perf: Add generic taken branch sampling support
[cascardo/linux.git] / include / linux / perf_event.h
1 /*
2  * Performance events:
3  *
4  *    Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5  *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7  *
8  * Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  * For licencing details see kernel-base/COPYING
13  */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16
17 #include <linux/types.h>
18 #include <linux/ioctl.h>
19 #include <asm/byteorder.h>
20
21 /*
22  * User-space ABI bits:
23  */
24
25 /*
26  * attr.type
27  */
28 enum perf_type_id {
29         PERF_TYPE_HARDWARE                      = 0,
30         PERF_TYPE_SOFTWARE                      = 1,
31         PERF_TYPE_TRACEPOINT                    = 2,
32         PERF_TYPE_HW_CACHE                      = 3,
33         PERF_TYPE_RAW                           = 4,
34         PERF_TYPE_BREAKPOINT                    = 5,
35
36         PERF_TYPE_MAX,                          /* non-ABI */
37 };
38
39 /*
40  * Generalized performance event event_id types, used by the
41  * attr.event_id parameter of the sys_perf_event_open()
42  * syscall:
43  */
44 enum perf_hw_id {
45         /*
46          * Common hardware events, generalized by the kernel:
47          */
48         PERF_COUNT_HW_CPU_CYCLES                = 0,
49         PERF_COUNT_HW_INSTRUCTIONS              = 1,
50         PERF_COUNT_HW_CACHE_REFERENCES          = 2,
51         PERF_COUNT_HW_CACHE_MISSES              = 3,
52         PERF_COUNT_HW_BRANCH_INSTRUCTIONS       = 4,
53         PERF_COUNT_HW_BRANCH_MISSES             = 5,
54         PERF_COUNT_HW_BUS_CYCLES                = 6,
55         PERF_COUNT_HW_STALLED_CYCLES_FRONTEND   = 7,
56         PERF_COUNT_HW_STALLED_CYCLES_BACKEND    = 8,
57         PERF_COUNT_HW_REF_CPU_CYCLES            = 9,
58
59         PERF_COUNT_HW_MAX,                      /* non-ABI */
60 };
61
62 /*
63  * Generalized hardware cache events:
64  *
65  *       { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x
66  *       { read, write, prefetch } x
67  *       { accesses, misses }
68  */
69 enum perf_hw_cache_id {
70         PERF_COUNT_HW_CACHE_L1D                 = 0,
71         PERF_COUNT_HW_CACHE_L1I                 = 1,
72         PERF_COUNT_HW_CACHE_LL                  = 2,
73         PERF_COUNT_HW_CACHE_DTLB                = 3,
74         PERF_COUNT_HW_CACHE_ITLB                = 4,
75         PERF_COUNT_HW_CACHE_BPU                 = 5,
76         PERF_COUNT_HW_CACHE_NODE                = 6,
77
78         PERF_COUNT_HW_CACHE_MAX,                /* non-ABI */
79 };
80
81 enum perf_hw_cache_op_id {
82         PERF_COUNT_HW_CACHE_OP_READ             = 0,
83         PERF_COUNT_HW_CACHE_OP_WRITE            = 1,
84         PERF_COUNT_HW_CACHE_OP_PREFETCH         = 2,
85
86         PERF_COUNT_HW_CACHE_OP_MAX,             /* non-ABI */
87 };
88
89 enum perf_hw_cache_op_result_id {
90         PERF_COUNT_HW_CACHE_RESULT_ACCESS       = 0,
91         PERF_COUNT_HW_CACHE_RESULT_MISS         = 1,
92
93         PERF_COUNT_HW_CACHE_RESULT_MAX,         /* non-ABI */
94 };
95
96 /*
97  * Special "software" events provided by the kernel, even if the hardware
98  * does not support performance events. These events measure various
99  * physical and sw events of the kernel (and allow the profiling of them as
100  * well):
101  */
102 enum perf_sw_ids {
103         PERF_COUNT_SW_CPU_CLOCK                 = 0,
104         PERF_COUNT_SW_TASK_CLOCK                = 1,
105         PERF_COUNT_SW_PAGE_FAULTS               = 2,
106         PERF_COUNT_SW_CONTEXT_SWITCHES          = 3,
107         PERF_COUNT_SW_CPU_MIGRATIONS            = 4,
108         PERF_COUNT_SW_PAGE_FAULTS_MIN           = 5,
109         PERF_COUNT_SW_PAGE_FAULTS_MAJ           = 6,
110         PERF_COUNT_SW_ALIGNMENT_FAULTS          = 7,
111         PERF_COUNT_SW_EMULATION_FAULTS          = 8,
112
113         PERF_COUNT_SW_MAX,                      /* non-ABI */
114 };
115
116 /*
117  * Bits that can be set in attr.sample_type to request information
118  * in the overflow packets.
119  */
120 enum perf_event_sample_format {
121         PERF_SAMPLE_IP                          = 1U << 0,
122         PERF_SAMPLE_TID                         = 1U << 1,
123         PERF_SAMPLE_TIME                        = 1U << 2,
124         PERF_SAMPLE_ADDR                        = 1U << 3,
125         PERF_SAMPLE_READ                        = 1U << 4,
126         PERF_SAMPLE_CALLCHAIN                   = 1U << 5,
127         PERF_SAMPLE_ID                          = 1U << 6,
128         PERF_SAMPLE_CPU                         = 1U << 7,
129         PERF_SAMPLE_PERIOD                      = 1U << 8,
130         PERF_SAMPLE_STREAM_ID                   = 1U << 9,
131         PERF_SAMPLE_RAW                         = 1U << 10,
132         PERF_SAMPLE_BRANCH_STACK                = 1U << 11,
133
134         PERF_SAMPLE_MAX = 1U << 12,             /* non-ABI */
135 };
136
137 /*
138  * values to program into branch_sample_type when PERF_SAMPLE_BRANCH is set
139  *
140  * If the user does not pass priv level information via branch_sample_type,
141  * the kernel uses the event's priv level. Branch and event priv levels do
142  * not have to match. Branch priv level is checked for permissions.
143  *
144  * The branch types can be combined, however BRANCH_ANY covers all types
145  * of branches and therefore it supersedes all the other types.
146  */
147 enum perf_branch_sample_type {
148         PERF_SAMPLE_BRANCH_USER         = 1U << 0, /* user branches */
149         PERF_SAMPLE_BRANCH_KERNEL       = 1U << 1, /* kernel branches */
150         PERF_SAMPLE_BRANCH_HV           = 1U << 2, /* hypervisor branches */
151
152         PERF_SAMPLE_BRANCH_ANY          = 1U << 3, /* any branch types */
153         PERF_SAMPLE_BRANCH_ANY_CALL     = 1U << 4, /* any call branch */
154         PERF_SAMPLE_BRANCH_ANY_RETURN   = 1U << 5, /* any return branch */
155         PERF_SAMPLE_BRANCH_IND_CALL     = 1U << 6, /* indirect calls */
156
157         PERF_SAMPLE_BRANCH_MAX          = 1U << 7, /* non-ABI */
158 };
159
160 #define PERF_SAMPLE_BRANCH_PLM_ALL \
161         (PERF_SAMPLE_BRANCH_USER|\
162          PERF_SAMPLE_BRANCH_KERNEL|\
163          PERF_SAMPLE_BRANCH_HV)
164
165 /*
166  * The format of the data returned by read() on a perf event fd,
167  * as specified by attr.read_format:
168  *
169  * struct read_format {
170  *      { u64           value;
171  *        { u64         time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
172  *        { u64         time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
173  *        { u64         id;           } && PERF_FORMAT_ID
174  *      } && !PERF_FORMAT_GROUP
175  *
176  *      { u64           nr;
177  *        { u64         time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
178  *        { u64         time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
179  *        { u64         value;
180  *          { u64       id;           } && PERF_FORMAT_ID
181  *        }             cntr[nr];
182  *      } && PERF_FORMAT_GROUP
183  * };
184  */
185 enum perf_event_read_format {
186         PERF_FORMAT_TOTAL_TIME_ENABLED          = 1U << 0,
187         PERF_FORMAT_TOTAL_TIME_RUNNING          = 1U << 1,
188         PERF_FORMAT_ID                          = 1U << 2,
189         PERF_FORMAT_GROUP                       = 1U << 3,
190
191         PERF_FORMAT_MAX = 1U << 4,              /* non-ABI */
192 };
193
194 #define PERF_ATTR_SIZE_VER0     64      /* sizeof first published struct */
195
196 /*
197  * Hardware event_id to monitor via a performance monitoring event:
198  */
199 struct perf_event_attr {
200
201         /*
202          * Major type: hardware/software/tracepoint/etc.
203          */
204         __u32                   type;
205
206         /*
207          * Size of the attr structure, for fwd/bwd compat.
208          */
209         __u32                   size;
210
211         /*
212          * Type specific configuration information.
213          */
214         __u64                   config;
215
216         union {
217                 __u64           sample_period;
218                 __u64           sample_freq;
219         };
220
221         __u64                   sample_type;
222         __u64                   read_format;
223
224         __u64                   disabled       :  1, /* off by default        */
225                                 inherit        :  1, /* children inherit it   */
226                                 pinned         :  1, /* must always be on PMU */
227                                 exclusive      :  1, /* only group on PMU     */
228                                 exclude_user   :  1, /* don't count user      */
229                                 exclude_kernel :  1, /* ditto kernel          */
230                                 exclude_hv     :  1, /* ditto hypervisor      */
231                                 exclude_idle   :  1, /* don't count when idle */
232                                 mmap           :  1, /* include mmap data     */
233                                 comm           :  1, /* include comm data     */
234                                 freq           :  1, /* use freq, not period  */
235                                 inherit_stat   :  1, /* per task counts       */
236                                 enable_on_exec :  1, /* next exec enables     */
237                                 task           :  1, /* trace fork/exit       */
238                                 watermark      :  1, /* wakeup_watermark      */
239                                 /*
240                                  * precise_ip:
241                                  *
242                                  *  0 - SAMPLE_IP can have arbitrary skid
243                                  *  1 - SAMPLE_IP must have constant skid
244                                  *  2 - SAMPLE_IP requested to have 0 skid
245                                  *  3 - SAMPLE_IP must have 0 skid
246                                  *
247                                  *  See also PERF_RECORD_MISC_EXACT_IP
248                                  */
249                                 precise_ip     :  2, /* skid constraint       */
250                                 mmap_data      :  1, /* non-exec mmap data    */
251                                 sample_id_all  :  1, /* sample_type all events */
252
253                                 exclude_host   :  1, /* don't count in host   */
254                                 exclude_guest  :  1, /* don't count in guest  */
255
256                                 __reserved_1   : 43;
257
258         union {
259                 __u32           wakeup_events;    /* wakeup every n events */
260                 __u32           wakeup_watermark; /* bytes before wakeup   */
261         };
262
263         __u32                   bp_type;
264         union {
265                 __u64           bp_addr;
266                 __u64           config1; /* extension of config */
267         };
268         union {
269                 __u64           bp_len;
270                 __u64           config2; /* extension of config1 */
271         };
272         __u64   branch_sample_type; /* enum branch_sample_type */
273 };
274
275 /*
276  * Ioctls that can be done on a perf event fd:
277  */
278 #define PERF_EVENT_IOC_ENABLE           _IO ('$', 0)
279 #define PERF_EVENT_IOC_DISABLE          _IO ('$', 1)
280 #define PERF_EVENT_IOC_REFRESH          _IO ('$', 2)
281 #define PERF_EVENT_IOC_RESET            _IO ('$', 3)
282 #define PERF_EVENT_IOC_PERIOD           _IOW('$', 4, __u64)
283 #define PERF_EVENT_IOC_SET_OUTPUT       _IO ('$', 5)
284 #define PERF_EVENT_IOC_SET_FILTER       _IOW('$', 6, char *)
285
286 enum perf_event_ioc_flags {
287         PERF_IOC_FLAG_GROUP             = 1U << 0,
288 };
289
290 /*
291  * Structure of the page that can be mapped via mmap
292  */
293 struct perf_event_mmap_page {
294         __u32   version;                /* version number of this structure */
295         __u32   compat_version;         /* lowest version this is compat with */
296
297         /*
298          * Bits needed to read the hw events in user-space.
299          *
300          *   u32 seq;
301          *   s64 count;
302          *
303          *   do {
304          *     seq = pc->lock;
305          *
306          *     barrier()
307          *     if (pc->index) {
308          *       count = pmc_read(pc->index - 1);
309          *       count += pc->offset;
310          *     } else
311          *       goto regular_read;
312          *
313          *     barrier();
314          *   } while (pc->lock != seq);
315          *
316          * NOTE: for obvious reason this only works on self-monitoring
317          *       processes.
318          */
319         __u32   lock;                   /* seqlock for synchronization */
320         __u32   index;                  /* hardware event identifier */
321         __s64   offset;                 /* add to hardware event value */
322         __u64   time_enabled;           /* time event active */
323         __u64   time_running;           /* time event on cpu */
324         __u32   time_mult, time_shift;
325         __u64   time_offset;
326
327                 /*
328                  * Hole for extension of the self monitor capabilities
329                  */
330
331         __u64   __reserved[121];        /* align to 1k */
332
333         /*
334          * Control data for the mmap() data buffer.
335          *
336          * User-space reading the @data_head value should issue an rmb(), on
337          * SMP capable platforms, after reading this value -- see
338          * perf_event_wakeup().
339          *
340          * When the mapping is PROT_WRITE the @data_tail value should be
341          * written by userspace to reflect the last read data. In this case
342          * the kernel will not over-write unread data.
343          */
344         __u64   data_head;              /* head in the data section */
345         __u64   data_tail;              /* user-space written tail */
346 };
347
348 #define PERF_RECORD_MISC_CPUMODE_MASK           (7 << 0)
349 #define PERF_RECORD_MISC_CPUMODE_UNKNOWN        (0 << 0)
350 #define PERF_RECORD_MISC_KERNEL                 (1 << 0)
351 #define PERF_RECORD_MISC_USER                   (2 << 0)
352 #define PERF_RECORD_MISC_HYPERVISOR             (3 << 0)
353 #define PERF_RECORD_MISC_GUEST_KERNEL           (4 << 0)
354 #define PERF_RECORD_MISC_GUEST_USER             (5 << 0)
355
356 /*
357  * Indicates that the content of PERF_SAMPLE_IP points to
358  * the actual instruction that triggered the event. See also
359  * perf_event_attr::precise_ip.
360  */
361 #define PERF_RECORD_MISC_EXACT_IP               (1 << 14)
362 /*
363  * Reserve the last bit to indicate some extended misc field
364  */
365 #define PERF_RECORD_MISC_EXT_RESERVED           (1 << 15)
366
367 struct perf_event_header {
368         __u32   type;
369         __u16   misc;
370         __u16   size;
371 };
372
373 enum perf_event_type {
374
375         /*
376          * If perf_event_attr.sample_id_all is set then all event types will
377          * have the sample_type selected fields related to where/when
378          * (identity) an event took place (TID, TIME, ID, CPU, STREAM_ID)
379          * described in PERF_RECORD_SAMPLE below, it will be stashed just after
380          * the perf_event_header and the fields already present for the existing
381          * fields, i.e. at the end of the payload. That way a newer perf.data
382          * file will be supported by older perf tools, with these new optional
383          * fields being ignored.
384          *
385          * The MMAP events record the PROT_EXEC mappings so that we can
386          * correlate userspace IPs to code. They have the following structure:
387          *
388          * struct {
389          *      struct perf_event_header        header;
390          *
391          *      u32                             pid, tid;
392          *      u64                             addr;
393          *      u64                             len;
394          *      u64                             pgoff;
395          *      char                            filename[];
396          * };
397          */
398         PERF_RECORD_MMAP                        = 1,
399
400         /*
401          * struct {
402          *      struct perf_event_header        header;
403          *      u64                             id;
404          *      u64                             lost;
405          * };
406          */
407         PERF_RECORD_LOST                        = 2,
408
409         /*
410          * struct {
411          *      struct perf_event_header        header;
412          *
413          *      u32                             pid, tid;
414          *      char                            comm[];
415          * };
416          */
417         PERF_RECORD_COMM                        = 3,
418
419         /*
420          * struct {
421          *      struct perf_event_header        header;
422          *      u32                             pid, ppid;
423          *      u32                             tid, ptid;
424          *      u64                             time;
425          * };
426          */
427         PERF_RECORD_EXIT                        = 4,
428
429         /*
430          * struct {
431          *      struct perf_event_header        header;
432          *      u64                             time;
433          *      u64                             id;
434          *      u64                             stream_id;
435          * };
436          */
437         PERF_RECORD_THROTTLE                    = 5,
438         PERF_RECORD_UNTHROTTLE                  = 6,
439
440         /*
441          * struct {
442          *      struct perf_event_header        header;
443          *      u32                             pid, ppid;
444          *      u32                             tid, ptid;
445          *      u64                             time;
446          * };
447          */
448         PERF_RECORD_FORK                        = 7,
449
450         /*
451          * struct {
452          *      struct perf_event_header        header;
453          *      u32                             pid, tid;
454          *
455          *      struct read_format              values;
456          * };
457          */
458         PERF_RECORD_READ                        = 8,
459
460         /*
461          * struct {
462          *      struct perf_event_header        header;
463          *
464          *      { u64                   ip;       } && PERF_SAMPLE_IP
465          *      { u32                   pid, tid; } && PERF_SAMPLE_TID
466          *      { u64                   time;     } && PERF_SAMPLE_TIME
467          *      { u64                   addr;     } && PERF_SAMPLE_ADDR
468          *      { u64                   id;       } && PERF_SAMPLE_ID
469          *      { u64                   stream_id;} && PERF_SAMPLE_STREAM_ID
470          *      { u32                   cpu, res; } && PERF_SAMPLE_CPU
471          *      { u64                   period;   } && PERF_SAMPLE_PERIOD
472          *
473          *      { struct read_format    values;   } && PERF_SAMPLE_READ
474          *
475          *      { u64                   nr,
476          *        u64                   ips[nr];  } && PERF_SAMPLE_CALLCHAIN
477          *
478          *      #
479          *      # The RAW record below is opaque data wrt the ABI
480          *      #
481          *      # That is, the ABI doesn't make any promises wrt to
482          *      # the stability of its content, it may vary depending
483          *      # on event, hardware, kernel version and phase of
484          *      # the moon.
485          *      #
486          *      # In other words, PERF_SAMPLE_RAW contents are not an ABI.
487          *      #
488          *
489          *      { u32                   size;
490          *        char                  data[size];}&& PERF_SAMPLE_RAW
491          *
492          *      { u64 from, to, flags } lbr[nr];} && PERF_SAMPLE_BRANCH_STACK
493          * };
494          */
495         PERF_RECORD_SAMPLE                      = 9,
496
497         PERF_RECORD_MAX,                        /* non-ABI */
498 };
499
500 enum perf_callchain_context {
501         PERF_CONTEXT_HV                 = (__u64)-32,
502         PERF_CONTEXT_KERNEL             = (__u64)-128,
503         PERF_CONTEXT_USER               = (__u64)-512,
504
505         PERF_CONTEXT_GUEST              = (__u64)-2048,
506         PERF_CONTEXT_GUEST_KERNEL       = (__u64)-2176,
507         PERF_CONTEXT_GUEST_USER         = (__u64)-2560,
508
509         PERF_CONTEXT_MAX                = (__u64)-4095,
510 };
511
512 #define PERF_FLAG_FD_NO_GROUP           (1U << 0)
513 #define PERF_FLAG_FD_OUTPUT             (1U << 1)
514 #define PERF_FLAG_PID_CGROUP            (1U << 2) /* pid=cgroup id, per-cpu mode only */
515
516 #ifdef __KERNEL__
517 /*
518  * Kernel-internal data types and definitions:
519  */
520
521 #ifdef CONFIG_PERF_EVENTS
522 # include <linux/cgroup.h>
523 # include <asm/perf_event.h>
524 # include <asm/local64.h>
525 #endif
526
527 struct perf_guest_info_callbacks {
528         int                             (*is_in_guest)(void);
529         int                             (*is_user_mode)(void);
530         unsigned long                   (*get_guest_ip)(void);
531 };
532
533 #ifdef CONFIG_HAVE_HW_BREAKPOINT
534 #include <asm/hw_breakpoint.h>
535 #endif
536
537 #include <linux/list.h>
538 #include <linux/mutex.h>
539 #include <linux/rculist.h>
540 #include <linux/rcupdate.h>
541 #include <linux/spinlock.h>
542 #include <linux/hrtimer.h>
543 #include <linux/fs.h>
544 #include <linux/pid_namespace.h>
545 #include <linux/workqueue.h>
546 #include <linux/ftrace.h>
547 #include <linux/cpu.h>
548 #include <linux/irq_work.h>
549 #include <linux/static_key.h>
550 #include <linux/atomic.h>
551 #include <asm/local.h>
552
553 #define PERF_MAX_STACK_DEPTH            255
554
555 struct perf_callchain_entry {
556         __u64                           nr;
557         __u64                           ip[PERF_MAX_STACK_DEPTH];
558 };
559
560 struct perf_raw_record {
561         u32                             size;
562         void                            *data;
563 };
564
565 /*
566  * single taken branch record layout:
567  *
568  *      from: source instruction (may not always be a branch insn)
569  *        to: branch target
570  *   mispred: branch target was mispredicted
571  * predicted: branch target was predicted
572  *
573  * support for mispred, predicted is optional. In case it
574  * is not supported mispred = predicted = 0.
575  */
576 struct perf_branch_entry {
577         __u64   from;
578         __u64   to;
579         __u64   mispred:1,  /* target mispredicted */
580                 predicted:1,/* target predicted */
581                 reserved:62;
582 };
583
584 /*
585  * branch stack layout:
586  *  nr: number of taken branches stored in entries[]
587  *
588  * Note that nr can vary from sample to sample
589  * branches (to, from) are stored from most recent
590  * to least recent, i.e., entries[0] contains the most
591  * recent branch.
592  */
593 struct perf_branch_stack {
594         __u64                           nr;
595         struct perf_branch_entry        entries[0];
596 };
597
598 struct task_struct;
599
600 /*
601  * extra PMU register associated with an event
602  */
603 struct hw_perf_event_extra {
604         u64             config; /* register value */
605         unsigned int    reg;    /* register address or index */
606         int             alloc;  /* extra register already allocated */
607         int             idx;    /* index in shared_regs->regs[] */
608 };
609
610 /**
611  * struct hw_perf_event - performance event hardware details:
612  */
613 struct hw_perf_event {
614 #ifdef CONFIG_PERF_EVENTS
615         union {
616                 struct { /* hardware */
617                         u64             config;
618                         u64             last_tag;
619                         unsigned long   config_base;
620                         unsigned long   event_base;
621                         int             idx;
622                         int             last_cpu;
623
624                         struct hw_perf_event_extra extra_reg;
625                         struct hw_perf_event_extra branch_reg;
626                 };
627                 struct { /* software */
628                         struct hrtimer  hrtimer;
629                 };
630 #ifdef CONFIG_HAVE_HW_BREAKPOINT
631                 struct { /* breakpoint */
632                         struct arch_hw_breakpoint       info;
633                         struct list_head                bp_list;
634                         /*
635                          * Crufty hack to avoid the chicken and egg
636                          * problem hw_breakpoint has with context
637                          * creation and event initalization.
638                          */
639                         struct task_struct              *bp_target;
640                 };
641 #endif
642         };
643         int                             state;
644         local64_t                       prev_count;
645         u64                             sample_period;
646         u64                             last_period;
647         local64_t                       period_left;
648         u64                             interrupts_seq;
649         u64                             interrupts;
650
651         u64                             freq_time_stamp;
652         u64                             freq_count_stamp;
653 #endif
654 };
655
656 /*
657  * hw_perf_event::state flags
658  */
659 #define PERF_HES_STOPPED        0x01 /* the counter is stopped */
660 #define PERF_HES_UPTODATE       0x02 /* event->count up-to-date */
661 #define PERF_HES_ARCH           0x04
662
663 struct perf_event;
664
665 /*
666  * Common implementation detail of pmu::{start,commit,cancel}_txn
667  */
668 #define PERF_EVENT_TXN 0x1
669
670 /**
671  * struct pmu - generic performance monitoring unit
672  */
673 struct pmu {
674         struct list_head                entry;
675
676         struct device                   *dev;
677         const struct attribute_group    **attr_groups;
678         char                            *name;
679         int                             type;
680
681         int * __percpu                  pmu_disable_count;
682         struct perf_cpu_context * __percpu pmu_cpu_context;
683         int                             task_ctx_nr;
684
685         /*
686          * Fully disable/enable this PMU, can be used to protect from the PMI
687          * as well as for lazy/batch writing of the MSRs.
688          */
689         void (*pmu_enable)              (struct pmu *pmu); /* optional */
690         void (*pmu_disable)             (struct pmu *pmu); /* optional */
691
692         /*
693          * Try and initialize the event for this PMU.
694          * Should return -ENOENT when the @event doesn't match this PMU.
695          */
696         int (*event_init)               (struct perf_event *event);
697
698 #define PERF_EF_START   0x01            /* start the counter when adding    */
699 #define PERF_EF_RELOAD  0x02            /* reload the counter when starting */
700 #define PERF_EF_UPDATE  0x04            /* update the counter when stopping */
701
702         /*
703          * Adds/Removes a counter to/from the PMU, can be done inside
704          * a transaction, see the ->*_txn() methods.
705          */
706         int  (*add)                     (struct perf_event *event, int flags);
707         void (*del)                     (struct perf_event *event, int flags);
708
709         /*
710          * Starts/Stops a counter present on the PMU. The PMI handler
711          * should stop the counter when perf_event_overflow() returns
712          * !0. ->start() will be used to continue.
713          */
714         void (*start)                   (struct perf_event *event, int flags);
715         void (*stop)                    (struct perf_event *event, int flags);
716
717         /*
718          * Updates the counter value of the event.
719          */
720         void (*read)                    (struct perf_event *event);
721
722         /*
723          * Group events scheduling is treated as a transaction, add
724          * group events as a whole and perform one schedulability test.
725          * If the test fails, roll back the whole group
726          *
727          * Start the transaction, after this ->add() doesn't need to
728          * do schedulability tests.
729          */
730         void (*start_txn)               (struct pmu *pmu); /* optional */
731         /*
732          * If ->start_txn() disabled the ->add() schedulability test
733          * then ->commit_txn() is required to perform one. On success
734          * the transaction is closed. On error the transaction is kept
735          * open until ->cancel_txn() is called.
736          */
737         int  (*commit_txn)              (struct pmu *pmu); /* optional */
738         /*
739          * Will cancel the transaction, assumes ->del() is called
740          * for each successful ->add() during the transaction.
741          */
742         void (*cancel_txn)              (struct pmu *pmu); /* optional */
743
744         /*
745          * Will return the value for perf_event_mmap_page::index for this event,
746          * if no implementation is provided it will default to: event->hw.idx + 1.
747          */
748         int (*event_idx)                (struct perf_event *event); /*optional */
749 };
750
751 /**
752  * enum perf_event_active_state - the states of a event
753  */
754 enum perf_event_active_state {
755         PERF_EVENT_STATE_ERROR          = -2,
756         PERF_EVENT_STATE_OFF            = -1,
757         PERF_EVENT_STATE_INACTIVE       =  0,
758         PERF_EVENT_STATE_ACTIVE         =  1,
759 };
760
761 struct file;
762 struct perf_sample_data;
763
764 typedef void (*perf_overflow_handler_t)(struct perf_event *,
765                                         struct perf_sample_data *,
766                                         struct pt_regs *regs);
767
768 enum perf_group_flag {
769         PERF_GROUP_SOFTWARE             = 0x1,
770 };
771
772 #define SWEVENT_HLIST_BITS              8
773 #define SWEVENT_HLIST_SIZE              (1 << SWEVENT_HLIST_BITS)
774
775 struct swevent_hlist {
776         struct hlist_head               heads[SWEVENT_HLIST_SIZE];
777         struct rcu_head                 rcu_head;
778 };
779
780 #define PERF_ATTACH_CONTEXT     0x01
781 #define PERF_ATTACH_GROUP       0x02
782 #define PERF_ATTACH_TASK        0x04
783
784 #ifdef CONFIG_CGROUP_PERF
785 /*
786  * perf_cgroup_info keeps track of time_enabled for a cgroup.
787  * This is a per-cpu dynamically allocated data structure.
788  */
789 struct perf_cgroup_info {
790         u64                             time;
791         u64                             timestamp;
792 };
793
794 struct perf_cgroup {
795         struct                          cgroup_subsys_state css;
796         struct                          perf_cgroup_info *info; /* timing info, one per cpu */
797 };
798 #endif
799
800 struct ring_buffer;
801
802 /**
803  * struct perf_event - performance event kernel representation:
804  */
805 struct perf_event {
806 #ifdef CONFIG_PERF_EVENTS
807         struct list_head                group_entry;
808         struct list_head                event_entry;
809         struct list_head                sibling_list;
810         struct hlist_node               hlist_entry;
811         int                             nr_siblings;
812         int                             group_flags;
813         struct perf_event               *group_leader;
814         struct pmu                      *pmu;
815
816         enum perf_event_active_state    state;
817         unsigned int                    attach_state;
818         local64_t                       count;
819         atomic64_t                      child_count;
820
821         /*
822          * These are the total time in nanoseconds that the event
823          * has been enabled (i.e. eligible to run, and the task has
824          * been scheduled in, if this is a per-task event)
825          * and running (scheduled onto the CPU), respectively.
826          *
827          * They are computed from tstamp_enabled, tstamp_running and
828          * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
829          */
830         u64                             total_time_enabled;
831         u64                             total_time_running;
832
833         /*
834          * These are timestamps used for computing total_time_enabled
835          * and total_time_running when the event is in INACTIVE or
836          * ACTIVE state, measured in nanoseconds from an arbitrary point
837          * in time.
838          * tstamp_enabled: the notional time when the event was enabled
839          * tstamp_running: the notional time when the event was scheduled on
840          * tstamp_stopped: in INACTIVE state, the notional time when the
841          *      event was scheduled off.
842          */
843         u64                             tstamp_enabled;
844         u64                             tstamp_running;
845         u64                             tstamp_stopped;
846
847         /*
848          * timestamp shadows the actual context timing but it can
849          * be safely used in NMI interrupt context. It reflects the
850          * context time as it was when the event was last scheduled in.
851          *
852          * ctx_time already accounts for ctx->timestamp. Therefore to
853          * compute ctx_time for a sample, simply add perf_clock().
854          */
855         u64                             shadow_ctx_time;
856
857         struct perf_event_attr          attr;
858         u16                             header_size;
859         u16                             id_header_size;
860         u16                             read_size;
861         struct hw_perf_event            hw;
862
863         struct perf_event_context       *ctx;
864         struct file                     *filp;
865
866         /*
867          * These accumulate total time (in nanoseconds) that children
868          * events have been enabled and running, respectively.
869          */
870         atomic64_t                      child_total_time_enabled;
871         atomic64_t                      child_total_time_running;
872
873         /*
874          * Protect attach/detach and child_list:
875          */
876         struct mutex                    child_mutex;
877         struct list_head                child_list;
878         struct perf_event               *parent;
879
880         int                             oncpu;
881         int                             cpu;
882
883         struct list_head                owner_entry;
884         struct task_struct              *owner;
885
886         /* mmap bits */
887         struct mutex                    mmap_mutex;
888         atomic_t                        mmap_count;
889         int                             mmap_locked;
890         struct user_struct              *mmap_user;
891         struct ring_buffer              *rb;
892         struct list_head                rb_entry;
893
894         /* poll related */
895         wait_queue_head_t               waitq;
896         struct fasync_struct            *fasync;
897
898         /* delayed work for NMIs and such */
899         int                             pending_wakeup;
900         int                             pending_kill;
901         int                             pending_disable;
902         struct irq_work                 pending;
903
904         atomic_t                        event_limit;
905
906         void (*destroy)(struct perf_event *);
907         struct rcu_head                 rcu_head;
908
909         struct pid_namespace            *ns;
910         u64                             id;
911
912         perf_overflow_handler_t         overflow_handler;
913         void                            *overflow_handler_context;
914
915 #ifdef CONFIG_EVENT_TRACING
916         struct ftrace_event_call        *tp_event;
917         struct event_filter             *filter;
918 #ifdef CONFIG_FUNCTION_TRACER
919         struct ftrace_ops               ftrace_ops;
920 #endif
921 #endif
922
923 #ifdef CONFIG_CGROUP_PERF
924         struct perf_cgroup              *cgrp; /* cgroup event is attach to */
925         int                             cgrp_defer_enabled;
926 #endif
927
928 #endif /* CONFIG_PERF_EVENTS */
929 };
930
931 enum perf_event_context_type {
932         task_context,
933         cpu_context,
934 };
935
936 /**
937  * struct perf_event_context - event context structure
938  *
939  * Used as a container for task events and CPU events as well:
940  */
941 struct perf_event_context {
942         struct pmu                      *pmu;
943         enum perf_event_context_type    type;
944         /*
945          * Protect the states of the events in the list,
946          * nr_active, and the list:
947          */
948         raw_spinlock_t                  lock;
949         /*
950          * Protect the list of events.  Locking either mutex or lock
951          * is sufficient to ensure the list doesn't change; to change
952          * the list you need to lock both the mutex and the spinlock.
953          */
954         struct mutex                    mutex;
955
956         struct list_head                pinned_groups;
957         struct list_head                flexible_groups;
958         struct list_head                event_list;
959         int                             nr_events;
960         int                             nr_active;
961         int                             is_active;
962         int                             nr_stat;
963         int                             nr_freq;
964         int                             rotate_disable;
965         atomic_t                        refcount;
966         struct task_struct              *task;
967
968         /*
969          * Context clock, runs when context enabled.
970          */
971         u64                             time;
972         u64                             timestamp;
973
974         /*
975          * These fields let us detect when two contexts have both
976          * been cloned (inherited) from a common ancestor.
977          */
978         struct perf_event_context       *parent_ctx;
979         u64                             parent_gen;
980         u64                             generation;
981         int                             pin_count;
982         int                             nr_cgroups; /* cgroup events present */
983         struct rcu_head                 rcu_head;
984 };
985
986 /*
987  * Number of contexts where an event can trigger:
988  *      task, softirq, hardirq, nmi.
989  */
990 #define PERF_NR_CONTEXTS        4
991
992 /**
993  * struct perf_event_cpu_context - per cpu event context structure
994  */
995 struct perf_cpu_context {
996         struct perf_event_context       ctx;
997         struct perf_event_context       *task_ctx;
998         int                             active_oncpu;
999         int                             exclusive;
1000         struct list_head                rotation_list;
1001         int                             jiffies_interval;
1002         struct pmu                      *active_pmu;
1003         struct perf_cgroup              *cgrp;
1004 };
1005
1006 struct perf_output_handle {
1007         struct perf_event               *event;
1008         struct ring_buffer              *rb;
1009         unsigned long                   wakeup;
1010         unsigned long                   size;
1011         void                            *addr;
1012         int                             page;
1013 };
1014
1015 #ifdef CONFIG_PERF_EVENTS
1016
1017 extern int perf_pmu_register(struct pmu *pmu, char *name, int type);
1018 extern void perf_pmu_unregister(struct pmu *pmu);
1019
1020 extern int perf_num_counters(void);
1021 extern const char *perf_pmu_name(void);
1022 extern void __perf_event_task_sched_in(struct task_struct *prev,
1023                                        struct task_struct *task);
1024 extern void __perf_event_task_sched_out(struct task_struct *prev,
1025                                         struct task_struct *next);
1026 extern int perf_event_init_task(struct task_struct *child);
1027 extern void perf_event_exit_task(struct task_struct *child);
1028 extern void perf_event_free_task(struct task_struct *task);
1029 extern void perf_event_delayed_put(struct task_struct *task);
1030 extern void perf_event_print_debug(void);
1031 extern void perf_pmu_disable(struct pmu *pmu);
1032 extern void perf_pmu_enable(struct pmu *pmu);
1033 extern int perf_event_task_disable(void);
1034 extern int perf_event_task_enable(void);
1035 extern int perf_event_refresh(struct perf_event *event, int refresh);
1036 extern void perf_event_update_userpage(struct perf_event *event);
1037 extern int perf_event_release_kernel(struct perf_event *event);
1038 extern struct perf_event *
1039 perf_event_create_kernel_counter(struct perf_event_attr *attr,
1040                                 int cpu,
1041                                 struct task_struct *task,
1042                                 perf_overflow_handler_t callback,
1043                                 void *context);
1044 extern u64 perf_event_read_value(struct perf_event *event,
1045                                  u64 *enabled, u64 *running);
1046
1047 struct perf_sample_data {
1048         u64                             type;
1049
1050         u64                             ip;
1051         struct {
1052                 u32     pid;
1053                 u32     tid;
1054         }                               tid_entry;
1055         u64                             time;
1056         u64                             addr;
1057         u64                             id;
1058         u64                             stream_id;
1059         struct {
1060                 u32     cpu;
1061                 u32     reserved;
1062         }                               cpu_entry;
1063         u64                             period;
1064         struct perf_callchain_entry     *callchain;
1065         struct perf_raw_record          *raw;
1066         struct perf_branch_stack        *br_stack;
1067 };
1068
1069 static inline void perf_sample_data_init(struct perf_sample_data *data, u64 addr)
1070 {
1071         data->addr = addr;
1072         data->raw  = NULL;
1073         data->br_stack = NULL;
1074 }
1075
1076 extern void perf_output_sample(struct perf_output_handle *handle,
1077                                struct perf_event_header *header,
1078                                struct perf_sample_data *data,
1079                                struct perf_event *event);
1080 extern void perf_prepare_sample(struct perf_event_header *header,
1081                                 struct perf_sample_data *data,
1082                                 struct perf_event *event,
1083                                 struct pt_regs *regs);
1084
1085 extern int perf_event_overflow(struct perf_event *event,
1086                                  struct perf_sample_data *data,
1087                                  struct pt_regs *regs);
1088
1089 static inline bool is_sampling_event(struct perf_event *event)
1090 {
1091         return event->attr.sample_period != 0;
1092 }
1093
1094 /*
1095  * Return 1 for a software event, 0 for a hardware event
1096  */
1097 static inline int is_software_event(struct perf_event *event)
1098 {
1099         return event->pmu->task_ctx_nr == perf_sw_context;
1100 }
1101
1102 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1103
1104 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1105
1106 #ifndef perf_arch_fetch_caller_regs
1107 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1108 #endif
1109
1110 /*
1111  * Take a snapshot of the regs. Skip ip and frame pointer to
1112  * the nth caller. We only need a few of the regs:
1113  * - ip for PERF_SAMPLE_IP
1114  * - cs for user_mode() tests
1115  * - bp for callchains
1116  * - eflags, for future purposes, just in case
1117  */
1118 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1119 {
1120         memset(regs, 0, sizeof(*regs));
1121
1122         perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1123 }
1124
1125 static __always_inline void
1126 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1127 {
1128         struct pt_regs hot_regs;
1129
1130         if (static_key_false(&perf_swevent_enabled[event_id])) {
1131                 if (!regs) {
1132                         perf_fetch_caller_regs(&hot_regs);
1133                         regs = &hot_regs;
1134                 }
1135                 __perf_sw_event(event_id, nr, regs, addr);
1136         }
1137 }
1138
1139 extern struct static_key_deferred perf_sched_events;
1140
1141 static inline void perf_event_task_sched_in(struct task_struct *prev,
1142                                             struct task_struct *task)
1143 {
1144         if (static_key_false(&perf_sched_events.key))
1145                 __perf_event_task_sched_in(prev, task);
1146 }
1147
1148 static inline void perf_event_task_sched_out(struct task_struct *prev,
1149                                              struct task_struct *next)
1150 {
1151         perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, NULL, 0);
1152
1153         if (static_key_false(&perf_sched_events.key))
1154                 __perf_event_task_sched_out(prev, next);
1155 }
1156
1157 extern void perf_event_mmap(struct vm_area_struct *vma);
1158 extern struct perf_guest_info_callbacks *perf_guest_cbs;
1159 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1160 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1161
1162 extern void perf_event_comm(struct task_struct *tsk);
1163 extern void perf_event_fork(struct task_struct *tsk);
1164
1165 /* Callchains */
1166 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1167
1168 extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs);
1169 extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs);
1170
1171 static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip)
1172 {
1173         if (entry->nr < PERF_MAX_STACK_DEPTH)
1174                 entry->ip[entry->nr++] = ip;
1175 }
1176
1177 extern int sysctl_perf_event_paranoid;
1178 extern int sysctl_perf_event_mlock;
1179 extern int sysctl_perf_event_sample_rate;
1180
1181 extern int perf_proc_update_handler(struct ctl_table *table, int write,
1182                 void __user *buffer, size_t *lenp,
1183                 loff_t *ppos);
1184
1185 static inline bool perf_paranoid_tracepoint_raw(void)
1186 {
1187         return sysctl_perf_event_paranoid > -1;
1188 }
1189
1190 static inline bool perf_paranoid_cpu(void)
1191 {
1192         return sysctl_perf_event_paranoid > 0;
1193 }
1194
1195 static inline bool perf_paranoid_kernel(void)
1196 {
1197         return sysctl_perf_event_paranoid > 1;
1198 }
1199
1200 extern void perf_event_init(void);
1201 extern void perf_tp_event(u64 addr, u64 count, void *record,
1202                           int entry_size, struct pt_regs *regs,
1203                           struct hlist_head *head, int rctx);
1204 extern void perf_bp_event(struct perf_event *event, void *data);
1205
1206 #ifndef perf_misc_flags
1207 # define perf_misc_flags(regs) \
1208                 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1209 # define perf_instruction_pointer(regs) instruction_pointer(regs)
1210 #endif
1211
1212 static inline bool has_branch_stack(struct perf_event *event)
1213 {
1214         return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1215 }
1216
1217 extern int perf_output_begin(struct perf_output_handle *handle,
1218                              struct perf_event *event, unsigned int size);
1219 extern void perf_output_end(struct perf_output_handle *handle);
1220 extern void perf_output_copy(struct perf_output_handle *handle,
1221                              const void *buf, unsigned int len);
1222 extern int perf_swevent_get_recursion_context(void);
1223 extern void perf_swevent_put_recursion_context(int rctx);
1224 extern void perf_event_enable(struct perf_event *event);
1225 extern void perf_event_disable(struct perf_event *event);
1226 extern void perf_event_task_tick(void);
1227 #else
1228 static inline void
1229 perf_event_task_sched_in(struct task_struct *prev,
1230                          struct task_struct *task)                      { }
1231 static inline void
1232 perf_event_task_sched_out(struct task_struct *prev,
1233                           struct task_struct *next)                     { }
1234 static inline int perf_event_init_task(struct task_struct *child)       { return 0; }
1235 static inline void perf_event_exit_task(struct task_struct *child)      { }
1236 static inline void perf_event_free_task(struct task_struct *task)       { }
1237 static inline void perf_event_delayed_put(struct task_struct *task)     { }
1238 static inline void perf_event_print_debug(void)                         { }
1239 static inline int perf_event_task_disable(void)                         { return -EINVAL; }
1240 static inline int perf_event_task_enable(void)                          { return -EINVAL; }
1241 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1242 {
1243         return -EINVAL;
1244 }
1245
1246 static inline void
1247 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)     { }
1248 static inline void
1249 perf_bp_event(struct perf_event *event, void *data)                     { }
1250
1251 static inline int perf_register_guest_info_callbacks
1252 (struct perf_guest_info_callbacks *callbacks)                           { return 0; }
1253 static inline int perf_unregister_guest_info_callbacks
1254 (struct perf_guest_info_callbacks *callbacks)                           { return 0; }
1255
1256 static inline void perf_event_mmap(struct vm_area_struct *vma)          { }
1257 static inline void perf_event_comm(struct task_struct *tsk)             { }
1258 static inline void perf_event_fork(struct task_struct *tsk)             { }
1259 static inline void perf_event_init(void)                                { }
1260 static inline int  perf_swevent_get_recursion_context(void)             { return -1; }
1261 static inline void perf_swevent_put_recursion_context(int rctx)         { }
1262 static inline void perf_event_enable(struct perf_event *event)          { }
1263 static inline void perf_event_disable(struct perf_event *event)         { }
1264 static inline void perf_event_task_tick(void)                           { }
1265 #endif
1266
1267 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1268
1269 /*
1270  * This has to have a higher priority than migration_notifier in sched.c.
1271  */
1272 #define perf_cpu_notifier(fn)                                           \
1273 do {                                                                    \
1274         static struct notifier_block fn##_nb __cpuinitdata =            \
1275                 { .notifier_call = fn, .priority = CPU_PRI_PERF };      \
1276         fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE,                     \
1277                 (void *)(unsigned long)smp_processor_id());             \
1278         fn(&fn##_nb, (unsigned long)CPU_STARTING,                       \
1279                 (void *)(unsigned long)smp_processor_id());             \
1280         fn(&fn##_nb, (unsigned long)CPU_ONLINE,                         \
1281                 (void *)(unsigned long)smp_processor_id());             \
1282         register_cpu_notifier(&fn##_nb);                                \
1283 } while (0)
1284
1285 #endif /* __KERNEL__ */
1286 #endif /* _LINUX_PERF_EVENT_H */