_types {
716         CLEAR_REFS_ALL = 1,
717         CLEAR_REFS_ANON,
718         CLEAR_REFS_MAPPED,
719         CLEAR_REFS_SOFT_DIRTY,
720         CLEAR_REFS_MM_HIWATER_RSS,
721         CLEAR_REFS_LAST,
722 };
723
724 struct clear_refs_private {
725         enum clear_refs_types type;
726 };
727
728 #ifdef CONFIG_MEM_SOFT_DIRTY
729 static inline void clear_soft_dirty(struct vm_area_struct *vma,
730                 unsigned long addr, pte_t *pte)
731 {
732         /*
733          * The soft-dirty tracker uses #PF-s to catch writes
734          * to pages, so write-protect the pte as well. See the
735          * Documentation/vm/soft-dirty.txt for full description
736          * of how soft-dirty works.
737          */
738         pte_t ptent = *pte;
739
740         if (pte_present(ptent)) {
741                 ptent = pte_wrprotect(ptent);
742                 ptent = pte_clear_flags(ptent, _PAGE_SOFT_DIRTY);
743         } else if (is_swap_pte(ptent)) {
744                 ptent = pte_swp_clear_soft_dirty(ptent);
745         }
746
747         set_pte_at(vma->vm_mm, addr, pte, ptent);
748 }
749
750 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
751                 unsigned long addr, pmd_t *pmdp)
752 {
753         pmd_t pmd = *pmdp;
754
755         pmd = pmd_wrprotect(pmd);
756         pmd = pmd_clear_flags(pmd, _PAGE_SOFT_DIRTY);
757
758         if (vma->vm_flags & VM_SOFTDIRTY)
759                 vma->vm_flags &= ~VM_SOFTDIRTY;
760
761         set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
762 }
763
764 #else
765
766 static inline void clear_soft_dirty(struct vm_area_struct *vma,
767                 unsigned long addr, pte_t *pte)
768 {
769 }
770
771 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
772                 unsigned long addr, pmd_t *pmdp)
773 {
774 }
775 #endif
776
777 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
778                                 unsigned long end, struct mm_walk *walk)
779 {
780         struct clear_refs_private *cp = walk->private;
781         struct vm_area_struct *vma = walk->vma;
782         pte_t *pte, ptent;
783         spinlock_t *ptl;
784         struct page *page;
785
786         if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
787                 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
788                         clear_soft_dirty_pmd(vma, addr, pmd);
789                         goto out;
790                 }
791
792                 page = pmd_page(*pmd);
793
794                 /* Clear accessed and referenced bits. */
795                 pmdp_test_and_clear_young(vma, addr, pmd);
796                 ClearPageReferenced(page);
797 out:
798                 spin_unlock(ptl);
799                 return 0;
800         }
801
802         if (pmd_trans_unstable(pmd))
803                 return 0;
804
805         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
806         for (; addr != end; pte++, addr += PAGE_SIZE) {
807                 ptent = *pte;
808
809                 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
810                         clear_soft_dirty(vma, addr, pte);
811                         continue;
812                 }
813
814                 if (!pte_present(ptent))
815                         continue;
816
817                 page = vm_normal_page(vma, addr, ptent);
818                 if (!page)
819                         continue;
820
821                 /* Clear accessed and referenced bits. */
822                 ptep_test_and_clear_young(vma, addr, pte);
823                 ClearPageReferenced(page);
824         }
825         pte_unmap_unlock(pte - 1, ptl);
826         cond_resched();
827         return 0;
828 }
829
830 static int clear_refs_test_walk(unsigned long start, unsigned long end,
831                                 struct mm_walk *walk)
832 {
833         struct clear_refs_private *cp = walk->private;
834         struct vm_area_struct *vma = walk->vma;
835
836         if (vma->vm_flags & VM_PFNMAP)
837                 return 1;
838
839         /*
840          * Writing 1 to /proc/pid/clear_refs affects all pages.
841          * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
842          * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
843          * Writing 4 to /proc/pid/clear_refs affects all pages.
844          */
845         if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
846                 return 1;
847         if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
848                 return 1;
849         return 0;
850 }
851
852 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
853                                 size_t count, loff_t *ppos)
854 {
855         struct task_struct *task;
856         char buffer[PROC_NUMBUF];
857         struct mm_struct *mm;
858         struct vm_area_struct *vma;
859         enum clear_refs_types type;
860         int itype;
861         int rv;
862
863         memset(buffer, 0, sizeof(buffer));
864         if (count > sizeof(buffer) - 1)
865                 count = sizeof(buffer) - 1;
866         if (copy_from_user(buffer, buf, count))
867                 return -EFAULT;
868         rv = kstrtoint(strstrip(buffer), 10, &itype);
869         if (rv < 0)
870                 return rv;
871         type = (enum clear_refs_types)itype;
872         if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
873                 return -EINVAL;
874
875         task = get_proc_task(file_inode(file));
876         if (!task)
877                 return -ESRCH;
878         mm = get_task_mm(task);
879         if (mm) {
880                 struct clear_refs_private cp = {
881                         .type = type,
882                 };
883                 struct mm_walk clear_refs_walk = {
884                         .pmd_entry = clear_refs_pte_range,
885                         .test_walk = clear_refs_test_walk,
886                         .mm = mm,
887                         .private = &cp,
888                 };
889
890                 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
891                         /*
892                          * Writing 5 to /proc/pid/clear_refs resets the peak
893                          * resident set size to this mm's current rss value.
894                          */
895                         down_write(&mm->mmap_sem);
896                         reset_mm_hiwater_rss(mm);
897                         up_write(&mm->mmap_sem);
898                         goto out_mm;
899                 }
900
901                 down_read(&mm->mmap_sem);
902                 if (type == CLEAR_REFS_SOFT_DIRTY) {
903                         for (vma = mm->mmap; vma; vma = vma->vm_next) {
904                                 if (!(vma->vm_flags & VM_SOFTDIRTY))
905                                         continue;
906                                 up_read(&mm->mmap_sem);
907                                 down_write(&mm->mmap_sem);
908                                 for (vma = mm->mmap; vma; vma = vma->vm_next) {
909                                         vma->vm_flags &= ~VM_SOFTDIRTY;
910                                         vma_set_page_prot(vma);
911                                 }
912                                 downgrade_write(&mm->mmap_sem);
913                                 break;
914                         }
915                         mmu_notifier_invalidate_range_start(mm, 0, -1);
916                 }
917                 walk_page_range(0, ~0UL, &clear_refs_walk);
918                 if (type == CLEAR_REFS_SOFT_DIRTY)
919                         mmu_notifier_invalidate_range_end(mm, 0, -1);
920                 flush_tlb_mm(mm);
921                 up_read(&mm->mmap_sem);
922 out_mm:
923                 mmput(mm);
924         }
925         put_task_struct(task);
926
927         return count;
928 }
929
930 const struct file_operations proc_clear_refs_operations = {
931         .write          = clear_refs_write,
932         .llseek         = noop_llseek,
933 };
934
935 typedef struct {
936         u64 pme;
937 } pagemap_entry_t;
938
939 struct pagemapread {
940         int pos, len;           /* units: PM_ENTRY_BYTES, not bytes */
941         pagemap_entry_t *buffer;
942 };
943
944 #define PAGEMAP_WALK_SIZE       (PMD_SIZE)
945 #define PAGEMAP_WALK_MASK       (PMD_MASK)
946
947 #define PM_ENTRY_BYTES          sizeof(pagemap_entry_t)
948 #define PM_PFRAME_BITS          55
949 #define PM_PFRAME_MASK          GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
950 #define PM_SOFT_DIRTY           BIT_ULL(55)
951 #define PM_FILE                 BIT_ULL(61)
952 #define PM_SWAP                 BIT_ULL(62)
953 #define PM_PRESENT              BIT_ULL(63)
954
955 #define PM_END_OF_BUFFER    1
956
957 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
958 {
959         return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
960 }
961
962 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
963                           struct pagemapread *pm)
964 {
965         pm->buffer[pm->pos++] = *pme;
966         if (pm->pos >= pm->len)
967                 return PM_END_OF_BUFFER;
968         return 0;
969 }
970
971 static int pagemap_pte_hole(unsigned long start, unsigned long end,
972                                 struct mm_walk *walk)
973 {
974         struct pagemapread *pm = walk->private;
975         unsigned long addr = start;
976         int err = 0;
977
978         while (addr < end) {
979                 struct vm_area_struct *vma = find_vma(walk->mm, addr);
980                 pagemap_entry_t pme = make_pme(0, 0);
981                 /* End of address space hole, which we mark as non-present. */
982                 unsigned long hole_end;
983
984                 if (vma)
985                         hole_end = min(end, vma->vm_start);
986                 else
987                         hole_end = end;
988
989                 for (; addr < hole_end; addr += PAGE_SIZE) {
990                         err = add_to_pagemap(addr, &pme, pm);
991                         if (err)
992                                 goto out;
993                 }
994
995                 if (!vma)
996                         break;
997
998                 /* Addresses in the VMA. */
999                 if (vma->vm_flags & VM_SOFTDIRTY)
1000                         pme = make_pme(0, PM_SOFT_DIRTY);
1001                 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1002                         err = add_to_pagemap(addr, &pme, pm);
1003                         if (err)
1004                                 goto out;
1005                 }
1006         }
1007 out:
1008         return err;
1009 }
1010
1011 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1012                 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1013 {
1014         u64 frame = 0, flags = 0;
1015         struct page *page = NULL;
1016
1017         if (pte_present(pte)) {
1018                 frame = pte_pfn(pte);
1019                 flags |= PM_PRESENT;
1020                 page = vm_normal_page(vma, addr, pte);
1021                 if (pte_soft_dirty(pte))
1022                         flags |= PM_SOFT_DIRTY;
1023         } else if (is_swap_pte(pte)) {
1024                 swp_entry_t entry;
1025                 if (pte_swp_soft_dirty(pte))
1026                         flags |= PM_SOFT_DIRTY;
1027                 entry = pte_to_swp_entry(pte);
1028                 frame = swp_type(entry) |
1029                         (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1030                 flags |= PM_SWAP;
1031                 if (is_migration_entry(entry))
1032                         page = migration_entry_to_page(entry);
1033         }
1034
1035         if (page && !PageAnon(page))
1036                 flags |= PM_FILE;
1037         if (vma->vm_flags & VM_SOFTDIRTY)
1038                 flags |= PM_SOFT_DIRTY;
1039
1040         return make_pme(frame, flags);
1041 }
1042
1043 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1044 static pagemap_entry_t thp_pmd_to_pagemap_entry(struct pagemapread *pm,
1045                 pmd_t pmd, int offset, u64 flags)
1046 {
1047         u64 frame = 0;
1048
1049         /*
1050          * Currently pmd for thp is always present because thp can not be
1051          * swapped-out, migrated, or HWPOISONed (split in such cases instead.)
1052          * This if-check is just to prepare for future implementation.
1053          */
1054         if (pmd_present(pmd)) {
1055                 frame = pmd_pfn(pmd) + offset;
1056                 flags |= PM_PRESENT;
1057         }
1058
1059         return make_pme(frame, flags);
1060 }
1061 #else
1062 static pagemap_entry_t thp_pmd_to_pagemap_entry(struct pagemapread *pm,
1063                 pmd_t pmd, int offset, u64 flags)
1064 {
1065         return make_pme(0, 0);
1066 }
1067 #endif
1068
1069 static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
1070                              struct mm_walk *walk)
1071 {
1072         struct vm_area_struct *vma = walk->vma;
1073         struct pagemapread *pm = walk->private;
1074         spinlock_t *ptl;
1075         pte_t *pte, *orig_pte;
1076         int err = 0;
1077
1078         if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1079                 u64 flags = 0;
1080
1081                 if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(*pmd))
1082                         flags |= PM_SOFT_DIRTY;
1083
1084                 for (; addr != end; addr += PAGE_SIZE) {
1085                         unsigned long offset;
1086                         pagemap_entry_t pme;
1087
1088                         offset = (addr & ~PAGEMAP_WALK_MASK) >>
1089                                         PAGE_SHIFT;
1090                         pme = thp_pmd_to_pagemap_entry(pm, *pmd, offset, flags);
1091                         err = add_to_pagemap(addr, &pme, pm);
1092                         if (err)
1093                                 break;
1094                 }
1095                 spin_unlock(ptl);
1096                 return err;
1097         }
1098
1099         if (pmd_trans_unstable(pmd))
1100                 return 0;
1101
1102         /*
1103          * We can assume that @vma always points to a valid one and @end never
1104          * goes beyond vma->vm_end.
1105          */
1106         orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1107         for (; addr < end; pte++, addr += PAGE_SIZE) {
1108                 pagemap_entry_t pme;
1109
1110                 pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1111                 err = add_to_pagemap(addr, &pme, pm);
1112                 if (err)
1113                         break;
1114         }
1115         pte_unmap_unlock(orig_pte, ptl);
1116
1117         cond_resched();
1118
1119         return err;
1120 }
1121
1122 #ifdef CONFIG_HUGETLB_PAGE
1123 static pagemap_entry_t huge_pte_to_pagemap_entry(struct pagemapread *pm,
1124                                         pte_t pte, int offset, u64 flags)
1125 {
1126         u64 frame = 0;
1127
1128         if (pte_present(pte)) {
1129                 frame = pte_pfn(pte) + offset;
1130                 flags |= PM_PRESENT;
1131         }
1132
1133         return make_pme(frame, flags);
1134 }
1135
1136 /* This function walks within one hugetlb entry in the single call */
1137 static int pagemap_hugetlb_range(pte_t *pte, unsigned long hmask,
1138                                  unsigned long addr, unsigned long end,
1139                                  struct mm_walk *walk)
1140 {
1141         struct pagemapread *pm = walk->private;
1142         struct vm_area_struct *vma = walk->vma;
1143         int err = 0;
1144         u64 flags = 0;
1145         pagemap_entry_t pme;
1146
1147         if (vma->vm_flags & VM_SOFTDIRTY)
1148                 flags |= PM_SOFT_DIRTY;
1149
1150         for (; addr != end; addr += PAGE_SIZE) {
1151                 int offset = (addr & ~hmask) >> PAGE_SHIFT;
1152                 pme = huge_pte_to_pagemap_entry(pm, *pte, offset, flags);
1153                 err = add_to_pagemap(addr, &pme, pm);
1154                 if (err)
1155                         return err;
1156         }
1157
1158         cond_resched();
1159
1160         return err;
1161 }
1162 #endif /* HUGETLB_PAGE */
1163
1164 /*
1165  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1166  *
1167  * For each page in the address space, this file contains one 64-bit entry
1168  * consisting of the following:
1169  *
1170  * Bits 0-54  page frame number (PFN) if present
1171  * Bits 0-4   swap type if swapped
1172  * Bits 5-54  swap offset if swapped
1173  * Bit  55    pte is soft-dirty (see Documentation/vm/soft-dirty.txt)
1174  * Bits 56-60 zero
1175  * Bit  61    page is file-page or shared-anon
1176  * Bit  62    page swapped
1177  * Bit  63    page present
1178  *
1179  * If the page is not present but in swap, then the PFN contains an
1180  * encoding of the swap file number and the page's offset into the
1181  * swap. Unmapped pages return a null PFN. This allows determining
1182  * precisely which pages are mapped (or in swap) and comparing mapped
1183  * pages between processes.
1184  *
1185  * Efficient users of this interface will use /proc/pid/maps to
1186  * determine which areas of memory are actually mapped and llseek to
1187  * skip over unmapped regions.
1188  */
1189 static ssize_t pagemap_read(struct file *file, char __user *buf,
1190                             size_t count, loff_t *ppos)
1191 {
1192         struct mm_struct *mm = file->private_data;
1193         struct pagemapread pm;
1194         struct mm_walk pagemap_walk = {};
1195         unsigned long src;
1196         unsigned long svpfn;
1197         unsigned long start_vaddr;
1198         unsigned long end_vaddr;
1199         int ret = 0, copied = 0;
1200
1201         if (!mm || !atomic_inc_not_zero(&mm->mm_users))
1202                 goto out;
1203
1204         ret = -EINVAL;
1205         /* file position must be aligned */
1206         if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1207                 goto out_mm;
1208
1209         ret = 0;
1210         if (!count)
1211                 goto out_mm;
1212
1213         pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1214         pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
1215         ret = -ENOMEM;
1216         if (!pm.buffer)
1217                 goto out_mm;
1218
1219         pagemap_walk.pmd_entry = pagemap_pte_range;
1220         pagemap_walk.pte_hole = pagemap_pte_hole;
1221 #ifdef CONFIG_HUGETLB_PAGE
1222         pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1223 #endif
1224         pagemap_walk.mm = mm;
1225         pagemap_walk.private = &pm;
1226
1227         src = *ppos;
1228         svpfn = src / PM_ENTRY_BYTES;
1229         start_vaddr = svpfn << PAGE_SHIFT;
1230         end_vaddr = mm->task_size;
1231
1232         /* watch out for wraparound */
1233         if (svpfn > mm->task_size >> PAGE_SHIFT)
1234                 start_vaddr = end_vaddr;
1235
1236         /*
1237          * The odds are that this will stop walking way
1238          * before end_vaddr, because the length of the
1239          * user buffer is tracked in "pm", and the walk
1240          * will stop when we hit the end of the buffer.
1241          */
1242         ret = 0;
1243         while (count && (start_vaddr < end_vaddr)) {
1244                 int len;
1245                 unsigned long end;
1246
1247                 pm.pos = 0;
1248                 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1249                 /* overflow ? */
1250                 if (end < start_vaddr || end > end_vaddr)
1251                         end = end_vaddr;
1252                 down_read(&mm->mmap_sem);
1253                 ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1254                 up_read(&mm->mmap_sem);
1255                 start_vaddr = end;
1256
1257                 len = min(count, PM_ENTRY_BYTES * pm.pos);
1258                 if (copy_to_user(buf, pm.buffer, len)) {
1259                         ret = -EFAULT;
1260                         goto out_free;
1261                 }
1262                 copied += len;
1263                 buf += len;
1264                 count -= len;
1265         }
1266         *ppos += copied;
1267         if (!ret || ret == PM_END_OF_BUFFER)
1268                 ret = copied;
1269
1270 out_free:
1271         kfree(pm.buffer);
1272 out_mm:
1273         mmput(mm);
1274 out:
1275         return ret;
1276 }
1277
1278 static int pagemap_open(struct inode *inode, struct file *file)
1279 {
1280         struct mm_struct *mm;
1281
1282         /* do not disclose physical addresses: attack vector */
1283         if (!capable(CAP_SYS_ADMIN))
1284                 return -EPERM;
1285
1286         mm = proc_mem_open(inode, PTRACE_MODE_READ);
1287         if (IS_ERR(mm))
1288                 return PTR_ERR(mm);
1289         file->private_data = mm;
1290         return 0;
1291 }
1292
1293 static int pagemap_release(struct inode *inode, struct file *file)
1294 {
1295         struct mm_struct *mm = file->private_data;
1296
1297         if (mm)
1298                 mmdrop(mm);
1299         return 0;
1300 }
1301
1302 const struct file_operations proc_pagemap_operations = {
1303         .llseek         = mem_lseek, /* borrow this */
1304         .read           = pagemap_read,
1305         .open           = pagemap_open,
1306         .release        = pagemap_release,
1307 };
1308 #endif /* CONFIG_PROC_PAGE_MONITOR */
1309
1310 #ifdef CONFIG_NUMA
1311
1312 struct numa_maps {
1313         unsigned long pages;
1314         unsigned long anon;
1315         unsigned long active;
1316         unsigned long writeback;
1317         unsigned long mapcount_max;
1318         unsigned long dirty;
1319         unsigned long swapcache;
1320         unsigned long node[MAX_NUMNODES];
1321 };
1322
1323 struct numa_maps_private {
1324         struct proc_maps_private proc_maps;
1325         struct numa_maps md;
1326 };
1327
1328 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1329                         unsigned long nr_pages)
1330 {
1331         int count = page_mapcount(page);
1332
1333         md->pages += nr_pages;
1334         if (pte_dirty || PageDirty(page))
1335                 md->dirty += nr_pages;
1336
1337         if (PageSwapCache(page))
1338                 md->swapcache += nr_pages;
1339
1340         if (PageActive(page) || PageUnevictable(page))
1341                 md->active += nr_pages;
1342
1343         if (PageWriteback(page))
1344                 md->writeback += nr_pages;
1345
1346         if (PageAnon(page))
1347                 md->anon += nr_pages;
1348
1349         if (count > md->mapcount_max)
1350                 md->mapcount_max = count;
1351
1352         md->node[page_to_nid(page)] += nr_pages;
1353 }
1354
1355 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1356                 unsigned long addr)
1357 {
1358         struct page *page;
1359         int nid;
1360
1361         if (!pte_present(pte))
1362                 return NULL;
1363
1364         page = vm_normal_page(vma, addr, pte);
1365         if (!page)
1366                 return NULL;
1367
1368         if (PageReserved(page))
1369                 return NULL;
1370
1371         nid = page_to_nid(page);
1372         if (!node_isset(nid, node_states[N_MEMORY]))
1373                 return NULL;
1374
1375         return page;
1376 }
1377
1378 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1379                 unsigned long end, struct mm_walk *walk)
1380 {
1381         struct numa_maps *md = walk->private;
1382         struct vm_area_struct *vma = walk->vma;
1383         spinlock_t *ptl;
1384         pte_t *orig_pte;
1385         pte_t *pte;
1386
1387         if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1388                 pte_t huge_pte = *(pte_t *)pmd;
1389                 struct page *page;
1390
1391                 page = can_gather_numa_stats(huge_pte, vma, addr);
1392                 if (page)
1393                         gather_stats(page, md, pte_dirty(huge_pte),
1394                                      HPAGE_PMD_SIZE/PAGE_SIZE);
1395                 spin_unlock(ptl);
1396                 return 0;
1397         }
1398
1399         if (pmd_trans_unstable(pmd))
1400                 return 0;
1401         orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1402         do {
1403                 struct page *page = can_gather_numa_stats(*pte, vma, addr);
1404                 if (!page)
1405                         continue;
1406                 gather_stats(page, md, pte_dirty(*pte), 1);
1407
1408         } while (pte++, addr += PAGE_SIZE, addr != end);
1409         pte_unmap_unlock(orig_pte, ptl);
1410         return 0;
1411 }
1412 #ifdef CONFIG_HUGETLB_PAGE
1413 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1414                 unsigned long addr, unsigned long end, struct mm_walk *walk)
1415 {
1416         struct numa_maps *md;
1417         struct page *page;
1418
1419         if (!pte_present(*pte))
1420                 return 0;
1421
1422         page = pte_page(*pte);
1423         if (!page)
1424                 return 0;
1425
1426         md = walk->private;
1427         gather_stats(page, md, pte_dirty(*pte), 1);
1428         return 0;
1429 }
1430
1431 #else
1432 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1433                 unsigned long addr, unsigned long end, struct mm_walk *walk)
1434 {
1435         return 0;
1436 }
1437 #endif
1438
1439 /*
1440  * Display pages allocated per node and memory policy via /proc.
1441  */
1442 static int show_numa_map(struct seq_file *m, void *v, int is_pid)
1443 {
1444         struct numa_maps_private *numa_priv = m->private;
1445         struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1446         struct vm_area_struct *vma = v;
1447         struct numa_maps *md = &numa_priv->md;
1448         struct file *file = vma->vm_file;
1449         struct mm_struct *mm = vma->vm_mm;
1450         struct mm_walk walk = {
1451                 .hugetlb_entry = gather_hugetlb_stats,
1452                 .pmd_entry = gather_pte_stats,
1453                 .private = md,
1454                 .mm = mm,
1455         };
1456         struct mempolicy *pol;
1457         char buffer[64];
1458         int nid;
1459
1460         if (!mm)
1461                 return 0;
1462
1463         /* Ensure we start with an empty set of numa_maps statistics. */
1464         memset(md, 0, sizeof(*md));
1465
1466         pol = __get_vma_policy(vma, vma->vm_start);
1467         if (pol) {
1468                 mpol_to_str(buffer, sizeof(buffer), pol);
1469                 mpol_cond_put(pol);
1470         } else {
1471                 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1472         }
1473
1474         seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1475
1476         if (file) {
1477                 seq_puts(m, " file=");
1478                 seq_file_path(m, file, "\n\t= ");
1479         } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1480                 seq_puts(m, " heap");
1481         } else {
1482                 pid_t tid = pid_of_stack(proc_priv, vma, is_pid);
1483                 if (tid != 0) {
1484                         /*
1485                          * Thread stack in /proc/PID/task/TID/maps or
1486                          * the main process stack.
1487                          */
1488                         if (!is_pid || (vma->vm_start <= mm->start_stack &&
1489                             vma->vm_end >= mm->start_stack))
1490                                 seq_puts(m, " stack");
1491                         else
1492                                 seq_printf(m, " stack:%d", tid);
1493                 }
1494         }
1495
1496         if (is_vm_hugetlb_page(vma))
1497                 seq_puts(m, " huge");
1498
1499         /* mmap_sem is held by m_start */
1500         walk_page_vma(vma, &walk);
1501
1502         if (!md->pages)
1503                 goto out;
1504
1505         if (md->anon)
1506                 seq_printf(m, " anon=%lu", md->anon);
1507
1508         if (md->dirty)
1509                 seq_printf(m, " dirty=%lu", md->dirty);
1510
1511         if (md->pages != md->anon && md->pages != md->dirty)
1512                 seq_printf(m, " mapped=%lu", md->pages);
1513
1514         if (md->mapcount_max > 1)
1515                 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1516
1517         if (md->swapcache)
1518                 seq_printf(m, " swapcache=%lu", md->swapcache);
1519
1520         if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1521                 seq_printf(m, " active=%lu", md->active);
1522
1523         if (md->writeback)
1524                 seq_printf(m, " writeback=%lu", md->writeback);
1525
1526         for_each_node_state(nid, N_MEMORY)
1527                 if (md->node[nid])
1528                         seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1529
1530         seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1531 out:
1532         seq_putc(m, '\n');
1533         m_cache_vma(m, vma);
1534         return 0;
1535 }
1536
1537 static int show_pid_numa_map(struct seq_file *m, void *v)
1538 {
1539         return show_numa_map(m, v, 1);
1540 }
1541
1542 static int show_tid_numa_map(struct seq_file *m, void *v)
1543 {
1544         return show_numa_map(m, v, 0);
1545 }
1546
1547 static const struct seq_operations proc_pid_numa_maps_op = {
1548         .start  = m_start,
1549         .next   = m_next,
1550         .stop   = m_stop,
1551         .show   = show_pid_numa_map,
1552 };
1553
1554 static const struct seq_operations proc_tid_numa_maps_op = {
1555         .start  = m_start,
1556         .next   = m_next,
1557         .stop   = m_stop,
1558         .show   = show_tid_numa_map,
1559 };
1560
1561 static int numa_maps_open(struct inode *inode, struct file *file,
1562                           const struct seq_operations *ops)
1563 {
1564         return proc_maps_open(inode, file, ops,
1565                                 sizeof(struct numa_maps_private));
1566 }
1567
1568 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1569 {
1570         return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
1571 }
1572
1573 static int tid_numa_maps_open(struct inode *inode, struct file *file)
1574 {
1575         return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
1576 }
1577
1578 const struct file_operations proc_pid_numa_maps_operations = {
1579         .open           = pid_numa_maps_open,
1580         .read           = seq_read,
1581         .llseek         = seq_lseek,
1582         .release        = proc_map_release,
1583 };
1584
1585 const struct file_operations proc_tid_numa_maps_operations = {
1586         .open           = tid_numa_maps_open,
1587         .read           = seq_read,
1588         .llseek         = seq_lseek,
1589         .release        = proc_map_release,
1590 };
1591 #endif /* CONFIG_NUMA */