ipvs: allow rescheduling of new connections when port reuse is detected
[cascardo/linux.git] / include / linux / netdevice.h
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Definitions for the Interfaces handler.
7  *
8  * Version:     @(#)dev.h       1.0.10  08/12/93
9  *
10  * Authors:     Ross Biro
11  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *              Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14  *              Alan Cox, <alan@lxorguk.ukuu.org.uk>
15  *              Bjorn Ekwall. <bj0rn@blox.se>
16  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
17  *
18  *              This program is free software; you can redistribute it and/or
19  *              modify it under the terms of the GNU General Public License
20  *              as published by the Free Software Foundation; either version
21  *              2 of the License, or (at your option) any later version.
22  *
23  *              Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27
28 #include <linux/pm_qos.h>
29 #include <linux/timer.h>
30 #include <linux/bug.h>
31 #include <linux/delay.h>
32 #include <linux/atomic.h>
33 #include <linux/prefetch.h>
34 #include <asm/cache.h>
35 #include <asm/byteorder.h>
36
37 #include <linux/percpu.h>
38 #include <linux/rculist.h>
39 #include <linux/dmaengine.h>
40 #include <linux/workqueue.h>
41 #include <linux/dynamic_queue_limits.h>
42
43 #include <linux/ethtool.h>
44 #include <net/net_namespace.h>
45 #include <net/dsa.h>
46 #ifdef CONFIG_DCB
47 #include <net/dcbnl.h>
48 #endif
49 #include <net/netprio_cgroup.h>
50
51 #include <linux/netdev_features.h>
52 #include <linux/neighbour.h>
53 #include <uapi/linux/netdevice.h>
54
55 struct netpoll_info;
56 struct device;
57 struct phy_device;
58 /* 802.11 specific */
59 struct wireless_dev;
60 /* 802.15.4 specific */
61 struct wpan_dev;
62
63 void netdev_set_default_ethtool_ops(struct net_device *dev,
64                                     const struct ethtool_ops *ops);
65
66 /* Backlog congestion levels */
67 #define NET_RX_SUCCESS          0       /* keep 'em coming, baby */
68 #define NET_RX_DROP             1       /* packet dropped */
69
70 /*
71  * Transmit return codes: transmit return codes originate from three different
72  * namespaces:
73  *
74  * - qdisc return codes
75  * - driver transmit return codes
76  * - errno values
77  *
78  * Drivers are allowed to return any one of those in their hard_start_xmit()
79  * function. Real network devices commonly used with qdiscs should only return
80  * the driver transmit return codes though - when qdiscs are used, the actual
81  * transmission happens asynchronously, so the value is not propagated to
82  * higher layers. Virtual network devices transmit synchronously, in this case
83  * the driver transmit return codes are consumed by dev_queue_xmit(), all
84  * others are propagated to higher layers.
85  */
86
87 /* qdisc ->enqueue() return codes. */
88 #define NET_XMIT_SUCCESS        0x00
89 #define NET_XMIT_DROP           0x01    /* skb dropped                  */
90 #define NET_XMIT_CN             0x02    /* congestion notification      */
91 #define NET_XMIT_POLICED        0x03    /* skb is shot by police        */
92 #define NET_XMIT_MASK           0x0f    /* qdisc flags in net/sch_generic.h */
93
94 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
95  * indicates that the device will soon be dropping packets, or already drops
96  * some packets of the same priority; prompting us to send less aggressively. */
97 #define net_xmit_eval(e)        ((e) == NET_XMIT_CN ? 0 : (e))
98 #define net_xmit_errno(e)       ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
99
100 /* Driver transmit return codes */
101 #define NETDEV_TX_MASK          0xf0
102
103 enum netdev_tx {
104         __NETDEV_TX_MIN  = INT_MIN,     /* make sure enum is signed */
105         NETDEV_TX_OK     = 0x00,        /* driver took care of packet */
106         NETDEV_TX_BUSY   = 0x10,        /* driver tx path was busy*/
107         NETDEV_TX_LOCKED = 0x20,        /* driver tx lock was already taken */
108 };
109 typedef enum netdev_tx netdev_tx_t;
110
111 /*
112  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
113  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
114  */
115 static inline bool dev_xmit_complete(int rc)
116 {
117         /*
118          * Positive cases with an skb consumed by a driver:
119          * - successful transmission (rc == NETDEV_TX_OK)
120          * - error while transmitting (rc < 0)
121          * - error while queueing to a different device (rc & NET_XMIT_MASK)
122          */
123         if (likely(rc < NET_XMIT_MASK))
124                 return true;
125
126         return false;
127 }
128
129 /*
130  *      Compute the worst case header length according to the protocols
131  *      used.
132  */
133
134 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
135 # if defined(CONFIG_MAC80211_MESH)
136 #  define LL_MAX_HEADER 128
137 # else
138 #  define LL_MAX_HEADER 96
139 # endif
140 #else
141 # define LL_MAX_HEADER 32
142 #endif
143
144 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
145     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
146 #define MAX_HEADER LL_MAX_HEADER
147 #else
148 #define MAX_HEADER (LL_MAX_HEADER + 48)
149 #endif
150
151 /*
152  *      Old network device statistics. Fields are native words
153  *      (unsigned long) so they can be read and written atomically.
154  */
155
156 struct net_device_stats {
157         unsigned long   rx_packets;
158         unsigned long   tx_packets;
159         unsigned long   rx_bytes;
160         unsigned long   tx_bytes;
161         unsigned long   rx_errors;
162         unsigned long   tx_errors;
163         unsigned long   rx_dropped;
164         unsigned long   tx_dropped;
165         unsigned long   multicast;
166         unsigned long   collisions;
167         unsigned long   rx_length_errors;
168         unsigned long   rx_over_errors;
169         unsigned long   rx_crc_errors;
170         unsigned long   rx_frame_errors;
171         unsigned long   rx_fifo_errors;
172         unsigned long   rx_missed_errors;
173         unsigned long   tx_aborted_errors;
174         unsigned long   tx_carrier_errors;
175         unsigned long   tx_fifo_errors;
176         unsigned long   tx_heartbeat_errors;
177         unsigned long   tx_window_errors;
178         unsigned long   rx_compressed;
179         unsigned long   tx_compressed;
180 };
181
182
183 #include <linux/cache.h>
184 #include <linux/skbuff.h>
185
186 #ifdef CONFIG_RPS
187 #include <linux/static_key.h>
188 extern struct static_key rps_needed;
189 #endif
190
191 struct neighbour;
192 struct neigh_parms;
193 struct sk_buff;
194
195 struct netdev_hw_addr {
196         struct list_head        list;
197         unsigned char           addr[MAX_ADDR_LEN];
198         unsigned char           type;
199 #define NETDEV_HW_ADDR_T_LAN            1
200 #define NETDEV_HW_ADDR_T_SAN            2
201 #define NETDEV_HW_ADDR_T_SLAVE          3
202 #define NETDEV_HW_ADDR_T_UNICAST        4
203 #define NETDEV_HW_ADDR_T_MULTICAST      5
204         bool                    global_use;
205         int                     sync_cnt;
206         int                     refcount;
207         int                     synced;
208         struct rcu_head         rcu_head;
209 };
210
211 struct netdev_hw_addr_list {
212         struct list_head        list;
213         int                     count;
214 };
215
216 #define netdev_hw_addr_list_count(l) ((l)->count)
217 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
218 #define netdev_hw_addr_list_for_each(ha, l) \
219         list_for_each_entry(ha, &(l)->list, list)
220
221 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
222 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
223 #define netdev_for_each_uc_addr(ha, dev) \
224         netdev_hw_addr_list_for_each(ha, &(dev)->uc)
225
226 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
227 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
228 #define netdev_for_each_mc_addr(ha, dev) \
229         netdev_hw_addr_list_for_each(ha, &(dev)->mc)
230
231 struct hh_cache {
232         u16             hh_len;
233         u16             __pad;
234         seqlock_t       hh_lock;
235
236         /* cached hardware header; allow for machine alignment needs.        */
237 #define HH_DATA_MOD     16
238 #define HH_DATA_OFF(__len) \
239         (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
240 #define HH_DATA_ALIGN(__len) \
241         (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
242         unsigned long   hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
243 };
244
245 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
246  * Alternative is:
247  *   dev->hard_header_len ? (dev->hard_header_len +
248  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
249  *
250  * We could use other alignment values, but we must maintain the
251  * relationship HH alignment <= LL alignment.
252  */
253 #define LL_RESERVED_SPACE(dev) \
254         ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
255 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
256         ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
257
258 struct header_ops {
259         int     (*create) (struct sk_buff *skb, struct net_device *dev,
260                            unsigned short type, const void *daddr,
261                            const void *saddr, unsigned int len);
262         int     (*parse)(const struct sk_buff *skb, unsigned char *haddr);
263         int     (*rebuild)(struct sk_buff *skb);
264         int     (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
265         void    (*cache_update)(struct hh_cache *hh,
266                                 const struct net_device *dev,
267                                 const unsigned char *haddr);
268 };
269
270 /* These flag bits are private to the generic network queueing
271  * layer, they may not be explicitly referenced by any other
272  * code.
273  */
274
275 enum netdev_state_t {
276         __LINK_STATE_START,
277         __LINK_STATE_PRESENT,
278         __LINK_STATE_NOCARRIER,
279         __LINK_STATE_LINKWATCH_PENDING,
280         __LINK_STATE_DORMANT,
281 };
282
283
284 /*
285  * This structure holds at boot time configured netdevice settings. They
286  * are then used in the device probing.
287  */
288 struct netdev_boot_setup {
289         char name[IFNAMSIZ];
290         struct ifmap map;
291 };
292 #define NETDEV_BOOT_SETUP_MAX 8
293
294 int __init netdev_boot_setup(char *str);
295
296 /*
297  * Structure for NAPI scheduling similar to tasklet but with weighting
298  */
299 struct napi_struct {
300         /* The poll_list must only be managed by the entity which
301          * changes the state of the NAPI_STATE_SCHED bit.  This means
302          * whoever atomically sets that bit can add this napi_struct
303          * to the per-cpu poll_list, and whoever clears that bit
304          * can remove from the list right before clearing the bit.
305          */
306         struct list_head        poll_list;
307
308         unsigned long           state;
309         int                     weight;
310         unsigned int            gro_count;
311         int                     (*poll)(struct napi_struct *, int);
312 #ifdef CONFIG_NETPOLL
313         spinlock_t              poll_lock;
314         int                     poll_owner;
315 #endif
316         struct net_device       *dev;
317         struct sk_buff          *gro_list;
318         struct sk_buff          *skb;
319         struct hrtimer          timer;
320         struct list_head        dev_list;
321         struct hlist_node       napi_hash_node;
322         unsigned int            napi_id;
323 };
324
325 enum {
326         NAPI_STATE_SCHED,       /* Poll is scheduled */
327         NAPI_STATE_DISABLE,     /* Disable pending */
328         NAPI_STATE_NPSVC,       /* Netpoll - don't dequeue from poll_list */
329         NAPI_STATE_HASHED,      /* In NAPI hash */
330 };
331
332 enum gro_result {
333         GRO_MERGED,
334         GRO_MERGED_FREE,
335         GRO_HELD,
336         GRO_NORMAL,
337         GRO_DROP,
338 };
339 typedef enum gro_result gro_result_t;
340
341 /*
342  * enum rx_handler_result - Possible return values for rx_handlers.
343  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
344  * further.
345  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
346  * case skb->dev was changed by rx_handler.
347  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
348  * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
349  *
350  * rx_handlers are functions called from inside __netif_receive_skb(), to do
351  * special processing of the skb, prior to delivery to protocol handlers.
352  *
353  * Currently, a net_device can only have a single rx_handler registered. Trying
354  * to register a second rx_handler will return -EBUSY.
355  *
356  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
357  * To unregister a rx_handler on a net_device, use
358  * netdev_rx_handler_unregister().
359  *
360  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
361  * do with the skb.
362  *
363  * If the rx_handler consumed to skb in some way, it should return
364  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
365  * the skb to be delivered in some other ways.
366  *
367  * If the rx_handler changed skb->dev, to divert the skb to another
368  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
369  * new device will be called if it exists.
370  *
371  * If the rx_handler consider the skb should be ignored, it should return
372  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
373  * are registered on exact device (ptype->dev == skb->dev).
374  *
375  * If the rx_handler didn't changed skb->dev, but want the skb to be normally
376  * delivered, it should return RX_HANDLER_PASS.
377  *
378  * A device without a registered rx_handler will behave as if rx_handler
379  * returned RX_HANDLER_PASS.
380  */
381
382 enum rx_handler_result {
383         RX_HANDLER_CONSUMED,
384         RX_HANDLER_ANOTHER,
385         RX_HANDLER_EXACT,
386         RX_HANDLER_PASS,
387 };
388 typedef enum rx_handler_result rx_handler_result_t;
389 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
390
391 void __napi_schedule(struct napi_struct *n);
392 void __napi_schedule_irqoff(struct napi_struct *n);
393
394 static inline bool napi_disable_pending(struct napi_struct *n)
395 {
396         return test_bit(NAPI_STATE_DISABLE, &n->state);
397 }
398
399 /**
400  *      napi_schedule_prep - check if napi can be scheduled
401  *      @n: napi context
402  *
403  * Test if NAPI routine is already running, and if not mark
404  * it as running.  This is used as a condition variable
405  * insure only one NAPI poll instance runs.  We also make
406  * sure there is no pending NAPI disable.
407  */
408 static inline bool napi_schedule_prep(struct napi_struct *n)
409 {
410         return !napi_disable_pending(n) &&
411                 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
412 }
413
414 /**
415  *      napi_schedule - schedule NAPI poll
416  *      @n: napi context
417  *
418  * Schedule NAPI poll routine to be called if it is not already
419  * running.
420  */
421 static inline void napi_schedule(struct napi_struct *n)
422 {
423         if (napi_schedule_prep(n))
424                 __napi_schedule(n);
425 }
426
427 /**
428  *      napi_schedule_irqoff - schedule NAPI poll
429  *      @n: napi context
430  *
431  * Variant of napi_schedule(), assuming hard irqs are masked.
432  */
433 static inline void napi_schedule_irqoff(struct napi_struct *n)
434 {
435         if (napi_schedule_prep(n))
436                 __napi_schedule_irqoff(n);
437 }
438
439 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
440 static inline bool napi_reschedule(struct napi_struct *napi)
441 {
442         if (napi_schedule_prep(napi)) {
443                 __napi_schedule(napi);
444                 return true;
445         }
446         return false;
447 }
448
449 void __napi_complete(struct napi_struct *n);
450 void napi_complete_done(struct napi_struct *n, int work_done);
451 /**
452  *      napi_complete - NAPI processing complete
453  *      @n: napi context
454  *
455  * Mark NAPI processing as complete.
456  * Consider using napi_complete_done() instead.
457  */
458 static inline void napi_complete(struct napi_struct *n)
459 {
460         return napi_complete_done(n, 0);
461 }
462
463 /**
464  *      napi_by_id - lookup a NAPI by napi_id
465  *      @napi_id: hashed napi_id
466  *
467  * lookup @napi_id in napi_hash table
468  * must be called under rcu_read_lock()
469  */
470 struct napi_struct *napi_by_id(unsigned int napi_id);
471
472 /**
473  *      napi_hash_add - add a NAPI to global hashtable
474  *      @napi: napi context
475  *
476  * generate a new napi_id and store a @napi under it in napi_hash
477  */
478 void napi_hash_add(struct napi_struct *napi);
479
480 /**
481  *      napi_hash_del - remove a NAPI from global table
482  *      @napi: napi context
483  *
484  * Warning: caller must observe rcu grace period
485  * before freeing memory containing @napi
486  */
487 void napi_hash_del(struct napi_struct *napi);
488
489 /**
490  *      napi_disable - prevent NAPI from scheduling
491  *      @n: napi context
492  *
493  * Stop NAPI from being scheduled on this context.
494  * Waits till any outstanding processing completes.
495  */
496 void napi_disable(struct napi_struct *n);
497
498 /**
499  *      napi_enable - enable NAPI scheduling
500  *      @n: napi context
501  *
502  * Resume NAPI from being scheduled on this context.
503  * Must be paired with napi_disable.
504  */
505 static inline void napi_enable(struct napi_struct *n)
506 {
507         BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
508         smp_mb__before_atomic();
509         clear_bit(NAPI_STATE_SCHED, &n->state);
510 }
511
512 #ifdef CONFIG_SMP
513 /**
514  *      napi_synchronize - wait until NAPI is not running
515  *      @n: napi context
516  *
517  * Wait until NAPI is done being scheduled on this context.
518  * Waits till any outstanding processing completes but
519  * does not disable future activations.
520  */
521 static inline void napi_synchronize(const struct napi_struct *n)
522 {
523         while (test_bit(NAPI_STATE_SCHED, &n->state))
524                 msleep(1);
525 }
526 #else
527 # define napi_synchronize(n)    barrier()
528 #endif
529
530 enum netdev_queue_state_t {
531         __QUEUE_STATE_DRV_XOFF,
532         __QUEUE_STATE_STACK_XOFF,
533         __QUEUE_STATE_FROZEN,
534 };
535
536 #define QUEUE_STATE_DRV_XOFF    (1 << __QUEUE_STATE_DRV_XOFF)
537 #define QUEUE_STATE_STACK_XOFF  (1 << __QUEUE_STATE_STACK_XOFF)
538 #define QUEUE_STATE_FROZEN      (1 << __QUEUE_STATE_FROZEN)
539
540 #define QUEUE_STATE_ANY_XOFF    (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
541 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
542                                         QUEUE_STATE_FROZEN)
543 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
544                                         QUEUE_STATE_FROZEN)
545
546 /*
547  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
548  * netif_tx_* functions below are used to manipulate this flag.  The
549  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
550  * queue independently.  The netif_xmit_*stopped functions below are called
551  * to check if the queue has been stopped by the driver or stack (either
552  * of the XOFF bits are set in the state).  Drivers should not need to call
553  * netif_xmit*stopped functions, they should only be using netif_tx_*.
554  */
555
556 struct netdev_queue {
557 /*
558  * read mostly part
559  */
560         struct net_device       *dev;
561         struct Qdisc __rcu      *qdisc;
562         struct Qdisc            *qdisc_sleeping;
563 #ifdef CONFIG_SYSFS
564         struct kobject          kobj;
565 #endif
566 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
567         int                     numa_node;
568 #endif
569 /*
570  * write mostly part
571  */
572         spinlock_t              _xmit_lock ____cacheline_aligned_in_smp;
573         int                     xmit_lock_owner;
574         /*
575          * please use this field instead of dev->trans_start
576          */
577         unsigned long           trans_start;
578
579         /*
580          * Number of TX timeouts for this queue
581          * (/sys/class/net/DEV/Q/trans_timeout)
582          */
583         unsigned long           trans_timeout;
584
585         unsigned long           state;
586
587 #ifdef CONFIG_BQL
588         struct dql              dql;
589 #endif
590 } ____cacheline_aligned_in_smp;
591
592 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
593 {
594 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
595         return q->numa_node;
596 #else
597         return NUMA_NO_NODE;
598 #endif
599 }
600
601 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
602 {
603 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
604         q->numa_node = node;
605 #endif
606 }
607
608 #ifdef CONFIG_RPS
609 /*
610  * This structure holds an RPS map which can be of variable length.  The
611  * map is an array of CPUs.
612  */
613 struct rps_map {
614         unsigned int len;
615         struct rcu_head rcu;
616         u16 cpus[0];
617 };
618 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
619
620 /*
621  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
622  * tail pointer for that CPU's input queue at the time of last enqueue, and
623  * a hardware filter index.
624  */
625 struct rps_dev_flow {
626         u16 cpu;
627         u16 filter;
628         unsigned int last_qtail;
629 };
630 #define RPS_NO_FILTER 0xffff
631
632 /*
633  * The rps_dev_flow_table structure contains a table of flow mappings.
634  */
635 struct rps_dev_flow_table {
636         unsigned int mask;
637         struct rcu_head rcu;
638         struct rps_dev_flow flows[0];
639 };
640 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
641     ((_num) * sizeof(struct rps_dev_flow)))
642
643 /*
644  * The rps_sock_flow_table contains mappings of flows to the last CPU
645  * on which they were processed by the application (set in recvmsg).
646  */
647 struct rps_sock_flow_table {
648         unsigned int mask;
649         u16 ents[0];
650 };
651 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
652     ((_num) * sizeof(u16)))
653
654 #define RPS_NO_CPU 0xffff
655
656 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
657                                         u32 hash)
658 {
659         if (table && hash) {
660                 unsigned int cpu, index = hash & table->mask;
661
662                 /* We only give a hint, preemption can change cpu under us */
663                 cpu = raw_smp_processor_id();
664
665                 if (table->ents[index] != cpu)
666                         table->ents[index] = cpu;
667         }
668 }
669
670 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
671                                        u32 hash)
672 {
673         if (table && hash)
674                 table->ents[hash & table->mask] = RPS_NO_CPU;
675 }
676
677 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
678
679 #ifdef CONFIG_RFS_ACCEL
680 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
681                          u16 filter_id);
682 #endif
683 #endif /* CONFIG_RPS */
684
685 /* This structure contains an instance of an RX queue. */
686 struct netdev_rx_queue {
687 #ifdef CONFIG_RPS
688         struct rps_map __rcu            *rps_map;
689         struct rps_dev_flow_table __rcu *rps_flow_table;
690 #endif
691         struct kobject                  kobj;
692         struct net_device               *dev;
693 } ____cacheline_aligned_in_smp;
694
695 /*
696  * RX queue sysfs structures and functions.
697  */
698 struct rx_queue_attribute {
699         struct attribute attr;
700         ssize_t (*show)(struct netdev_rx_queue *queue,
701             struct rx_queue_attribute *attr, char *buf);
702         ssize_t (*store)(struct netdev_rx_queue *queue,
703             struct rx_queue_attribute *attr, const char *buf, size_t len);
704 };
705
706 #ifdef CONFIG_XPS
707 /*
708  * This structure holds an XPS map which can be of variable length.  The
709  * map is an array of queues.
710  */
711 struct xps_map {
712         unsigned int len;
713         unsigned int alloc_len;
714         struct rcu_head rcu;
715         u16 queues[0];
716 };
717 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
718 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map))    \
719     / sizeof(u16))
720
721 /*
722  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
723  */
724 struct xps_dev_maps {
725         struct rcu_head rcu;
726         struct xps_map __rcu *cpu_map[0];
727 };
728 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) +                \
729     (nr_cpu_ids * sizeof(struct xps_map *)))
730 #endif /* CONFIG_XPS */
731
732 #define TC_MAX_QUEUE    16
733 #define TC_BITMASK      15
734 /* HW offloaded queuing disciplines txq count and offset maps */
735 struct netdev_tc_txq {
736         u16 count;
737         u16 offset;
738 };
739
740 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
741 /*
742  * This structure is to hold information about the device
743  * configured to run FCoE protocol stack.
744  */
745 struct netdev_fcoe_hbainfo {
746         char    manufacturer[64];
747         char    serial_number[64];
748         char    hardware_version[64];
749         char    driver_version[64];
750         char    optionrom_version[64];
751         char    firmware_version[64];
752         char    model[256];
753         char    model_description[256];
754 };
755 #endif
756
757 #define MAX_PHYS_ITEM_ID_LEN 32
758
759 /* This structure holds a unique identifier to identify some
760  * physical item (port for example) used by a netdevice.
761  */
762 struct netdev_phys_item_id {
763         unsigned char id[MAX_PHYS_ITEM_ID_LEN];
764         unsigned char id_len;
765 };
766
767 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
768                                        struct sk_buff *skb);
769
770 /*
771  * This structure defines the management hooks for network devices.
772  * The following hooks can be defined; unless noted otherwise, they are
773  * optional and can be filled with a null pointer.
774  *
775  * int (*ndo_init)(struct net_device *dev);
776  *     This function is called once when network device is registered.
777  *     The network device can use this to any late stage initializaton
778  *     or semantic validattion. It can fail with an error code which will
779  *     be propogated back to register_netdev
780  *
781  * void (*ndo_uninit)(struct net_device *dev);
782  *     This function is called when device is unregistered or when registration
783  *     fails. It is not called if init fails.
784  *
785  * int (*ndo_open)(struct net_device *dev);
786  *     This function is called when network device transistions to the up
787  *     state.
788  *
789  * int (*ndo_stop)(struct net_device *dev);
790  *     This function is called when network device transistions to the down
791  *     state.
792  *
793  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
794  *                               struct net_device *dev);
795  *      Called when a packet needs to be transmitted.
796  *      Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
797  *        (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
798  *      Required can not be NULL.
799  *
800  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
801  *                         void *accel_priv, select_queue_fallback_t fallback);
802  *      Called to decide which queue to when device supports multiple
803  *      transmit queues.
804  *
805  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
806  *      This function is called to allow device receiver to make
807  *      changes to configuration when multicast or promiscious is enabled.
808  *
809  * void (*ndo_set_rx_mode)(struct net_device *dev);
810  *      This function is called device changes address list filtering.
811  *      If driver handles unicast address filtering, it should set
812  *      IFF_UNICAST_FLT to its priv_flags.
813  *
814  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
815  *      This function  is called when the Media Access Control address
816  *      needs to be changed. If this interface is not defined, the
817  *      mac address can not be changed.
818  *
819  * int (*ndo_validate_addr)(struct net_device *dev);
820  *      Test if Media Access Control address is valid for the device.
821  *
822  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
823  *      Called when a user request an ioctl which can't be handled by
824  *      the generic interface code. If not defined ioctl's return
825  *      not supported error code.
826  *
827  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
828  *      Used to set network devices bus interface parameters. This interface
829  *      is retained for legacy reason, new devices should use the bus
830  *      interface (PCI) for low level management.
831  *
832  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
833  *      Called when a user wants to change the Maximum Transfer Unit
834  *      of a device. If not defined, any request to change MTU will
835  *      will return an error.
836  *
837  * void (*ndo_tx_timeout)(struct net_device *dev);
838  *      Callback uses when the transmitter has not made any progress
839  *      for dev->watchdog ticks.
840  *
841  * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
842  *                      struct rtnl_link_stats64 *storage);
843  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
844  *      Called when a user wants to get the network device usage
845  *      statistics. Drivers must do one of the following:
846  *      1. Define @ndo_get_stats64 to fill in a zero-initialised
847  *         rtnl_link_stats64 structure passed by the caller.
848  *      2. Define @ndo_get_stats to update a net_device_stats structure
849  *         (which should normally be dev->stats) and return a pointer to
850  *         it. The structure may be changed asynchronously only if each
851  *         field is written atomically.
852  *      3. Update dev->stats asynchronously and atomically, and define
853  *         neither operation.
854  *
855  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
856  *      If device support VLAN filtering this function is called when a
857  *      VLAN id is registered.
858  *
859  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
860  *      If device support VLAN filtering this function is called when a
861  *      VLAN id is unregistered.
862  *
863  * void (*ndo_poll_controller)(struct net_device *dev);
864  *
865  *      SR-IOV management functions.
866  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
867  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
868  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
869  *                        int max_tx_rate);
870  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
871  * int (*ndo_get_vf_config)(struct net_device *dev,
872  *                          int vf, struct ifla_vf_info *ivf);
873  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
874  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
875  *                        struct nlattr *port[]);
876  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
877  * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
878  *      Called to setup 'tc' number of traffic classes in the net device. This
879  *      is always called from the stack with the rtnl lock held and netif tx
880  *      queues stopped. This allows the netdevice to perform queue management
881  *      safely.
882  *
883  *      Fiber Channel over Ethernet (FCoE) offload functions.
884  * int (*ndo_fcoe_enable)(struct net_device *dev);
885  *      Called when the FCoE protocol stack wants to start using LLD for FCoE
886  *      so the underlying device can perform whatever needed configuration or
887  *      initialization to support acceleration of FCoE traffic.
888  *
889  * int (*ndo_fcoe_disable)(struct net_device *dev);
890  *      Called when the FCoE protocol stack wants to stop using LLD for FCoE
891  *      so the underlying device can perform whatever needed clean-ups to
892  *      stop supporting acceleration of FCoE traffic.
893  *
894  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
895  *                           struct scatterlist *sgl, unsigned int sgc);
896  *      Called when the FCoE Initiator wants to initialize an I/O that
897  *      is a possible candidate for Direct Data Placement (DDP). The LLD can
898  *      perform necessary setup and returns 1 to indicate the device is set up
899  *      successfully to perform DDP on this I/O, otherwise this returns 0.
900  *
901  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
902  *      Called when the FCoE Initiator/Target is done with the DDPed I/O as
903  *      indicated by the FC exchange id 'xid', so the underlying device can
904  *      clean up and reuse resources for later DDP requests.
905  *
906  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
907  *                            struct scatterlist *sgl, unsigned int sgc);
908  *      Called when the FCoE Target wants to initialize an I/O that
909  *      is a possible candidate for Direct Data Placement (DDP). The LLD can
910  *      perform necessary setup and returns 1 to indicate the device is set up
911  *      successfully to perform DDP on this I/O, otherwise this returns 0.
912  *
913  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
914  *                             struct netdev_fcoe_hbainfo *hbainfo);
915  *      Called when the FCoE Protocol stack wants information on the underlying
916  *      device. This information is utilized by the FCoE protocol stack to
917  *      register attributes with Fiber Channel management service as per the
918  *      FC-GS Fabric Device Management Information(FDMI) specification.
919  *
920  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
921  *      Called when the underlying device wants to override default World Wide
922  *      Name (WWN) generation mechanism in FCoE protocol stack to pass its own
923  *      World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
924  *      protocol stack to use.
925  *
926  *      RFS acceleration.
927  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
928  *                          u16 rxq_index, u32 flow_id);
929  *      Set hardware filter for RFS.  rxq_index is the target queue index;
930  *      flow_id is a flow ID to be passed to rps_may_expire_flow() later.
931  *      Return the filter ID on success, or a negative error code.
932  *
933  *      Slave management functions (for bridge, bonding, etc).
934  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
935  *      Called to make another netdev an underling.
936  *
937  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
938  *      Called to release previously enslaved netdev.
939  *
940  *      Feature/offload setting functions.
941  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
942  *              netdev_features_t features);
943  *      Adjusts the requested feature flags according to device-specific
944  *      constraints, and returns the resulting flags. Must not modify
945  *      the device state.
946  *
947  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
948  *      Called to update device configuration to new features. Passed
949  *      feature set might be less than what was returned by ndo_fix_features()).
950  *      Must return >0 or -errno if it changed dev->features itself.
951  *
952  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
953  *                    struct net_device *dev,
954  *                    const unsigned char *addr, u16 vid, u16 flags)
955  *      Adds an FDB entry to dev for addr.
956  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
957  *                    struct net_device *dev,
958  *                    const unsigned char *addr, u16 vid)
959  *      Deletes the FDB entry from dev coresponding to addr.
960  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
961  *                     struct net_device *dev, struct net_device *filter_dev,
962  *                     int idx)
963  *      Used to add FDB entries to dump requests. Implementers should add
964  *      entries to skb and update idx with the number of entries.
965  *
966  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh)
967  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
968  *                           struct net_device *dev, u32 filter_mask)
969  *
970  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
971  *      Called to change device carrier. Soft-devices (like dummy, team, etc)
972  *      which do not represent real hardware may define this to allow their
973  *      userspace components to manage their virtual carrier state. Devices
974  *      that determine carrier state from physical hardware properties (eg
975  *      network cables) or protocol-dependent mechanisms (eg
976  *      USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
977  *
978  * int (*ndo_get_phys_port_id)(struct net_device *dev,
979  *                             struct netdev_phys_item_id *ppid);
980  *      Called to get ID of physical port of this device. If driver does
981  *      not implement this, it is assumed that the hw is not able to have
982  *      multiple net devices on single physical port.
983  *
984  * void (*ndo_add_vxlan_port)(struct  net_device *dev,
985  *                            sa_family_t sa_family, __be16 port);
986  *      Called by vxlan to notiy a driver about the UDP port and socket
987  *      address family that vxlan is listnening to. It is called only when
988  *      a new port starts listening. The operation is protected by the
989  *      vxlan_net->sock_lock.
990  *
991  * void (*ndo_del_vxlan_port)(struct  net_device *dev,
992  *                            sa_family_t sa_family, __be16 port);
993  *      Called by vxlan to notify the driver about a UDP port and socket
994  *      address family that vxlan is not listening to anymore. The operation
995  *      is protected by the vxlan_net->sock_lock.
996  *
997  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
998  *                               struct net_device *dev)
999  *      Called by upper layer devices to accelerate switching or other
1000  *      station functionality into hardware. 'pdev is the lowerdev
1001  *      to use for the offload and 'dev' is the net device that will
1002  *      back the offload. Returns a pointer to the private structure
1003  *      the upper layer will maintain.
1004  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1005  *      Called by upper layer device to delete the station created
1006  *      by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1007  *      the station and priv is the structure returned by the add
1008  *      operation.
1009  * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1010  *                                    struct net_device *dev,
1011  *                                    void *priv);
1012  *      Callback to use for xmit over the accelerated station. This
1013  *      is used in place of ndo_start_xmit on accelerated net
1014  *      devices.
1015  * netdev_features_t (*ndo_features_check) (struct sk_buff *skb,
1016  *                                          struct net_device *dev
1017  *                                          netdev_features_t features);
1018  *      Called by core transmit path to determine if device is capable of
1019  *      performing offload operations on a given packet. This is to give
1020  *      the device an opportunity to implement any restrictions that cannot
1021  *      be otherwise expressed by feature flags. The check is called with
1022  *      the set of features that the stack has calculated and it returns
1023  *      those the driver believes to be appropriate.
1024  *
1025  * int (*ndo_switch_parent_id_get)(struct net_device *dev,
1026  *                                 struct netdev_phys_item_id *psid);
1027  *      Called to get an ID of the switch chip this port is part of.
1028  *      If driver implements this, it indicates that it represents a port
1029  *      of a switch chip.
1030  * int (*ndo_switch_port_stp_update)(struct net_device *dev, u8 state);
1031  *      Called to notify switch device port of bridge port STP
1032  *      state change.
1033  */
1034 struct net_device_ops {
1035         int                     (*ndo_init)(struct net_device *dev);
1036         void                    (*ndo_uninit)(struct net_device *dev);
1037         int                     (*ndo_open)(struct net_device *dev);
1038         int                     (*ndo_stop)(struct net_device *dev);
1039         netdev_tx_t             (*ndo_start_xmit) (struct sk_buff *skb,
1040                                                    struct net_device *dev);
1041         u16                     (*ndo_select_queue)(struct net_device *dev,
1042                                                     struct sk_buff *skb,
1043                                                     void *accel_priv,
1044                                                     select_queue_fallback_t fallback);
1045         void                    (*ndo_change_rx_flags)(struct net_device *dev,
1046                                                        int flags);
1047         void                    (*ndo_set_rx_mode)(struct net_device *dev);
1048         int                     (*ndo_set_mac_address)(struct net_device *dev,
1049                                                        void *addr);
1050         int                     (*ndo_validate_addr)(struct net_device *dev);
1051         int                     (*ndo_do_ioctl)(struct net_device *dev,
1052                                                 struct ifreq *ifr, int cmd);
1053         int                     (*ndo_set_config)(struct net_device *dev,
1054                                                   struct ifmap *map);
1055         int                     (*ndo_change_mtu)(struct net_device *dev,
1056                                                   int new_mtu);
1057         int                     (*ndo_neigh_setup)(struct net_device *dev,
1058                                                    struct neigh_parms *);
1059         void                    (*ndo_tx_timeout) (struct net_device *dev);
1060
1061         struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1062                                                      struct rtnl_link_stats64 *storage);
1063         struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1064
1065         int                     (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1066                                                        __be16 proto, u16 vid);
1067         int                     (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1068                                                         __be16 proto, u16 vid);
1069 #ifdef CONFIG_NET_POLL_CONTROLLER
1070         void                    (*ndo_poll_controller)(struct net_device *dev);
1071         int                     (*ndo_netpoll_setup)(struct net_device *dev,
1072                                                      struct netpoll_info *info);
1073         void                    (*ndo_netpoll_cleanup)(struct net_device *dev);
1074 #endif
1075 #ifdef CONFIG_NET_RX_BUSY_POLL
1076         int                     (*ndo_busy_poll)(struct napi_struct *dev);
1077 #endif
1078         int                     (*ndo_set_vf_mac)(struct net_device *dev,
1079                                                   int queue, u8 *mac);
1080         int                     (*ndo_set_vf_vlan)(struct net_device *dev,
1081                                                    int queue, u16 vlan, u8 qos);
1082         int                     (*ndo_set_vf_rate)(struct net_device *dev,
1083                                                    int vf, int min_tx_rate,
1084                                                    int max_tx_rate);
1085         int                     (*ndo_set_vf_spoofchk)(struct net_device *dev,
1086                                                        int vf, bool setting);
1087         int                     (*ndo_get_vf_config)(struct net_device *dev,
1088                                                      int vf,
1089                                                      struct ifla_vf_info *ivf);
1090         int                     (*ndo_set_vf_link_state)(struct net_device *dev,
1091                                                          int vf, int link_state);
1092         int                     (*ndo_set_vf_port)(struct net_device *dev,
1093                                                    int vf,
1094                                                    struct nlattr *port[]);
1095         int                     (*ndo_get_vf_port)(struct net_device *dev,
1096                                                    int vf, struct sk_buff *skb);
1097         int                     (*ndo_setup_tc)(struct net_device *dev, u8 tc);
1098 #if IS_ENABLED(CONFIG_FCOE)
1099         int                     (*ndo_fcoe_enable)(struct net_device *dev);
1100         int                     (*ndo_fcoe_disable)(struct net_device *dev);
1101         int                     (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1102                                                       u16 xid,
1103                                                       struct scatterlist *sgl,
1104                                                       unsigned int sgc);
1105         int                     (*ndo_fcoe_ddp_done)(struct net_device *dev,
1106                                                      u16 xid);
1107         int                     (*ndo_fcoe_ddp_target)(struct net_device *dev,
1108                                                        u16 xid,
1109                                                        struct scatterlist *sgl,
1110                                                        unsigned int sgc);
1111         int                     (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1112                                                         struct netdev_fcoe_hbainfo *hbainfo);
1113 #endif
1114
1115 #if IS_ENABLED(CONFIG_LIBFCOE)
1116 #define NETDEV_FCOE_WWNN 0
1117 #define NETDEV_FCOE_WWPN 1
1118         int                     (*ndo_fcoe_get_wwn)(struct net_device *dev,
1119                                                     u64 *wwn, int type);
1120 #endif
1121
1122 #ifdef CONFIG_RFS_ACCEL
1123         int                     (*ndo_rx_flow_steer)(struct net_device *dev,
1124                                                      const struct sk_buff *skb,
1125                                                      u16 rxq_index,
1126                                                      u32 flow_id);
1127 #endif
1128         int                     (*ndo_add_slave)(struct net_device *dev,
1129                                                  struct net_device *slave_dev);
1130         int                     (*ndo_del_slave)(struct net_device *dev,
1131                                                  struct net_device *slave_dev);
1132         netdev_features_t       (*ndo_fix_features)(struct net_device *dev,
1133                                                     netdev_features_t features);
1134         int                     (*ndo_set_features)(struct net_device *dev,
1135                                                     netdev_features_t features);
1136         int                     (*ndo_neigh_construct)(struct neighbour *n);
1137         void                    (*ndo_neigh_destroy)(struct neighbour *n);
1138
1139         int                     (*ndo_fdb_add)(struct ndmsg *ndm,
1140                                                struct nlattr *tb[],
1141                                                struct net_device *dev,
1142                                                const unsigned char *addr,
1143                                                u16 vid,
1144                                                u16 flags);
1145         int                     (*ndo_fdb_del)(struct ndmsg *ndm,
1146                                                struct nlattr *tb[],
1147                                                struct net_device *dev,
1148                                                const unsigned char *addr,
1149                                                u16 vid);
1150         int                     (*ndo_fdb_dump)(struct sk_buff *skb,
1151                                                 struct netlink_callback *cb,
1152                                                 struct net_device *dev,
1153                                                 struct net_device *filter_dev,
1154                                                 int idx);
1155
1156         int                     (*ndo_bridge_setlink)(struct net_device *dev,
1157                                                       struct nlmsghdr *nlh);
1158         int                     (*ndo_bridge_getlink)(struct sk_buff *skb,
1159                                                       u32 pid, u32 seq,
1160                                                       struct net_device *dev,
1161                                                       u32 filter_mask);
1162         int                     (*ndo_bridge_dellink)(struct net_device *dev,
1163                                                       struct nlmsghdr *nlh);
1164         int                     (*ndo_change_carrier)(struct net_device *dev,
1165                                                       bool new_carrier);
1166         int                     (*ndo_get_phys_port_id)(struct net_device *dev,
1167                                                         struct netdev_phys_item_id *ppid);
1168         void                    (*ndo_add_vxlan_port)(struct  net_device *dev,
1169                                                       sa_family_t sa_family,
1170                                                       __be16 port);
1171         void                    (*ndo_del_vxlan_port)(struct  net_device *dev,
1172                                                       sa_family_t sa_family,
1173                                                       __be16 port);
1174
1175         void*                   (*ndo_dfwd_add_station)(struct net_device *pdev,
1176                                                         struct net_device *dev);
1177         void                    (*ndo_dfwd_del_station)(struct net_device *pdev,
1178                                                         void *priv);
1179
1180         netdev_tx_t             (*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1181                                                         struct net_device *dev,
1182                                                         void *priv);
1183         int                     (*ndo_get_lock_subclass)(struct net_device *dev);
1184         netdev_features_t       (*ndo_features_check) (struct sk_buff *skb,
1185                                                        struct net_device *dev,
1186                                                        netdev_features_t features);
1187 #ifdef CONFIG_NET_SWITCHDEV
1188         int                     (*ndo_switch_parent_id_get)(struct net_device *dev,
1189                                                             struct netdev_phys_item_id *psid);
1190         int                     (*ndo_switch_port_stp_update)(struct net_device *dev,
1191                                                               u8 state);
1192 #endif
1193 };
1194
1195 /**
1196  * enum net_device_priv_flags - &struct net_device priv_flags
1197  *
1198  * These are the &struct net_device, they are only set internally
1199  * by drivers and used in the kernel. These flags are invisible to
1200  * userspace, this means that the order of these flags can change
1201  * during any kernel release.
1202  *
1203  * You should have a pretty good reason to be extending these flags.
1204  *
1205  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1206  * @IFF_EBRIDGE: Ethernet bridging device
1207  * @IFF_SLAVE_INACTIVE: bonding slave not the curr. active
1208  * @IFF_MASTER_8023AD: bonding master, 802.3ad
1209  * @IFF_MASTER_ALB: bonding master, balance-alb
1210  * @IFF_BONDING: bonding master or slave
1211  * @IFF_SLAVE_NEEDARP: need ARPs for validation
1212  * @IFF_ISATAP: ISATAP interface (RFC4214)
1213  * @IFF_MASTER_ARPMON: bonding master, ARP mon in use
1214  * @IFF_WAN_HDLC: WAN HDLC device
1215  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1216  *      release skb->dst
1217  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1218  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1219  * @IFF_MACVLAN_PORT: device used as macvlan port
1220  * @IFF_BRIDGE_PORT: device used as bridge port
1221  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1222  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1223  * @IFF_UNICAST_FLT: Supports unicast filtering
1224  * @IFF_TEAM_PORT: device used as team port
1225  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1226  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1227  *      change when it's running
1228  * @IFF_MACVLAN: Macvlan device
1229  */
1230 enum netdev_priv_flags {
1231         IFF_802_1Q_VLAN                 = 1<<0,
1232         IFF_EBRIDGE                     = 1<<1,
1233         IFF_SLAVE_INACTIVE              = 1<<2,
1234         IFF_MASTER_8023AD               = 1<<3,
1235         IFF_MASTER_ALB                  = 1<<4,
1236         IFF_BONDING                     = 1<<5,
1237         IFF_SLAVE_NEEDARP               = 1<<6,
1238         IFF_ISATAP                      = 1<<7,
1239         IFF_MASTER_ARPMON               = 1<<8,
1240         IFF_WAN_HDLC                    = 1<<9,
1241         IFF_XMIT_DST_RELEASE            = 1<<10,
1242         IFF_DONT_BRIDGE                 = 1<<11,
1243         IFF_DISABLE_NETPOLL             = 1<<12,
1244         IFF_MACVLAN_PORT                = 1<<13,
1245         IFF_BRIDGE_PORT                 = 1<<14,
1246         IFF_OVS_DATAPATH                = 1<<15,
1247         IFF_TX_SKB_SHARING              = 1<<16,
1248         IFF_UNICAST_FLT                 = 1<<17,
1249         IFF_TEAM_PORT                   = 1<<18,
1250         IFF_SUPP_NOFCS                  = 1<<19,
1251         IFF_LIVE_ADDR_CHANGE            = 1<<20,
1252         IFF_MACVLAN                     = 1<<21,
1253         IFF_XMIT_DST_RELEASE_PERM       = 1<<22,
1254         IFF_IPVLAN_MASTER               = 1<<23,
1255         IFF_IPVLAN_SLAVE                = 1<<24,
1256 };
1257
1258 #define IFF_802_1Q_VLAN                 IFF_802_1Q_VLAN
1259 #define IFF_EBRIDGE                     IFF_EBRIDGE
1260 #define IFF_SLAVE_INACTIVE              IFF_SLAVE_INACTIVE
1261 #define IFF_MASTER_8023AD               IFF_MASTER_8023AD
1262 #define IFF_MASTER_ALB                  IFF_MASTER_ALB
1263 #define IFF_BONDING                     IFF_BONDING
1264 #define IFF_SLAVE_NEEDARP               IFF_SLAVE_NEEDARP
1265 #define IFF_ISATAP                      IFF_ISATAP
1266 #define IFF_MASTER_ARPMON               IFF_MASTER_ARPMON
1267 #define IFF_WAN_HDLC                    IFF_WAN_HDLC
1268 #define IFF_XMIT_DST_RELEASE            IFF_XMIT_DST_RELEASE
1269 #define IFF_DONT_BRIDGE                 IFF_DONT_BRIDGE
1270 #define IFF_DISABLE_NETPOLL             IFF_DISABLE_NETPOLL
1271 #define IFF_MACVLAN_PORT                IFF_MACVLAN_PORT
1272 #define IFF_BRIDGE_PORT                 IFF_BRIDGE_PORT
1273 #define IFF_OVS_DATAPATH                IFF_OVS_DATAPATH
1274 #define IFF_TX_SKB_SHARING              IFF_TX_SKB_SHARING
1275 #define IFF_UNICAST_FLT                 IFF_UNICAST_FLT
1276 #define IFF_TEAM_PORT                   IFF_TEAM_PORT
1277 #define IFF_SUPP_NOFCS                  IFF_SUPP_NOFCS
1278 #define IFF_LIVE_ADDR_CHANGE            IFF_LIVE_ADDR_CHANGE
1279 #define IFF_MACVLAN                     IFF_MACVLAN
1280 #define IFF_XMIT_DST_RELEASE_PERM       IFF_XMIT_DST_RELEASE_PERM
1281 #define IFF_IPVLAN_MASTER               IFF_IPVLAN_MASTER
1282 #define IFF_IPVLAN_SLAVE                IFF_IPVLAN_SLAVE
1283
1284 /**
1285  *      struct net_device - The DEVICE structure.
1286  *              Actually, this whole structure is a big mistake.  It mixes I/O
1287  *              data with strictly "high-level" data, and it has to know about
1288  *              almost every data structure used in the INET module.
1289  *
1290  *      @name:  This is the first field of the "visible" part of this structure
1291  *              (i.e. as seen by users in the "Space.c" file).  It is the name
1292  *              of the interface.
1293  *
1294  *      @name_hlist:    Device name hash chain, please keep it close to name[]
1295  *      @ifalias:       SNMP alias
1296  *      @mem_end:       Shared memory end
1297  *      @mem_start:     Shared memory start
1298  *      @base_addr:     Device I/O address
1299  *      @irq:           Device IRQ number
1300  *
1301  *      @state:         Generic network queuing layer state, see netdev_state_t
1302  *      @dev_list:      The global list of network devices
1303  *      @napi_list:     List entry, that is used for polling napi devices
1304  *      @unreg_list:    List entry, that is used, when we are unregistering the
1305  *                      device, see the function unregister_netdev
1306  *      @close_list:    List entry, that is used, when we are closing the device
1307  *
1308  *      @adj_list:      Directly linked devices, like slaves for bonding
1309  *      @all_adj_list:  All linked devices, *including* neighbours
1310  *      @features:      Currently active device features
1311  *      @hw_features:   User-changeable features
1312  *
1313  *      @wanted_features:       User-requested features
1314  *      @vlan_features:         Mask of features inheritable by VLAN devices
1315  *
1316  *      @hw_enc_features:       Mask of features inherited by encapsulating devices
1317  *                              This field indicates what encapsulation
1318  *                              offloads the hardware is capable of doing,
1319  *                              and drivers will need to set them appropriately.
1320  *
1321  *      @mpls_features: Mask of features inheritable by MPLS
1322  *
1323  *      @ifindex:       interface index
1324  *      @iflink:        unique device identifier
1325  *
1326  *      @stats:         Statistics struct, which was left as a legacy, use
1327  *                      rtnl_link_stats64 instead
1328  *
1329  *      @rx_dropped:    Dropped packets by core network,
1330  *                      do not use this in drivers
1331  *      @tx_dropped:    Dropped packets by core network,
1332  *                      do not use this in drivers
1333  *
1334  *      @carrier_changes:       Stats to monitor carrier on<->off transitions
1335  *
1336  *      @wireless_handlers:     List of functions to handle Wireless Extensions,
1337  *                              instead of ioctl,
1338  *                              see <net/iw_handler.h> for details.
1339  *      @wireless_data: Instance data managed by the core of wireless extensions
1340  *
1341  *      @netdev_ops:    Includes several pointers to callbacks,
1342  *                      if one wants to override the ndo_*() functions
1343  *      @ethtool_ops:   Management operations
1344  *      @fwd_ops:       Management operations
1345  *      @header_ops:    Includes callbacks for creating,parsing,rebuilding,etc
1346  *                      of Layer 2 headers.
1347  *
1348  *      @flags:         Interface flags (a la BSD)
1349  *      @priv_flags:    Like 'flags' but invisible to userspace,
1350  *                      see if.h for the definitions
1351  *      @gflags:        Global flags ( kept as legacy )
1352  *      @padded:        How much padding added by alloc_netdev()
1353  *      @operstate:     RFC2863 operstate
1354  *      @link_mode:     Mapping policy to operstate
1355  *      @if_port:       Selectable AUI, TP, ...
1356  *      @dma:           DMA channel
1357  *      @mtu:           Interface MTU value
1358  *      @type:          Interface hardware type
1359  *      @hard_header_len: Hardware header length
1360  *
1361  *      @needed_headroom: Extra headroom the hardware may need, but not in all
1362  *                        cases can this be guaranteed
1363  *      @needed_tailroom: Extra tailroom the hardware may need, but not in all
1364  *                        cases can this be guaranteed. Some cases also use
1365  *                        LL_MAX_HEADER instead to allocate the skb
1366  *
1367  *      interface address info:
1368  *
1369  *      @perm_addr:             Permanent hw address
1370  *      @addr_assign_type:      Hw address assignment type
1371  *      @addr_len:              Hardware address length
1372  *      @neigh_priv_len;        Used in neigh_alloc(),
1373  *                              initialized only in atm/clip.c
1374  *      @dev_id:                Used to differentiate devices that share
1375  *                              the same link layer address
1376  *      @dev_port:              Used to differentiate devices that share
1377  *                              the same function
1378  *      @addr_list_lock:        XXX: need comments on this one
1379  *      @uc:                    unicast mac addresses
1380  *      @mc:                    multicast mac addresses
1381  *      @dev_addrs:             list of device hw addresses
1382  *      @queues_kset:           Group of all Kobjects in the Tx and RX queues
1383  *      @uc_promisc:            Counter, that indicates, that promiscuous mode
1384  *                              has been enabled due to the need to listen to
1385  *                              additional unicast addresses in a device that
1386  *                              does not implement ndo_set_rx_mode()
1387  *      @promiscuity:           Number of times, the NIC is told to work in
1388  *                              Promiscuous mode, if it becomes 0 the NIC will
1389  *                              exit from working in Promiscuous mode
1390  *      @allmulti:              Counter, enables or disables allmulticast mode
1391  *
1392  *      @vlan_info:     VLAN info
1393  *      @dsa_ptr:       dsa specific data
1394  *      @tipc_ptr:      TIPC specific data
1395  *      @atalk_ptr:     AppleTalk link
1396  *      @ip_ptr:        IPv4 specific data
1397  *      @dn_ptr:        DECnet specific data
1398  *      @ip6_ptr:       IPv6 specific data
1399  *      @ax25_ptr:      AX.25 specific data
1400  *      @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1401  *
1402  *      @last_rx:       Time of last Rx
1403  *      @dev_addr:      Hw address (before bcast,
1404  *                      because most packets are unicast)
1405  *
1406  *      @_rx:                   Array of RX queues
1407  *      @num_rx_queues:         Number of RX queues
1408  *                              allocated at register_netdev() time
1409  *      @real_num_rx_queues:    Number of RX queues currently active in device
1410  *
1411  *      @rx_handler:            handler for received packets
1412  *      @rx_handler_data:       XXX: need comments on this one
1413  *      @ingress_queue:         XXX: need comments on this one
1414  *      @broadcast:             hw bcast address
1415  *
1416  *      @_tx:                   Array of TX queues
1417  *      @num_tx_queues:         Number of TX queues allocated at alloc_netdev_mq() time
1418  *      @real_num_tx_queues:    Number of TX queues currently active in device
1419  *      @qdisc:                 Root qdisc from userspace point of view
1420  *      @tx_queue_len:          Max frames per queue allowed
1421  *      @tx_global_lock:        XXX: need comments on this one
1422  *
1423  *      @xps_maps:      XXX: need comments on this one
1424  *
1425  *      @rx_cpu_rmap:   CPU reverse-mapping for RX completion interrupts,
1426  *                      indexed by RX queue number. Assigned by driver.
1427  *                      This must only be set if the ndo_rx_flow_steer
1428  *                      operation is defined
1429  *
1430  *      @trans_start:           Time (in jiffies) of last Tx
1431  *      @watchdog_timeo:        Represents the timeout that is used by
1432  *                              the watchdog ( see dev_watchdog() )
1433  *      @watchdog_timer:        List of timers
1434  *
1435  *      @pcpu_refcnt:           Number of references to this device
1436  *      @todo_list:             Delayed register/unregister
1437  *      @index_hlist:           Device index hash chain
1438  *      @link_watch_list:       XXX: need comments on this one
1439  *
1440  *      @reg_state:             Register/unregister state machine
1441  *      @dismantle:             Device is going to be freed
1442  *      @rtnl_link_state:       This enum represents the phases of creating
1443  *                              a new link
1444  *
1445  *      @destructor:            Called from unregister,
1446  *                              can be used to call free_netdev
1447  *      @npinfo:                XXX: need comments on this one
1448  *      @nd_net:                Network namespace this network device is inside
1449  *
1450  *      @ml_priv:       Mid-layer private
1451  *      @lstats:        Loopback statistics
1452  *      @tstats:        Tunnel statistics
1453  *      @dstats:        Dummy statistics
1454  *      @vstats:        Virtual ethernet statistics
1455  *
1456  *      @garp_port:     GARP
1457  *      @mrp_port:      MRP
1458  *
1459  *      @dev:           Class/net/name entry
1460  *      @sysfs_groups:  Space for optional device, statistics and wireless
1461  *                      sysfs groups
1462  *
1463  *      @sysfs_rx_queue_group:  Space for optional per-rx queue attributes
1464  *      @rtnl_link_ops: Rtnl_link_ops
1465  *
1466  *      @gso_max_size:  Maximum size of generic segmentation offload
1467  *      @gso_max_segs:  Maximum number of segments that can be passed to the
1468  *                      NIC for GSO
1469  *      @gso_min_segs:  Minimum number of segments that can be passed to the
1470  *                      NIC for GSO
1471  *
1472  *      @dcbnl_ops:     Data Center Bridging netlink ops
1473  *      @num_tc:        Number of traffic classes in the net device
1474  *      @tc_to_txq:     XXX: need comments on this one
1475  *      @prio_tc_map    XXX: need comments on this one
1476  *
1477  *      @fcoe_ddp_xid:  Max exchange id for FCoE LRO by ddp
1478  *
1479  *      @priomap:       XXX: need comments on this one
1480  *      @phydev:        Physical device may attach itself
1481  *                      for hardware timestamping
1482  *
1483  *      @qdisc_tx_busylock:     XXX: need comments on this one
1484  *
1485  *      @group:         The group, that the device belongs to
1486  *      @pm_qos_req:    Power Management QoS object
1487  *
1488  *      FIXME: cleanup struct net_device such that network protocol info
1489  *      moves out.
1490  */
1491
1492 struct net_device {
1493         char                    name[IFNAMSIZ];
1494         struct hlist_node       name_hlist;
1495         char                    *ifalias;
1496         /*
1497          *      I/O specific fields
1498          *      FIXME: Merge these and struct ifmap into one
1499          */
1500         unsigned long           mem_end;
1501         unsigned long           mem_start;
1502         unsigned long           base_addr;
1503         int                     irq;
1504
1505         /*
1506          *      Some hardware also needs these fields (state,dev_list,
1507          *      napi_list,unreg_list,close_list) but they are not
1508          *      part of the usual set specified in Space.c.
1509          */
1510
1511         unsigned long           state;
1512
1513         struct list_head        dev_list;
1514         struct list_head        napi_list;
1515         struct list_head        unreg_list;
1516         struct list_head        close_list;
1517         struct list_head        ptype_all;
1518         struct list_head        ptype_specific;
1519
1520         struct {
1521                 struct list_head upper;
1522                 struct list_head lower;
1523         } adj_list;
1524
1525         struct {
1526                 struct list_head upper;
1527                 struct list_head lower;
1528         } all_adj_list;
1529
1530         netdev_features_t       features;
1531         netdev_features_t       hw_features;
1532         netdev_features_t       wanted_features;
1533         netdev_features_t       vlan_features;
1534         netdev_features_t       hw_enc_features;
1535         netdev_features_t       mpls_features;
1536
1537         int                     ifindex;
1538         int                     iflink;
1539
1540         struct net_device_stats stats;
1541
1542         atomic_long_t           rx_dropped;
1543         atomic_long_t           tx_dropped;
1544
1545         atomic_t                carrier_changes;
1546
1547 #ifdef CONFIG_WIRELESS_EXT
1548         const struct iw_handler_def *   wireless_handlers;
1549         struct iw_public_data * wireless_data;
1550 #endif
1551         const struct net_device_ops *netdev_ops;
1552         const struct ethtool_ops *ethtool_ops;
1553         const struct forwarding_accel_ops *fwd_ops;
1554
1555         const struct header_ops *header_ops;
1556
1557         unsigned int            flags;
1558         unsigned int            priv_flags;
1559
1560         unsigned short          gflags;
1561         unsigned short          padded;
1562
1563         unsigned char           operstate;
1564         unsigned char           link_mode;
1565
1566         unsigned char           if_port;
1567         unsigned char           dma;
1568
1569         unsigned int            mtu;
1570         unsigned short          type;
1571         unsigned short          hard_header_len;
1572
1573         unsigned short          needed_headroom;
1574         unsigned short          needed_tailroom;
1575
1576         /* Interface address info. */
1577         unsigned char           perm_addr[MAX_ADDR_LEN];
1578         unsigned char           addr_assign_type;
1579         unsigned char           addr_len;
1580         unsigned short          neigh_priv_len;
1581         unsigned short          dev_id;
1582         unsigned short          dev_port;
1583         spinlock_t              addr_list_lock;
1584         struct netdev_hw_addr_list      uc;
1585         struct netdev_hw_addr_list      mc;
1586         struct netdev_hw_addr_list      dev_addrs;
1587
1588 #ifdef CONFIG_SYSFS
1589         struct kset             *queues_kset;
1590 #endif
1591
1592         unsigned char           name_assign_type;
1593
1594         bool                    uc_promisc;
1595         unsigned int            promiscuity;
1596         unsigned int            allmulti;
1597
1598
1599         /* Protocol specific pointers */
1600
1601 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1602         struct vlan_info __rcu  *vlan_info;
1603 #endif
1604 #if IS_ENABLED(CONFIG_NET_DSA)
1605         struct dsa_switch_tree  *dsa_ptr;
1606 #endif
1607 #if IS_ENABLED(CONFIG_TIPC)
1608         struct tipc_bearer __rcu *tipc_ptr;
1609 #endif
1610         void                    *atalk_ptr;
1611         struct in_device __rcu  *ip_ptr;
1612         struct dn_dev __rcu     *dn_ptr;
1613         struct inet6_dev __rcu  *ip6_ptr;
1614         void                    *ax25_ptr;
1615         struct wireless_dev     *ieee80211_ptr;
1616         struct wpan_dev         *ieee802154_ptr;
1617
1618 /*
1619  * Cache lines mostly used on receive path (including eth_type_trans())
1620  */
1621         unsigned long           last_rx;
1622
1623         /* Interface address info used in eth_type_trans() */
1624         unsigned char           *dev_addr;
1625
1626
1627 #ifdef CONFIG_SYSFS
1628         struct netdev_rx_queue  *_rx;
1629
1630         unsigned int            num_rx_queues;
1631         unsigned int            real_num_rx_queues;
1632
1633 #endif
1634
1635         unsigned long           gro_flush_timeout;
1636         rx_handler_func_t __rcu *rx_handler;
1637         void __rcu              *rx_handler_data;
1638
1639         struct netdev_queue __rcu *ingress_queue;
1640         unsigned char           broadcast[MAX_ADDR_LEN];
1641
1642
1643 /*
1644  * Cache lines mostly used on transmit path
1645  */
1646         struct netdev_queue     *_tx ____cacheline_aligned_in_smp;
1647         unsigned int            num_tx_queues;
1648         unsigned int            real_num_tx_queues;
1649         struct Qdisc            *qdisc;
1650         unsigned long           tx_queue_len;
1651         spinlock_t              tx_global_lock;
1652
1653 #ifdef CONFIG_XPS
1654         struct xps_dev_maps __rcu *xps_maps;
1655 #endif
1656 #ifdef CONFIG_RFS_ACCEL
1657         struct cpu_rmap         *rx_cpu_rmap;
1658 #endif
1659
1660         /* These may be needed for future network-power-down code. */
1661
1662         /*
1663          * trans_start here is expensive for high speed devices on SMP,
1664          * please use netdev_queue->trans_start instead.
1665          */
1666         unsigned long           trans_start;
1667
1668         int                     watchdog_timeo;
1669         struct timer_list       watchdog_timer;
1670
1671         int __percpu            *pcpu_refcnt;
1672         struct list_head        todo_list;
1673
1674         struct hlist_node       index_hlist;
1675         struct list_head        link_watch_list;
1676
1677         enum { NETREG_UNINITIALIZED=0,
1678                NETREG_REGISTERED,       /* completed register_netdevice */
1679                NETREG_UNREGISTERING,    /* called unregister_netdevice */
1680                NETREG_UNREGISTERED,     /* completed unregister todo */
1681                NETREG_RELEASED,         /* called free_netdev */
1682                NETREG_DUMMY,            /* dummy device for NAPI poll */
1683         } reg_state:8;
1684
1685         bool dismantle;
1686
1687         enum {
1688                 RTNL_LINK_INITIALIZED,
1689                 RTNL_LINK_INITIALIZING,
1690         } rtnl_link_state:16;
1691
1692         void (*destructor)(struct net_device *dev);
1693
1694 #ifdef CONFIG_NETPOLL
1695         struct netpoll_info __rcu       *npinfo;
1696 #endif
1697
1698 #ifdef CONFIG_NET_NS
1699         struct net              *nd_net;
1700 #endif
1701
1702         /* mid-layer private */
1703         union {
1704                 void                                    *ml_priv;
1705                 struct pcpu_lstats __percpu             *lstats;
1706                 struct pcpu_sw_netstats __percpu        *tstats;
1707                 struct pcpu_dstats __percpu             *dstats;
1708                 struct pcpu_vstats __percpu             *vstats;
1709         };
1710
1711         struct garp_port __rcu  *garp_port;
1712         struct mrp_port __rcu   *mrp_port;
1713
1714         struct device   dev;
1715         const struct attribute_group *sysfs_groups[4];
1716         const struct attribute_group *sysfs_rx_queue_group;
1717
1718         const struct rtnl_link_ops *rtnl_link_ops;
1719
1720         /* for setting kernel sock attribute on TCP connection setup */
1721 #define GSO_MAX_SIZE            65536
1722         unsigned int            gso_max_size;
1723 #define GSO_MAX_SEGS            65535
1724         u16                     gso_max_segs;
1725         u16                     gso_min_segs;
1726 #ifdef CONFIG_DCB
1727         const struct dcbnl_rtnl_ops *dcbnl_ops;
1728 #endif
1729         u8 num_tc;
1730         struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1731         u8 prio_tc_map[TC_BITMASK + 1];
1732
1733 #if IS_ENABLED(CONFIG_FCOE)
1734         unsigned int            fcoe_ddp_xid;
1735 #endif
1736 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1737         struct netprio_map __rcu *priomap;
1738 #endif
1739         struct phy_device *phydev;
1740         struct lock_class_key *qdisc_tx_busylock;
1741         int group;
1742         struct pm_qos_request   pm_qos_req;
1743 };
1744 #define to_net_dev(d) container_of(d, struct net_device, dev)
1745
1746 #define NETDEV_ALIGN            32
1747
1748 static inline
1749 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1750 {
1751         return dev->prio_tc_map[prio & TC_BITMASK];
1752 }
1753
1754 static inline
1755 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1756 {
1757         if (tc >= dev->num_tc)
1758                 return -EINVAL;
1759
1760         dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1761         return 0;
1762 }
1763
1764 static inline
1765 void netdev_reset_tc(struct net_device *dev)
1766 {
1767         dev->num_tc = 0;
1768         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1769         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1770 }
1771
1772 static inline
1773 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1774 {
1775         if (tc >= dev->num_tc)
1776                 return -EINVAL;
1777
1778         dev->tc_to_txq[tc].count = count;
1779         dev->tc_to_txq[tc].offset = offset;
1780         return 0;
1781 }
1782
1783 static inline
1784 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1785 {
1786         if (num_tc > TC_MAX_QUEUE)
1787                 return -EINVAL;
1788
1789         dev->num_tc = num_tc;
1790         return 0;
1791 }
1792
1793 static inline
1794 int netdev_get_num_tc(struct net_device *dev)
1795 {
1796         return dev->num_tc;
1797 }
1798
1799 static inline
1800 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1801                                          unsigned int index)
1802 {
1803         return &dev->_tx[index];
1804 }
1805
1806 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1807                                                     const struct sk_buff *skb)
1808 {
1809         return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1810 }
1811
1812 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1813                                             void (*f)(struct net_device *,
1814                                                       struct netdev_queue *,
1815                                                       void *),
1816                                             void *arg)
1817 {
1818         unsigned int i;
1819
1820         for (i = 0; i < dev->num_tx_queues; i++)
1821                 f(dev, &dev->_tx[i], arg);
1822 }
1823
1824 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1825                                     struct sk_buff *skb,
1826                                     void *accel_priv);
1827
1828 /*
1829  * Net namespace inlines
1830  */
1831 static inline
1832 struct net *dev_net(const struct net_device *dev)
1833 {
1834         return read_pnet(&dev->nd_net);
1835 }
1836
1837 static inline
1838 void dev_net_set(struct net_device *dev, struct net *net)
1839 {
1840 #ifdef CONFIG_NET_NS
1841         release_net(dev->nd_net);
1842         dev->nd_net = hold_net(net);
1843 #endif
1844 }
1845
1846 static inline bool netdev_uses_dsa(struct net_device *dev)
1847 {
1848 #if IS_ENABLED(CONFIG_NET_DSA)
1849         if (dev->dsa_ptr != NULL)
1850                 return dsa_uses_tagged_protocol(dev->dsa_ptr);
1851 #endif
1852         return false;
1853 }
1854
1855 /**
1856  *      netdev_priv - access network device private data
1857  *      @dev: network device
1858  *
1859  * Get network device private data
1860  */
1861 static inline void *netdev_priv(const struct net_device *dev)
1862 {
1863         return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1864 }
1865
1866 /* Set the sysfs physical device reference for the network logical device
1867  * if set prior to registration will cause a symlink during initialization.
1868  */
1869 #define SET_NETDEV_DEV(net, pdev)       ((net)->dev.parent = (pdev))
1870
1871 /* Set the sysfs device type for the network logical device to allow
1872  * fine-grained identification of different network device types. For
1873  * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1874  */
1875 #define SET_NETDEV_DEVTYPE(net, devtype)        ((net)->dev.type = (devtype))
1876
1877 /* Default NAPI poll() weight
1878  * Device drivers are strongly advised to not use bigger value
1879  */
1880 #define NAPI_POLL_WEIGHT 64
1881
1882 /**
1883  *      netif_napi_add - initialize a napi context
1884  *      @dev:  network device
1885  *      @napi: napi context
1886  *      @poll: polling function
1887  *      @weight: default weight
1888  *
1889  * netif_napi_add() must be used to initialize a napi context prior to calling
1890  * *any* of the other napi related functions.
1891  */
1892 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1893                     int (*poll)(struct napi_struct *, int), int weight);
1894
1895 /**
1896  *  netif_napi_del - remove a napi context
1897  *  @napi: napi context
1898  *
1899  *  netif_napi_del() removes a napi context from the network device napi list
1900  */
1901 void netif_napi_del(struct napi_struct *napi);
1902
1903 struct napi_gro_cb {
1904         /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1905         void *frag0;
1906
1907         /* Length of frag0. */
1908         unsigned int frag0_len;
1909
1910         /* This indicates where we are processing relative to skb->data. */
1911         int data_offset;
1912
1913         /* This is non-zero if the packet cannot be merged with the new skb. */
1914         u16     flush;
1915
1916         /* Save the IP ID here and check when we get to the transport layer */
1917         u16     flush_id;
1918
1919         /* Number of segments aggregated. */
1920         u16     count;
1921
1922         /* This is non-zero if the packet may be of the same flow. */
1923         u8      same_flow;
1924
1925         /* Free the skb? */
1926         u8      free;
1927 #define NAPI_GRO_FREE             1
1928 #define NAPI_GRO_FREE_STOLEN_HEAD 2
1929
1930         /* jiffies when first packet was created/queued */
1931         unsigned long age;
1932
1933         /* Used in ipv6_gro_receive() and foo-over-udp */
1934         u16     proto;
1935
1936         /* Used in udp_gro_receive */
1937         u8      udp_mark:1;
1938
1939         /* GRO checksum is valid */
1940         u8      csum_valid:1;
1941
1942         /* Number of checksums via CHECKSUM_UNNECESSARY */
1943         u8      csum_cnt:3;
1944
1945         /* Used in foo-over-udp, set in udp[46]_gro_receive */
1946         u8      is_ipv6:1;
1947
1948         /* used to support CHECKSUM_COMPLETE for tunneling protocols */
1949         __wsum  csum;
1950
1951         /* used in skb_gro_receive() slow path */
1952         struct sk_buff *last;
1953 };
1954
1955 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1956
1957 struct packet_type {
1958         __be16                  type;   /* This is really htons(ether_type). */
1959         struct net_device       *dev;   /* NULL is wildcarded here           */
1960         int                     (*func) (struct sk_buff *,
1961                                          struct net_device *,
1962                                          struct packet_type *,
1963                                          struct net_device *);
1964         bool                    (*id_match)(struct packet_type *ptype,
1965                                             struct sock *sk);
1966         void                    *af_packet_priv;
1967         struct list_head        list;
1968 };
1969
1970 struct offload_callbacks {
1971         struct sk_buff          *(*gso_segment)(struct sk_buff *skb,
1972                                                 netdev_features_t features);
1973         struct sk_buff          **(*gro_receive)(struct sk_buff **head,
1974                                                  struct sk_buff *skb);
1975         int                     (*gro_complete)(struct sk_buff *skb, int nhoff);
1976 };
1977
1978 struct packet_offload {
1979         __be16                   type;  /* This is really htons(ether_type). */
1980         struct offload_callbacks callbacks;
1981         struct list_head         list;
1982 };
1983
1984 struct udp_offload;
1985
1986 struct udp_offload_callbacks {
1987         struct sk_buff          **(*gro_receive)(struct sk_buff **head,
1988                                                  struct sk_buff *skb,
1989                                                  struct udp_offload *uoff);
1990         int                     (*gro_complete)(struct sk_buff *skb,
1991                                                 int nhoff,
1992                                                 struct udp_offload *uoff);
1993 };
1994
1995 struct udp_offload {
1996         __be16                   port;
1997         u8                       ipproto;
1998         struct udp_offload_callbacks callbacks;
1999 };
2000
2001 /* often modified stats are per cpu, other are shared (netdev->stats) */
2002 struct pcpu_sw_netstats {
2003         u64     rx_packets;
2004         u64     rx_bytes;
2005         u64     tx_packets;
2006         u64     tx_bytes;
2007         struct u64_stats_sync   syncp;
2008 };
2009
2010 #define netdev_alloc_pcpu_stats(type)                           \
2011 ({                                                              \
2012         typeof(type) __percpu *pcpu_stats = alloc_percpu(type); \
2013         if (pcpu_stats) {                                       \
2014                 int i;                                          \
2015                 for_each_possible_cpu(i) {                      \
2016                         typeof(type) *stat;                     \
2017                         stat = per_cpu_ptr(pcpu_stats, i);      \
2018                         u64_stats_init(&stat->syncp);           \
2019                 }                                               \
2020         }                                                       \
2021         pcpu_stats;                                             \
2022 })
2023
2024 #include <linux/notifier.h>
2025
2026 /* netdevice notifier chain. Please remember to update the rtnetlink
2027  * notification exclusion list in rtnetlink_event() when adding new
2028  * types.
2029  */
2030 #define NETDEV_UP       0x0001  /* For now you can't veto a device up/down */
2031 #define NETDEV_DOWN     0x0002
2032 #define NETDEV_REBOOT   0x0003  /* Tell a protocol stack a network interface
2033                                    detected a hardware crash and restarted
2034                                    - we can use this eg to kick tcp sessions
2035                                    once done */
2036 #define NETDEV_CHANGE   0x0004  /* Notify device state change */
2037 #define NETDEV_REGISTER 0x0005
2038 #define NETDEV_UNREGISTER       0x0006
2039 #define NETDEV_CHANGEMTU        0x0007 /* notify after mtu change happened */
2040 #define NETDEV_CHANGEADDR       0x0008
2041 #define NETDEV_GOING_DOWN       0x0009
2042 #define NETDEV_CHANGENAME       0x000A
2043 #define NETDEV_FEAT_CHANGE      0x000B
2044 #define NETDEV_BONDING_FAILOVER 0x000C
2045 #define NETDEV_PRE_UP           0x000D
2046 #define NETDEV_PRE_TYPE_CHANGE  0x000E
2047 #define NETDEV_POST_TYPE_CHANGE 0x000F
2048 #define NETDEV_POST_INIT        0x0010
2049 #define NETDEV_UNREGISTER_FINAL 0x0011
2050 #define NETDEV_RELEASE          0x0012
2051 #define NETDEV_NOTIFY_PEERS     0x0013
2052 #define NETDEV_JOIN             0x0014
2053 #define NETDEV_CHANGEUPPER      0x0015
2054 #define NETDEV_RESEND_IGMP      0x0016
2055 #define NETDEV_PRECHANGEMTU     0x0017 /* notify before mtu change happened */
2056 #define NETDEV_CHANGEINFODATA   0x0018
2057
2058 int register_netdevice_notifier(struct notifier_block *nb);
2059 int unregister_netdevice_notifier(struct notifier_block *nb);
2060
2061 struct netdev_notifier_info {
2062         struct net_device *dev;
2063 };
2064
2065 struct netdev_notifier_change_info {
2066         struct netdev_notifier_info info; /* must be first */
2067         unsigned int flags_changed;
2068 };
2069
2070 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2071                                              struct net_device *dev)
2072 {
2073         info->dev = dev;
2074 }
2075
2076 static inline struct net_device *
2077 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2078 {
2079         return info->dev;
2080 }
2081
2082 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2083
2084
2085 extern rwlock_t                         dev_base_lock;          /* Device list lock */
2086
2087 #define for_each_netdev(net, d)         \
2088                 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2089 #define for_each_netdev_reverse(net, d) \
2090                 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2091 #define for_each_netdev_rcu(net, d)             \
2092                 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2093 #define for_each_netdev_safe(net, d, n) \
2094                 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2095 #define for_each_netdev_continue(net, d)                \
2096                 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2097 #define for_each_netdev_continue_rcu(net, d)            \
2098         list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2099 #define for_each_netdev_in_bond_rcu(bond, slave)        \
2100                 for_each_netdev_rcu(&init_net, slave)   \
2101                         if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2102 #define net_device_entry(lh)    list_entry(lh, struct net_device, dev_list)
2103
2104 static inline struct net_device *next_net_device(struct net_device *dev)
2105 {
2106         struct list_head *lh;
2107         struct net *net;
2108
2109         net = dev_net(dev);
2110         lh = dev->dev_list.next;
2111         return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2112 }
2113
2114 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2115 {
2116         struct list_head *lh;
2117         struct net *net;
2118
2119         net = dev_net(dev);
2120         lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2121         return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2122 }
2123
2124 static inline struct net_device *first_net_device(struct net *net)
2125 {
2126         return list_empty(&net->dev_base_head) ? NULL :
2127                 net_device_entry(net->dev_base_head.next);
2128 }
2129
2130 static inline struct net_device *first_net_device_rcu(struct net *net)
2131 {
2132         struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2133
2134         return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2135 }
2136
2137 int netdev_boot_setup_check(struct net_device *dev);
2138 unsigned long netdev_boot_base(const char *prefix, int unit);
2139 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2140                                        const char *hwaddr);
2141 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2142 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2143 void dev_add_pack(struct packet_type *pt);
2144 void dev_remove_pack(struct packet_type *pt);
2145 void __dev_remove_pack(struct packet_type *pt);
2146 void dev_add_offload(struct packet_offload *po);
2147 void dev_remove_offload(struct packet_offload *po);
2148
2149 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2150                                       unsigned short mask);
2151 struct net_device *dev_get_by_name(struct net *net, const char *name);
2152 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2153 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2154 int dev_alloc_name(struct net_device *dev, const char *name);
2155 int dev_open(struct net_device *dev);
2156 int dev_close(struct net_device *dev);
2157 void dev_disable_lro(struct net_device *dev);
2158 int dev_loopback_xmit(struct sk_buff *newskb);
2159 int dev_queue_xmit(struct sk_buff *skb);
2160 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2161 int register_netdevice(struct net_device *dev);
2162 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2163 void unregister_netdevice_many(struct list_head *head);
2164 static inline void unregister_netdevice(struct net_device *dev)
2165 {
2166         unregister_netdevice_queue(dev, NULL);
2167 }
2168
2169 int netdev_refcnt_read(const struct net_device *dev);
2170 void free_netdev(struct net_device *dev);
2171 void netdev_freemem(struct net_device *dev);
2172 void synchronize_net(void);
2173 int init_dummy_netdev(struct net_device *dev);
2174
2175 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2176 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2177 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2178 int netdev_get_name(struct net *net, char *name, int ifindex);
2179 int dev_restart(struct net_device *dev);
2180 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2181
2182 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2183 {
2184         return NAPI_GRO_CB(skb)->data_offset;
2185 }
2186
2187 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2188 {
2189         return skb->len - NAPI_GRO_CB(skb)->data_offset;
2190 }
2191
2192 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2193 {
2194         NAPI_GRO_CB(skb)->data_offset += len;
2195 }
2196
2197 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2198                                         unsigned int offset)
2199 {
2200         return NAPI_GRO_CB(skb)->frag0 + offset;
2201 }
2202
2203 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2204 {
2205         return NAPI_GRO_CB(skb)->frag0_len < hlen;
2206 }
2207
2208 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2209                                         unsigned int offset)
2210 {
2211         if (!pskb_may_pull(skb, hlen))
2212                 return NULL;
2213
2214         NAPI_GRO_CB(skb)->frag0 = NULL;
2215         NAPI_GRO_CB(skb)->frag0_len = 0;
2216         return skb->data + offset;
2217 }
2218
2219 static inline void *skb_gro_network_header(struct sk_buff *skb)
2220 {
2221         return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2222                skb_network_offset(skb);
2223 }
2224
2225 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2226                                         const void *start, unsigned int len)
2227 {
2228         if (NAPI_GRO_CB(skb)->csum_valid)
2229                 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2230                                                   csum_partial(start, len, 0));
2231 }
2232
2233 /* GRO checksum functions. These are logical equivalents of the normal
2234  * checksum functions (in skbuff.h) except that they operate on the GRO
2235  * offsets and fields in sk_buff.
2236  */
2237
2238 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2239
2240 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2241                                                       bool zero_okay,
2242                                                       __sum16 check)
2243 {
2244         return (skb->ip_summed != CHECKSUM_PARTIAL &&
2245                 NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2246                 (!zero_okay || check));
2247 }
2248
2249 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2250                                                            __wsum psum)
2251 {
2252         if (NAPI_GRO_CB(skb)->csum_valid &&
2253             !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2254                 return 0;
2255
2256         NAPI_GRO_CB(skb)->csum = psum;
2257
2258         return __skb_gro_checksum_complete(skb);
2259 }
2260
2261 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2262 {
2263         if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2264                 /* Consume a checksum from CHECKSUM_UNNECESSARY */
2265                 NAPI_GRO_CB(skb)->csum_cnt--;
2266         } else {
2267                 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2268                  * verified a new top level checksum or an encapsulated one
2269                  * during GRO. This saves work if we fallback to normal path.
2270                  */
2271                 __skb_incr_checksum_unnecessary(skb);
2272         }
2273 }
2274
2275 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,       \
2276                                     compute_pseudo)                     \
2277 ({                                                                      \
2278         __sum16 __ret = 0;                                              \
2279         if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))  \
2280                 __ret = __skb_gro_checksum_validate_complete(skb,       \
2281                                 compute_pseudo(skb, proto));            \
2282         if (__ret)                                                      \
2283                 __skb_mark_checksum_bad(skb);                           \
2284         else                                                            \
2285                 skb_gro_incr_csum_unnecessary(skb);                     \
2286         __ret;                                                          \
2287 })
2288
2289 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)           \
2290         __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2291
2292 #define skb_gro_checksum_validate_zero_check(skb, proto, check,         \
2293                                              compute_pseudo)            \
2294         __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2295
2296 #define skb_gro_checksum_simple_validate(skb)                           \
2297         __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2298
2299 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2300 {
2301         return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2302                 !NAPI_GRO_CB(skb)->csum_valid);
2303 }
2304
2305 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2306                                               __sum16 check, __wsum pseudo)
2307 {
2308         NAPI_GRO_CB(skb)->csum = ~pseudo;
2309         NAPI_GRO_CB(skb)->csum_valid = 1;
2310 }
2311
2312 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \
2313 do {                                                                    \
2314         if (__skb_gro_checksum_convert_check(skb))                      \
2315                 __skb_gro_checksum_convert(skb, check,                  \
2316                                            compute_pseudo(skb, proto)); \
2317 } while (0)
2318
2319 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2320                                   unsigned short type,
2321                                   const void *daddr, const void *saddr,
2322                                   unsigned int len)
2323 {
2324         if (!dev->header_ops || !dev->header_ops->create)
2325                 return 0;
2326
2327         return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2328 }
2329
2330 static inline int dev_parse_header(const struct sk_buff *skb,
2331                                    unsigned char *haddr)
2332 {
2333         const struct net_device *dev = skb->dev;
2334
2335         if (!dev->header_ops || !dev->header_ops->parse)
2336                 return 0;
2337         return dev->header_ops->parse(skb, haddr);
2338 }
2339
2340 static inline int dev_rebuild_header(struct sk_buff *skb)
2341 {
2342         const struct net_device *dev = skb->dev;
2343
2344         if (!dev->header_ops || !dev->header_ops->rebuild)
2345                 return 0;
2346         return dev->header_ops->rebuild(skb);
2347 }
2348
2349 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2350 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2351 static inline int unregister_gifconf(unsigned int family)
2352 {
2353         return register_gifconf(family, NULL);
2354 }
2355
2356 #ifdef CONFIG_NET_FLOW_LIMIT
2357 #define FLOW_LIMIT_HISTORY      (1 << 7)  /* must be ^2 and !overflow buckets */
2358 struct sd_flow_limit {
2359         u64                     count;
2360         unsigned int            num_buckets;
2361         unsigned int            history_head;
2362         u16                     history[FLOW_LIMIT_HISTORY];
2363         u8                      buckets[];
2364 };
2365
2366 extern int netdev_flow_limit_table_len;
2367 #endif /* CONFIG_NET_FLOW_LIMIT */
2368
2369 /*
2370  * Incoming packets are placed on per-cpu queues
2371  */
2372 struct softnet_data {
2373         struct list_head        poll_list;
2374         struct sk_buff_head     process_queue;
2375
2376         /* stats */
2377         unsigned int            processed;
2378         unsigned int            time_squeeze;
2379         unsigned int            cpu_collision;
2380         unsigned int            received_rps;
2381 #ifdef CONFIG_RPS
2382         struct softnet_data     *rps_ipi_list;
2383 #endif
2384 #ifdef CONFIG_NET_FLOW_LIMIT
2385         struct sd_flow_limit __rcu *flow_limit;
2386 #endif
2387         struct Qdisc            *output_queue;
2388         struct Qdisc            **output_queue_tailp;
2389         struct sk_buff          *completion_queue;
2390
2391 #ifdef CONFIG_RPS
2392         /* Elements below can be accessed between CPUs for RPS */
2393         struct call_single_data csd ____cacheline_aligned_in_smp;
2394         struct softnet_data     *rps_ipi_next;
2395         unsigned int            cpu;
2396         unsigned int            input_queue_head;
2397         unsigned int            input_queue_tail;
2398 #endif
2399         unsigned int            dropped;
2400         struct sk_buff_head     input_pkt_queue;
2401         struct napi_struct      backlog;
2402
2403 };
2404
2405 static inline void input_queue_head_incr(struct softnet_data *sd)
2406 {
2407 #ifdef CONFIG_RPS
2408         sd->input_queue_head++;
2409 #endif
2410 }
2411
2412 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2413                                               unsigned int *qtail)
2414 {
2415 #ifdef CONFIG_RPS
2416         *qtail = ++sd->input_queue_tail;
2417 #endif
2418 }
2419
2420 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2421
2422 void __netif_schedule(struct Qdisc *q);
2423 void netif_schedule_queue(struct netdev_queue *txq);
2424
2425 static inline void netif_tx_schedule_all(struct net_device *dev)
2426 {
2427         unsigned int i;
2428
2429         for (i = 0; i < dev->num_tx_queues; i++)
2430                 netif_schedule_queue(netdev_get_tx_queue(dev, i));
2431 }
2432
2433 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2434 {
2435         clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2436 }
2437
2438 /**
2439  *      netif_start_queue - allow transmit
2440  *      @dev: network device
2441  *
2442  *      Allow upper layers to call the device hard_start_xmit routine.
2443  */
2444 static inline void netif_start_queue(struct net_device *dev)
2445 {
2446         netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2447 }
2448
2449 static inline void netif_tx_start_all_queues(struct net_device *dev)
2450 {
2451         unsigned int i;
2452
2453         for (i = 0; i < dev->num_tx_queues; i++) {
2454                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2455                 netif_tx_start_queue(txq);
2456         }
2457 }
2458
2459 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2460
2461 /**
2462  *      netif_wake_queue - restart transmit
2463  *      @dev: network device
2464  *
2465  *      Allow upper layers to call the device hard_start_xmit routine.
2466  *      Used for flow control when transmit resources are available.
2467  */
2468 static inline void netif_wake_queue(struct net_device *dev)
2469 {
2470         netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2471 }
2472
2473 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2474 {
2475         unsigned int i;
2476
2477         for (i = 0; i < dev->num_tx_queues; i++) {
2478                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2479                 netif_tx_wake_queue(txq);
2480         }
2481 }
2482
2483 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2484 {
2485         if (WARN_ON(!dev_queue)) {
2486                 pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
2487                 return;
2488         }
2489         set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2490 }
2491
2492 /**
2493  *      netif_stop_queue - stop transmitted packets
2494  *      @dev: network device
2495  *
2496  *      Stop upper layers calling the device hard_start_xmit routine.
2497  *      Used for flow control when transmit resources are unavailable.
2498  */
2499 static inline void netif_stop_queue(struct net_device *dev)
2500 {
2501         netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2502 }
2503
2504 static inline void netif_tx_stop_all_queues(struct net_device *dev)
2505 {
2506         unsigned int i;
2507
2508         for (i = 0; i < dev->num_tx_queues; i++) {
2509                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2510                 netif_tx_stop_queue(txq);
2511         }
2512 }
2513
2514 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2515 {
2516         return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2517 }
2518
2519 /**
2520  *      netif_queue_stopped - test if transmit queue is flowblocked
2521  *      @dev: network device
2522  *
2523  *      Test if transmit queue on device is currently unable to send.
2524  */
2525 static inline bool netif_queue_stopped(const struct net_device *dev)
2526 {
2527         return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2528 }
2529
2530 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2531 {
2532         return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2533 }
2534
2535 static inline bool
2536 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2537 {
2538         return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2539 }
2540
2541 static inline bool
2542 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2543 {
2544         return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2545 }
2546
2547 /**
2548  *      netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2549  *      @dev_queue: pointer to transmit queue
2550  *
2551  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2552  * to give appropriate hint to the cpu.
2553  */
2554 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2555 {
2556 #ifdef CONFIG_BQL
2557         prefetchw(&dev_queue->dql.num_queued);
2558 #endif
2559 }
2560
2561 /**
2562  *      netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2563  *      @dev_queue: pointer to transmit queue
2564  *
2565  * BQL enabled drivers might use this helper in their TX completion path,
2566  * to give appropriate hint to the cpu.
2567  */
2568 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2569 {
2570 #ifdef CONFIG_BQL
2571         prefetchw(&dev_queue->dql.limit);
2572 #endif
2573 }
2574
2575 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2576                                         unsigned int bytes)
2577 {
2578 #ifdef CONFIG_BQL
2579         dql_queued(&dev_queue->dql, bytes);
2580
2581         if (likely(dql_avail(&dev_queue->dql) >= 0))
2582                 return;
2583
2584         set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2585
2586         /*
2587          * The XOFF flag must be set before checking the dql_avail below,
2588          * because in netdev_tx_completed_queue we update the dql_completed
2589          * before checking the XOFF flag.
2590          */
2591         smp_mb();
2592
2593         /* check again in case another CPU has just made room avail */
2594         if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2595                 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2596 #endif
2597 }
2598
2599 /**
2600  *      netdev_sent_queue - report the number of bytes queued to hardware
2601  *      @dev: network device
2602  *      @bytes: number of bytes queued to the hardware device queue
2603  *
2604  *      Report the number of bytes queued for sending/completion to the network
2605  *      device hardware queue. @bytes should be a good approximation and should
2606  *      exactly match netdev_completed_queue() @bytes
2607  */
2608 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2609 {
2610         netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2611 }
2612
2613 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2614                                              unsigned int pkts, unsigned int bytes)
2615 {
2616 #ifdef CONFIG_BQL
2617         if (unlikely(!bytes))
2618                 return;
2619
2620         dql_completed(&dev_queue->dql, bytes);
2621
2622         /*
2623          * Without the memory barrier there is a small possiblity that
2624          * netdev_tx_sent_queue will miss the update and cause the queue to
2625          * be stopped forever
2626          */
2627         smp_mb();
2628
2629         if (dql_avail(&dev_queue->dql) < 0)
2630                 return;
2631
2632         if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2633                 netif_schedule_queue(dev_queue);
2634 #endif
2635 }
2636
2637 /**
2638  *      netdev_completed_queue - report bytes and packets completed by device
2639  *      @dev: network device
2640  *      @pkts: actual number of packets sent over the medium
2641  *      @bytes: actual number of bytes sent over the medium
2642  *
2643  *      Report the number of bytes and packets transmitted by the network device
2644  *      hardware queue over the physical medium, @bytes must exactly match the
2645  *      @bytes amount passed to netdev_sent_queue()
2646  */
2647 static inline void netdev_completed_queue(struct net_device *dev,
2648                                           unsigned int pkts, unsigned int bytes)
2649 {
2650         netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2651 }
2652
2653 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2654 {
2655 #ifdef CONFIG_BQL
2656         clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2657         dql_reset(&q->dql);
2658 #endif
2659 }
2660
2661 /**
2662  *      netdev_reset_queue - reset the packets and bytes count of a network device
2663  *      @dev_queue: network device
2664  *
2665  *      Reset the bytes and packet count of a network device and clear the
2666  *      software flow control OFF bit for this network device
2667  */
2668 static inline void netdev_reset_queue(struct net_device *dev_queue)
2669 {
2670         netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2671 }
2672
2673 /**
2674  *      netdev_cap_txqueue - check if selected tx queue exceeds device queues
2675  *      @dev: network device
2676  *      @queue_index: given tx queue index
2677  *
2678  *      Returns 0 if given tx queue index >= number of device tx queues,
2679  *      otherwise returns the originally passed tx queue index.
2680  */
2681 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
2682 {
2683         if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2684                 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2685                                      dev->name, queue_index,
2686                                      dev->real_num_tx_queues);
2687                 return 0;
2688         }
2689
2690         return queue_index;
2691 }
2692
2693 /**
2694  *      netif_running - test if up
2695  *      @dev: network device
2696  *
2697  *      Test if the device has been brought up.
2698  */
2699 static inline bool netif_running(const struct net_device *dev)
2700 {
2701         return test_bit(__LINK_STATE_START, &dev->state);
2702 }
2703
2704 /*
2705  * Routines to manage the subqueues on a device.  We only need start
2706  * stop, and a check if it's stopped.  All other device management is
2707  * done at the overall netdevice level.
2708  * Also test the device if we're multiqueue.
2709  */
2710
2711 /**
2712  *      netif_start_subqueue - allow sending packets on subqueue
2713  *      @dev: network device
2714  *      @queue_index: sub queue index
2715  *
2716  * Start individual transmit queue of a device with multiple transmit queues.
2717  */
2718 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2719 {
2720         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2721
2722         netif_tx_start_queue(txq);
2723 }
2724
2725 /**
2726  *      netif_stop_subqueue - stop sending packets on subqueue
2727  *      @dev: network device
2728  *      @queue_index: sub queue index
2729  *
2730  * Stop individual transmit queue of a device with multiple transmit queues.
2731  */
2732 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2733 {
2734         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2735         netif_tx_stop_queue(txq);
2736 }
2737
2738 /**
2739  *      netif_subqueue_stopped - test status of subqueue
2740  *      @dev: network device
2741  *      @queue_index: sub queue index
2742  *
2743  * Check individual transmit queue of a device with multiple transmit queues.
2744  */
2745 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2746                                             u16 queue_index)
2747 {
2748         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2749
2750         return netif_tx_queue_stopped(txq);
2751 }
2752
2753 static inline bool netif_subqueue_stopped(const struct net_device *dev,
2754                                           struct sk_buff *skb)
2755 {
2756         return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2757 }
2758
2759 void netif_wake_subqueue(struct net_device *dev, u16 queue_index);
2760
2761 #ifdef CONFIG_XPS
2762 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2763                         u16 index);
2764 #else
2765 static inline int netif_set_xps_queue(struct net_device *dev,
2766                                       const struct cpumask *mask,
2767                                       u16 index)
2768 {
2769         return 0;
2770 }
2771 #endif
2772
2773 /*
2774  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2775  * as a distribution range limit for the returned value.
2776  */
2777 static inline u16 skb_tx_hash(const struct net_device *dev,
2778                               struct sk_buff *skb)
2779 {
2780         return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2781 }
2782
2783 /**
2784  *      netif_is_multiqueue - test if device has multiple transmit queues
2785  *      @dev: network device
2786  *
2787  * Check if device has multiple transmit queues
2788  */
2789 static inline bool netif_is_multiqueue(const struct net_device *dev)
2790 {
2791         return dev->num_tx_queues > 1;
2792 }
2793
2794 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
2795
2796 #ifdef CONFIG_SYSFS
2797 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
2798 #else
2799 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2800                                                 unsigned int rxq)
2801 {
2802         return 0;
2803 }
2804 #endif
2805
2806 #ifdef CONFIG_SYSFS
2807 static inline unsigned int get_netdev_rx_queue_index(
2808                 struct netdev_rx_queue *queue)
2809 {
2810         struct net_device *dev = queue->dev;
2811         int index = queue - dev->_rx;
2812
2813         BUG_ON(index >= dev->num_rx_queues);
2814         return index;
2815 }
2816 #endif
2817
2818 #define DEFAULT_MAX_NUM_RSS_QUEUES      (8)
2819 int netif_get_num_default_rss_queues(void);
2820
2821 enum skb_free_reason {
2822         SKB_REASON_CONSUMED,
2823         SKB_REASON_DROPPED,
2824 };
2825
2826 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
2827 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
2828
2829 /*
2830  * It is not allowed to call kfree_skb() or consume_skb() from hardware
2831  * interrupt context or with hardware interrupts being disabled.
2832  * (in_irq() || irqs_disabled())
2833  *
2834  * We provide four helpers that can be used in following contexts :
2835  *
2836  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
2837  *  replacing kfree_skb(skb)
2838  *
2839  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
2840  *  Typically used in place of consume_skb(skb) in TX completion path
2841  *
2842  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
2843  *  replacing kfree_skb(skb)
2844  *
2845  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
2846  *  and consumed a packet. Used in place of consume_skb(skb)
2847  */
2848 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
2849 {
2850         __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
2851 }
2852
2853 static inline void dev_consume_skb_irq(struct sk_buff *skb)
2854 {
2855         __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
2856 }
2857
2858 static inline void dev_kfree_skb_any(struct sk_buff *skb)
2859 {
2860         __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
2861 }
2862
2863 static inline void dev_consume_skb_any(struct sk_buff *skb)
2864 {
2865         __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
2866 }
2867
2868 int netif_rx(struct sk_buff *skb);
2869 int netif_rx_ni(struct sk_buff *skb);
2870 int netif_receive_skb(struct sk_buff *skb);
2871 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
2872 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
2873 struct sk_buff *napi_get_frags(struct napi_struct *napi);
2874 gro_result_t napi_gro_frags(struct napi_struct *napi);
2875 struct packet_offload *gro_find_receive_by_type(__be16 type);
2876 struct packet_offload *gro_find_complete_by_type(__be16 type);
2877
2878 static inline void napi_free_frags(struct napi_struct *napi)
2879 {
2880         kfree_skb(napi->skb);
2881         napi->skb = NULL;
2882 }
2883
2884 int netdev_rx_handler_register(struct net_device *dev,
2885                                rx_handler_func_t *rx_handler,
2886                                void *rx_handler_data);
2887 void netdev_rx_handler_unregister(struct net_device *dev);
2888
2889 bool dev_valid_name(const char *name);
2890 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2891 int dev_ethtool(struct net *net, struct ifreq *);
2892 unsigned int dev_get_flags(const struct net_device *);
2893 int __dev_change_flags(struct net_device *, unsigned int flags);
2894 int dev_change_flags(struct net_device *, unsigned int);
2895 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
2896                         unsigned int gchanges);
2897 int dev_change_name(struct net_device *, const char *);
2898 int dev_set_alias(struct net_device *, const char *, size_t);
2899 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
2900 int dev_set_mtu(struct net_device *, int);
2901 void dev_set_group(struct net_device *, int);
2902 int dev_set_mac_address(struct net_device *, struct sockaddr *);
2903 int dev_change_carrier(struct net_device *, bool new_carrier);
2904 int dev_get_phys_port_id(struct net_device *dev,
2905                          struct netdev_phys_item_id *ppid);
2906 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
2907 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2908                                     struct netdev_queue *txq, int *ret);
2909 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
2910 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
2911 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb);
2912
2913 extern int              netdev_budget;
2914
2915 /* Called by rtnetlink.c:rtnl_unlock() */
2916 void netdev_run_todo(void);
2917
2918 /**
2919  *      dev_put - release reference to device
2920  *      @dev: network device
2921  *
2922  * Release reference to device to allow it to be freed.
2923  */
2924 static inline void dev_put(struct net_device *dev)
2925 {
2926         this_cpu_dec(*dev->pcpu_refcnt);
2927 }
2928
2929 /**
2930  *      dev_hold - get reference to device
2931  *      @dev: network device
2932  *
2933  * Hold reference to device to keep it from being freed.
2934  */
2935 static inline void dev_hold(struct net_device *dev)
2936 {
2937         this_cpu_inc(*dev->pcpu_refcnt);
2938 }
2939
2940 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
2941  * and _off may be called from IRQ context, but it is caller
2942  * who is responsible for serialization of these calls.
2943  *
2944  * The name carrier is inappropriate, these functions should really be
2945  * called netif_lowerlayer_*() because they represent the state of any
2946  * kind of lower layer not just hardware media.
2947  */
2948
2949 void linkwatch_init_dev(struct net_device *dev);
2950 void linkwatch_fire_event(struct net_device *dev);
2951 void linkwatch_forget_dev(struct net_device *dev);
2952
2953 /**
2954  *      netif_carrier_ok - test if carrier present
2955  *      @dev: network device
2956  *
2957  * Check if carrier is present on device
2958  */
2959 static inline bool netif_carrier_ok(const struct net_device *dev)
2960 {
2961         return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
2962 }
2963
2964 unsigned long dev_trans_start(struct net_device *dev);
2965
2966 void __netdev_watchdog_up(struct net_device *dev);
2967
2968 void netif_carrier_on(struct net_device *dev);
2969
2970 void netif_carrier_off(struct net_device *dev);
2971
2972 /**
2973  *      netif_dormant_on - mark device as dormant.
2974  *      @dev: network device
2975  *
2976  * Mark device as dormant (as per RFC2863).
2977  *
2978  * The dormant state indicates that the relevant interface is not
2979  * actually in a condition to pass packets (i.e., it is not 'up') but is
2980  * in a "pending" state, waiting for some external event.  For "on-
2981  * demand" interfaces, this new state identifies the situation where the
2982  * interface is waiting for events to place it in the up state.
2983  *
2984  */
2985 static inline void netif_dormant_on(struct net_device *dev)
2986 {
2987         if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
2988                 linkwatch_fire_event(dev);
2989 }
2990
2991 /**
2992  *      netif_dormant_off - set device as not dormant.
2993  *      @dev: network device
2994  *
2995  * Device is not in dormant state.
2996  */
2997 static inline void netif_dormant_off(struct net_device *dev)
2998 {
2999         if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3000                 linkwatch_fire_event(dev);
3001 }
3002
3003 /**
3004  *      netif_dormant - test if carrier present
3005  *      @dev: network device
3006  *
3007  * Check if carrier is present on device
3008  */
3009 static inline bool netif_dormant(const struct net_device *dev)
3010 {
3011         return test_bit(__LINK_STATE_DORMANT, &dev->state);
3012 }
3013
3014
3015 /**
3016  *      netif_oper_up - test if device is operational
3017  *      @dev: network device
3018  *
3019  * Check if carrier is operational
3020  */
3021 static inline bool netif_oper_up(const struct net_device *dev)
3022 {
3023         return (dev->operstate == IF_OPER_UP ||
3024                 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3025 }
3026
3027 /**
3028  *      netif_device_present - is device available or removed
3029  *      @dev: network device
3030  *
3031  * Check if device has not been removed from system.
3032  */
3033 static inline bool netif_device_present(struct net_device *dev)
3034 {
3035         return test_bit(__LINK_STATE_PRESENT, &dev->state);
3036 }
3037
3038 void netif_device_detach(struct net_device *dev);
3039
3040 void netif_device_attach(struct net_device *dev);
3041
3042 /*
3043  * Network interface message level settings
3044  */
3045
3046 enum {
3047         NETIF_MSG_DRV           = 0x0001,
3048         NETIF_MSG_PROBE         = 0x0002,
3049         NETIF_MSG_LINK          = 0x0004,
3050         NETIF_MSG_TIMER         = 0x0008,
3051         NETIF_MSG_IFDOWN        = 0x0010,
3052         NETIF_MSG_IFUP          = 0x0020,
3053         NETIF_MSG_RX_ERR        = 0x0040,
3054         NETIF_MSG_TX_ERR        = 0x0080,
3055         NETIF_MSG_TX_QUEUED     = 0x0100,
3056         NETIF_MSG_INTR          = 0x0200,
3057         NETIF_MSG_TX_DONE       = 0x0400,
3058         NETIF_MSG_RX_STATUS     = 0x0800,
3059         NETIF_MSG_PKTDATA       = 0x1000,
3060         NETIF_MSG_HW            = 0x2000,
3061         NETIF_MSG_WOL           = 0x4000,
3062 };
3063
3064 #define netif_msg_drv(p)        ((p)->msg_enable & NETIF_MSG_DRV)
3065 #define netif_msg_probe(p)      ((p)->msg_enable & NETIF_MSG_PROBE)
3066 #define netif_msg_link(p)       ((p)->msg_enable & NETIF_MSG_LINK)
3067 #define netif_msg_timer(p)      ((p)->msg_enable & NETIF_MSG_TIMER)
3068 #define netif_msg_ifdown(p)     ((p)->msg_enable & NETIF_MSG_IFDOWN)
3069 #define netif_msg_ifup(p)       ((p)->msg_enable & NETIF_MSG_IFUP)
3070 #define netif_msg_rx_err(p)     ((p)->msg_enable & NETIF_MSG_RX_ERR)
3071 #define netif_msg_tx_err(p)     ((p)->msg_enable & NETIF_MSG_TX_ERR)
3072 #define netif_msg_tx_queued(p)  ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3073 #define netif_msg_intr(p)       ((p)->msg_enable & NETIF_MSG_INTR)
3074 #define netif_msg_tx_done(p)    ((p)->msg_enable & NETIF_MSG_TX_DONE)
3075 #define netif_msg_rx_status(p)  ((p)->msg_enable & NETIF_MSG_RX_STATUS)
3076 #define netif_msg_pktdata(p)    ((p)->msg_enable & NETIF_MSG_PKTDATA)
3077 #define netif_msg_hw(p)         ((p)->msg_enable & NETIF_MSG_HW)
3078 #define netif_msg_wol(p)        ((p)->msg_enable & NETIF_MSG_WOL)
3079
3080 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3081 {
3082         /* use default */
3083         if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3084                 return default_msg_enable_bits;
3085         if (debug_value == 0)   /* no output */
3086                 return 0;
3087         /* set low N bits */
3088         return (1 << debug_value) - 1;
3089 }
3090
3091 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3092 {
3093         spin_lock(&txq->_xmit_lock);
3094         txq->xmit_lock_owner = cpu;
3095 }
3096
3097 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3098 {
3099         spin_lock_bh(&txq->_xmit_lock);
3100         txq->xmit_lock_owner = smp_processor_id();
3101 }
3102
3103 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3104 {
3105         bool ok = spin_trylock(&txq->_xmit_lock);
3106         if (likely(ok))
3107                 txq->xmit_lock_owner = smp_processor_id();
3108         return ok;
3109 }
3110
3111 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3112 {
3113         txq->xmit_lock_owner = -1;
3114         spin_unlock(&txq->_xmit_lock);
3115 }
3116
3117 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3118 {
3119         txq->xmit_lock_owner = -1;
3120         spin_unlock_bh(&txq->_xmit_lock);
3121 }
3122
3123 static inline void txq_trans_update(struct netdev_queue *txq)
3124 {
3125         if (txq->xmit_lock_owner != -1)
3126                 txq->trans_start = jiffies;
3127 }
3128
3129 /**
3130  *      netif_tx_lock - grab network device transmit lock
3131  *      @dev: network device
3132  *
3133  * Get network device transmit lock
3134  */
3135 static inline void netif_tx_lock(struct net_device *dev)
3136 {
3137         unsigned int i;
3138         int cpu;
3139
3140         spin_lock(&dev->tx_global_lock);
3141         cpu = smp_processor_id();
3142         for (i = 0; i < dev->num_tx_queues; i++) {
3143                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3144
3145                 /* We are the only thread of execution doing a
3146                  * freeze, but we have to grab the _xmit_lock in
3147                  * order to synchronize with threads which are in
3148                  * the ->hard_start_xmit() handler and already
3149                  * checked the frozen bit.
3150                  */
3151                 __netif_tx_lock(txq, cpu);
3152                 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3153                 __netif_tx_unlock(txq);
3154         }
3155 }
3156
3157 static inline void netif_tx_lock_bh(struct net_device *dev)
3158 {
3159         local_bh_disable();
3160         netif_tx_lock(dev);
3161 }
3162
3163 static inline void netif_tx_unlock(struct net_device *dev)
3164 {
3165         unsigned int i;
3166
3167         for (i = 0; i < dev->num_tx_queues; i++) {
3168                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3169
3170                 /* No need to grab the _xmit_lock here.  If the
3171                  * queue is not stopped for another reason, we
3172                  * force a schedule.
3173                  */
3174                 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3175                 netif_schedule_queue(txq);
3176         }
3177         spin_unlock(&dev->tx_global_lock);
3178 }
3179
3180 static inline void netif_tx_unlock_bh(struct net_device *dev)
3181 {
3182         netif_tx_unlock(dev);
3183         local_bh_enable();
3184 }
3185
3186 #define HARD_TX_LOCK(dev, txq, cpu) {                   \
3187         if ((dev->features & NETIF_F_LLTX) == 0) {      \
3188                 __netif_tx_lock(txq, cpu);              \
3189         }                                               \
3190 }
3191
3192 #define HARD_TX_TRYLOCK(dev, txq)                       \
3193         (((dev->features & NETIF_F_LLTX) == 0) ?        \
3194                 __netif_tx_trylock(txq) :               \
3195                 true )
3196
3197 #define HARD_TX_UNLOCK(dev, txq) {                      \
3198         if ((dev->features & NETIF_F_LLTX) == 0) {      \
3199                 __netif_tx_unlock(txq);                 \
3200         }                                               \
3201 }
3202
3203 static inline void netif_tx_disable(struct net_device *dev)
3204 {
3205         unsigned int i;
3206         int cpu;
3207
3208         local_bh_disable();
3209         cpu = smp_processor_id();
3210         for (i = 0; i < dev->num_tx_queues; i++) {
3211                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3212
3213                 __netif_tx_lock(txq, cpu);
3214                 netif_tx_stop_queue(txq);
3215                 __netif_tx_unlock(txq);
3216         }
3217         local_bh_enable();
3218 }
3219
3220 static inline void netif_addr_lock(struct net_device *dev)
3221 {
3222         spin_lock(&dev->addr_list_lock);
3223 }
3224
3225 static inline void netif_addr_lock_nested(struct net_device *dev)
3226 {
3227         int subclass = SINGLE_DEPTH_NESTING;
3228
3229         if (dev->netdev_ops->ndo_get_lock_subclass)
3230                 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3231
3232         spin_lock_nested(&dev->addr_list_lock, subclass);
3233 }
3234
3235 static inline void netif_addr_lock_bh(struct net_device *dev)
3236 {
3237         spin_lock_bh(&dev->addr_list_lock);
3238 }
3239
3240 static inline void netif_addr_unlock(struct net_device *dev)
3241 {
3242         spin_unlock(&dev->addr_list_lock);
3243 }
3244
3245 static inline void netif_addr_unlock_bh(struct net_device *dev)
3246 {
3247         spin_unlock_bh(&dev->addr_list_lock);
3248 }
3249
3250 /*
3251  * dev_addrs walker. Should be used only for read access. Call with
3252  * rcu_read_lock held.
3253  */
3254 #define for_each_dev_addr(dev, ha) \
3255                 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3256
3257 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3258
3259 void ether_setup(struct net_device *dev);
3260
3261 /* Support for loadable net-drivers */
3262 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3263                                     unsigned char name_assign_type,
3264                                     void (*setup)(struct net_device *),
3265                                     unsigned int txqs, unsigned int rxqs);
3266 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3267         alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3268
3269 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3270         alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3271                          count)
3272
3273 int register_netdev(struct net_device *dev);
3274 void unregister_netdev(struct net_device *dev);
3275
3276 /* General hardware address lists handling functions */
3277 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3278                    struct netdev_hw_addr_list *from_list, int addr_len);
3279 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3280                       struct netdev_hw_addr_list *from_list, int addr_len);
3281 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3282                        struct net_device *dev,
3283                        int (*sync)(struct net_device *, const unsigned char *),
3284                        int (*unsync)(struct net_device *,
3285                                      const unsigned char *));
3286 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3287                           struct net_device *dev,
3288                           int (*unsync)(struct net_device *,
3289                                         const unsigned char *));
3290 void __hw_addr_init(struct netdev_hw_addr_list *list);
3291
3292 /* Functions used for device addresses handling */
3293 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3294                  unsigned char addr_type);
3295 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3296                  unsigned char addr_type);
3297 void dev_addr_flush(struct net_device *dev);
3298 int dev_addr_init(struct net_device *dev);
3299
3300 /* Functions used for unicast addresses handling */
3301 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3302 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3303 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3304 int dev_uc_sync(struct net_device *to, struct net_device *from);
3305 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3306 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3307 void dev_uc_flush(struct net_device *dev);
3308 void dev_uc_init(struct net_device *dev);
3309
3310 /**
3311  *  __dev_uc_sync - Synchonize device's unicast list
3312  *  @dev:  device to sync
3313  *  @sync: function to call if address should be added
3314  *  @unsync: function to call if address should be removed
3315  *
3316  *  Add newly added addresses to the interface, and release
3317  *  addresses that have been deleted.
3318  **/
3319 static inline int __dev_uc_sync(struct net_device *dev,
3320                                 int (*sync)(struct net_device *,
3321                                             const unsigned char *),
3322                                 int (*unsync)(struct net_device *,
3323                                               const unsigned char *))
3324 {
3325         return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3326 }
3327
3328 /**
3329  *  __dev_uc_unsync - Remove synchronized addresses from device
3330  *  @dev:  device to sync
3331  *  @unsync: function to call if address should be removed
3332  *
3333  *  Remove all addresses that were added to the device by dev_uc_sync().
3334  **/
3335 static inline void __dev_uc_unsync(struct net_device *dev,
3336                                    int (*unsync)(struct net_device *,
3337                                                  const unsigned char *))
3338 {
3339         __hw_addr_unsync_dev(&dev->uc, dev, unsync);
3340 }
3341
3342 /* Functions used for multicast addresses handling */
3343 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3344 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3345 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3346 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3347 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3348 int dev_mc_sync(struct net_device *to, struct net_device *from);
3349 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3350 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3351 void dev_mc_flush(struct net_device *dev);
3352 void dev_mc_init(struct net_device *dev);
3353
3354 /**
3355  *  __dev_mc_sync - Synchonize device's multicast list
3356  *  @dev:  device to sync
3357  *  @sync: function to call if address should be added
3358  *  @unsync: function to call if address should be removed
3359  *
3360  *  Add newly added addresses to the interface, and release
3361  *  addresses that have been deleted.
3362  **/
3363 static inline int __dev_mc_sync(struct net_device *dev,
3364                                 int (*sync)(struct net_device *,
3365                                             const unsigned char *),
3366                                 int (*unsync)(struct net_device *,
3367                                               const unsigned char *))
3368 {
3369         return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3370 }
3371
3372 /**
3373  *  __dev_mc_unsync - Remove synchronized addresses from device
3374  *  @dev:  device to sync
3375  *  @unsync: function to call if address should be removed
3376  *
3377  *  Remove all addresses that were added to the device by dev_mc_sync().
3378  **/
3379 static inline void __dev_mc_unsync(struct net_device *dev,
3380                                    int (*unsync)(struct net_device *,
3381                                                  const unsigned char *))
3382 {
3383         __hw_addr_unsync_dev(&dev->mc, dev, unsync);
3384 }
3385
3386 /* Functions used for secondary unicast and multicast support */
3387 void dev_set_rx_mode(struct net_device *dev);
3388 void __dev_set_rx_mode(struct net_device *dev);
3389 int dev_set_promiscuity(struct net_device *dev, int inc);
3390 int dev_set_allmulti(struct net_device *dev, int inc);
3391 void netdev_state_change(struct net_device *dev);
3392 void netdev_notify_peers(struct net_device *dev);
3393 void netdev_features_change(struct net_device *dev);
3394 /* Load a device via the kmod */
3395 void dev_load(struct net *net, const char *name);
3396 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3397                                         struct rtnl_link_stats64 *storage);
3398 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3399                              const struct net_device_stats *netdev_stats);
3400
3401 extern int              netdev_max_backlog;
3402 extern int              netdev_tstamp_prequeue;
3403 extern int              weight_p;
3404 extern int              bpf_jit_enable;
3405
3406 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3407 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3408                                                      struct list_head **iter);
3409 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3410                                                      struct list_head **iter);
3411
3412 /* iterate through upper list, must be called under RCU read lock */
3413 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3414         for (iter = &(dev)->adj_list.upper, \
3415              updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3416              updev; \
3417              updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3418
3419 /* iterate through upper list, must be called under RCU read lock */
3420 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3421         for (iter = &(dev)->all_adj_list.upper, \
3422              updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3423              updev; \
3424              updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
3425
3426 void *netdev_lower_get_next_private(struct net_device *dev,
3427                                     struct list_head **iter);
3428 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3429                                         struct list_head **iter);
3430
3431 #define netdev_for_each_lower_private(dev, priv, iter) \
3432         for (iter = (dev)->adj_list.lower.next, \
3433              priv = netdev_lower_get_next_private(dev, &(iter)); \
3434              priv; \
3435              priv = netdev_lower_get_next_private(dev, &(iter)))
3436
3437 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3438         for (iter = &(dev)->adj_list.lower, \
3439              priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3440              priv; \
3441              priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3442
3443 void *netdev_lower_get_next(struct net_device *dev,
3444                                 struct list_head **iter);
3445 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3446         for (iter = &(dev)->adj_list.lower, \
3447              ldev = netdev_lower_get_next(dev, &(iter)); \
3448              ldev; \
3449              ldev = netdev_lower_get_next(dev, &(iter)))
3450
3451 void *netdev_adjacent_get_private(struct list_head *adj_list);
3452 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3453 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3454 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3455 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3456 int netdev_master_upper_dev_link(struct net_device *dev,
3457                                  struct net_device *upper_dev);
3458 int netdev_master_upper_dev_link_private(struct net_device *dev,
3459                                          struct net_device *upper_dev,
3460                                          void *private);
3461 void netdev_upper_dev_unlink(struct net_device *dev,
3462                              struct net_device *upper_dev);
3463 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3464 void *netdev_lower_dev_get_private(struct net_device *dev,
3465                                    struct net_device *lower_dev);
3466
3467 /* RSS keys are 40 or 52 bytes long */
3468 #define NETDEV_RSS_KEY_LEN 52
3469 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN];
3470 void netdev_rss_key_fill(void *buffer, size_t len);
3471
3472 int dev_get_nest_level(struct net_device *dev,
3473                        bool (*type_check)(struct net_device *dev));
3474 int skb_checksum_help(struct sk_buff *skb);
3475 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3476                                   netdev_features_t features, bool tx_path);
3477 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3478                                     netdev_features_t features);
3479
3480 static inline
3481 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3482 {
3483         return __skb_gso_segment(skb, features, true);
3484 }
3485 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3486
3487 static inline bool can_checksum_protocol(netdev_features_t features,
3488                                          __be16 protocol)
3489 {
3490         return ((features & NETIF_F_GEN_CSUM) ||
3491                 ((features & NETIF_F_V4_CSUM) &&
3492                  protocol == htons(ETH_P_IP)) ||
3493                 ((features & NETIF_F_V6_CSUM) &&
3494                  protocol == htons(ETH_P_IPV6)) ||
3495                 ((features & NETIF_F_FCOE_CRC) &&
3496                  protocol == htons(ETH_P_FCOE)));
3497 }
3498
3499 #ifdef CONFIG_BUG
3500 void netdev_rx_csum_fault(struct net_device *dev);
3501 #else
3502 static inline void netdev_rx_csum_fault(struct net_device *dev)
3503 {
3504 }
3505 #endif
3506 /* rx skb timestamps */
3507 void net_enable_timestamp(void);
3508 void net_disable_timestamp(void);
3509
3510 #ifdef CONFIG_PROC_FS
3511 int __init dev_proc_init(void);
3512 #else
3513 #define dev_proc_init() 0
3514 #endif
3515
3516 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3517                                               struct sk_buff *skb, struct net_device *dev,
3518                                               bool more)
3519 {
3520         skb->xmit_more = more ? 1 : 0;
3521         return ops->ndo_start_xmit(skb, dev);
3522 }
3523
3524 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
3525                                             struct netdev_queue *txq, bool more)
3526 {
3527         const struct net_device_ops *ops = dev->netdev_ops;
3528         int rc;
3529
3530         rc = __netdev_start_xmit(ops, skb, dev, more);
3531         if (rc == NETDEV_TX_OK)
3532                 txq_trans_update(txq);
3533
3534         return rc;
3535 }
3536
3537 int netdev_class_create_file_ns(struct class_attribute *class_attr,
3538                                 const void *ns);
3539 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3540                                  const void *ns);
3541
3542 static inline int netdev_class_create_file(struct class_attribute *class_attr)
3543 {
3544         return netdev_class_create_file_ns(class_attr, NULL);
3545 }
3546
3547 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3548 {
3549         netdev_class_remove_file_ns(class_attr, NULL);
3550 }
3551
3552 extern struct kobj_ns_type_operations net_ns_type_operations;
3553
3554 const char *netdev_drivername(const struct net_device *dev);
3555
3556 void linkwatch_run_queue(void);
3557
3558 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
3559                                                           netdev_features_t f2)
3560 {
3561         if (f1 & NETIF_F_GEN_CSUM)
3562                 f1 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3563         if (f2 & NETIF_F_GEN_CSUM)
3564                 f2 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3565         f1 &= f2;
3566         if (f1 & NETIF_F_GEN_CSUM)
3567                 f1 &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3568
3569         return f1;
3570 }
3571
3572 static inline netdev_features_t netdev_get_wanted_features(
3573         struct net_device *dev)
3574 {
3575         return (dev->features & ~dev->hw_features) | dev->wanted_features;
3576 }
3577 netdev_features_t netdev_increment_features(netdev_features_t all,
3578         netdev_features_t one, netdev_features_t mask);
3579
3580 /* Allow TSO being used on stacked device :
3581  * Performing the GSO segmentation before last device
3582  * is a performance improvement.
3583  */
3584 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
3585                                                         netdev_features_t mask)
3586 {
3587         return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
3588 }
3589
3590 int __netdev_update_features(struct net_device *dev);
3591 void netdev_update_features(struct net_device *dev);
3592 void netdev_change_features(struct net_device *dev);
3593
3594 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
3595                                         struct net_device *dev);
3596
3597 netdev_features_t netif_skb_features(struct sk_buff *skb);
3598
3599 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
3600 {
3601         netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
3602
3603         /* check flags correspondence */
3604         BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
3605         BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
3606         BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
3607         BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
3608         BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
3609         BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
3610         BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
3611         BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
3612         BUILD_BUG_ON(SKB_GSO_IPIP    != (NETIF_F_GSO_IPIP >> NETIF_F_GSO_SHIFT));
3613         BUILD_BUG_ON(SKB_GSO_SIT     != (NETIF_F_GSO_SIT >> NETIF_F_GSO_SHIFT));
3614         BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
3615         BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
3616         BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
3617
3618         return (features & feature) == feature;
3619 }
3620
3621 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
3622 {
3623         return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
3624                (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
3625 }
3626
3627 static inline bool netif_needs_gso(struct net_device *dev, struct sk_buff *skb,
3628                                    netdev_features_t features)
3629 {
3630         return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
3631                 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
3632                          (skb->ip_summed != CHECKSUM_UNNECESSARY)));
3633 }
3634
3635 static inline void netif_set_gso_max_size(struct net_device *dev,
3636                                           unsigned int size)
3637 {
3638         dev->gso_max_size = size;
3639 }
3640
3641 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
3642                                         int pulled_hlen, u16 mac_offset,
3643                                         int mac_len)
3644 {
3645         skb->protocol = protocol;
3646         skb->encapsulation = 1;
3647         skb_push(skb, pulled_hlen);
3648         skb_reset_transport_header(skb);
3649         skb->mac_header = mac_offset;
3650         skb->network_header = skb->mac_header + mac_len;
3651         skb->mac_len = mac_len;
3652 }
3653
3654 static inline bool netif_is_macvlan(struct net_device *dev)
3655 {
3656         return dev->priv_flags & IFF_MACVLAN;
3657 }
3658
3659 static inline bool netif_is_macvlan_port(struct net_device *dev)
3660 {
3661         return dev->priv_flags & IFF_MACVLAN_PORT;
3662 }
3663
3664 static inline bool netif_is_ipvlan(struct net_device *dev)
3665 {
3666         return dev->priv_flags & IFF_IPVLAN_SLAVE;
3667 }
3668
3669 static inline bool netif_is_ipvlan_port(struct net_device *dev)
3670 {
3671         return dev->priv_flags & IFF_IPVLAN_MASTER;
3672 }
3673
3674 static inline bool netif_is_bond_master(struct net_device *dev)
3675 {
3676         return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
3677 }
3678
3679 static inline bool netif_is_bond_slave(struct net_device *dev)
3680 {
3681         return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
3682 }
3683
3684 static inline bool netif_supports_nofcs(struct net_device *dev)
3685 {
3686         return dev->priv_flags & IFF_SUPP_NOFCS;
3687 }
3688
3689 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
3690 static inline void netif_keep_dst(struct net_device *dev)
3691 {
3692         dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
3693 }
3694
3695 extern struct pernet_operations __net_initdata loopback_net_ops;
3696
3697 /* Logging, debugging and troubleshooting/diagnostic helpers. */
3698
3699 /* netdev_printk helpers, similar to dev_printk */
3700
3701 static inline const char *netdev_name(const struct net_device *dev)
3702 {
3703         if (!dev->name[0] || strchr(dev->name, '%'))
3704                 return "(unnamed net_device)";
3705         return dev->name;
3706 }
3707
3708 static inline const char *netdev_reg_state(const struct net_device *dev)
3709 {
3710         switch (dev->reg_state) {
3711         case NETREG_UNINITIALIZED: return " (uninitialized)";
3712         case NETREG_REGISTERED: return "";
3713         case NETREG_UNREGISTERING: return " (unregistering)";
3714         case NETREG_UNREGISTERED: return " (unregistered)";
3715         case NETREG_RELEASED: return " (released)";
3716         case NETREG_DUMMY: return " (dummy)";
3717         }
3718
3719         WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
3720         return " (unknown)";
3721 }
3722
3723 __printf(3, 4)
3724 void netdev_printk(const char *level, const struct net_device *dev,
3725                    const char *format, ...);
3726 __printf(2, 3)
3727 void netdev_emerg(const struct net_device *dev, const char *format, ...);
3728 __printf(2, 3)
3729 void netdev_alert(const struct net_device *dev, const char *format, ...);
3730 __printf(2, 3)
3731 void netdev_crit(const struct net_device *dev, const char *format, ...);
3732 __printf(2, 3)
3733 void netdev_err(const struct net_device *dev, const char *format, ...);
3734 __printf(2, 3)
3735 void netdev_warn(const struct net_device *dev, const char *format, ...);
3736 __printf(2, 3)
3737 void netdev_notice(const struct net_device *dev, const char *format, ...);
3738 __printf(2, 3)
3739 void netdev_info(const struct net_device *dev, const char *format, ...);
3740
3741 #define MODULE_ALIAS_NETDEV(device) \
3742         MODULE_ALIAS("netdev-" device)
3743
3744 #if defined(CONFIG_DYNAMIC_DEBUG)
3745 #define netdev_dbg(__dev, format, args...)                      \
3746 do {                                                            \
3747         dynamic_netdev_dbg(__dev, format, ##args);              \
3748 } while (0)
3749 #elif defined(DEBUG)
3750 #define netdev_dbg(__dev, format, args...)                      \
3751         netdev_printk(KERN_DEBUG, __dev, format, ##args)
3752 #else
3753 #define netdev_dbg(__dev, format, args...)                      \
3754 ({                                                              \
3755         if (0)                                                  \
3756                 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
3757 })
3758 #endif
3759
3760 #if defined(VERBOSE_DEBUG)
3761 #define netdev_vdbg     netdev_dbg
3762 #else
3763
3764 #define netdev_vdbg(dev, format, args...)                       \
3765 ({                                                              \
3766         if (0)                                                  \
3767                 netdev_printk(KERN_DEBUG, dev, format, ##args); \
3768         0;                                                      \
3769 })
3770 #endif
3771
3772 /*
3773  * netdev_WARN() acts like dev_printk(), but with the key difference
3774  * of using a WARN/WARN_ON to get the message out, including the
3775  * file/line information and a backtrace.
3776  */
3777 #define netdev_WARN(dev, format, args...)                       \
3778         WARN(1, "netdevice: %s%s\n" format, netdev_name(dev),   \
3779              netdev_reg_state(dev), ##args)
3780
3781 /* netif printk helpers, similar to netdev_printk */
3782
3783 #define netif_printk(priv, type, level, dev, fmt, args...)      \
3784 do {                                                            \
3785         if (netif_msg_##type(priv))                             \
3786                 netdev_printk(level, (dev), fmt, ##args);       \
3787 } while (0)
3788
3789 #define netif_level(level, priv, type, dev, fmt, args...)       \
3790 do {                                                            \
3791         if (netif_msg_##type(priv))                             \
3792                 netdev_##level(dev, fmt, ##args);               \
3793 } while (0)
3794
3795 #define netif_emerg(priv, type, dev, fmt, args...)              \
3796         netif_level(emerg, priv, type, dev, fmt, ##args)
3797 #define netif_alert(priv, type, dev, fmt, args...)              \
3798         netif_level(alert, priv, type, dev, fmt, ##args)
3799 #define netif_crit(priv, type, dev, fmt, args...)               \
3800         netif_level(crit, priv, type, dev, fmt, ##args)
3801 #define netif_err(priv, type, dev, fmt, args...)                \
3802         netif_level(err, priv, type, dev, fmt, ##args)
3803 #define netif_warn(priv, type, dev, fmt, args...)               \
3804         netif_level(warn, priv, type, dev, fmt, ##args)
3805 #define netif_notice(priv, type, dev, fmt, args...)             \
3806         netif_level(notice, priv, type, dev, fmt, ##args)
3807 #define netif_info(priv, type, dev, fmt, args...)               \
3808         netif_level(info, priv, type, dev, fmt, ##args)
3809
3810 #if defined(CONFIG_DYNAMIC_DEBUG)
3811 #define netif_dbg(priv, type, netdev, format, args...)          \
3812 do {                                                            \
3813         if (netif_msg_##type(priv))                             \
3814                 dynamic_netdev_dbg(netdev, format, ##args);     \
3815 } while (0)
3816 #elif defined(DEBUG)
3817 #define netif_dbg(priv, type, dev, format, args...)             \
3818         netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
3819 #else
3820 #define netif_dbg(priv, type, dev, format, args...)                     \
3821 ({                                                                      \
3822         if (0)                                                          \
3823                 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3824         0;                                                              \
3825 })
3826 #endif
3827
3828 #if defined(VERBOSE_DEBUG)
3829 #define netif_vdbg      netif_dbg
3830 #else
3831 #define netif_vdbg(priv, type, dev, format, args...)            \
3832 ({                                                              \
3833         if (0)                                                  \
3834                 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3835         0;                                                      \
3836 })
3837 #endif
3838
3839 /*
3840  *      The list of packet types we will receive (as opposed to discard)
3841  *      and the routines to invoke.
3842  *
3843  *      Why 16. Because with 16 the only overlap we get on a hash of the
3844  *      low nibble of the protocol value is RARP/SNAP/X.25.
3845  *
3846  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
3847  *             sure which should go first, but I bet it won't make much
3848  *             difference if we are running VLANs.  The good news is that
3849  *             this protocol won't be in the list unless compiled in, so
3850  *             the average user (w/out VLANs) will not be adversely affected.
3851  *             --BLG
3852  *
3853  *              0800    IP
3854  *              8100    802.1Q VLAN
3855  *              0001    802.3
3856  *              0002    AX.25
3857  *              0004    802.2
3858  *              8035    RARP
3859  *              0005    SNAP
3860  *              0805    X.25
3861  *              0806    ARP
3862  *              8137    IPX
3863  *              0009    Localtalk
3864  *              86DD    IPv6
3865  */
3866 #define PTYPE_HASH_SIZE (16)
3867 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
3868
3869 #endif  /* _LINUX_NETDEVICE_H */