mfd: cros_ec: spi: Add mutex to cros_ec_spi
[cascardo/linux.git] / include / linux / cpuset.h
1 #ifndef _LINUX_CPUSET_H
2 #define _LINUX_CPUSET_H
3 /*
4  *  cpuset interface
5  *
6  *  Copyright (C) 2003 BULL SA
7  *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
8  *
9  */
10
11 #include <linux/sched.h>
12 #include <linux/cpumask.h>
13 #include <linux/nodemask.h>
14 #include <linux/mm.h>
15
16 #ifdef CONFIG_CPUSETS
17
18 extern int number_of_cpusets;   /* How many cpusets are defined in system? */
19
20 extern int cpuset_init(void);
21 extern void cpuset_init_smp(void);
22 extern void cpuset_update_active_cpus(bool cpu_online);
23 extern void cpuset_cpus_allowed(struct task_struct *p, struct cpumask *mask);
24 extern void cpuset_cpus_allowed_fallback(struct task_struct *p);
25 extern nodemask_t cpuset_mems_allowed(struct task_struct *p);
26 #define cpuset_current_mems_allowed (current->mems_allowed)
27 void cpuset_init_current_mems_allowed(void);
28 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask);
29
30 extern int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask);
31 extern int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask);
32
33 static inline int cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
34 {
35         return number_of_cpusets <= 1 ||
36                 __cpuset_node_allowed_softwall(node, gfp_mask);
37 }
38
39 static inline int cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
40 {
41         return number_of_cpusets <= 1 ||
42                 __cpuset_node_allowed_hardwall(node, gfp_mask);
43 }
44
45 static inline int cpuset_zone_allowed_softwall(struct zone *z, gfp_t gfp_mask)
46 {
47         return cpuset_node_allowed_softwall(zone_to_nid(z), gfp_mask);
48 }
49
50 static inline int cpuset_zone_allowed_hardwall(struct zone *z, gfp_t gfp_mask)
51 {
52         return cpuset_node_allowed_hardwall(zone_to_nid(z), gfp_mask);
53 }
54
55 extern int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
56                                           const struct task_struct *tsk2);
57
58 #define cpuset_memory_pressure_bump()                           \
59         do {                                                    \
60                 if (cpuset_memory_pressure_enabled)             \
61                         __cpuset_memory_pressure_bump();        \
62         } while (0)
63 extern int cpuset_memory_pressure_enabled;
64 extern void __cpuset_memory_pressure_bump(void);
65
66 extern void cpuset_task_status_allowed(struct seq_file *m,
67                                         struct task_struct *task);
68 extern int proc_cpuset_show(struct seq_file *, void *);
69
70 extern int cpuset_mem_spread_node(void);
71 extern int cpuset_slab_spread_node(void);
72
73 static inline int cpuset_do_page_mem_spread(void)
74 {
75         return current->flags & PF_SPREAD_PAGE;
76 }
77
78 static inline int cpuset_do_slab_mem_spread(void)
79 {
80         return current->flags & PF_SPREAD_SLAB;
81 }
82
83 extern int current_cpuset_is_being_rebound(void);
84
85 extern void rebuild_sched_domains(void);
86
87 extern void cpuset_print_task_mems_allowed(struct task_struct *p);
88
89 /*
90  * read_mems_allowed_begin is required when making decisions involving
91  * mems_allowed such as during page allocation. mems_allowed can be updated in
92  * parallel and depending on the new value an operation can fail potentially
93  * causing process failure. A retry loop with read_mems_allowed_begin and
94  * read_mems_allowed_retry prevents these artificial failures.
95  */
96 static inline unsigned int read_mems_allowed_begin(void)
97 {
98         return read_seqcount_begin(&current->mems_allowed_seq);
99 }
100
101 /*
102  * If this returns true, the operation that took place after
103  * read_mems_allowed_begin may have failed artificially due to a concurrent
104  * update of mems_allowed. It is up to the caller to retry the operation if
105  * appropriate.
106  */
107 static inline bool read_mems_allowed_retry(unsigned int seq)
108 {
109         return read_seqcount_retry(&current->mems_allowed_seq, seq);
110 }
111
112 static inline void set_mems_allowed(nodemask_t nodemask)
113 {
114         unsigned long flags;
115
116         task_lock(current);
117         local_irq_save(flags);
118         write_seqcount_begin(&current->mems_allowed_seq);
119         current->mems_allowed = nodemask;
120         write_seqcount_end(&current->mems_allowed_seq);
121         local_irq_restore(flags);
122         task_unlock(current);
123 }
124
125 #else /* !CONFIG_CPUSETS */
126
127 static inline int cpuset_init(void) { return 0; }
128 static inline void cpuset_init_smp(void) {}
129
130 static inline void cpuset_update_active_cpus(bool cpu_online)
131 {
132         partition_sched_domains(1, NULL, NULL);
133 }
134
135 static inline void cpuset_cpus_allowed(struct task_struct *p,
136                                        struct cpumask *mask)
137 {
138         cpumask_copy(mask, cpu_possible_mask);
139 }
140
141 static inline void cpuset_cpus_allowed_fallback(struct task_struct *p)
142 {
143 }
144
145 static inline nodemask_t cpuset_mems_allowed(struct task_struct *p)
146 {
147         return node_possible_map;
148 }
149
150 #define cpuset_current_mems_allowed (node_states[N_MEMORY])
151 static inline void cpuset_init_current_mems_allowed(void) {}
152
153 static inline int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
154 {
155         return 1;
156 }
157
158 static inline int cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
159 {
160         return 1;
161 }
162
163 static inline int cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
164 {
165         return 1;
166 }
167
168 static inline int cpuset_zone_allowed_softwall(struct zone *z, gfp_t gfp_mask)
169 {
170         return 1;
171 }
172
173 static inline int cpuset_zone_allowed_hardwall(struct zone *z, gfp_t gfp_mask)
174 {
175         return 1;
176 }
177
178 static inline int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
179                                                  const struct task_struct *tsk2)
180 {
181         return 1;
182 }
183
184 static inline void cpuset_memory_pressure_bump(void) {}
185
186 static inline void cpuset_task_status_allowed(struct seq_file *m,
187                                                 struct task_struct *task)
188 {
189 }
190
191 static inline int cpuset_mem_spread_node(void)
192 {
193         return 0;
194 }
195
196 static inline int cpuset_slab_spread_node(void)
197 {
198         return 0;
199 }
200
201 static inline int cpuset_do_page_mem_spread(void)
202 {
203         return 0;
204 }
205
206 static inline int cpuset_do_slab_mem_spread(void)
207 {
208         return 0;
209 }
210
211 static inline int current_cpuset_is_being_rebound(void)
212 {
213         return 0;
214 }
215
216 static inline void rebuild_sched_domains(void)
217 {
218         partition_sched_domains(1, NULL, NULL);
219 }
220
221 static inline void cpuset_print_task_mems_allowed(struct task_struct *p)
222 {
223 }
224
225 static inline void set_mems_allowed(nodemask_t nodemask)
226 {
227 }
228
229 static inline unsigned int read_mems_allowed_begin(void)
230 {
231         return 0;
232 }
233
234 static inline bool read_mems_allowed_retry(unsigned int seq)
235 {
236         return false;
237 }
238
239 #endif /* !CONFIG_CPUSETS */
240
241 #endif /* _LINUX_CPUSET_H */