mm: limit growth of 3% hardcoded other user reserve
[cascardo/linux.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/gfp.h>
9 #include <linux/bug.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/atomic.h>
14 #include <linux/debug_locks.h>
15 #include <linux/mm_types.h>
16 #include <linux/range.h>
17 #include <linux/pfn.h>
18 #include <linux/bit_spinlock.h>
19 #include <linux/shrinker.h>
20
21 struct mempolicy;
22 struct anon_vma;
23 struct anon_vma_chain;
24 struct file_ra_state;
25 struct user_struct;
26 struct writeback_control;
27
28 #ifndef CONFIG_DISCONTIGMEM          /* Don't use mapnrs, do it properly */
29 extern unsigned long max_mapnr;
30 #endif
31
32 extern unsigned long num_physpages;
33 extern unsigned long totalram_pages;
34 extern void * high_memory;
35 extern int page_cluster;
36
37 #ifdef CONFIG_SYSCTL
38 extern int sysctl_legacy_va_layout;
39 #else
40 #define sysctl_legacy_va_layout 0
41 #endif
42
43 #include <asm/page.h>
44 #include <asm/pgtable.h>
45 #include <asm/processor.h>
46
47 extern unsigned long sysctl_user_reserve_kbytes;
48
49 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
50
51 /* to align the pointer to the (next) page boundary */
52 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
53
54 /*
55  * Linux kernel virtual memory manager primitives.
56  * The idea being to have a "virtual" mm in the same way
57  * we have a virtual fs - giving a cleaner interface to the
58  * mm details, and allowing different kinds of memory mappings
59  * (from shared memory to executable loading to arbitrary
60  * mmap() functions).
61  */
62
63 extern struct kmem_cache *vm_area_cachep;
64
65 #ifndef CONFIG_MMU
66 extern struct rb_root nommu_region_tree;
67 extern struct rw_semaphore nommu_region_sem;
68
69 extern unsigned int kobjsize(const void *objp);
70 #endif
71
72 /*
73  * vm_flags in vm_area_struct, see mm_types.h.
74  */
75 #define VM_NONE         0x00000000
76
77 #define VM_READ         0x00000001      /* currently active flags */
78 #define VM_WRITE        0x00000002
79 #define VM_EXEC         0x00000004
80 #define VM_SHARED       0x00000008
81
82 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
83 #define VM_MAYREAD      0x00000010      /* limits for mprotect() etc */
84 #define VM_MAYWRITE     0x00000020
85 #define VM_MAYEXEC      0x00000040
86 #define VM_MAYSHARE     0x00000080
87
88 #define VM_GROWSDOWN    0x00000100      /* general info on the segment */
89 #define VM_PFNMAP       0x00000400      /* Page-ranges managed without "struct page", just pure PFN */
90 #define VM_DENYWRITE    0x00000800      /* ETXTBSY on write attempts.. */
91
92 #define VM_LOCKED       0x00002000
93 #define VM_IO           0x00004000      /* Memory mapped I/O or similar */
94
95                                         /* Used by sys_madvise() */
96 #define VM_SEQ_READ     0x00008000      /* App will access data sequentially */
97 #define VM_RAND_READ    0x00010000      /* App will not benefit from clustered reads */
98
99 #define VM_DONTCOPY     0x00020000      /* Do not copy this vma on fork */
100 #define VM_DONTEXPAND   0x00040000      /* Cannot expand with mremap() */
101 #define VM_ACCOUNT      0x00100000      /* Is a VM accounted object */
102 #define VM_NORESERVE    0x00200000      /* should the VM suppress accounting */
103 #define VM_HUGETLB      0x00400000      /* Huge TLB Page VM */
104 #define VM_NONLINEAR    0x00800000      /* Is non-linear (remap_file_pages) */
105 #define VM_ARCH_1       0x01000000      /* Architecture-specific flag */
106 #define VM_DONTDUMP     0x04000000      /* Do not include in the core dump */
107
108 #define VM_MIXEDMAP     0x10000000      /* Can contain "struct page" and pure PFN pages */
109 #define VM_HUGEPAGE     0x20000000      /* MADV_HUGEPAGE marked this vma */
110 #define VM_NOHUGEPAGE   0x40000000      /* MADV_NOHUGEPAGE marked this vma */
111 #define VM_MERGEABLE    0x80000000      /* KSM may merge identical pages */
112
113 #if defined(CONFIG_X86)
114 # define VM_PAT         VM_ARCH_1       /* PAT reserves whole VMA at once (x86) */
115 #elif defined(CONFIG_PPC)
116 # define VM_SAO         VM_ARCH_1       /* Strong Access Ordering (powerpc) */
117 #elif defined(CONFIG_PARISC)
118 # define VM_GROWSUP     VM_ARCH_1
119 #elif defined(CONFIG_METAG)
120 # define VM_GROWSUP     VM_ARCH_1
121 #elif defined(CONFIG_IA64)
122 # define VM_GROWSUP     VM_ARCH_1
123 #elif !defined(CONFIG_MMU)
124 # define VM_MAPPED_COPY VM_ARCH_1       /* T if mapped copy of data (nommu mmap) */
125 #endif
126
127 #ifndef VM_GROWSUP
128 # define VM_GROWSUP     VM_NONE
129 #endif
130
131 /* Bits set in the VMA until the stack is in its final location */
132 #define VM_STACK_INCOMPLETE_SETUP       (VM_RAND_READ | VM_SEQ_READ)
133
134 #ifndef VM_STACK_DEFAULT_FLAGS          /* arch can override this */
135 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
136 #endif
137
138 #ifdef CONFIG_STACK_GROWSUP
139 #define VM_STACK_FLAGS  (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
140 #else
141 #define VM_STACK_FLAGS  (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
142 #endif
143
144 #define VM_READHINTMASK                 (VM_SEQ_READ | VM_RAND_READ)
145 #define VM_ClearReadHint(v)             (v)->vm_flags &= ~VM_READHINTMASK
146 #define VM_NormalReadHint(v)            (!((v)->vm_flags & VM_READHINTMASK))
147 #define VM_SequentialReadHint(v)        ((v)->vm_flags & VM_SEQ_READ)
148 #define VM_RandomReadHint(v)            ((v)->vm_flags & VM_RAND_READ)
149
150 /*
151  * Special vmas that are non-mergable, non-mlock()able.
152  * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
153  */
154 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP)
155
156 /*
157  * mapping from the currently active vm_flags protection bits (the
158  * low four bits) to a page protection mask..
159  */
160 extern pgprot_t protection_map[16];
161
162 #define FAULT_FLAG_WRITE        0x01    /* Fault was a write access */
163 #define FAULT_FLAG_NONLINEAR    0x02    /* Fault was via a nonlinear mapping */
164 #define FAULT_FLAG_MKWRITE      0x04    /* Fault was mkwrite of existing pte */
165 #define FAULT_FLAG_ALLOW_RETRY  0x08    /* Retry fault if blocking */
166 #define FAULT_FLAG_RETRY_NOWAIT 0x10    /* Don't drop mmap_sem and wait when retrying */
167 #define FAULT_FLAG_KILLABLE     0x20    /* The fault task is in SIGKILL killable region */
168 #define FAULT_FLAG_TRIED        0x40    /* second try */
169
170 /*
171  * vm_fault is filled by the the pagefault handler and passed to the vma's
172  * ->fault function. The vma's ->fault is responsible for returning a bitmask
173  * of VM_FAULT_xxx flags that give details about how the fault was handled.
174  *
175  * pgoff should be used in favour of virtual_address, if possible. If pgoff
176  * is used, one may implement ->remap_pages to get nonlinear mapping support.
177  */
178 struct vm_fault {
179         unsigned int flags;             /* FAULT_FLAG_xxx flags */
180         pgoff_t pgoff;                  /* Logical page offset based on vma */
181         void __user *virtual_address;   /* Faulting virtual address */
182
183         struct page *page;              /* ->fault handlers should return a
184                                          * page here, unless VM_FAULT_NOPAGE
185                                          * is set (which is also implied by
186                                          * VM_FAULT_ERROR).
187                                          */
188 };
189
190 /*
191  * These are the virtual MM functions - opening of an area, closing and
192  * unmapping it (needed to keep files on disk up-to-date etc), pointer
193  * to the functions called when a no-page or a wp-page exception occurs. 
194  */
195 struct vm_operations_struct {
196         void (*open)(struct vm_area_struct * area);
197         void (*close)(struct vm_area_struct * area);
198         int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
199
200         /* notification that a previously read-only page is about to become
201          * writable, if an error is returned it will cause a SIGBUS */
202         int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
203
204         /* called by access_process_vm when get_user_pages() fails, typically
205          * for use by special VMAs that can switch between memory and hardware
206          */
207         int (*access)(struct vm_area_struct *vma, unsigned long addr,
208                       void *buf, int len, int write);
209 #ifdef CONFIG_NUMA
210         /*
211          * set_policy() op must add a reference to any non-NULL @new mempolicy
212          * to hold the policy upon return.  Caller should pass NULL @new to
213          * remove a policy and fall back to surrounding context--i.e. do not
214          * install a MPOL_DEFAULT policy, nor the task or system default
215          * mempolicy.
216          */
217         int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
218
219         /*
220          * get_policy() op must add reference [mpol_get()] to any policy at
221          * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
222          * in mm/mempolicy.c will do this automatically.
223          * get_policy() must NOT add a ref if the policy at (vma,addr) is not
224          * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
225          * If no [shared/vma] mempolicy exists at the addr, get_policy() op
226          * must return NULL--i.e., do not "fallback" to task or system default
227          * policy.
228          */
229         struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
230                                         unsigned long addr);
231         int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
232                 const nodemask_t *to, unsigned long flags);
233 #endif
234         /* called by sys_remap_file_pages() to populate non-linear mapping */
235         int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
236                            unsigned long size, pgoff_t pgoff);
237 };
238
239 struct mmu_gather;
240 struct inode;
241
242 #define page_private(page)              ((page)->private)
243 #define set_page_private(page, v)       ((page)->private = (v))
244
245 /* It's valid only if the page is free path or free_list */
246 static inline void set_freepage_migratetype(struct page *page, int migratetype)
247 {
248         page->index = migratetype;
249 }
250
251 /* It's valid only if the page is free path or free_list */
252 static inline int get_freepage_migratetype(struct page *page)
253 {
254         return page->index;
255 }
256
257 /*
258  * FIXME: take this include out, include page-flags.h in
259  * files which need it (119 of them)
260  */
261 #include <linux/page-flags.h>
262 #include <linux/huge_mm.h>
263
264 /*
265  * Methods to modify the page usage count.
266  *
267  * What counts for a page usage:
268  * - cache mapping   (page->mapping)
269  * - private data    (page->private)
270  * - page mapped in a task's page tables, each mapping
271  *   is counted separately
272  *
273  * Also, many kernel routines increase the page count before a critical
274  * routine so they can be sure the page doesn't go away from under them.
275  */
276
277 /*
278  * Drop a ref, return true if the refcount fell to zero (the page has no users)
279  */
280 static inline int put_page_testzero(struct page *page)
281 {
282         VM_BUG_ON(atomic_read(&page->_count) == 0);
283         return atomic_dec_and_test(&page->_count);
284 }
285
286 /*
287  * Try to grab a ref unless the page has a refcount of zero, return false if
288  * that is the case.
289  */
290 static inline int get_page_unless_zero(struct page *page)
291 {
292         return atomic_inc_not_zero(&page->_count);
293 }
294
295 extern int page_is_ram(unsigned long pfn);
296
297 /* Support for virtually mapped pages */
298 struct page *vmalloc_to_page(const void *addr);
299 unsigned long vmalloc_to_pfn(const void *addr);
300
301 /*
302  * Determine if an address is within the vmalloc range
303  *
304  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
305  * is no special casing required.
306  */
307 static inline int is_vmalloc_addr(const void *x)
308 {
309 #ifdef CONFIG_MMU
310         unsigned long addr = (unsigned long)x;
311
312         return addr >= VMALLOC_START && addr < VMALLOC_END;
313 #else
314         return 0;
315 #endif
316 }
317 #ifdef CONFIG_MMU
318 extern int is_vmalloc_or_module_addr(const void *x);
319 #else
320 static inline int is_vmalloc_or_module_addr(const void *x)
321 {
322         return 0;
323 }
324 #endif
325
326 static inline void compound_lock(struct page *page)
327 {
328 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
329         VM_BUG_ON(PageSlab(page));
330         bit_spin_lock(PG_compound_lock, &page->flags);
331 #endif
332 }
333
334 static inline void compound_unlock(struct page *page)
335 {
336 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
337         VM_BUG_ON(PageSlab(page));
338         bit_spin_unlock(PG_compound_lock, &page->flags);
339 #endif
340 }
341
342 static inline unsigned long compound_lock_irqsave(struct page *page)
343 {
344         unsigned long uninitialized_var(flags);
345 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
346         local_irq_save(flags);
347         compound_lock(page);
348 #endif
349         return flags;
350 }
351
352 static inline void compound_unlock_irqrestore(struct page *page,
353                                               unsigned long flags)
354 {
355 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
356         compound_unlock(page);
357         local_irq_restore(flags);
358 #endif
359 }
360
361 static inline struct page *compound_head(struct page *page)
362 {
363         if (unlikely(PageTail(page)))
364                 return page->first_page;
365         return page;
366 }
367
368 /*
369  * The atomic page->_mapcount, starts from -1: so that transitions
370  * both from it and to it can be tracked, using atomic_inc_and_test
371  * and atomic_add_negative(-1).
372  */
373 static inline void page_mapcount_reset(struct page *page)
374 {
375         atomic_set(&(page)->_mapcount, -1);
376 }
377
378 static inline int page_mapcount(struct page *page)
379 {
380         return atomic_read(&(page)->_mapcount) + 1;
381 }
382
383 static inline int page_count(struct page *page)
384 {
385         return atomic_read(&compound_head(page)->_count);
386 }
387
388 static inline void get_huge_page_tail(struct page *page)
389 {
390         /*
391          * __split_huge_page_refcount() cannot run
392          * from under us.
393          */
394         VM_BUG_ON(page_mapcount(page) < 0);
395         VM_BUG_ON(atomic_read(&page->_count) != 0);
396         atomic_inc(&page->_mapcount);
397 }
398
399 extern bool __get_page_tail(struct page *page);
400
401 static inline void get_page(struct page *page)
402 {
403         if (unlikely(PageTail(page)))
404                 if (likely(__get_page_tail(page)))
405                         return;
406         /*
407          * Getting a normal page or the head of a compound page
408          * requires to already have an elevated page->_count.
409          */
410         VM_BUG_ON(atomic_read(&page->_count) <= 0);
411         atomic_inc(&page->_count);
412 }
413
414 static inline struct page *virt_to_head_page(const void *x)
415 {
416         struct page *page = virt_to_page(x);
417         return compound_head(page);
418 }
419
420 /*
421  * Setup the page count before being freed into the page allocator for
422  * the first time (boot or memory hotplug)
423  */
424 static inline void init_page_count(struct page *page)
425 {
426         atomic_set(&page->_count, 1);
427 }
428
429 /*
430  * PageBuddy() indicate that the page is free and in the buddy system
431  * (see mm/page_alloc.c).
432  *
433  * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
434  * -2 so that an underflow of the page_mapcount() won't be mistaken
435  * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
436  * efficiently by most CPU architectures.
437  */
438 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
439
440 static inline int PageBuddy(struct page *page)
441 {
442         return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
443 }
444
445 static inline void __SetPageBuddy(struct page *page)
446 {
447         VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
448         atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
449 }
450
451 static inline void __ClearPageBuddy(struct page *page)
452 {
453         VM_BUG_ON(!PageBuddy(page));
454         atomic_set(&page->_mapcount, -1);
455 }
456
457 void put_page(struct page *page);
458 void put_pages_list(struct list_head *pages);
459
460 void split_page(struct page *page, unsigned int order);
461 int split_free_page(struct page *page);
462
463 /*
464  * Compound pages have a destructor function.  Provide a
465  * prototype for that function and accessor functions.
466  * These are _only_ valid on the head of a PG_compound page.
467  */
468 typedef void compound_page_dtor(struct page *);
469
470 static inline void set_compound_page_dtor(struct page *page,
471                                                 compound_page_dtor *dtor)
472 {
473         page[1].lru.next = (void *)dtor;
474 }
475
476 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
477 {
478         return (compound_page_dtor *)page[1].lru.next;
479 }
480
481 static inline int compound_order(struct page *page)
482 {
483         if (!PageHead(page))
484                 return 0;
485         return (unsigned long)page[1].lru.prev;
486 }
487
488 static inline int compound_trans_order(struct page *page)
489 {
490         int order;
491         unsigned long flags;
492
493         if (!PageHead(page))
494                 return 0;
495
496         flags = compound_lock_irqsave(page);
497         order = compound_order(page);
498         compound_unlock_irqrestore(page, flags);
499         return order;
500 }
501
502 static inline void set_compound_order(struct page *page, unsigned long order)
503 {
504         page[1].lru.prev = (void *)order;
505 }
506
507 #ifdef CONFIG_MMU
508 /*
509  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
510  * servicing faults for write access.  In the normal case, do always want
511  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
512  * that do not have writing enabled, when used by access_process_vm.
513  */
514 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
515 {
516         if (likely(vma->vm_flags & VM_WRITE))
517                 pte = pte_mkwrite(pte);
518         return pte;
519 }
520 #endif
521
522 /*
523  * Multiple processes may "see" the same page. E.g. for untouched
524  * mappings of /dev/null, all processes see the same page full of
525  * zeroes, and text pages of executables and shared libraries have
526  * only one copy in memory, at most, normally.
527  *
528  * For the non-reserved pages, page_count(page) denotes a reference count.
529  *   page_count() == 0 means the page is free. page->lru is then used for
530  *   freelist management in the buddy allocator.
531  *   page_count() > 0  means the page has been allocated.
532  *
533  * Pages are allocated by the slab allocator in order to provide memory
534  * to kmalloc and kmem_cache_alloc. In this case, the management of the
535  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
536  * unless a particular usage is carefully commented. (the responsibility of
537  * freeing the kmalloc memory is the caller's, of course).
538  *
539  * A page may be used by anyone else who does a __get_free_page().
540  * In this case, page_count still tracks the references, and should only
541  * be used through the normal accessor functions. The top bits of page->flags
542  * and page->virtual store page management information, but all other fields
543  * are unused and could be used privately, carefully. The management of this
544  * page is the responsibility of the one who allocated it, and those who have
545  * subsequently been given references to it.
546  *
547  * The other pages (we may call them "pagecache pages") are completely
548  * managed by the Linux memory manager: I/O, buffers, swapping etc.
549  * The following discussion applies only to them.
550  *
551  * A pagecache page contains an opaque `private' member, which belongs to the
552  * page's address_space. Usually, this is the address of a circular list of
553  * the page's disk buffers. PG_private must be set to tell the VM to call
554  * into the filesystem to release these pages.
555  *
556  * A page may belong to an inode's memory mapping. In this case, page->mapping
557  * is the pointer to the inode, and page->index is the file offset of the page,
558  * in units of PAGE_CACHE_SIZE.
559  *
560  * If pagecache pages are not associated with an inode, they are said to be
561  * anonymous pages. These may become associated with the swapcache, and in that
562  * case PG_swapcache is set, and page->private is an offset into the swapcache.
563  *
564  * In either case (swapcache or inode backed), the pagecache itself holds one
565  * reference to the page. Setting PG_private should also increment the
566  * refcount. The each user mapping also has a reference to the page.
567  *
568  * The pagecache pages are stored in a per-mapping radix tree, which is
569  * rooted at mapping->page_tree, and indexed by offset.
570  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
571  * lists, we instead now tag pages as dirty/writeback in the radix tree.
572  *
573  * All pagecache pages may be subject to I/O:
574  * - inode pages may need to be read from disk,
575  * - inode pages which have been modified and are MAP_SHARED may need
576  *   to be written back to the inode on disk,
577  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
578  *   modified may need to be swapped out to swap space and (later) to be read
579  *   back into memory.
580  */
581
582 /*
583  * The zone field is never updated after free_area_init_core()
584  * sets it, so none of the operations on it need to be atomic.
585  */
586
587 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_NID] | ... | FLAGS | */
588 #define SECTIONS_PGOFF          ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
589 #define NODES_PGOFF             (SECTIONS_PGOFF - NODES_WIDTH)
590 #define ZONES_PGOFF             (NODES_PGOFF - ZONES_WIDTH)
591 #define LAST_NID_PGOFF          (ZONES_PGOFF - LAST_NID_WIDTH)
592
593 /*
594  * Define the bit shifts to access each section.  For non-existent
595  * sections we define the shift as 0; that plus a 0 mask ensures
596  * the compiler will optimise away reference to them.
597  */
598 #define SECTIONS_PGSHIFT        (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
599 #define NODES_PGSHIFT           (NODES_PGOFF * (NODES_WIDTH != 0))
600 #define ZONES_PGSHIFT           (ZONES_PGOFF * (ZONES_WIDTH != 0))
601 #define LAST_NID_PGSHIFT        (LAST_NID_PGOFF * (LAST_NID_WIDTH != 0))
602
603 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
604 #ifdef NODE_NOT_IN_PAGE_FLAGS
605 #define ZONEID_SHIFT            (SECTIONS_SHIFT + ZONES_SHIFT)
606 #define ZONEID_PGOFF            ((SECTIONS_PGOFF < ZONES_PGOFF)? \
607                                                 SECTIONS_PGOFF : ZONES_PGOFF)
608 #else
609 #define ZONEID_SHIFT            (NODES_SHIFT + ZONES_SHIFT)
610 #define ZONEID_PGOFF            ((NODES_PGOFF < ZONES_PGOFF)? \
611                                                 NODES_PGOFF : ZONES_PGOFF)
612 #endif
613
614 #define ZONEID_PGSHIFT          (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
615
616 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
617 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
618 #endif
619
620 #define ZONES_MASK              ((1UL << ZONES_WIDTH) - 1)
621 #define NODES_MASK              ((1UL << NODES_WIDTH) - 1)
622 #define SECTIONS_MASK           ((1UL << SECTIONS_WIDTH) - 1)
623 #define LAST_NID_MASK           ((1UL << LAST_NID_WIDTH) - 1)
624 #define ZONEID_MASK             ((1UL << ZONEID_SHIFT) - 1)
625
626 static inline enum zone_type page_zonenum(const struct page *page)
627 {
628         return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
629 }
630
631 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
632 #define SECTION_IN_PAGE_FLAGS
633 #endif
634
635 /*
636  * The identification function is only used by the buddy allocator for
637  * determining if two pages could be buddies. We are not really
638  * identifying a zone since we could be using a the section number
639  * id if we have not node id available in page flags.
640  * We guarantee only that it will return the same value for two
641  * combinable pages in a zone.
642  */
643 static inline int page_zone_id(struct page *page)
644 {
645         return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
646 }
647
648 static inline int zone_to_nid(struct zone *zone)
649 {
650 #ifdef CONFIG_NUMA
651         return zone->node;
652 #else
653         return 0;
654 #endif
655 }
656
657 #ifdef NODE_NOT_IN_PAGE_FLAGS
658 extern int page_to_nid(const struct page *page);
659 #else
660 static inline int page_to_nid(const struct page *page)
661 {
662         return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
663 }
664 #endif
665
666 #ifdef CONFIG_NUMA_BALANCING
667 #ifdef LAST_NID_NOT_IN_PAGE_FLAGS
668 static inline int page_nid_xchg_last(struct page *page, int nid)
669 {
670         return xchg(&page->_last_nid, nid);
671 }
672
673 static inline int page_nid_last(struct page *page)
674 {
675         return page->_last_nid;
676 }
677 static inline void page_nid_reset_last(struct page *page)
678 {
679         page->_last_nid = -1;
680 }
681 #else
682 static inline int page_nid_last(struct page *page)
683 {
684         return (page->flags >> LAST_NID_PGSHIFT) & LAST_NID_MASK;
685 }
686
687 extern int page_nid_xchg_last(struct page *page, int nid);
688
689 static inline void page_nid_reset_last(struct page *page)
690 {
691         int nid = (1 << LAST_NID_SHIFT) - 1;
692
693         page->flags &= ~(LAST_NID_MASK << LAST_NID_PGSHIFT);
694         page->flags |= (nid & LAST_NID_MASK) << LAST_NID_PGSHIFT;
695 }
696 #endif /* LAST_NID_NOT_IN_PAGE_FLAGS */
697 #else
698 static inline int page_nid_xchg_last(struct page *page, int nid)
699 {
700         return page_to_nid(page);
701 }
702
703 static inline int page_nid_last(struct page *page)
704 {
705         return page_to_nid(page);
706 }
707
708 static inline void page_nid_reset_last(struct page *page)
709 {
710 }
711 #endif
712
713 static inline struct zone *page_zone(const struct page *page)
714 {
715         return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
716 }
717
718 #ifdef SECTION_IN_PAGE_FLAGS
719 static inline void set_page_section(struct page *page, unsigned long section)
720 {
721         page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
722         page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
723 }
724
725 static inline unsigned long page_to_section(const struct page *page)
726 {
727         return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
728 }
729 #endif
730
731 static inline void set_page_zone(struct page *page, enum zone_type zone)
732 {
733         page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
734         page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
735 }
736
737 static inline void set_page_node(struct page *page, unsigned long node)
738 {
739         page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
740         page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
741 }
742
743 static inline void set_page_links(struct page *page, enum zone_type zone,
744         unsigned long node, unsigned long pfn)
745 {
746         set_page_zone(page, zone);
747         set_page_node(page, node);
748 #ifdef SECTION_IN_PAGE_FLAGS
749         set_page_section(page, pfn_to_section_nr(pfn));
750 #endif
751 }
752
753 /*
754  * Some inline functions in vmstat.h depend on page_zone()
755  */
756 #include <linux/vmstat.h>
757
758 static __always_inline void *lowmem_page_address(const struct page *page)
759 {
760         return __va(PFN_PHYS(page_to_pfn(page)));
761 }
762
763 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
764 #define HASHED_PAGE_VIRTUAL
765 #endif
766
767 #if defined(WANT_PAGE_VIRTUAL)
768 #define page_address(page) ((page)->virtual)
769 #define set_page_address(page, address)                 \
770         do {                                            \
771                 (page)->virtual = (address);            \
772         } while(0)
773 #define page_address_init()  do { } while(0)
774 #endif
775
776 #if defined(HASHED_PAGE_VIRTUAL)
777 void *page_address(const struct page *page);
778 void set_page_address(struct page *page, void *virtual);
779 void page_address_init(void);
780 #endif
781
782 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
783 #define page_address(page) lowmem_page_address(page)
784 #define set_page_address(page, address)  do { } while(0)
785 #define page_address_init()  do { } while(0)
786 #endif
787
788 /*
789  * On an anonymous page mapped into a user virtual memory area,
790  * page->mapping points to its anon_vma, not to a struct address_space;
791  * with the PAGE_MAPPING_ANON bit set to distinguish it.  See rmap.h.
792  *
793  * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
794  * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
795  * and then page->mapping points, not to an anon_vma, but to a private
796  * structure which KSM associates with that merged page.  See ksm.h.
797  *
798  * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
799  *
800  * Please note that, confusingly, "page_mapping" refers to the inode
801  * address_space which maps the page from disk; whereas "page_mapped"
802  * refers to user virtual address space into which the page is mapped.
803  */
804 #define PAGE_MAPPING_ANON       1
805 #define PAGE_MAPPING_KSM        2
806 #define PAGE_MAPPING_FLAGS      (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
807
808 extern struct address_space *page_mapping(struct page *page);
809
810 /* Neutral page->mapping pointer to address_space or anon_vma or other */
811 static inline void *page_rmapping(struct page *page)
812 {
813         return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
814 }
815
816 extern struct address_space *__page_file_mapping(struct page *);
817
818 static inline
819 struct address_space *page_file_mapping(struct page *page)
820 {
821         if (unlikely(PageSwapCache(page)))
822                 return __page_file_mapping(page);
823
824         return page->mapping;
825 }
826
827 static inline int PageAnon(struct page *page)
828 {
829         return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
830 }
831
832 /*
833  * Return the pagecache index of the passed page.  Regular pagecache pages
834  * use ->index whereas swapcache pages use ->private
835  */
836 static inline pgoff_t page_index(struct page *page)
837 {
838         if (unlikely(PageSwapCache(page)))
839                 return page_private(page);
840         return page->index;
841 }
842
843 extern pgoff_t __page_file_index(struct page *page);
844
845 /*
846  * Return the file index of the page. Regular pagecache pages use ->index
847  * whereas swapcache pages use swp_offset(->private)
848  */
849 static inline pgoff_t page_file_index(struct page *page)
850 {
851         if (unlikely(PageSwapCache(page)))
852                 return __page_file_index(page);
853
854         return page->index;
855 }
856
857 /*
858  * Return true if this page is mapped into pagetables.
859  */
860 static inline int page_mapped(struct page *page)
861 {
862         return atomic_read(&(page)->_mapcount) >= 0;
863 }
864
865 /*
866  * Different kinds of faults, as returned by handle_mm_fault().
867  * Used to decide whether a process gets delivered SIGBUS or
868  * just gets major/minor fault counters bumped up.
869  */
870
871 #define VM_FAULT_MINOR  0 /* For backwards compat. Remove me quickly. */
872
873 #define VM_FAULT_OOM    0x0001
874 #define VM_FAULT_SIGBUS 0x0002
875 #define VM_FAULT_MAJOR  0x0004
876 #define VM_FAULT_WRITE  0x0008  /* Special case for get_user_pages */
877 #define VM_FAULT_HWPOISON 0x0010        /* Hit poisoned small page */
878 #define VM_FAULT_HWPOISON_LARGE 0x0020  /* Hit poisoned large page. Index encoded in upper bits */
879
880 #define VM_FAULT_NOPAGE 0x0100  /* ->fault installed the pte, not return page */
881 #define VM_FAULT_LOCKED 0x0200  /* ->fault locked the returned page */
882 #define VM_FAULT_RETRY  0x0400  /* ->fault blocked, must retry */
883
884 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
885
886 #define VM_FAULT_ERROR  (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
887                          VM_FAULT_HWPOISON_LARGE)
888
889 /* Encode hstate index for a hwpoisoned large page */
890 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
891 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
892
893 /*
894  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
895  */
896 extern void pagefault_out_of_memory(void);
897
898 #define offset_in_page(p)       ((unsigned long)(p) & ~PAGE_MASK)
899
900 /*
901  * Flags passed to show_mem() and show_free_areas() to suppress output in
902  * various contexts.
903  */
904 #define SHOW_MEM_FILTER_NODES           (0x0001u)       /* disallowed nodes */
905 #define SHOW_MEM_FILTER_PAGE_COUNT      (0x0002u)       /* page type count */
906
907 extern void show_free_areas(unsigned int flags);
908 extern bool skip_free_areas_node(unsigned int flags, int nid);
909
910 int shmem_zero_setup(struct vm_area_struct *);
911
912 extern int can_do_mlock(void);
913 extern int user_shm_lock(size_t, struct user_struct *);
914 extern void user_shm_unlock(size_t, struct user_struct *);
915
916 /*
917  * Parameter block passed down to zap_pte_range in exceptional cases.
918  */
919 struct zap_details {
920         struct vm_area_struct *nonlinear_vma;   /* Check page->index if set */
921         struct address_space *check_mapping;    /* Check page->mapping if set */
922         pgoff_t first_index;                    /* Lowest page->index to unmap */
923         pgoff_t last_index;                     /* Highest page->index to unmap */
924 };
925
926 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
927                 pte_t pte);
928
929 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
930                 unsigned long size);
931 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
932                 unsigned long size, struct zap_details *);
933 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
934                 unsigned long start, unsigned long end);
935
936 /**
937  * mm_walk - callbacks for walk_page_range
938  * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
939  * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
940  * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
941  *             this handler is required to be able to handle
942  *             pmd_trans_huge() pmds.  They may simply choose to
943  *             split_huge_page() instead of handling it explicitly.
944  * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
945  * @pte_hole: if set, called for each hole at all levels
946  * @hugetlb_entry: if set, called for each hugetlb entry
947  *                 *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
948  *                            is used.
949  *
950  * (see walk_page_range for more details)
951  */
952 struct mm_walk {
953         int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
954         int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
955         int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
956         int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
957         int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
958         int (*hugetlb_entry)(pte_t *, unsigned long,
959                              unsigned long, unsigned long, struct mm_walk *);
960         struct mm_struct *mm;
961         void *private;
962 };
963
964 int walk_page_range(unsigned long addr, unsigned long end,
965                 struct mm_walk *walk);
966 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
967                 unsigned long end, unsigned long floor, unsigned long ceiling);
968 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
969                         struct vm_area_struct *vma);
970 void unmap_mapping_range(struct address_space *mapping,
971                 loff_t const holebegin, loff_t const holelen, int even_cows);
972 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
973         unsigned long *pfn);
974 int follow_phys(struct vm_area_struct *vma, unsigned long address,
975                 unsigned int flags, unsigned long *prot, resource_size_t *phys);
976 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
977                         void *buf, int len, int write);
978
979 static inline void unmap_shared_mapping_range(struct address_space *mapping,
980                 loff_t const holebegin, loff_t const holelen)
981 {
982         unmap_mapping_range(mapping, holebegin, holelen, 0);
983 }
984
985 extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
986 extern void truncate_setsize(struct inode *inode, loff_t newsize);
987 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
988 int truncate_inode_page(struct address_space *mapping, struct page *page);
989 int generic_error_remove_page(struct address_space *mapping, struct page *page);
990 int invalidate_inode_page(struct page *page);
991
992 #ifdef CONFIG_MMU
993 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
994                         unsigned long address, unsigned int flags);
995 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
996                             unsigned long address, unsigned int fault_flags);
997 #else
998 static inline int handle_mm_fault(struct mm_struct *mm,
999                         struct vm_area_struct *vma, unsigned long address,
1000                         unsigned int flags)
1001 {
1002         /* should never happen if there's no MMU */
1003         BUG();
1004         return VM_FAULT_SIGBUS;
1005 }
1006 static inline int fixup_user_fault(struct task_struct *tsk,
1007                 struct mm_struct *mm, unsigned long address,
1008                 unsigned int fault_flags)
1009 {
1010         /* should never happen if there's no MMU */
1011         BUG();
1012         return -EFAULT;
1013 }
1014 #endif
1015
1016 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1017 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1018                 void *buf, int len, int write);
1019
1020 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1021                       unsigned long start, unsigned long nr_pages,
1022                       unsigned int foll_flags, struct page **pages,
1023                       struct vm_area_struct **vmas, int *nonblocking);
1024 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1025                     unsigned long start, unsigned long nr_pages,
1026                     int write, int force, struct page **pages,
1027                     struct vm_area_struct **vmas);
1028 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1029                         struct page **pages);
1030 struct kvec;
1031 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1032                         struct page **pages);
1033 int get_kernel_page(unsigned long start, int write, struct page **pages);
1034 struct page *get_dump_page(unsigned long addr);
1035
1036 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1037 extern void do_invalidatepage(struct page *page, unsigned long offset);
1038
1039 int __set_page_dirty_nobuffers(struct page *page);
1040 int __set_page_dirty_no_writeback(struct page *page);
1041 int redirty_page_for_writepage(struct writeback_control *wbc,
1042                                 struct page *page);
1043 void account_page_dirtied(struct page *page, struct address_space *mapping);
1044 void account_page_writeback(struct page *page);
1045 int set_page_dirty(struct page *page);
1046 int set_page_dirty_lock(struct page *page);
1047 int clear_page_dirty_for_io(struct page *page);
1048
1049 /* Is the vma a continuation of the stack vma above it? */
1050 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1051 {
1052         return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1053 }
1054
1055 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1056                                              unsigned long addr)
1057 {
1058         return (vma->vm_flags & VM_GROWSDOWN) &&
1059                 (vma->vm_start == addr) &&
1060                 !vma_growsdown(vma->vm_prev, addr);
1061 }
1062
1063 /* Is the vma a continuation of the stack vma below it? */
1064 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1065 {
1066         return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1067 }
1068
1069 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1070                                            unsigned long addr)
1071 {
1072         return (vma->vm_flags & VM_GROWSUP) &&
1073                 (vma->vm_end == addr) &&
1074                 !vma_growsup(vma->vm_next, addr);
1075 }
1076
1077 extern pid_t
1078 vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1079
1080 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1081                 unsigned long old_addr, struct vm_area_struct *new_vma,
1082                 unsigned long new_addr, unsigned long len,
1083                 bool need_rmap_locks);
1084 extern unsigned long do_mremap(unsigned long addr,
1085                                unsigned long old_len, unsigned long new_len,
1086                                unsigned long flags, unsigned long new_addr);
1087 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1088                               unsigned long end, pgprot_t newprot,
1089                               int dirty_accountable, int prot_numa);
1090 extern int mprotect_fixup(struct vm_area_struct *vma,
1091                           struct vm_area_struct **pprev, unsigned long start,
1092                           unsigned long end, unsigned long newflags);
1093
1094 /*
1095  * doesn't attempt to fault and will return short.
1096  */
1097 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1098                           struct page **pages);
1099 /*
1100  * per-process(per-mm_struct) statistics.
1101  */
1102 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1103 {
1104         long val = atomic_long_read(&mm->rss_stat.count[member]);
1105
1106 #ifdef SPLIT_RSS_COUNTING
1107         /*
1108          * counter is updated in asynchronous manner and may go to minus.
1109          * But it's never be expected number for users.
1110          */
1111         if (val < 0)
1112                 val = 0;
1113 #endif
1114         return (unsigned long)val;
1115 }
1116
1117 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1118 {
1119         atomic_long_add(value, &mm->rss_stat.count[member]);
1120 }
1121
1122 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1123 {
1124         atomic_long_inc(&mm->rss_stat.count[member]);
1125 }
1126
1127 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1128 {
1129         atomic_long_dec(&mm->rss_stat.count[member]);
1130 }
1131
1132 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1133 {
1134         return get_mm_counter(mm, MM_FILEPAGES) +
1135                 get_mm_counter(mm, MM_ANONPAGES);
1136 }
1137
1138 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1139 {
1140         return max(mm->hiwater_rss, get_mm_rss(mm));
1141 }
1142
1143 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1144 {
1145         return max(mm->hiwater_vm, mm->total_vm);
1146 }
1147
1148 static inline void update_hiwater_rss(struct mm_struct *mm)
1149 {
1150         unsigned long _rss = get_mm_rss(mm);
1151
1152         if ((mm)->hiwater_rss < _rss)
1153                 (mm)->hiwater_rss = _rss;
1154 }
1155
1156 static inline void update_hiwater_vm(struct mm_struct *mm)
1157 {
1158         if (mm->hiwater_vm < mm->total_vm)
1159                 mm->hiwater_vm = mm->total_vm;
1160 }
1161
1162 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1163                                          struct mm_struct *mm)
1164 {
1165         unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1166
1167         if (*maxrss < hiwater_rss)
1168                 *maxrss = hiwater_rss;
1169 }
1170
1171 #if defined(SPLIT_RSS_COUNTING)
1172 void sync_mm_rss(struct mm_struct *mm);
1173 #else
1174 static inline void sync_mm_rss(struct mm_struct *mm)
1175 {
1176 }
1177 #endif
1178
1179 int vma_wants_writenotify(struct vm_area_struct *vma);
1180
1181 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1182                                spinlock_t **ptl);
1183 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1184                                     spinlock_t **ptl)
1185 {
1186         pte_t *ptep;
1187         __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1188         return ptep;
1189 }
1190
1191 #ifdef __PAGETABLE_PUD_FOLDED
1192 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1193                                                 unsigned long address)
1194 {
1195         return 0;
1196 }
1197 #else
1198 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1199 #endif
1200
1201 #ifdef __PAGETABLE_PMD_FOLDED
1202 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1203                                                 unsigned long address)
1204 {
1205         return 0;
1206 }
1207 #else
1208 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1209 #endif
1210
1211 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1212                 pmd_t *pmd, unsigned long address);
1213 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1214
1215 /*
1216  * The following ifdef needed to get the 4level-fixup.h header to work.
1217  * Remove it when 4level-fixup.h has been removed.
1218  */
1219 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1220 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1221 {
1222         return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1223                 NULL: pud_offset(pgd, address);
1224 }
1225
1226 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1227 {
1228         return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1229                 NULL: pmd_offset(pud, address);
1230 }
1231 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1232
1233 #if USE_SPLIT_PTLOCKS
1234 /*
1235  * We tuck a spinlock to guard each pagetable page into its struct page,
1236  * at page->private, with BUILD_BUG_ON to make sure that this will not
1237  * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1238  * When freeing, reset page->mapping so free_pages_check won't complain.
1239  */
1240 #define __pte_lockptr(page)     &((page)->ptl)
1241 #define pte_lock_init(_page)    do {                                    \
1242         spin_lock_init(__pte_lockptr(_page));                           \
1243 } while (0)
1244 #define pte_lock_deinit(page)   ((page)->mapping = NULL)
1245 #define pte_lockptr(mm, pmd)    ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
1246 #else   /* !USE_SPLIT_PTLOCKS */
1247 /*
1248  * We use mm->page_table_lock to guard all pagetable pages of the mm.
1249  */
1250 #define pte_lock_init(page)     do {} while (0)
1251 #define pte_lock_deinit(page)   do {} while (0)
1252 #define pte_lockptr(mm, pmd)    ({(void)(pmd); &(mm)->page_table_lock;})
1253 #endif /* USE_SPLIT_PTLOCKS */
1254
1255 static inline void pgtable_page_ctor(struct page *page)
1256 {
1257         pte_lock_init(page);
1258         inc_zone_page_state(page, NR_PAGETABLE);
1259 }
1260
1261 static inline void pgtable_page_dtor(struct page *page)
1262 {
1263         pte_lock_deinit(page);
1264         dec_zone_page_state(page, NR_PAGETABLE);
1265 }
1266
1267 #define pte_offset_map_lock(mm, pmd, address, ptlp)     \
1268 ({                                                      \
1269         spinlock_t *__ptl = pte_lockptr(mm, pmd);       \
1270         pte_t *__pte = pte_offset_map(pmd, address);    \
1271         *(ptlp) = __ptl;                                \
1272         spin_lock(__ptl);                               \
1273         __pte;                                          \
1274 })
1275
1276 #define pte_unmap_unlock(pte, ptl)      do {            \
1277         spin_unlock(ptl);                               \
1278         pte_unmap(pte);                                 \
1279 } while (0)
1280
1281 #define pte_alloc_map(mm, vma, pmd, address)                            \
1282         ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma,    \
1283                                                         pmd, address))? \
1284          NULL: pte_offset_map(pmd, address))
1285
1286 #define pte_alloc_map_lock(mm, pmd, address, ptlp)      \
1287         ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL,   \
1288                                                         pmd, address))? \
1289                 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1290
1291 #define pte_alloc_kernel(pmd, address)                  \
1292         ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1293                 NULL: pte_offset_kernel(pmd, address))
1294
1295 extern void free_area_init(unsigned long * zones_size);
1296 extern void free_area_init_node(int nid, unsigned long * zones_size,
1297                 unsigned long zone_start_pfn, unsigned long *zholes_size);
1298 extern void free_initmem(void);
1299
1300 /*
1301  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1302  * into the buddy system. The freed pages will be poisoned with pattern
1303  * "poison" if it's non-zero.
1304  * Return pages freed into the buddy system.
1305  */
1306 extern unsigned long free_reserved_area(unsigned long start, unsigned long end,
1307                                         int poison, char *s);
1308 #ifdef  CONFIG_HIGHMEM
1309 /*
1310  * Free a highmem page into the buddy system, adjusting totalhigh_pages
1311  * and totalram_pages.
1312  */
1313 extern void free_highmem_page(struct page *page);
1314 #endif
1315
1316 static inline void adjust_managed_page_count(struct page *page, long count)
1317 {
1318         totalram_pages += count;
1319 }
1320
1321 /* Free the reserved page into the buddy system, so it gets managed. */
1322 static inline void __free_reserved_page(struct page *page)
1323 {
1324         ClearPageReserved(page);
1325         init_page_count(page);
1326         __free_page(page);
1327 }
1328
1329 static inline void free_reserved_page(struct page *page)
1330 {
1331         __free_reserved_page(page);
1332         adjust_managed_page_count(page, 1);
1333 }
1334
1335 static inline void mark_page_reserved(struct page *page)
1336 {
1337         SetPageReserved(page);
1338         adjust_managed_page_count(page, -1);
1339 }
1340
1341 /*
1342  * Default method to free all the __init memory into the buddy system.
1343  * The freed pages will be poisoned with pattern "poison" if it is
1344  * non-zero. Return pages freed into the buddy system.
1345  */
1346 static inline unsigned long free_initmem_default(int poison)
1347 {
1348         extern char __init_begin[], __init_end[];
1349
1350         return free_reserved_area(PAGE_ALIGN((unsigned long)&__init_begin) ,
1351                                   ((unsigned long)&__init_end) & PAGE_MASK,
1352                                   poison, "unused kernel");
1353 }
1354
1355 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1356 /*
1357  * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1358  * zones, allocate the backing mem_map and account for memory holes in a more
1359  * architecture independent manner. This is a substitute for creating the
1360  * zone_sizes[] and zholes_size[] arrays and passing them to
1361  * free_area_init_node()
1362  *
1363  * An architecture is expected to register range of page frames backed by
1364  * physical memory with memblock_add[_node]() before calling
1365  * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1366  * usage, an architecture is expected to do something like
1367  *
1368  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1369  *                                                       max_highmem_pfn};
1370  * for_each_valid_physical_page_range()
1371  *      memblock_add_node(base, size, nid)
1372  * free_area_init_nodes(max_zone_pfns);
1373  *
1374  * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1375  * registered physical page range.  Similarly
1376  * sparse_memory_present_with_active_regions() calls memory_present() for
1377  * each range when SPARSEMEM is enabled.
1378  *
1379  * See mm/page_alloc.c for more information on each function exposed by
1380  * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1381  */
1382 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1383 unsigned long node_map_pfn_alignment(void);
1384 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1385                                                 unsigned long end_pfn);
1386 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1387                                                 unsigned long end_pfn);
1388 extern void get_pfn_range_for_nid(unsigned int nid,
1389                         unsigned long *start_pfn, unsigned long *end_pfn);
1390 extern unsigned long find_min_pfn_with_active_regions(void);
1391 extern void free_bootmem_with_active_regions(int nid,
1392                                                 unsigned long max_low_pfn);
1393 extern void sparse_memory_present_with_active_regions(int nid);
1394
1395 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1396
1397 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1398     !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1399 static inline int __early_pfn_to_nid(unsigned long pfn)
1400 {
1401         return 0;
1402 }
1403 #else
1404 /* please see mm/page_alloc.c */
1405 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1406 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1407 /* there is a per-arch backend function. */
1408 extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1409 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1410 #endif
1411
1412 extern void set_dma_reserve(unsigned long new_dma_reserve);
1413 extern void memmap_init_zone(unsigned long, int, unsigned long,
1414                                 unsigned long, enum memmap_context);
1415 extern void setup_per_zone_wmarks(void);
1416 extern int __meminit init_per_zone_wmark_min(void);
1417 extern void mem_init(void);
1418 extern void __init mmap_init(void);
1419 extern void show_mem(unsigned int flags);
1420 extern void si_meminfo(struct sysinfo * val);
1421 extern void si_meminfo_node(struct sysinfo *val, int nid);
1422
1423 extern __printf(3, 4)
1424 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1425
1426 extern void setup_per_cpu_pageset(void);
1427
1428 extern void zone_pcp_update(struct zone *zone);
1429 extern void zone_pcp_reset(struct zone *zone);
1430
1431 /* page_alloc.c */
1432 extern int min_free_kbytes;
1433
1434 /* nommu.c */
1435 extern atomic_long_t mmap_pages_allocated;
1436 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1437
1438 /* interval_tree.c */
1439 void vma_interval_tree_insert(struct vm_area_struct *node,
1440                               struct rb_root *root);
1441 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1442                                     struct vm_area_struct *prev,
1443                                     struct rb_root *root);
1444 void vma_interval_tree_remove(struct vm_area_struct *node,
1445                               struct rb_root *root);
1446 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1447                                 unsigned long start, unsigned long last);
1448 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1449                                 unsigned long start, unsigned long last);
1450
1451 #define vma_interval_tree_foreach(vma, root, start, last)               \
1452         for (vma = vma_interval_tree_iter_first(root, start, last);     \
1453              vma; vma = vma_interval_tree_iter_next(vma, start, last))
1454
1455 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1456                                         struct list_head *list)
1457 {
1458         list_add_tail(&vma->shared.nonlinear, list);
1459 }
1460
1461 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1462                                    struct rb_root *root);
1463 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1464                                    struct rb_root *root);
1465 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1466         struct rb_root *root, unsigned long start, unsigned long last);
1467 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1468         struct anon_vma_chain *node, unsigned long start, unsigned long last);
1469 #ifdef CONFIG_DEBUG_VM_RB
1470 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1471 #endif
1472
1473 #define anon_vma_interval_tree_foreach(avc, root, start, last)           \
1474         for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1475              avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1476
1477 /* mmap.c */
1478 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1479 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1480         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1481 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1482         struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1483         unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1484         struct mempolicy *);
1485 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1486 extern int split_vma(struct mm_struct *,
1487         struct vm_area_struct *, unsigned long addr, int new_below);
1488 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1489 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1490         struct rb_node **, struct rb_node *);
1491 extern void unlink_file_vma(struct vm_area_struct *);
1492 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1493         unsigned long addr, unsigned long len, pgoff_t pgoff,
1494         bool *need_rmap_locks);
1495 extern void exit_mmap(struct mm_struct *);
1496
1497 extern int mm_take_all_locks(struct mm_struct *mm);
1498 extern void mm_drop_all_locks(struct mm_struct *mm);
1499
1500 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1501 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1502
1503 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1504 extern int install_special_mapping(struct mm_struct *mm,
1505                                    unsigned long addr, unsigned long len,
1506                                    unsigned long flags, struct page **pages);
1507
1508 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1509
1510 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1511         unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1512 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1513         unsigned long len, unsigned long prot, unsigned long flags,
1514         unsigned long pgoff, unsigned long *populate);
1515 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1516
1517 #ifdef CONFIG_MMU
1518 extern int __mm_populate(unsigned long addr, unsigned long len,
1519                          int ignore_errors);
1520 static inline void mm_populate(unsigned long addr, unsigned long len)
1521 {
1522         /* Ignore errors */
1523         (void) __mm_populate(addr, len, 1);
1524 }
1525 #else
1526 static inline void mm_populate(unsigned long addr, unsigned long len) {}
1527 #endif
1528
1529 /* These take the mm semaphore themselves */
1530 extern unsigned long vm_brk(unsigned long, unsigned long);
1531 extern int vm_munmap(unsigned long, size_t);
1532 extern unsigned long vm_mmap(struct file *, unsigned long,
1533         unsigned long, unsigned long,
1534         unsigned long, unsigned long);
1535
1536 struct vm_unmapped_area_info {
1537 #define VM_UNMAPPED_AREA_TOPDOWN 1
1538         unsigned long flags;
1539         unsigned long length;
1540         unsigned long low_limit;
1541         unsigned long high_limit;
1542         unsigned long align_mask;
1543         unsigned long align_offset;
1544 };
1545
1546 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1547 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1548
1549 /*
1550  * Search for an unmapped address range.
1551  *
1552  * We are looking for a range that:
1553  * - does not intersect with any VMA;
1554  * - is contained within the [low_limit, high_limit) interval;
1555  * - is at least the desired size.
1556  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1557  */
1558 static inline unsigned long
1559 vm_unmapped_area(struct vm_unmapped_area_info *info)
1560 {
1561         if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1562                 return unmapped_area(info);
1563         else
1564                 return unmapped_area_topdown(info);
1565 }
1566
1567 /* truncate.c */
1568 extern void truncate_inode_pages(struct address_space *, loff_t);
1569 extern void truncate_inode_pages_range(struct address_space *,
1570                                        loff_t lstart, loff_t lend);
1571
1572 /* generic vm_area_ops exported for stackable file systems */
1573 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1574 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1575
1576 /* mm/page-writeback.c */
1577 int write_one_page(struct page *page, int wait);
1578 void task_dirty_inc(struct task_struct *tsk);
1579
1580 /* readahead.c */
1581 #define VM_MAX_READAHEAD        128     /* kbytes */
1582 #define VM_MIN_READAHEAD        16      /* kbytes (includes current page) */
1583
1584 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1585                         pgoff_t offset, unsigned long nr_to_read);
1586
1587 void page_cache_sync_readahead(struct address_space *mapping,
1588                                struct file_ra_state *ra,
1589                                struct file *filp,
1590                                pgoff_t offset,
1591                                unsigned long size);
1592
1593 void page_cache_async_readahead(struct address_space *mapping,
1594                                 struct file_ra_state *ra,
1595                                 struct file *filp,
1596                                 struct page *pg,
1597                                 pgoff_t offset,
1598                                 unsigned long size);
1599
1600 unsigned long max_sane_readahead(unsigned long nr);
1601 unsigned long ra_submit(struct file_ra_state *ra,
1602                         struct address_space *mapping,
1603                         struct file *filp);
1604
1605 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1606 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1607
1608 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1609 extern int expand_downwards(struct vm_area_struct *vma,
1610                 unsigned long address);
1611 #if VM_GROWSUP
1612 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1613 #else
1614   #define expand_upwards(vma, address) do { } while (0)
1615 #endif
1616
1617 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1618 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1619 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1620                                              struct vm_area_struct **pprev);
1621
1622 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1623    NULL if none.  Assume start_addr < end_addr. */
1624 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1625 {
1626         struct vm_area_struct * vma = find_vma(mm,start_addr);
1627
1628         if (vma && end_addr <= vma->vm_start)
1629                 vma = NULL;
1630         return vma;
1631 }
1632
1633 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1634 {
1635         return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1636 }
1637
1638 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1639 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1640                                 unsigned long vm_start, unsigned long vm_end)
1641 {
1642         struct vm_area_struct *vma = find_vma(mm, vm_start);
1643
1644         if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1645                 vma = NULL;
1646
1647         return vma;
1648 }
1649
1650 #ifdef CONFIG_MMU
1651 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1652 #else
1653 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1654 {
1655         return __pgprot(0);
1656 }
1657 #endif
1658
1659 #ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE
1660 unsigned long change_prot_numa(struct vm_area_struct *vma,
1661                         unsigned long start, unsigned long end);
1662 #endif
1663
1664 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1665 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1666                         unsigned long pfn, unsigned long size, pgprot_t);
1667 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1668 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1669                         unsigned long pfn);
1670 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1671                         unsigned long pfn);
1672 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
1673
1674
1675 struct page *follow_page_mask(struct vm_area_struct *vma,
1676                               unsigned long address, unsigned int foll_flags,
1677                               unsigned int *page_mask);
1678
1679 static inline struct page *follow_page(struct vm_area_struct *vma,
1680                 unsigned long address, unsigned int foll_flags)
1681 {
1682         unsigned int unused_page_mask;
1683         return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
1684 }
1685
1686 #define FOLL_WRITE      0x01    /* check pte is writable */
1687 #define FOLL_TOUCH      0x02    /* mark page accessed */
1688 #define FOLL_GET        0x04    /* do get_page on page */
1689 #define FOLL_DUMP       0x08    /* give error on hole if it would be zero */
1690 #define FOLL_FORCE      0x10    /* get_user_pages read/write w/o permission */
1691 #define FOLL_NOWAIT     0x20    /* if a disk transfer is needed, start the IO
1692                                  * and return without waiting upon it */
1693 #define FOLL_MLOCK      0x40    /* mark page as mlocked */
1694 #define FOLL_SPLIT      0x80    /* don't return transhuge pages, split them */
1695 #define FOLL_HWPOISON   0x100   /* check page is hwpoisoned */
1696 #define FOLL_NUMA       0x200   /* force NUMA hinting page fault */
1697 #define FOLL_MIGRATION  0x400   /* wait for page to replace migration entry */
1698
1699 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1700                         void *data);
1701 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1702                                unsigned long size, pte_fn_t fn, void *data);
1703
1704 #ifdef CONFIG_PROC_FS
1705 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1706 #else
1707 static inline void vm_stat_account(struct mm_struct *mm,
1708                         unsigned long flags, struct file *file, long pages)
1709 {
1710         mm->total_vm += pages;
1711 }
1712 #endif /* CONFIG_PROC_FS */
1713
1714 #ifdef CONFIG_DEBUG_PAGEALLOC
1715 extern void kernel_map_pages(struct page *page, int numpages, int enable);
1716 #ifdef CONFIG_HIBERNATION
1717 extern bool kernel_page_present(struct page *page);
1718 #endif /* CONFIG_HIBERNATION */
1719 #else
1720 static inline void
1721 kernel_map_pages(struct page *page, int numpages, int enable) {}
1722 #ifdef CONFIG_HIBERNATION
1723 static inline bool kernel_page_present(struct page *page) { return true; }
1724 #endif /* CONFIG_HIBERNATION */
1725 #endif
1726
1727 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1728 #ifdef  __HAVE_ARCH_GATE_AREA
1729 int in_gate_area_no_mm(unsigned long addr);
1730 int in_gate_area(struct mm_struct *mm, unsigned long addr);
1731 #else
1732 int in_gate_area_no_mm(unsigned long addr);
1733 #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1734 #endif  /* __HAVE_ARCH_GATE_AREA */
1735
1736 #ifdef CONFIG_SYSCTL
1737 extern int sysctl_drop_caches;
1738 int drop_caches_sysctl_handler(struct ctl_table *, int,
1739                                         void __user *, size_t *, loff_t *);
1740 #endif
1741
1742 unsigned long shrink_slab(struct shrink_control *shrink,
1743                           unsigned long nr_pages_scanned,
1744                           unsigned long lru_pages);
1745
1746 #ifndef CONFIG_MMU
1747 #define randomize_va_space 0
1748 #else
1749 extern int randomize_va_space;
1750 #endif
1751
1752 const char * arch_vma_name(struct vm_area_struct *vma);
1753 void print_vma_addr(char *prefix, unsigned long rip);
1754
1755 void sparse_mem_maps_populate_node(struct page **map_map,
1756                                    unsigned long pnum_begin,
1757                                    unsigned long pnum_end,
1758                                    unsigned long map_count,
1759                                    int nodeid);
1760
1761 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
1762 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1763 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1764 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1765 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1766 void *vmemmap_alloc_block(unsigned long size, int node);
1767 void *vmemmap_alloc_block_buf(unsigned long size, int node);
1768 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1769 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
1770                                int node);
1771 int vmemmap_populate(unsigned long start, unsigned long end, int node);
1772 void vmemmap_populate_print_last(void);
1773 #ifdef CONFIG_MEMORY_HOTPLUG
1774 void vmemmap_free(unsigned long start, unsigned long end);
1775 #endif
1776 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
1777                                   unsigned long size);
1778
1779 enum mf_flags {
1780         MF_COUNT_INCREASED = 1 << 0,
1781         MF_ACTION_REQUIRED = 1 << 1,
1782         MF_MUST_KILL = 1 << 2,
1783 };
1784 extern int memory_failure(unsigned long pfn, int trapno, int flags);
1785 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
1786 extern int unpoison_memory(unsigned long pfn);
1787 extern int sysctl_memory_failure_early_kill;
1788 extern int sysctl_memory_failure_recovery;
1789 extern void shake_page(struct page *p, int access);
1790 extern atomic_long_t num_poisoned_pages;
1791 extern int soft_offline_page(struct page *page, int flags);
1792
1793 extern void dump_page(struct page *page);
1794
1795 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1796 extern void clear_huge_page(struct page *page,
1797                             unsigned long addr,
1798                             unsigned int pages_per_huge_page);
1799 extern void copy_user_huge_page(struct page *dst, struct page *src,
1800                                 unsigned long addr, struct vm_area_struct *vma,
1801                                 unsigned int pages_per_huge_page);
1802 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1803
1804 #ifdef CONFIG_DEBUG_PAGEALLOC
1805 extern unsigned int _debug_guardpage_minorder;
1806
1807 static inline unsigned int debug_guardpage_minorder(void)
1808 {
1809         return _debug_guardpage_minorder;
1810 }
1811
1812 static inline bool page_is_guard(struct page *page)
1813 {
1814         return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
1815 }
1816 #else
1817 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
1818 static inline bool page_is_guard(struct page *page) { return false; }
1819 #endif /* CONFIG_DEBUG_PAGEALLOC */
1820
1821 #if MAX_NUMNODES > 1
1822 void __init setup_nr_node_ids(void);
1823 #else
1824 static inline void setup_nr_node_ids(void) {}
1825 #endif
1826
1827 #endif /* __KERNEL__ */
1828 #endif /* _LINUX_MM_H */