drm/imx: parallel-display: add bridge support
[cascardo/linux.git] / fs / udf / super.c
1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    http://www.ecma.ch/
15  *    http://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40
41 #include "udfdecl.h"
42
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
60
61 #include "udf_sb.h"
62 #include "udf_i.h"
63
64 #include <linux/init.h>
65 #include <linux/uaccess.h>
66
67 #define VDS_POS_PRIMARY_VOL_DESC        0
68 #define VDS_POS_UNALLOC_SPACE_DESC      1
69 #define VDS_POS_LOGICAL_VOL_DESC        2
70 #define VDS_POS_PARTITION_DESC          3
71 #define VDS_POS_IMP_USE_VOL_DESC        4
72 #define VDS_POS_VOL_DESC_PTR            5
73 #define VDS_POS_TERMINATING_DESC        6
74 #define VDS_POS_LENGTH                  7
75
76 #define UDF_DEFAULT_BLOCKSIZE 2048
77
78 #define VSD_FIRST_SECTOR_OFFSET         32768
79 #define VSD_MAX_SECTOR_OFFSET           0x800000
80
81 /*
82  * Maximum number of Terminating Descriptor / Logical Volume Integrity
83  * Descriptor redirections. The chosen numbers are arbitrary - just that we
84  * hopefully don't limit any real use of rewritten inode on write-once media
85  * but avoid looping for too long on corrupted media.
86  */
87 #define UDF_MAX_TD_NESTING 64
88 #define UDF_MAX_LVID_NESTING 1000
89
90 enum { UDF_MAX_LINKS = 0xffff };
91
92 /* These are the "meat" - everything else is stuffing */
93 static int udf_fill_super(struct super_block *, void *, int);
94 static void udf_put_super(struct super_block *);
95 static int udf_sync_fs(struct super_block *, int);
96 static int udf_remount_fs(struct super_block *, int *, char *);
97 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
98 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
99                             struct kernel_lb_addr *);
100 static void udf_load_fileset(struct super_block *, struct buffer_head *,
101                              struct kernel_lb_addr *);
102 static void udf_open_lvid(struct super_block *);
103 static void udf_close_lvid(struct super_block *);
104 static unsigned int udf_count_free(struct super_block *);
105 static int udf_statfs(struct dentry *, struct kstatfs *);
106 static int udf_show_options(struct seq_file *, struct dentry *);
107
108 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
109 {
110         struct logicalVolIntegrityDesc *lvid;
111         unsigned int partnum;
112         unsigned int offset;
113
114         if (!UDF_SB(sb)->s_lvid_bh)
115                 return NULL;
116         lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
117         partnum = le32_to_cpu(lvid->numOfPartitions);
118         if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
119              offsetof(struct logicalVolIntegrityDesc, impUse)) /
120              (2 * sizeof(uint32_t)) < partnum) {
121                 udf_err(sb, "Logical volume integrity descriptor corrupted "
122                         "(numOfPartitions = %u)!\n", partnum);
123                 return NULL;
124         }
125         /* The offset is to skip freeSpaceTable and sizeTable arrays */
126         offset = partnum * 2 * sizeof(uint32_t);
127         return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
128 }
129
130 /* UDF filesystem type */
131 static struct dentry *udf_mount(struct file_system_type *fs_type,
132                       int flags, const char *dev_name, void *data)
133 {
134         return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
135 }
136
137 static struct file_system_type udf_fstype = {
138         .owner          = THIS_MODULE,
139         .name           = "udf",
140         .mount          = udf_mount,
141         .kill_sb        = kill_block_super,
142         .fs_flags       = FS_REQUIRES_DEV,
143 };
144 MODULE_ALIAS_FS("udf");
145
146 static struct kmem_cache *udf_inode_cachep;
147
148 static struct inode *udf_alloc_inode(struct super_block *sb)
149 {
150         struct udf_inode_info *ei;
151         ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
152         if (!ei)
153                 return NULL;
154
155         ei->i_unique = 0;
156         ei->i_lenExtents = 0;
157         ei->i_next_alloc_block = 0;
158         ei->i_next_alloc_goal = 0;
159         ei->i_strat4096 = 0;
160         init_rwsem(&ei->i_data_sem);
161         ei->cached_extent.lstart = -1;
162         spin_lock_init(&ei->i_extent_cache_lock);
163
164         return &ei->vfs_inode;
165 }
166
167 static void udf_i_callback(struct rcu_head *head)
168 {
169         struct inode *inode = container_of(head, struct inode, i_rcu);
170         kmem_cache_free(udf_inode_cachep, UDF_I(inode));
171 }
172
173 static void udf_destroy_inode(struct inode *inode)
174 {
175         call_rcu(&inode->i_rcu, udf_i_callback);
176 }
177
178 static void init_once(void *foo)
179 {
180         struct udf_inode_info *ei = (struct udf_inode_info *)foo;
181
182         ei->i_ext.i_data = NULL;
183         inode_init_once(&ei->vfs_inode);
184 }
185
186 static int __init init_inodecache(void)
187 {
188         udf_inode_cachep = kmem_cache_create("udf_inode_cache",
189                                              sizeof(struct udf_inode_info),
190                                              0, (SLAB_RECLAIM_ACCOUNT |
191                                                  SLAB_MEM_SPREAD |
192                                                  SLAB_ACCOUNT),
193                                              init_once);
194         if (!udf_inode_cachep)
195                 return -ENOMEM;
196         return 0;
197 }
198
199 static void destroy_inodecache(void)
200 {
201         /*
202          * Make sure all delayed rcu free inodes are flushed before we
203          * destroy cache.
204          */
205         rcu_barrier();
206         kmem_cache_destroy(udf_inode_cachep);
207 }
208
209 /* Superblock operations */
210 static const struct super_operations udf_sb_ops = {
211         .alloc_inode    = udf_alloc_inode,
212         .destroy_inode  = udf_destroy_inode,
213         .write_inode    = udf_write_inode,
214         .evict_inode    = udf_evict_inode,
215         .put_super      = udf_put_super,
216         .sync_fs        = udf_sync_fs,
217         .statfs         = udf_statfs,
218         .remount_fs     = udf_remount_fs,
219         .show_options   = udf_show_options,
220 };
221
222 struct udf_options {
223         unsigned char novrs;
224         unsigned int blocksize;
225         unsigned int session;
226         unsigned int lastblock;
227         unsigned int anchor;
228         unsigned int volume;
229         unsigned short partition;
230         unsigned int fileset;
231         unsigned int rootdir;
232         unsigned int flags;
233         umode_t umask;
234         kgid_t gid;
235         kuid_t uid;
236         umode_t fmode;
237         umode_t dmode;
238         struct nls_table *nls_map;
239 };
240
241 static int __init init_udf_fs(void)
242 {
243         int err;
244
245         err = init_inodecache();
246         if (err)
247                 goto out1;
248         err = register_filesystem(&udf_fstype);
249         if (err)
250                 goto out;
251
252         return 0;
253
254 out:
255         destroy_inodecache();
256
257 out1:
258         return err;
259 }
260
261 static void __exit exit_udf_fs(void)
262 {
263         unregister_filesystem(&udf_fstype);
264         destroy_inodecache();
265 }
266
267 module_init(init_udf_fs)
268 module_exit(exit_udf_fs)
269
270 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
271 {
272         struct udf_sb_info *sbi = UDF_SB(sb);
273
274         sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
275                                   GFP_KERNEL);
276         if (!sbi->s_partmaps) {
277                 udf_err(sb, "Unable to allocate space for %d partition maps\n",
278                         count);
279                 sbi->s_partitions = 0;
280                 return -ENOMEM;
281         }
282
283         sbi->s_partitions = count;
284         return 0;
285 }
286
287 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
288 {
289         int i;
290         int nr_groups = bitmap->s_nr_groups;
291
292         for (i = 0; i < nr_groups; i++)
293                 if (bitmap->s_block_bitmap[i])
294                         brelse(bitmap->s_block_bitmap[i]);
295
296         kvfree(bitmap);
297 }
298
299 static void udf_free_partition(struct udf_part_map *map)
300 {
301         int i;
302         struct udf_meta_data *mdata;
303
304         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
305                 iput(map->s_uspace.s_table);
306         if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
307                 iput(map->s_fspace.s_table);
308         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
309                 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
310         if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
311                 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
312         if (map->s_partition_type == UDF_SPARABLE_MAP15)
313                 for (i = 0; i < 4; i++)
314                         brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
315         else if (map->s_partition_type == UDF_METADATA_MAP25) {
316                 mdata = &map->s_type_specific.s_metadata;
317                 iput(mdata->s_metadata_fe);
318                 mdata->s_metadata_fe = NULL;
319
320                 iput(mdata->s_mirror_fe);
321                 mdata->s_mirror_fe = NULL;
322
323                 iput(mdata->s_bitmap_fe);
324                 mdata->s_bitmap_fe = NULL;
325         }
326 }
327
328 static void udf_sb_free_partitions(struct super_block *sb)
329 {
330         struct udf_sb_info *sbi = UDF_SB(sb);
331         int i;
332         if (sbi->s_partmaps == NULL)
333                 return;
334         for (i = 0; i < sbi->s_partitions; i++)
335                 udf_free_partition(&sbi->s_partmaps[i]);
336         kfree(sbi->s_partmaps);
337         sbi->s_partmaps = NULL;
338 }
339
340 static int udf_show_options(struct seq_file *seq, struct dentry *root)
341 {
342         struct super_block *sb = root->d_sb;
343         struct udf_sb_info *sbi = UDF_SB(sb);
344
345         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
346                 seq_puts(seq, ",nostrict");
347         if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
348                 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
349         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
350                 seq_puts(seq, ",unhide");
351         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
352                 seq_puts(seq, ",undelete");
353         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
354                 seq_puts(seq, ",noadinicb");
355         if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
356                 seq_puts(seq, ",shortad");
357         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
358                 seq_puts(seq, ",uid=forget");
359         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
360                 seq_puts(seq, ",uid=ignore");
361         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
362                 seq_puts(seq, ",gid=forget");
363         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
364                 seq_puts(seq, ",gid=ignore");
365         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
366                 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
367         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
368                 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
369         if (sbi->s_umask != 0)
370                 seq_printf(seq, ",umask=%ho", sbi->s_umask);
371         if (sbi->s_fmode != UDF_INVALID_MODE)
372                 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
373         if (sbi->s_dmode != UDF_INVALID_MODE)
374                 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
375         if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
376                 seq_printf(seq, ",session=%u", sbi->s_session);
377         if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
378                 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
379         if (sbi->s_anchor != 0)
380                 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
381         /*
382          * volume, partition, fileset and rootdir seem to be ignored
383          * currently
384          */
385         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
386                 seq_puts(seq, ",utf8");
387         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
388                 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
389
390         return 0;
391 }
392
393 /*
394  * udf_parse_options
395  *
396  * PURPOSE
397  *      Parse mount options.
398  *
399  * DESCRIPTION
400  *      The following mount options are supported:
401  *
402  *      gid=            Set the default group.
403  *      umask=          Set the default umask.
404  *      mode=           Set the default file permissions.
405  *      dmode=          Set the default directory permissions.
406  *      uid=            Set the default user.
407  *      bs=             Set the block size.
408  *      unhide          Show otherwise hidden files.
409  *      undelete        Show deleted files in lists.
410  *      adinicb         Embed data in the inode (default)
411  *      noadinicb       Don't embed data in the inode
412  *      shortad         Use short ad's
413  *      longad          Use long ad's (default)
414  *      nostrict        Unset strict conformance
415  *      iocharset=      Set the NLS character set
416  *
417  *      The remaining are for debugging and disaster recovery:
418  *
419  *      novrs           Skip volume sequence recognition
420  *
421  *      The following expect a offset from 0.
422  *
423  *      session=        Set the CDROM session (default= last session)
424  *      anchor=         Override standard anchor location. (default= 256)
425  *      volume=         Override the VolumeDesc location. (unused)
426  *      partition=      Override the PartitionDesc location. (unused)
427  *      lastblock=      Set the last block of the filesystem/
428  *
429  *      The following expect a offset from the partition root.
430  *
431  *      fileset=        Override the fileset block location. (unused)
432  *      rootdir=        Override the root directory location. (unused)
433  *              WARNING: overriding the rootdir to a non-directory may
434  *              yield highly unpredictable results.
435  *
436  * PRE-CONDITIONS
437  *      options         Pointer to mount options string.
438  *      uopts           Pointer to mount options variable.
439  *
440  * POST-CONDITIONS
441  *      <return>        1       Mount options parsed okay.
442  *      <return>        0       Error parsing mount options.
443  *
444  * HISTORY
445  *      July 1, 1997 - Andrew E. Mileski
446  *      Written, tested, and released.
447  */
448
449 enum {
450         Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
451         Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
452         Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
453         Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
454         Opt_rootdir, Opt_utf8, Opt_iocharset,
455         Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
456         Opt_fmode, Opt_dmode
457 };
458
459 static const match_table_t tokens = {
460         {Opt_novrs,     "novrs"},
461         {Opt_nostrict,  "nostrict"},
462         {Opt_bs,        "bs=%u"},
463         {Opt_unhide,    "unhide"},
464         {Opt_undelete,  "undelete"},
465         {Opt_noadinicb, "noadinicb"},
466         {Opt_adinicb,   "adinicb"},
467         {Opt_shortad,   "shortad"},
468         {Opt_longad,    "longad"},
469         {Opt_uforget,   "uid=forget"},
470         {Opt_uignore,   "uid=ignore"},
471         {Opt_gforget,   "gid=forget"},
472         {Opt_gignore,   "gid=ignore"},
473         {Opt_gid,       "gid=%u"},
474         {Opt_uid,       "uid=%u"},
475         {Opt_umask,     "umask=%o"},
476         {Opt_session,   "session=%u"},
477         {Opt_lastblock, "lastblock=%u"},
478         {Opt_anchor,    "anchor=%u"},
479         {Opt_volume,    "volume=%u"},
480         {Opt_partition, "partition=%u"},
481         {Opt_fileset,   "fileset=%u"},
482         {Opt_rootdir,   "rootdir=%u"},
483         {Opt_utf8,      "utf8"},
484         {Opt_iocharset, "iocharset=%s"},
485         {Opt_fmode,     "mode=%o"},
486         {Opt_dmode,     "dmode=%o"},
487         {Opt_err,       NULL}
488 };
489
490 static int udf_parse_options(char *options, struct udf_options *uopt,
491                              bool remount)
492 {
493         char *p;
494         int option;
495
496         uopt->novrs = 0;
497         uopt->partition = 0xFFFF;
498         uopt->session = 0xFFFFFFFF;
499         uopt->lastblock = 0;
500         uopt->anchor = 0;
501         uopt->volume = 0xFFFFFFFF;
502         uopt->rootdir = 0xFFFFFFFF;
503         uopt->fileset = 0xFFFFFFFF;
504         uopt->nls_map = NULL;
505
506         if (!options)
507                 return 1;
508
509         while ((p = strsep(&options, ",")) != NULL) {
510                 substring_t args[MAX_OPT_ARGS];
511                 int token;
512                 unsigned n;
513                 if (!*p)
514                         continue;
515
516                 token = match_token(p, tokens, args);
517                 switch (token) {
518                 case Opt_novrs:
519                         uopt->novrs = 1;
520                         break;
521                 case Opt_bs:
522                         if (match_int(&args[0], &option))
523                                 return 0;
524                         n = option;
525                         if (n != 512 && n != 1024 && n != 2048 && n != 4096)
526                                 return 0;
527                         uopt->blocksize = n;
528                         uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
529                         break;
530                 case Opt_unhide:
531                         uopt->flags |= (1 << UDF_FLAG_UNHIDE);
532                         break;
533                 case Opt_undelete:
534                         uopt->flags |= (1 << UDF_FLAG_UNDELETE);
535                         break;
536                 case Opt_noadinicb:
537                         uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
538                         break;
539                 case Opt_adinicb:
540                         uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
541                         break;
542                 case Opt_shortad:
543                         uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
544                         break;
545                 case Opt_longad:
546                         uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
547                         break;
548                 case Opt_gid:
549                         if (match_int(args, &option))
550                                 return 0;
551                         uopt->gid = make_kgid(current_user_ns(), option);
552                         if (!gid_valid(uopt->gid))
553                                 return 0;
554                         uopt->flags |= (1 << UDF_FLAG_GID_SET);
555                         break;
556                 case Opt_uid:
557                         if (match_int(args, &option))
558                                 return 0;
559                         uopt->uid = make_kuid(current_user_ns(), option);
560                         if (!uid_valid(uopt->uid))
561                                 return 0;
562                         uopt->flags |= (1 << UDF_FLAG_UID_SET);
563                         break;
564                 case Opt_umask:
565                         if (match_octal(args, &option))
566                                 return 0;
567                         uopt->umask = option;
568                         break;
569                 case Opt_nostrict:
570                         uopt->flags &= ~(1 << UDF_FLAG_STRICT);
571                         break;
572                 case Opt_session:
573                         if (match_int(args, &option))
574                                 return 0;
575                         uopt->session = option;
576                         if (!remount)
577                                 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
578                         break;
579                 case Opt_lastblock:
580                         if (match_int(args, &option))
581                                 return 0;
582                         uopt->lastblock = option;
583                         if (!remount)
584                                 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
585                         break;
586                 case Opt_anchor:
587                         if (match_int(args, &option))
588                                 return 0;
589                         uopt->anchor = option;
590                         break;
591                 case Opt_volume:
592                         if (match_int(args, &option))
593                                 return 0;
594                         uopt->volume = option;
595                         break;
596                 case Opt_partition:
597                         if (match_int(args, &option))
598                                 return 0;
599                         uopt->partition = option;
600                         break;
601                 case Opt_fileset:
602                         if (match_int(args, &option))
603                                 return 0;
604                         uopt->fileset = option;
605                         break;
606                 case Opt_rootdir:
607                         if (match_int(args, &option))
608                                 return 0;
609                         uopt->rootdir = option;
610                         break;
611                 case Opt_utf8:
612                         uopt->flags |= (1 << UDF_FLAG_UTF8);
613                         break;
614 #ifdef CONFIG_UDF_NLS
615                 case Opt_iocharset:
616                         uopt->nls_map = load_nls(args[0].from);
617                         uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
618                         break;
619 #endif
620                 case Opt_uignore:
621                         uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
622                         break;
623                 case Opt_uforget:
624                         uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
625                         break;
626                 case Opt_gignore:
627                         uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
628                         break;
629                 case Opt_gforget:
630                         uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
631                         break;
632                 case Opt_fmode:
633                         if (match_octal(args, &option))
634                                 return 0;
635                         uopt->fmode = option & 0777;
636                         break;
637                 case Opt_dmode:
638                         if (match_octal(args, &option))
639                                 return 0;
640                         uopt->dmode = option & 0777;
641                         break;
642                 default:
643                         pr_err("bad mount option \"%s\" or missing value\n", p);
644                         return 0;
645                 }
646         }
647         return 1;
648 }
649
650 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
651 {
652         struct udf_options uopt;
653         struct udf_sb_info *sbi = UDF_SB(sb);
654         int error = 0;
655         struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sb);
656
657         sync_filesystem(sb);
658         if (lvidiu) {
659                 int write_rev = le16_to_cpu(lvidiu->minUDFWriteRev);
660                 if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & MS_RDONLY))
661                         return -EACCES;
662         }
663
664         uopt.flags = sbi->s_flags;
665         uopt.uid   = sbi->s_uid;
666         uopt.gid   = sbi->s_gid;
667         uopt.umask = sbi->s_umask;
668         uopt.fmode = sbi->s_fmode;
669         uopt.dmode = sbi->s_dmode;
670
671         if (!udf_parse_options(options, &uopt, true))
672                 return -EINVAL;
673
674         write_lock(&sbi->s_cred_lock);
675         sbi->s_flags = uopt.flags;
676         sbi->s_uid   = uopt.uid;
677         sbi->s_gid   = uopt.gid;
678         sbi->s_umask = uopt.umask;
679         sbi->s_fmode = uopt.fmode;
680         sbi->s_dmode = uopt.dmode;
681         write_unlock(&sbi->s_cred_lock);
682
683         if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
684                 goto out_unlock;
685
686         if (*flags & MS_RDONLY)
687                 udf_close_lvid(sb);
688         else
689                 udf_open_lvid(sb);
690
691 out_unlock:
692         return error;
693 }
694
695 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
696 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
697 static loff_t udf_check_vsd(struct super_block *sb)
698 {
699         struct volStructDesc *vsd = NULL;
700         loff_t sector = VSD_FIRST_SECTOR_OFFSET;
701         int sectorsize;
702         struct buffer_head *bh = NULL;
703         int nsr02 = 0;
704         int nsr03 = 0;
705         struct udf_sb_info *sbi;
706
707         sbi = UDF_SB(sb);
708         if (sb->s_blocksize < sizeof(struct volStructDesc))
709                 sectorsize = sizeof(struct volStructDesc);
710         else
711                 sectorsize = sb->s_blocksize;
712
713         sector += (sbi->s_session << sb->s_blocksize_bits);
714
715         udf_debug("Starting at sector %u (%ld byte sectors)\n",
716                   (unsigned int)(sector >> sb->s_blocksize_bits),
717                   sb->s_blocksize);
718         /* Process the sequence (if applicable). The hard limit on the sector
719          * offset is arbitrary, hopefully large enough so that all valid UDF
720          * filesystems will be recognised. There is no mention of an upper
721          * bound to the size of the volume recognition area in the standard.
722          *  The limit will prevent the code to read all the sectors of a
723          * specially crafted image (like a bluray disc full of CD001 sectors),
724          * potentially causing minutes or even hours of uninterruptible I/O
725          * activity. This actually happened with uninitialised SSD partitions
726          * (all 0xFF) before the check for the limit and all valid IDs were
727          * added */
728         for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET;
729              sector += sectorsize) {
730                 /* Read a block */
731                 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
732                 if (!bh)
733                         break;
734
735                 /* Look for ISO  descriptors */
736                 vsd = (struct volStructDesc *)(bh->b_data +
737                                               (sector & (sb->s_blocksize - 1)));
738
739                 if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
740                                     VSD_STD_ID_LEN)) {
741                         switch (vsd->structType) {
742                         case 0:
743                                 udf_debug("ISO9660 Boot Record found\n");
744                                 break;
745                         case 1:
746                                 udf_debug("ISO9660 Primary Volume Descriptor found\n");
747                                 break;
748                         case 2:
749                                 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
750                                 break;
751                         case 3:
752                                 udf_debug("ISO9660 Volume Partition Descriptor found\n");
753                                 break;
754                         case 255:
755                                 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
756                                 break;
757                         default:
758                                 udf_debug("ISO9660 VRS (%u) found\n",
759                                           vsd->structType);
760                                 break;
761                         }
762                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
763                                     VSD_STD_ID_LEN))
764                         ; /* nothing */
765                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
766                                     VSD_STD_ID_LEN)) {
767                         brelse(bh);
768                         break;
769                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
770                                     VSD_STD_ID_LEN))
771                         nsr02 = sector;
772                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
773                                     VSD_STD_ID_LEN))
774                         nsr03 = sector;
775                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2,
776                                     VSD_STD_ID_LEN))
777                         ; /* nothing */
778                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02,
779                                     VSD_STD_ID_LEN))
780                         ; /* nothing */
781                 else {
782                         /* invalid id : end of volume recognition area */
783                         brelse(bh);
784                         break;
785                 }
786                 brelse(bh);
787         }
788
789         if (nsr03)
790                 return nsr03;
791         else if (nsr02)
792                 return nsr02;
793         else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
794                         VSD_FIRST_SECTOR_OFFSET)
795                 return -1;
796         else
797                 return 0;
798 }
799
800 static int udf_find_fileset(struct super_block *sb,
801                             struct kernel_lb_addr *fileset,
802                             struct kernel_lb_addr *root)
803 {
804         struct buffer_head *bh = NULL;
805         long lastblock;
806         uint16_t ident;
807         struct udf_sb_info *sbi;
808
809         if (fileset->logicalBlockNum != 0xFFFFFFFF ||
810             fileset->partitionReferenceNum != 0xFFFF) {
811                 bh = udf_read_ptagged(sb, fileset, 0, &ident);
812
813                 if (!bh) {
814                         return 1;
815                 } else if (ident != TAG_IDENT_FSD) {
816                         brelse(bh);
817                         return 1;
818                 }
819
820         }
821
822         sbi = UDF_SB(sb);
823         if (!bh) {
824                 /* Search backwards through the partitions */
825                 struct kernel_lb_addr newfileset;
826
827 /* --> cvg: FIXME - is it reasonable? */
828                 return 1;
829
830                 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
831                      (newfileset.partitionReferenceNum != 0xFFFF &&
832                       fileset->logicalBlockNum == 0xFFFFFFFF &&
833                       fileset->partitionReferenceNum == 0xFFFF);
834                      newfileset.partitionReferenceNum--) {
835                         lastblock = sbi->s_partmaps
836                                         [newfileset.partitionReferenceNum]
837                                                 .s_partition_len;
838                         newfileset.logicalBlockNum = 0;
839
840                         do {
841                                 bh = udf_read_ptagged(sb, &newfileset, 0,
842                                                       &ident);
843                                 if (!bh) {
844                                         newfileset.logicalBlockNum++;
845                                         continue;
846                                 }
847
848                                 switch (ident) {
849                                 case TAG_IDENT_SBD:
850                                 {
851                                         struct spaceBitmapDesc *sp;
852                                         sp = (struct spaceBitmapDesc *)
853                                                                 bh->b_data;
854                                         newfileset.logicalBlockNum += 1 +
855                                                 ((le32_to_cpu(sp->numOfBytes) +
856                                                   sizeof(struct spaceBitmapDesc)
857                                                   - 1) >> sb->s_blocksize_bits);
858                                         brelse(bh);
859                                         break;
860                                 }
861                                 case TAG_IDENT_FSD:
862                                         *fileset = newfileset;
863                                         break;
864                                 default:
865                                         newfileset.logicalBlockNum++;
866                                         brelse(bh);
867                                         bh = NULL;
868                                         break;
869                                 }
870                         } while (newfileset.logicalBlockNum < lastblock &&
871                                  fileset->logicalBlockNum == 0xFFFFFFFF &&
872                                  fileset->partitionReferenceNum == 0xFFFF);
873                 }
874         }
875
876         if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
877              fileset->partitionReferenceNum != 0xFFFF) && bh) {
878                 udf_debug("Fileset at block=%d, partition=%d\n",
879                           fileset->logicalBlockNum,
880                           fileset->partitionReferenceNum);
881
882                 sbi->s_partition = fileset->partitionReferenceNum;
883                 udf_load_fileset(sb, bh, root);
884                 brelse(bh);
885                 return 0;
886         }
887         return 1;
888 }
889
890 /*
891  * Load primary Volume Descriptor Sequence
892  *
893  * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
894  * should be tried.
895  */
896 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
897 {
898         struct primaryVolDesc *pvoldesc;
899         uint8_t *outstr;
900         struct buffer_head *bh;
901         uint16_t ident;
902         int ret = -ENOMEM;
903
904         outstr = kmalloc(128, GFP_NOFS);
905         if (!outstr)
906                 return -ENOMEM;
907
908         bh = udf_read_tagged(sb, block, block, &ident);
909         if (!bh) {
910                 ret = -EAGAIN;
911                 goto out2;
912         }
913
914         if (ident != TAG_IDENT_PVD) {
915                 ret = -EIO;
916                 goto out_bh;
917         }
918
919         pvoldesc = (struct primaryVolDesc *)bh->b_data;
920
921         if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
922                               pvoldesc->recordingDateAndTime)) {
923 #ifdef UDFFS_DEBUG
924                 struct timestamp *ts = &pvoldesc->recordingDateAndTime;
925                 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
926                           le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
927                           ts->minute, le16_to_cpu(ts->typeAndTimezone));
928 #endif
929         }
930
931         ret = udf_dstrCS0toUTF8(outstr, 31, pvoldesc->volIdent, 32);
932         if (ret < 0)
933                 goto out_bh;
934
935         strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
936         udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
937
938         ret = udf_dstrCS0toUTF8(outstr, 127, pvoldesc->volSetIdent, 128);
939         if (ret < 0)
940                 goto out_bh;
941
942         outstr[ret] = 0;
943         udf_debug("volSetIdent[] = '%s'\n", outstr);
944
945         ret = 0;
946 out_bh:
947         brelse(bh);
948 out2:
949         kfree(outstr);
950         return ret;
951 }
952
953 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
954                                         u32 meta_file_loc, u32 partition_num)
955 {
956         struct kernel_lb_addr addr;
957         struct inode *metadata_fe;
958
959         addr.logicalBlockNum = meta_file_loc;
960         addr.partitionReferenceNum = partition_num;
961
962         metadata_fe = udf_iget_special(sb, &addr);
963
964         if (IS_ERR(metadata_fe)) {
965                 udf_warn(sb, "metadata inode efe not found\n");
966                 return metadata_fe;
967         }
968         if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
969                 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
970                 iput(metadata_fe);
971                 return ERR_PTR(-EIO);
972         }
973
974         return metadata_fe;
975 }
976
977 static int udf_load_metadata_files(struct super_block *sb, int partition)
978 {
979         struct udf_sb_info *sbi = UDF_SB(sb);
980         struct udf_part_map *map;
981         struct udf_meta_data *mdata;
982         struct kernel_lb_addr addr;
983         struct inode *fe;
984
985         map = &sbi->s_partmaps[partition];
986         mdata = &map->s_type_specific.s_metadata;
987
988         /* metadata address */
989         udf_debug("Metadata file location: block = %d part = %d\n",
990                   mdata->s_meta_file_loc, map->s_partition_num);
991
992         fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
993                                          map->s_partition_num);
994         if (IS_ERR(fe)) {
995                 /* mirror file entry */
996                 udf_debug("Mirror metadata file location: block = %d part = %d\n",
997                           mdata->s_mirror_file_loc, map->s_partition_num);
998
999                 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
1000                                                  map->s_partition_num);
1001
1002                 if (IS_ERR(fe)) {
1003                         udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
1004                         return PTR_ERR(fe);
1005                 }
1006                 mdata->s_mirror_fe = fe;
1007         } else
1008                 mdata->s_metadata_fe = fe;
1009
1010
1011         /*
1012          * bitmap file entry
1013          * Note:
1014          * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
1015         */
1016         if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
1017                 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
1018                 addr.partitionReferenceNum = map->s_partition_num;
1019
1020                 udf_debug("Bitmap file location: block = %d part = %d\n",
1021                           addr.logicalBlockNum, addr.partitionReferenceNum);
1022
1023                 fe = udf_iget_special(sb, &addr);
1024                 if (IS_ERR(fe)) {
1025                         if (sb->s_flags & MS_RDONLY)
1026                                 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
1027                         else {
1028                                 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
1029                                 return PTR_ERR(fe);
1030                         }
1031                 } else
1032                         mdata->s_bitmap_fe = fe;
1033         }
1034
1035         udf_debug("udf_load_metadata_files Ok\n");
1036         return 0;
1037 }
1038
1039 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
1040                              struct kernel_lb_addr *root)
1041 {
1042         struct fileSetDesc *fset;
1043
1044         fset = (struct fileSetDesc *)bh->b_data;
1045
1046         *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
1047
1048         UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
1049
1050         udf_debug("Rootdir at block=%d, partition=%d\n",
1051                   root->logicalBlockNum, root->partitionReferenceNum);
1052 }
1053
1054 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1055 {
1056         struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1057         return DIV_ROUND_UP(map->s_partition_len +
1058                             (sizeof(struct spaceBitmapDesc) << 3),
1059                             sb->s_blocksize * 8);
1060 }
1061
1062 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1063 {
1064         struct udf_bitmap *bitmap;
1065         int nr_groups;
1066         int size;
1067
1068         nr_groups = udf_compute_nr_groups(sb, index);
1069         size = sizeof(struct udf_bitmap) +
1070                 (sizeof(struct buffer_head *) * nr_groups);
1071
1072         if (size <= PAGE_SIZE)
1073                 bitmap = kzalloc(size, GFP_KERNEL);
1074         else
1075                 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1076
1077         if (bitmap == NULL)
1078                 return NULL;
1079
1080         bitmap->s_nr_groups = nr_groups;
1081         return bitmap;
1082 }
1083
1084 static int udf_fill_partdesc_info(struct super_block *sb,
1085                 struct partitionDesc *p, int p_index)
1086 {
1087         struct udf_part_map *map;
1088         struct udf_sb_info *sbi = UDF_SB(sb);
1089         struct partitionHeaderDesc *phd;
1090
1091         map = &sbi->s_partmaps[p_index];
1092
1093         map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1094         map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1095
1096         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1097                 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1098         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1099                 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1100         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1101                 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1102         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1103                 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1104
1105         udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n",
1106                   p_index, map->s_partition_type,
1107                   map->s_partition_root, map->s_partition_len);
1108
1109         if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1110             strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1111                 return 0;
1112
1113         phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1114         if (phd->unallocSpaceTable.extLength) {
1115                 struct kernel_lb_addr loc = {
1116                         .logicalBlockNum = le32_to_cpu(
1117                                 phd->unallocSpaceTable.extPosition),
1118                         .partitionReferenceNum = p_index,
1119                 };
1120                 struct inode *inode;
1121
1122                 inode = udf_iget_special(sb, &loc);
1123                 if (IS_ERR(inode)) {
1124                         udf_debug("cannot load unallocSpaceTable (part %d)\n",
1125                                   p_index);
1126                         return PTR_ERR(inode);
1127                 }
1128                 map->s_uspace.s_table = inode;
1129                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1130                 udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1131                           p_index, map->s_uspace.s_table->i_ino);
1132         }
1133
1134         if (phd->unallocSpaceBitmap.extLength) {
1135                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1136                 if (!bitmap)
1137                         return -ENOMEM;
1138                 map->s_uspace.s_bitmap = bitmap;
1139                 bitmap->s_extPosition = le32_to_cpu(
1140                                 phd->unallocSpaceBitmap.extPosition);
1141                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1142                 udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
1143                           p_index, bitmap->s_extPosition);
1144         }
1145
1146         if (phd->partitionIntegrityTable.extLength)
1147                 udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1148
1149         if (phd->freedSpaceTable.extLength) {
1150                 struct kernel_lb_addr loc = {
1151                         .logicalBlockNum = le32_to_cpu(
1152                                 phd->freedSpaceTable.extPosition),
1153                         .partitionReferenceNum = p_index,
1154                 };
1155                 struct inode *inode;
1156
1157                 inode = udf_iget_special(sb, &loc);
1158                 if (IS_ERR(inode)) {
1159                         udf_debug("cannot load freedSpaceTable (part %d)\n",
1160                                   p_index);
1161                         return PTR_ERR(inode);
1162                 }
1163                 map->s_fspace.s_table = inode;
1164                 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1165                 udf_debug("freedSpaceTable (part %d) @ %ld\n",
1166                           p_index, map->s_fspace.s_table->i_ino);
1167         }
1168
1169         if (phd->freedSpaceBitmap.extLength) {
1170                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1171                 if (!bitmap)
1172                         return -ENOMEM;
1173                 map->s_fspace.s_bitmap = bitmap;
1174                 bitmap->s_extPosition = le32_to_cpu(
1175                                 phd->freedSpaceBitmap.extPosition);
1176                 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1177                 udf_debug("freedSpaceBitmap (part %d) @ %d\n",
1178                           p_index, bitmap->s_extPosition);
1179         }
1180         return 0;
1181 }
1182
1183 static void udf_find_vat_block(struct super_block *sb, int p_index,
1184                                int type1_index, sector_t start_block)
1185 {
1186         struct udf_sb_info *sbi = UDF_SB(sb);
1187         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1188         sector_t vat_block;
1189         struct kernel_lb_addr ino;
1190         struct inode *inode;
1191
1192         /*
1193          * VAT file entry is in the last recorded block. Some broken disks have
1194          * it a few blocks before so try a bit harder...
1195          */
1196         ino.partitionReferenceNum = type1_index;
1197         for (vat_block = start_block;
1198              vat_block >= map->s_partition_root &&
1199              vat_block >= start_block - 3; vat_block--) {
1200                 ino.logicalBlockNum = vat_block - map->s_partition_root;
1201                 inode = udf_iget_special(sb, &ino);
1202                 if (!IS_ERR(inode)) {
1203                         sbi->s_vat_inode = inode;
1204                         break;
1205                 }
1206         }
1207 }
1208
1209 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1210 {
1211         struct udf_sb_info *sbi = UDF_SB(sb);
1212         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1213         struct buffer_head *bh = NULL;
1214         struct udf_inode_info *vati;
1215         uint32_t pos;
1216         struct virtualAllocationTable20 *vat20;
1217         sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
1218
1219         udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1220         if (!sbi->s_vat_inode &&
1221             sbi->s_last_block != blocks - 1) {
1222                 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1223                           (unsigned long)sbi->s_last_block,
1224                           (unsigned long)blocks - 1);
1225                 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1226         }
1227         if (!sbi->s_vat_inode)
1228                 return -EIO;
1229
1230         if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1231                 map->s_type_specific.s_virtual.s_start_offset = 0;
1232                 map->s_type_specific.s_virtual.s_num_entries =
1233                         (sbi->s_vat_inode->i_size - 36) >> 2;
1234         } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1235                 vati = UDF_I(sbi->s_vat_inode);
1236                 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1237                         pos = udf_block_map(sbi->s_vat_inode, 0);
1238                         bh = sb_bread(sb, pos);
1239                         if (!bh)
1240                                 return -EIO;
1241                         vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1242                 } else {
1243                         vat20 = (struct virtualAllocationTable20 *)
1244                                                         vati->i_ext.i_data;
1245                 }
1246
1247                 map->s_type_specific.s_virtual.s_start_offset =
1248                         le16_to_cpu(vat20->lengthHeader);
1249                 map->s_type_specific.s_virtual.s_num_entries =
1250                         (sbi->s_vat_inode->i_size -
1251                                 map->s_type_specific.s_virtual.
1252                                         s_start_offset) >> 2;
1253                 brelse(bh);
1254         }
1255         return 0;
1256 }
1257
1258 /*
1259  * Load partition descriptor block
1260  *
1261  * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1262  * sequence.
1263  */
1264 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1265 {
1266         struct buffer_head *bh;
1267         struct partitionDesc *p;
1268         struct udf_part_map *map;
1269         struct udf_sb_info *sbi = UDF_SB(sb);
1270         int i, type1_idx;
1271         uint16_t partitionNumber;
1272         uint16_t ident;
1273         int ret;
1274
1275         bh = udf_read_tagged(sb, block, block, &ident);
1276         if (!bh)
1277                 return -EAGAIN;
1278         if (ident != TAG_IDENT_PD) {
1279                 ret = 0;
1280                 goto out_bh;
1281         }
1282
1283         p = (struct partitionDesc *)bh->b_data;
1284         partitionNumber = le16_to_cpu(p->partitionNumber);
1285
1286         /* First scan for TYPE1, SPARABLE and METADATA partitions */
1287         for (i = 0; i < sbi->s_partitions; i++) {
1288                 map = &sbi->s_partmaps[i];
1289                 udf_debug("Searching map: (%d == %d)\n",
1290                           map->s_partition_num, partitionNumber);
1291                 if (map->s_partition_num == partitionNumber &&
1292                     (map->s_partition_type == UDF_TYPE1_MAP15 ||
1293                      map->s_partition_type == UDF_SPARABLE_MAP15))
1294                         break;
1295         }
1296
1297         if (i >= sbi->s_partitions) {
1298                 udf_debug("Partition (%d) not found in partition map\n",
1299                           partitionNumber);
1300                 ret = 0;
1301                 goto out_bh;
1302         }
1303
1304         ret = udf_fill_partdesc_info(sb, p, i);
1305         if (ret < 0)
1306                 goto out_bh;
1307
1308         /*
1309          * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1310          * PHYSICAL partitions are already set up
1311          */
1312         type1_idx = i;
1313 #ifdef UDFFS_DEBUG
1314         map = NULL; /* supress 'maybe used uninitialized' warning */
1315 #endif
1316         for (i = 0; i < sbi->s_partitions; i++) {
1317                 map = &sbi->s_partmaps[i];
1318
1319                 if (map->s_partition_num == partitionNumber &&
1320                     (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1321                      map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1322                      map->s_partition_type == UDF_METADATA_MAP25))
1323                         break;
1324         }
1325
1326         if (i >= sbi->s_partitions) {
1327                 ret = 0;
1328                 goto out_bh;
1329         }
1330
1331         ret = udf_fill_partdesc_info(sb, p, i);
1332         if (ret < 0)
1333                 goto out_bh;
1334
1335         if (map->s_partition_type == UDF_METADATA_MAP25) {
1336                 ret = udf_load_metadata_files(sb, i);
1337                 if (ret < 0) {
1338                         udf_err(sb, "error loading MetaData partition map %d\n",
1339                                 i);
1340                         goto out_bh;
1341                 }
1342         } else {
1343                 /*
1344                  * If we have a partition with virtual map, we don't handle
1345                  * writing to it (we overwrite blocks instead of relocating
1346                  * them).
1347                  */
1348                 if (!(sb->s_flags & MS_RDONLY)) {
1349                         ret = -EACCES;
1350                         goto out_bh;
1351                 }
1352                 ret = udf_load_vat(sb, i, type1_idx);
1353                 if (ret < 0)
1354                         goto out_bh;
1355         }
1356         ret = 0;
1357 out_bh:
1358         /* In case loading failed, we handle cleanup in udf_fill_super */
1359         brelse(bh);
1360         return ret;
1361 }
1362
1363 static int udf_load_sparable_map(struct super_block *sb,
1364                                  struct udf_part_map *map,
1365                                  struct sparablePartitionMap *spm)
1366 {
1367         uint32_t loc;
1368         uint16_t ident;
1369         struct sparingTable *st;
1370         struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1371         int i;
1372         struct buffer_head *bh;
1373
1374         map->s_partition_type = UDF_SPARABLE_MAP15;
1375         sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1376         if (!is_power_of_2(sdata->s_packet_len)) {
1377                 udf_err(sb, "error loading logical volume descriptor: "
1378                         "Invalid packet length %u\n",
1379                         (unsigned)sdata->s_packet_len);
1380                 return -EIO;
1381         }
1382         if (spm->numSparingTables > 4) {
1383                 udf_err(sb, "error loading logical volume descriptor: "
1384                         "Too many sparing tables (%d)\n",
1385                         (int)spm->numSparingTables);
1386                 return -EIO;
1387         }
1388
1389         for (i = 0; i < spm->numSparingTables; i++) {
1390                 loc = le32_to_cpu(spm->locSparingTable[i]);
1391                 bh = udf_read_tagged(sb, loc, loc, &ident);
1392                 if (!bh)
1393                         continue;
1394
1395                 st = (struct sparingTable *)bh->b_data;
1396                 if (ident != 0 ||
1397                     strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1398                             strlen(UDF_ID_SPARING)) ||
1399                     sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1400                                                         sb->s_blocksize) {
1401                         brelse(bh);
1402                         continue;
1403                 }
1404
1405                 sdata->s_spar_map[i] = bh;
1406         }
1407         map->s_partition_func = udf_get_pblock_spar15;
1408         return 0;
1409 }
1410
1411 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1412                                struct kernel_lb_addr *fileset)
1413 {
1414         struct logicalVolDesc *lvd;
1415         int i, offset;
1416         uint8_t type;
1417         struct udf_sb_info *sbi = UDF_SB(sb);
1418         struct genericPartitionMap *gpm;
1419         uint16_t ident;
1420         struct buffer_head *bh;
1421         unsigned int table_len;
1422         int ret;
1423
1424         bh = udf_read_tagged(sb, block, block, &ident);
1425         if (!bh)
1426                 return -EAGAIN;
1427         BUG_ON(ident != TAG_IDENT_LVD);
1428         lvd = (struct logicalVolDesc *)bh->b_data;
1429         table_len = le32_to_cpu(lvd->mapTableLength);
1430         if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1431                 udf_err(sb, "error loading logical volume descriptor: "
1432                         "Partition table too long (%u > %lu)\n", table_len,
1433                         sb->s_blocksize - sizeof(*lvd));
1434                 ret = -EIO;
1435                 goto out_bh;
1436         }
1437
1438         ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1439         if (ret)
1440                 goto out_bh;
1441
1442         for (i = 0, offset = 0;
1443              i < sbi->s_partitions && offset < table_len;
1444              i++, offset += gpm->partitionMapLength) {
1445                 struct udf_part_map *map = &sbi->s_partmaps[i];
1446                 gpm = (struct genericPartitionMap *)
1447                                 &(lvd->partitionMaps[offset]);
1448                 type = gpm->partitionMapType;
1449                 if (type == 1) {
1450                         struct genericPartitionMap1 *gpm1 =
1451                                 (struct genericPartitionMap1 *)gpm;
1452                         map->s_partition_type = UDF_TYPE1_MAP15;
1453                         map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1454                         map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1455                         map->s_partition_func = NULL;
1456                 } else if (type == 2) {
1457                         struct udfPartitionMap2 *upm2 =
1458                                                 (struct udfPartitionMap2 *)gpm;
1459                         if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1460                                                 strlen(UDF_ID_VIRTUAL))) {
1461                                 u16 suf =
1462                                         le16_to_cpu(((__le16 *)upm2->partIdent.
1463                                                         identSuffix)[0]);
1464                                 if (suf < 0x0200) {
1465                                         map->s_partition_type =
1466                                                         UDF_VIRTUAL_MAP15;
1467                                         map->s_partition_func =
1468                                                         udf_get_pblock_virt15;
1469                                 } else {
1470                                         map->s_partition_type =
1471                                                         UDF_VIRTUAL_MAP20;
1472                                         map->s_partition_func =
1473                                                         udf_get_pblock_virt20;
1474                                 }
1475                         } else if (!strncmp(upm2->partIdent.ident,
1476                                                 UDF_ID_SPARABLE,
1477                                                 strlen(UDF_ID_SPARABLE))) {
1478                                 ret = udf_load_sparable_map(sb, map,
1479                                         (struct sparablePartitionMap *)gpm);
1480                                 if (ret < 0)
1481                                         goto out_bh;
1482                         } else if (!strncmp(upm2->partIdent.ident,
1483                                                 UDF_ID_METADATA,
1484                                                 strlen(UDF_ID_METADATA))) {
1485                                 struct udf_meta_data *mdata =
1486                                         &map->s_type_specific.s_metadata;
1487                                 struct metadataPartitionMap *mdm =
1488                                                 (struct metadataPartitionMap *)
1489                                                 &(lvd->partitionMaps[offset]);
1490                                 udf_debug("Parsing Logical vol part %d type %d  id=%s\n",
1491                                           i, type, UDF_ID_METADATA);
1492
1493                                 map->s_partition_type = UDF_METADATA_MAP25;
1494                                 map->s_partition_func = udf_get_pblock_meta25;
1495
1496                                 mdata->s_meta_file_loc   =
1497                                         le32_to_cpu(mdm->metadataFileLoc);
1498                                 mdata->s_mirror_file_loc =
1499                                         le32_to_cpu(mdm->metadataMirrorFileLoc);
1500                                 mdata->s_bitmap_file_loc =
1501                                         le32_to_cpu(mdm->metadataBitmapFileLoc);
1502                                 mdata->s_alloc_unit_size =
1503                                         le32_to_cpu(mdm->allocUnitSize);
1504                                 mdata->s_align_unit_size =
1505                                         le16_to_cpu(mdm->alignUnitSize);
1506                                 if (mdm->flags & 0x01)
1507                                         mdata->s_flags |= MF_DUPLICATE_MD;
1508
1509                                 udf_debug("Metadata Ident suffix=0x%x\n",
1510                                           le16_to_cpu(*(__le16 *)
1511                                                       mdm->partIdent.identSuffix));
1512                                 udf_debug("Metadata part num=%d\n",
1513                                           le16_to_cpu(mdm->partitionNum));
1514                                 udf_debug("Metadata part alloc unit size=%d\n",
1515                                           le32_to_cpu(mdm->allocUnitSize));
1516                                 udf_debug("Metadata file loc=%d\n",
1517                                           le32_to_cpu(mdm->metadataFileLoc));
1518                                 udf_debug("Mirror file loc=%d\n",
1519                                           le32_to_cpu(mdm->metadataMirrorFileLoc));
1520                                 udf_debug("Bitmap file loc=%d\n",
1521                                           le32_to_cpu(mdm->metadataBitmapFileLoc));
1522                                 udf_debug("Flags: %d %d\n",
1523                                           mdata->s_flags, mdm->flags);
1524                         } else {
1525                                 udf_debug("Unknown ident: %s\n",
1526                                           upm2->partIdent.ident);
1527                                 continue;
1528                         }
1529                         map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1530                         map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1531                 }
1532                 udf_debug("Partition (%d:%d) type %d on volume %d\n",
1533                           i, map->s_partition_num, type, map->s_volumeseqnum);
1534         }
1535
1536         if (fileset) {
1537                 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1538
1539                 *fileset = lelb_to_cpu(la->extLocation);
1540                 udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n",
1541                           fileset->logicalBlockNum,
1542                           fileset->partitionReferenceNum);
1543         }
1544         if (lvd->integritySeqExt.extLength)
1545                 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1546         ret = 0;
1547 out_bh:
1548         brelse(bh);
1549         return ret;
1550 }
1551
1552 /*
1553  * Find the prevailing Logical Volume Integrity Descriptor.
1554  */
1555 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1556 {
1557         struct buffer_head *bh, *final_bh;
1558         uint16_t ident;
1559         struct udf_sb_info *sbi = UDF_SB(sb);
1560         struct logicalVolIntegrityDesc *lvid;
1561         int indirections = 0;
1562
1563         while (++indirections <= UDF_MAX_LVID_NESTING) {
1564                 final_bh = NULL;
1565                 while (loc.extLength > 0 &&
1566                         (bh = udf_read_tagged(sb, loc.extLocation,
1567                                         loc.extLocation, &ident))) {
1568                         if (ident != TAG_IDENT_LVID) {
1569                                 brelse(bh);
1570                                 break;
1571                         }
1572
1573                         brelse(final_bh);
1574                         final_bh = bh;
1575
1576                         loc.extLength -= sb->s_blocksize;
1577                         loc.extLocation++;
1578                 }
1579
1580                 if (!final_bh)
1581                         return;
1582
1583                 brelse(sbi->s_lvid_bh);
1584                 sbi->s_lvid_bh = final_bh;
1585
1586                 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1587                 if (lvid->nextIntegrityExt.extLength == 0)
1588                         return;
1589
1590                 loc = leea_to_cpu(lvid->nextIntegrityExt);
1591         }
1592
1593         udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1594                 UDF_MAX_LVID_NESTING);
1595         brelse(sbi->s_lvid_bh);
1596         sbi->s_lvid_bh = NULL;
1597 }
1598
1599
1600 /*
1601  * Process a main/reserve volume descriptor sequence.
1602  *   @block             First block of first extent of the sequence.
1603  *   @lastblock         Lastblock of first extent of the sequence.
1604  *   @fileset           There we store extent containing root fileset
1605  *
1606  * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1607  * sequence
1608  */
1609 static noinline int udf_process_sequence(
1610                 struct super_block *sb,
1611                 sector_t block, sector_t lastblock,
1612                 struct kernel_lb_addr *fileset)
1613 {
1614         struct buffer_head *bh = NULL;
1615         struct udf_vds_record vds[VDS_POS_LENGTH];
1616         struct udf_vds_record *curr;
1617         struct generic_desc *gd;
1618         struct volDescPtr *vdp;
1619         bool done = false;
1620         uint32_t vdsn;
1621         uint16_t ident;
1622         long next_s = 0, next_e = 0;
1623         int ret;
1624         unsigned int indirections = 0;
1625
1626         memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1627
1628         /*
1629          * Read the main descriptor sequence and find which descriptors
1630          * are in it.
1631          */
1632         for (; (!done && block <= lastblock); block++) {
1633
1634                 bh = udf_read_tagged(sb, block, block, &ident);
1635                 if (!bh) {
1636                         udf_err(sb,
1637                                 "Block %llu of volume descriptor sequence is corrupted or we could not read it\n",
1638                                 (unsigned long long)block);
1639                         return -EAGAIN;
1640                 }
1641
1642                 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1643                 gd = (struct generic_desc *)bh->b_data;
1644                 vdsn = le32_to_cpu(gd->volDescSeqNum);
1645                 switch (ident) {
1646                 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1647                         curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1648                         if (vdsn >= curr->volDescSeqNum) {
1649                                 curr->volDescSeqNum = vdsn;
1650                                 curr->block = block;
1651                         }
1652                         break;
1653                 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1654                         curr = &vds[VDS_POS_VOL_DESC_PTR];
1655                         if (vdsn >= curr->volDescSeqNum) {
1656                                 curr->volDescSeqNum = vdsn;
1657                                 curr->block = block;
1658
1659                                 vdp = (struct volDescPtr *)bh->b_data;
1660                                 next_s = le32_to_cpu(
1661                                         vdp->nextVolDescSeqExt.extLocation);
1662                                 next_e = le32_to_cpu(
1663                                         vdp->nextVolDescSeqExt.extLength);
1664                                 next_e = next_e >> sb->s_blocksize_bits;
1665                                 next_e += next_s;
1666                         }
1667                         break;
1668                 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1669                         curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1670                         if (vdsn >= curr->volDescSeqNum) {
1671                                 curr->volDescSeqNum = vdsn;
1672                                 curr->block = block;
1673                         }
1674                         break;
1675                 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1676                         curr = &vds[VDS_POS_PARTITION_DESC];
1677                         if (!curr->block)
1678                                 curr->block = block;
1679                         break;
1680                 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1681                         curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1682                         if (vdsn >= curr->volDescSeqNum) {
1683                                 curr->volDescSeqNum = vdsn;
1684                                 curr->block = block;
1685                         }
1686                         break;
1687                 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1688                         curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1689                         if (vdsn >= curr->volDescSeqNum) {
1690                                 curr->volDescSeqNum = vdsn;
1691                                 curr->block = block;
1692                         }
1693                         break;
1694                 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1695                         if (++indirections > UDF_MAX_TD_NESTING) {
1696                                 udf_err(sb, "too many TDs (max %u supported)\n", UDF_MAX_TD_NESTING);
1697                                 brelse(bh);
1698                                 return -EIO;
1699                         }
1700
1701                         vds[VDS_POS_TERMINATING_DESC].block = block;
1702                         if (next_e) {
1703                                 block = next_s;
1704                                 lastblock = next_e;
1705                                 next_s = next_e = 0;
1706                         } else
1707                                 done = true;
1708                         break;
1709                 }
1710                 brelse(bh);
1711         }
1712         /*
1713          * Now read interesting descriptors again and process them
1714          * in a suitable order
1715          */
1716         if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1717                 udf_err(sb, "Primary Volume Descriptor not found!\n");
1718                 return -EAGAIN;
1719         }
1720         ret = udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block);
1721         if (ret < 0)
1722                 return ret;
1723
1724         if (vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1725                 ret = udf_load_logicalvol(sb,
1726                                           vds[VDS_POS_LOGICAL_VOL_DESC].block,
1727                                           fileset);
1728                 if (ret < 0)
1729                         return ret;
1730         }
1731
1732         if (vds[VDS_POS_PARTITION_DESC].block) {
1733                 /*
1734                  * We rescan the whole descriptor sequence to find
1735                  * partition descriptor blocks and process them.
1736                  */
1737                 for (block = vds[VDS_POS_PARTITION_DESC].block;
1738                      block < vds[VDS_POS_TERMINATING_DESC].block;
1739                      block++) {
1740                         ret = udf_load_partdesc(sb, block);
1741                         if (ret < 0)
1742                                 return ret;
1743                 }
1744         }
1745
1746         return 0;
1747 }
1748
1749 /*
1750  * Load Volume Descriptor Sequence described by anchor in bh
1751  *
1752  * Returns <0 on error, 0 on success
1753  */
1754 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1755                              struct kernel_lb_addr *fileset)
1756 {
1757         struct anchorVolDescPtr *anchor;
1758         sector_t main_s, main_e, reserve_s, reserve_e;
1759         int ret;
1760
1761         anchor = (struct anchorVolDescPtr *)bh->b_data;
1762
1763         /* Locate the main sequence */
1764         main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1765         main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1766         main_e = main_e >> sb->s_blocksize_bits;
1767         main_e += main_s;
1768
1769         /* Locate the reserve sequence */
1770         reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1771         reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1772         reserve_e = reserve_e >> sb->s_blocksize_bits;
1773         reserve_e += reserve_s;
1774
1775         /* Process the main & reserve sequences */
1776         /* responsible for finding the PartitionDesc(s) */
1777         ret = udf_process_sequence(sb, main_s, main_e, fileset);
1778         if (ret != -EAGAIN)
1779                 return ret;
1780         udf_sb_free_partitions(sb);
1781         ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1782         if (ret < 0) {
1783                 udf_sb_free_partitions(sb);
1784                 /* No sequence was OK, return -EIO */
1785                 if (ret == -EAGAIN)
1786                         ret = -EIO;
1787         }
1788         return ret;
1789 }
1790
1791 /*
1792  * Check whether there is an anchor block in the given block and
1793  * load Volume Descriptor Sequence if so.
1794  *
1795  * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1796  * block
1797  */
1798 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1799                                   struct kernel_lb_addr *fileset)
1800 {
1801         struct buffer_head *bh;
1802         uint16_t ident;
1803         int ret;
1804
1805         if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1806             udf_fixed_to_variable(block) >=
1807             sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1808                 return -EAGAIN;
1809
1810         bh = udf_read_tagged(sb, block, block, &ident);
1811         if (!bh)
1812                 return -EAGAIN;
1813         if (ident != TAG_IDENT_AVDP) {
1814                 brelse(bh);
1815                 return -EAGAIN;
1816         }
1817         ret = udf_load_sequence(sb, bh, fileset);
1818         brelse(bh);
1819         return ret;
1820 }
1821
1822 /*
1823  * Search for an anchor volume descriptor pointer.
1824  *
1825  * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1826  * of anchors.
1827  */
1828 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1829                             struct kernel_lb_addr *fileset)
1830 {
1831         sector_t last[6];
1832         int i;
1833         struct udf_sb_info *sbi = UDF_SB(sb);
1834         int last_count = 0;
1835         int ret;
1836
1837         /* First try user provided anchor */
1838         if (sbi->s_anchor) {
1839                 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1840                 if (ret != -EAGAIN)
1841                         return ret;
1842         }
1843         /*
1844          * according to spec, anchor is in either:
1845          *     block 256
1846          *     lastblock-256
1847          *     lastblock
1848          *  however, if the disc isn't closed, it could be 512.
1849          */
1850         ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1851         if (ret != -EAGAIN)
1852                 return ret;
1853         /*
1854          * The trouble is which block is the last one. Drives often misreport
1855          * this so we try various possibilities.
1856          */
1857         last[last_count++] = *lastblock;
1858         if (*lastblock >= 1)
1859                 last[last_count++] = *lastblock - 1;
1860         last[last_count++] = *lastblock + 1;
1861         if (*lastblock >= 2)
1862                 last[last_count++] = *lastblock - 2;
1863         if (*lastblock >= 150)
1864                 last[last_count++] = *lastblock - 150;
1865         if (*lastblock >= 152)
1866                 last[last_count++] = *lastblock - 152;
1867
1868         for (i = 0; i < last_count; i++) {
1869                 if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1870                                 sb->s_blocksize_bits)
1871                         continue;
1872                 ret = udf_check_anchor_block(sb, last[i], fileset);
1873                 if (ret != -EAGAIN) {
1874                         if (!ret)
1875                                 *lastblock = last[i];
1876                         return ret;
1877                 }
1878                 if (last[i] < 256)
1879                         continue;
1880                 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1881                 if (ret != -EAGAIN) {
1882                         if (!ret)
1883                                 *lastblock = last[i];
1884                         return ret;
1885                 }
1886         }
1887
1888         /* Finally try block 512 in case media is open */
1889         return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1890 }
1891
1892 /*
1893  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1894  * area specified by it. The function expects sbi->s_lastblock to be the last
1895  * block on the media.
1896  *
1897  * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1898  * was not found.
1899  */
1900 static int udf_find_anchor(struct super_block *sb,
1901                            struct kernel_lb_addr *fileset)
1902 {
1903         struct udf_sb_info *sbi = UDF_SB(sb);
1904         sector_t lastblock = sbi->s_last_block;
1905         int ret;
1906
1907         ret = udf_scan_anchors(sb, &lastblock, fileset);
1908         if (ret != -EAGAIN)
1909                 goto out;
1910
1911         /* No anchor found? Try VARCONV conversion of block numbers */
1912         UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1913         lastblock = udf_variable_to_fixed(sbi->s_last_block);
1914         /* Firstly, we try to not convert number of the last block */
1915         ret = udf_scan_anchors(sb, &lastblock, fileset);
1916         if (ret != -EAGAIN)
1917                 goto out;
1918
1919         lastblock = sbi->s_last_block;
1920         /* Secondly, we try with converted number of the last block */
1921         ret = udf_scan_anchors(sb, &lastblock, fileset);
1922         if (ret < 0) {
1923                 /* VARCONV didn't help. Clear it. */
1924                 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1925         }
1926 out:
1927         if (ret == 0)
1928                 sbi->s_last_block = lastblock;
1929         return ret;
1930 }
1931
1932 /*
1933  * Check Volume Structure Descriptor, find Anchor block and load Volume
1934  * Descriptor Sequence.
1935  *
1936  * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1937  * block was not found.
1938  */
1939 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1940                         int silent, struct kernel_lb_addr *fileset)
1941 {
1942         struct udf_sb_info *sbi = UDF_SB(sb);
1943         loff_t nsr_off;
1944         int ret;
1945
1946         if (!sb_set_blocksize(sb, uopt->blocksize)) {
1947                 if (!silent)
1948                         udf_warn(sb, "Bad block size\n");
1949                 return -EINVAL;
1950         }
1951         sbi->s_last_block = uopt->lastblock;
1952         if (!uopt->novrs) {
1953                 /* Check that it is NSR02 compliant */
1954                 nsr_off = udf_check_vsd(sb);
1955                 if (!nsr_off) {
1956                         if (!silent)
1957                                 udf_warn(sb, "No VRS found\n");
1958                         return 0;
1959                 }
1960                 if (nsr_off == -1)
1961                         udf_debug("Failed to read sector at offset %d. "
1962                                   "Assuming open disc. Skipping validity "
1963                                   "check\n", VSD_FIRST_SECTOR_OFFSET);
1964                 if (!sbi->s_last_block)
1965                         sbi->s_last_block = udf_get_last_block(sb);
1966         } else {
1967                 udf_debug("Validity check skipped because of novrs option\n");
1968         }
1969
1970         /* Look for anchor block and load Volume Descriptor Sequence */
1971         sbi->s_anchor = uopt->anchor;
1972         ret = udf_find_anchor(sb, fileset);
1973         if (ret < 0) {
1974                 if (!silent && ret == -EAGAIN)
1975                         udf_warn(sb, "No anchor found\n");
1976                 return ret;
1977         }
1978         return 0;
1979 }
1980
1981 static void udf_open_lvid(struct super_block *sb)
1982 {
1983         struct udf_sb_info *sbi = UDF_SB(sb);
1984         struct buffer_head *bh = sbi->s_lvid_bh;
1985         struct logicalVolIntegrityDesc *lvid;
1986         struct logicalVolIntegrityDescImpUse *lvidiu;
1987
1988         if (!bh)
1989                 return;
1990         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1991         lvidiu = udf_sb_lvidiu(sb);
1992         if (!lvidiu)
1993                 return;
1994
1995         mutex_lock(&sbi->s_alloc_mutex);
1996         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1997         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1998         udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
1999                                 CURRENT_TIME);
2000         lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
2001
2002         lvid->descTag.descCRC = cpu_to_le16(
2003                 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2004                         le16_to_cpu(lvid->descTag.descCRCLength)));
2005
2006         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2007         mark_buffer_dirty(bh);
2008         sbi->s_lvid_dirty = 0;
2009         mutex_unlock(&sbi->s_alloc_mutex);
2010         /* Make opening of filesystem visible on the media immediately */
2011         sync_dirty_buffer(bh);
2012 }
2013
2014 static void udf_close_lvid(struct super_block *sb)
2015 {
2016         struct udf_sb_info *sbi = UDF_SB(sb);
2017         struct buffer_head *bh = sbi->s_lvid_bh;
2018         struct logicalVolIntegrityDesc *lvid;
2019         struct logicalVolIntegrityDescImpUse *lvidiu;
2020
2021         if (!bh)
2022                 return;
2023         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2024         lvidiu = udf_sb_lvidiu(sb);
2025         if (!lvidiu)
2026                 return;
2027
2028         mutex_lock(&sbi->s_alloc_mutex);
2029         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2030         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2031         udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
2032         if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2033                 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2034         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2035                 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2036         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2037                 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2038         lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2039
2040         lvid->descTag.descCRC = cpu_to_le16(
2041                         crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2042                                 le16_to_cpu(lvid->descTag.descCRCLength)));
2043
2044         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2045         /*
2046          * We set buffer uptodate unconditionally here to avoid spurious
2047          * warnings from mark_buffer_dirty() when previous EIO has marked
2048          * the buffer as !uptodate
2049          */
2050         set_buffer_uptodate(bh);
2051         mark_buffer_dirty(bh);
2052         sbi->s_lvid_dirty = 0;
2053         mutex_unlock(&sbi->s_alloc_mutex);
2054         /* Make closing of filesystem visible on the media immediately */
2055         sync_dirty_buffer(bh);
2056 }
2057
2058 u64 lvid_get_unique_id(struct super_block *sb)
2059 {
2060         struct buffer_head *bh;
2061         struct udf_sb_info *sbi = UDF_SB(sb);
2062         struct logicalVolIntegrityDesc *lvid;
2063         struct logicalVolHeaderDesc *lvhd;
2064         u64 uniqueID;
2065         u64 ret;
2066
2067         bh = sbi->s_lvid_bh;
2068         if (!bh)
2069                 return 0;
2070
2071         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2072         lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2073
2074         mutex_lock(&sbi->s_alloc_mutex);
2075         ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2076         if (!(++uniqueID & 0xFFFFFFFF))
2077                 uniqueID += 16;
2078         lvhd->uniqueID = cpu_to_le64(uniqueID);
2079         mutex_unlock(&sbi->s_alloc_mutex);
2080         mark_buffer_dirty(bh);
2081
2082         return ret;
2083 }
2084
2085 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2086 {
2087         int ret = -EINVAL;
2088         struct inode *inode = NULL;
2089         struct udf_options uopt;
2090         struct kernel_lb_addr rootdir, fileset;
2091         struct udf_sb_info *sbi;
2092         bool lvid_open = false;
2093
2094         uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2095         uopt.uid = INVALID_UID;
2096         uopt.gid = INVALID_GID;
2097         uopt.umask = 0;
2098         uopt.fmode = UDF_INVALID_MODE;
2099         uopt.dmode = UDF_INVALID_MODE;
2100
2101         sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
2102         if (!sbi)
2103                 return -ENOMEM;
2104
2105         sb->s_fs_info = sbi;
2106
2107         mutex_init(&sbi->s_alloc_mutex);
2108
2109         if (!udf_parse_options((char *)options, &uopt, false))
2110                 goto parse_options_failure;
2111
2112         if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2113             uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2114                 udf_err(sb, "utf8 cannot be combined with iocharset\n");
2115                 goto parse_options_failure;
2116         }
2117 #ifdef CONFIG_UDF_NLS
2118         if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2119                 uopt.nls_map = load_nls_default();
2120                 if (!uopt.nls_map)
2121                         uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2122                 else
2123                         udf_debug("Using default NLS map\n");
2124         }
2125 #endif
2126         if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2127                 uopt.flags |= (1 << UDF_FLAG_UTF8);
2128
2129         fileset.logicalBlockNum = 0xFFFFFFFF;
2130         fileset.partitionReferenceNum = 0xFFFF;
2131
2132         sbi->s_flags = uopt.flags;
2133         sbi->s_uid = uopt.uid;
2134         sbi->s_gid = uopt.gid;
2135         sbi->s_umask = uopt.umask;
2136         sbi->s_fmode = uopt.fmode;
2137         sbi->s_dmode = uopt.dmode;
2138         sbi->s_nls_map = uopt.nls_map;
2139         rwlock_init(&sbi->s_cred_lock);
2140
2141         if (uopt.session == 0xFFFFFFFF)
2142                 sbi->s_session = udf_get_last_session(sb);
2143         else
2144                 sbi->s_session = uopt.session;
2145
2146         udf_debug("Multi-session=%d\n", sbi->s_session);
2147
2148         /* Fill in the rest of the superblock */
2149         sb->s_op = &udf_sb_ops;
2150         sb->s_export_op = &udf_export_ops;
2151
2152         sb->s_magic = UDF_SUPER_MAGIC;
2153         sb->s_time_gran = 1000;
2154
2155         if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2156                 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2157         } else {
2158                 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2159                 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2160                 if (ret == -EAGAIN && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
2161                         if (!silent)
2162                                 pr_notice("Rescanning with blocksize %d\n",
2163                                           UDF_DEFAULT_BLOCKSIZE);
2164                         brelse(sbi->s_lvid_bh);
2165                         sbi->s_lvid_bh = NULL;
2166                         uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
2167                         ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2168                 }
2169         }
2170         if (ret < 0) {
2171                 if (ret == -EAGAIN) {
2172                         udf_warn(sb, "No partition found (1)\n");
2173                         ret = -EINVAL;
2174                 }
2175                 goto error_out;
2176         }
2177
2178         udf_debug("Lastblock=%d\n", sbi->s_last_block);
2179
2180         if (sbi->s_lvid_bh) {
2181                 struct logicalVolIntegrityDescImpUse *lvidiu =
2182                                                         udf_sb_lvidiu(sb);
2183                 uint16_t minUDFReadRev;
2184                 uint16_t minUDFWriteRev;
2185
2186                 if (!lvidiu) {
2187                         ret = -EINVAL;
2188                         goto error_out;
2189                 }
2190                 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2191                 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2192                 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2193                         udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2194                                 minUDFReadRev,
2195                                 UDF_MAX_READ_VERSION);
2196                         ret = -EINVAL;
2197                         goto error_out;
2198                 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION &&
2199                            !(sb->s_flags & MS_RDONLY)) {
2200                         ret = -EACCES;
2201                         goto error_out;
2202                 }
2203
2204                 sbi->s_udfrev = minUDFWriteRev;
2205
2206                 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2207                         UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2208                 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2209                         UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2210         }
2211
2212         if (!sbi->s_partitions) {
2213                 udf_warn(sb, "No partition found (2)\n");
2214                 ret = -EINVAL;
2215                 goto error_out;
2216         }
2217
2218         if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2219                         UDF_PART_FLAG_READ_ONLY &&
2220             !(sb->s_flags & MS_RDONLY)) {
2221                 ret = -EACCES;
2222                 goto error_out;
2223         }
2224
2225         if (udf_find_fileset(sb, &fileset, &rootdir)) {
2226                 udf_warn(sb, "No fileset found\n");
2227                 ret = -EINVAL;
2228                 goto error_out;
2229         }
2230
2231         if (!silent) {
2232                 struct timestamp ts;
2233                 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2234                 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2235                          sbi->s_volume_ident,
2236                          le16_to_cpu(ts.year), ts.month, ts.day,
2237                          ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2238         }
2239         if (!(sb->s_flags & MS_RDONLY)) {
2240                 udf_open_lvid(sb);
2241                 lvid_open = true;
2242         }
2243
2244         /* Assign the root inode */
2245         /* assign inodes by physical block number */
2246         /* perhaps it's not extensible enough, but for now ... */
2247         inode = udf_iget(sb, &rootdir);
2248         if (IS_ERR(inode)) {
2249                 udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n",
2250                        rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2251                 ret = PTR_ERR(inode);
2252                 goto error_out;
2253         }
2254
2255         /* Allocate a dentry for the root inode */
2256         sb->s_root = d_make_root(inode);
2257         if (!sb->s_root) {
2258                 udf_err(sb, "Couldn't allocate root dentry\n");
2259                 ret = -ENOMEM;
2260                 goto error_out;
2261         }
2262         sb->s_maxbytes = MAX_LFS_FILESIZE;
2263         sb->s_max_links = UDF_MAX_LINKS;
2264         return 0;
2265
2266 error_out:
2267         iput(sbi->s_vat_inode);
2268 parse_options_failure:
2269 #ifdef CONFIG_UDF_NLS
2270         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2271                 unload_nls(sbi->s_nls_map);
2272 #endif
2273         if (lvid_open)
2274                 udf_close_lvid(sb);
2275         brelse(sbi->s_lvid_bh);
2276         udf_sb_free_partitions(sb);
2277         kfree(sbi);
2278         sb->s_fs_info = NULL;
2279
2280         return ret;
2281 }
2282
2283 void _udf_err(struct super_block *sb, const char *function,
2284               const char *fmt, ...)
2285 {
2286         struct va_format vaf;
2287         va_list args;
2288
2289         va_start(args, fmt);
2290
2291         vaf.fmt = fmt;
2292         vaf.va = &args;
2293
2294         pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2295
2296         va_end(args);
2297 }
2298
2299 void _udf_warn(struct super_block *sb, const char *function,
2300                const char *fmt, ...)
2301 {
2302         struct va_format vaf;
2303         va_list args;
2304
2305         va_start(args, fmt);
2306
2307         vaf.fmt = fmt;
2308         vaf.va = &args;
2309
2310         pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2311
2312         va_end(args);
2313 }
2314
2315 static void udf_put_super(struct super_block *sb)
2316 {
2317         struct udf_sb_info *sbi;
2318
2319         sbi = UDF_SB(sb);
2320
2321         iput(sbi->s_vat_inode);
2322 #ifdef CONFIG_UDF_NLS
2323         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2324                 unload_nls(sbi->s_nls_map);
2325 #endif
2326         if (!(sb->s_flags & MS_RDONLY))
2327                 udf_close_lvid(sb);
2328         brelse(sbi->s_lvid_bh);
2329         udf_sb_free_partitions(sb);
2330         mutex_destroy(&sbi->s_alloc_mutex);
2331         kfree(sb->s_fs_info);
2332         sb->s_fs_info = NULL;
2333 }
2334
2335 static int udf_sync_fs(struct super_block *sb, int wait)
2336 {
2337         struct udf_sb_info *sbi = UDF_SB(sb);
2338
2339         mutex_lock(&sbi->s_alloc_mutex);
2340         if (sbi->s_lvid_dirty) {
2341                 /*
2342                  * Blockdevice will be synced later so we don't have to submit
2343                  * the buffer for IO
2344                  */
2345                 mark_buffer_dirty(sbi->s_lvid_bh);
2346                 sbi->s_lvid_dirty = 0;
2347         }
2348         mutex_unlock(&sbi->s_alloc_mutex);
2349
2350         return 0;
2351 }
2352
2353 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2354 {
2355         struct super_block *sb = dentry->d_sb;
2356         struct udf_sb_info *sbi = UDF_SB(sb);
2357         struct logicalVolIntegrityDescImpUse *lvidiu;
2358         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2359
2360         lvidiu = udf_sb_lvidiu(sb);
2361         buf->f_type = UDF_SUPER_MAGIC;
2362         buf->f_bsize = sb->s_blocksize;
2363         buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2364         buf->f_bfree = udf_count_free(sb);
2365         buf->f_bavail = buf->f_bfree;
2366         buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2367                                           le32_to_cpu(lvidiu->numDirs)) : 0)
2368                         + buf->f_bfree;
2369         buf->f_ffree = buf->f_bfree;
2370         buf->f_namelen = UDF_NAME_LEN;
2371         buf->f_fsid.val[0] = (u32)id;
2372         buf->f_fsid.val[1] = (u32)(id >> 32);
2373
2374         return 0;
2375 }
2376
2377 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2378                                           struct udf_bitmap *bitmap)
2379 {
2380         struct buffer_head *bh = NULL;
2381         unsigned int accum = 0;
2382         int index;
2383         int block = 0, newblock;
2384         struct kernel_lb_addr loc;
2385         uint32_t bytes;
2386         uint8_t *ptr;
2387         uint16_t ident;
2388         struct spaceBitmapDesc *bm;
2389
2390         loc.logicalBlockNum = bitmap->s_extPosition;
2391         loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2392         bh = udf_read_ptagged(sb, &loc, 0, &ident);
2393
2394         if (!bh) {
2395                 udf_err(sb, "udf_count_free failed\n");
2396                 goto out;
2397         } else if (ident != TAG_IDENT_SBD) {
2398                 brelse(bh);
2399                 udf_err(sb, "udf_count_free failed\n");
2400                 goto out;
2401         }
2402
2403         bm = (struct spaceBitmapDesc *)bh->b_data;
2404         bytes = le32_to_cpu(bm->numOfBytes);
2405         index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2406         ptr = (uint8_t *)bh->b_data;
2407
2408         while (bytes > 0) {
2409                 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2410                 accum += bitmap_weight((const unsigned long *)(ptr + index),
2411                                         cur_bytes * 8);
2412                 bytes -= cur_bytes;
2413                 if (bytes) {
2414                         brelse(bh);
2415                         newblock = udf_get_lb_pblock(sb, &loc, ++block);
2416                         bh = udf_tread(sb, newblock);
2417                         if (!bh) {
2418                                 udf_debug("read failed\n");
2419                                 goto out;
2420                         }
2421                         index = 0;
2422                         ptr = (uint8_t *)bh->b_data;
2423                 }
2424         }
2425         brelse(bh);
2426 out:
2427         return accum;
2428 }
2429
2430 static unsigned int udf_count_free_table(struct super_block *sb,
2431                                          struct inode *table)
2432 {
2433         unsigned int accum = 0;
2434         uint32_t elen;
2435         struct kernel_lb_addr eloc;
2436         int8_t etype;
2437         struct extent_position epos;
2438
2439         mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2440         epos.block = UDF_I(table)->i_location;
2441         epos.offset = sizeof(struct unallocSpaceEntry);
2442         epos.bh = NULL;
2443
2444         while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2445                 accum += (elen >> table->i_sb->s_blocksize_bits);
2446
2447         brelse(epos.bh);
2448         mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2449
2450         return accum;
2451 }
2452
2453 static unsigned int udf_count_free(struct super_block *sb)
2454 {
2455         unsigned int accum = 0;
2456         struct udf_sb_info *sbi;
2457         struct udf_part_map *map;
2458
2459         sbi = UDF_SB(sb);
2460         if (sbi->s_lvid_bh) {
2461                 struct logicalVolIntegrityDesc *lvid =
2462                         (struct logicalVolIntegrityDesc *)
2463                         sbi->s_lvid_bh->b_data;
2464                 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2465                         accum = le32_to_cpu(
2466                                         lvid->freeSpaceTable[sbi->s_partition]);
2467                         if (accum == 0xFFFFFFFF)
2468                                 accum = 0;
2469                 }
2470         }
2471
2472         if (accum)
2473                 return accum;
2474
2475         map = &sbi->s_partmaps[sbi->s_partition];
2476         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2477                 accum += udf_count_free_bitmap(sb,
2478                                                map->s_uspace.s_bitmap);
2479         }
2480         if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2481                 accum += udf_count_free_bitmap(sb,
2482                                                map->s_fspace.s_bitmap);
2483         }
2484         if (accum)
2485                 return accum;
2486
2487         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2488                 accum += udf_count_free_table(sb,
2489                                               map->s_uspace.s_table);
2490         }
2491         if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2492                 accum += udf_count_free_table(sb,
2493                                               map->s_fspace.s_table);
2494         }
2495
2496         return accum;
2497 }