ASoC: tlv320aic23: Convert to params_width()
[cascardo/linux.git] / include / linux / rcupdate.h
1 /*
2  * Read-Copy Update mechanism for mutual exclusion
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, you can access it online at
16  * http://www.gnu.org/licenses/gpl-2.0.html.
17  *
18  * Copyright IBM Corporation, 2001
19  *
20  * Author: Dipankar Sarma <dipankar@in.ibm.com>
21  *
22  * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
23  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
24  * Papers:
25  * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
26  * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
27  *
28  * For detailed explanation of Read-Copy Update mechanism see -
29  *              http://lse.sourceforge.net/locking/rcupdate.html
30  *
31  */
32
33 #ifndef __LINUX_RCUPDATE_H
34 #define __LINUX_RCUPDATE_H
35
36 #include <linux/types.h>
37 #include <linux/cache.h>
38 #include <linux/spinlock.h>
39 #include <linux/threads.h>
40 #include <linux/cpumask.h>
41 #include <linux/seqlock.h>
42 #include <linux/lockdep.h>
43 #include <linux/completion.h>
44 #include <linux/debugobjects.h>
45 #include <linux/bug.h>
46 #include <linux/compiler.h>
47 #include <linux/percpu.h>
48 #include <asm/barrier.h>
49
50 extern int rcu_expedited; /* for sysctl */
51 #ifdef CONFIG_RCU_TORTURE_TEST
52 extern int rcutorture_runnable; /* for sysctl */
53 #endif /* #ifdef CONFIG_RCU_TORTURE_TEST */
54
55 enum rcutorture_type {
56         RCU_FLAVOR,
57         RCU_BH_FLAVOR,
58         RCU_SCHED_FLAVOR,
59         SRCU_FLAVOR,
60         INVALID_RCU_FLAVOR
61 };
62
63 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU)
64 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
65                             unsigned long *gpnum, unsigned long *completed);
66 void rcutorture_record_test_transition(void);
67 void rcutorture_record_progress(unsigned long vernum);
68 void do_trace_rcu_torture_read(const char *rcutorturename,
69                                struct rcu_head *rhp,
70                                unsigned long secs,
71                                unsigned long c_old,
72                                unsigned long c);
73 #else
74 static inline void rcutorture_get_gp_data(enum rcutorture_type test_type,
75                                           int *flags,
76                                           unsigned long *gpnum,
77                                           unsigned long *completed)
78 {
79         *flags = 0;
80         *gpnum = 0;
81         *completed = 0;
82 }
83 static inline void rcutorture_record_test_transition(void)
84 {
85 }
86 static inline void rcutorture_record_progress(unsigned long vernum)
87 {
88 }
89 #ifdef CONFIG_RCU_TRACE
90 void do_trace_rcu_torture_read(const char *rcutorturename,
91                                struct rcu_head *rhp,
92                                unsigned long secs,
93                                unsigned long c_old,
94                                unsigned long c);
95 #else
96 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
97         do { } while (0)
98 #endif
99 #endif
100
101 #define UINT_CMP_GE(a, b)       (UINT_MAX / 2 >= (a) - (b))
102 #define UINT_CMP_LT(a, b)       (UINT_MAX / 2 < (a) - (b))
103 #define ULONG_CMP_GE(a, b)      (ULONG_MAX / 2 >= (a) - (b))
104 #define ULONG_CMP_LT(a, b)      (ULONG_MAX / 2 < (a) - (b))
105 #define ulong2long(a)           (*(long *)(&(a)))
106
107 /* Exported common interfaces */
108
109 #ifdef CONFIG_PREEMPT_RCU
110
111 /**
112  * call_rcu() - Queue an RCU callback for invocation after a grace period.
113  * @head: structure to be used for queueing the RCU updates.
114  * @func: actual callback function to be invoked after the grace period
115  *
116  * The callback function will be invoked some time after a full grace
117  * period elapses, in other words after all pre-existing RCU read-side
118  * critical sections have completed.  However, the callback function
119  * might well execute concurrently with RCU read-side critical sections
120  * that started after call_rcu() was invoked.  RCU read-side critical
121  * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
122  * and may be nested.
123  *
124  * Note that all CPUs must agree that the grace period extended beyond
125  * all pre-existing RCU read-side critical section.  On systems with more
126  * than one CPU, this means that when "func()" is invoked, each CPU is
127  * guaranteed to have executed a full memory barrier since the end of its
128  * last RCU read-side critical section whose beginning preceded the call
129  * to call_rcu().  It also means that each CPU executing an RCU read-side
130  * critical section that continues beyond the start of "func()" must have
131  * executed a memory barrier after the call_rcu() but before the beginning
132  * of that RCU read-side critical section.  Note that these guarantees
133  * include CPUs that are offline, idle, or executing in user mode, as
134  * well as CPUs that are executing in the kernel.
135  *
136  * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
137  * resulting RCU callback function "func()", then both CPU A and CPU B are
138  * guaranteed to execute a full memory barrier during the time interval
139  * between the call to call_rcu() and the invocation of "func()" -- even
140  * if CPU A and CPU B are the same CPU (but again only if the system has
141  * more than one CPU).
142  */
143 void call_rcu(struct rcu_head *head,
144               void (*func)(struct rcu_head *head));
145
146 #else /* #ifdef CONFIG_PREEMPT_RCU */
147
148 /* In classic RCU, call_rcu() is just call_rcu_sched(). */
149 #define call_rcu        call_rcu_sched
150
151 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
152
153 /**
154  * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
155  * @head: structure to be used for queueing the RCU updates.
156  * @func: actual callback function to be invoked after the grace period
157  *
158  * The callback function will be invoked some time after a full grace
159  * period elapses, in other words after all currently executing RCU
160  * read-side critical sections have completed. call_rcu_bh() assumes
161  * that the read-side critical sections end on completion of a softirq
162  * handler. This means that read-side critical sections in process
163  * context must not be interrupted by softirqs. This interface is to be
164  * used when most of the read-side critical sections are in softirq context.
165  * RCU read-side critical sections are delimited by :
166  *  - rcu_read_lock() and  rcu_read_unlock(), if in interrupt context.
167  *  OR
168  *  - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
169  *  These may be nested.
170  *
171  * See the description of call_rcu() for more detailed information on
172  * memory ordering guarantees.
173  */
174 void call_rcu_bh(struct rcu_head *head,
175                  void (*func)(struct rcu_head *head));
176
177 /**
178  * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
179  * @head: structure to be used for queueing the RCU updates.
180  * @func: actual callback function to be invoked after the grace period
181  *
182  * The callback function will be invoked some time after a full grace
183  * period elapses, in other words after all currently executing RCU
184  * read-side critical sections have completed. call_rcu_sched() assumes
185  * that the read-side critical sections end on enabling of preemption
186  * or on voluntary preemption.
187  * RCU read-side critical sections are delimited by :
188  *  - rcu_read_lock_sched() and  rcu_read_unlock_sched(),
189  *  OR
190  *  anything that disables preemption.
191  *  These may be nested.
192  *
193  * See the description of call_rcu() for more detailed information on
194  * memory ordering guarantees.
195  */
196 void call_rcu_sched(struct rcu_head *head,
197                     void (*func)(struct rcu_head *rcu));
198
199 void synchronize_sched(void);
200
201 #ifdef CONFIG_PREEMPT_RCU
202
203 void __rcu_read_lock(void);
204 void __rcu_read_unlock(void);
205 void rcu_read_unlock_special(struct task_struct *t);
206 void synchronize_rcu(void);
207
208 /*
209  * Defined as a macro as it is a very low level header included from
210  * areas that don't even know about current.  This gives the rcu_read_lock()
211  * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
212  * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
213  */
214 #define rcu_preempt_depth() (current->rcu_read_lock_nesting)
215
216 #else /* #ifdef CONFIG_PREEMPT_RCU */
217
218 static inline void __rcu_read_lock(void)
219 {
220         preempt_disable();
221 }
222
223 static inline void __rcu_read_unlock(void)
224 {
225         preempt_enable();
226 }
227
228 static inline void synchronize_rcu(void)
229 {
230         synchronize_sched();
231 }
232
233 static inline int rcu_preempt_depth(void)
234 {
235         return 0;
236 }
237
238 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
239
240 /* Internal to kernel */
241 void rcu_init(void);
242 void rcu_sched_qs(int cpu);
243 void rcu_bh_qs(int cpu);
244 void rcu_check_callbacks(int cpu, int user);
245 struct notifier_block;
246 void rcu_idle_enter(void);
247 void rcu_idle_exit(void);
248 void rcu_irq_enter(void);
249 void rcu_irq_exit(void);
250
251 #ifdef CONFIG_RCU_STALL_COMMON
252 void rcu_sysrq_start(void);
253 void rcu_sysrq_end(void);
254 #else /* #ifdef CONFIG_RCU_STALL_COMMON */
255 static inline void rcu_sysrq_start(void)
256 {
257 }
258 static inline void rcu_sysrq_end(void)
259 {
260 }
261 #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
262
263 #ifdef CONFIG_RCU_USER_QS
264 void rcu_user_enter(void);
265 void rcu_user_exit(void);
266 #else
267 static inline void rcu_user_enter(void) { }
268 static inline void rcu_user_exit(void) { }
269 static inline void rcu_user_hooks_switch(struct task_struct *prev,
270                                          struct task_struct *next) { }
271 #endif /* CONFIG_RCU_USER_QS */
272
273 /**
274  * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
275  * @a: Code that RCU needs to pay attention to.
276  *
277  * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden
278  * in the inner idle loop, that is, between the rcu_idle_enter() and
279  * the rcu_idle_exit() -- RCU will happily ignore any such read-side
280  * critical sections.  However, things like powertop need tracepoints
281  * in the inner idle loop.
282  *
283  * This macro provides the way out:  RCU_NONIDLE(do_something_with_RCU())
284  * will tell RCU that it needs to pay attending, invoke its argument
285  * (in this example, a call to the do_something_with_RCU() function),
286  * and then tell RCU to go back to ignoring this CPU.  It is permissible
287  * to nest RCU_NONIDLE() wrappers, but the nesting level is currently
288  * quite limited.  If deeper nesting is required, it will be necessary
289  * to adjust DYNTICK_TASK_NESTING_VALUE accordingly.
290  */
291 #define RCU_NONIDLE(a) \
292         do { \
293                 rcu_irq_enter(); \
294                 do { a; } while (0); \
295                 rcu_irq_exit(); \
296         } while (0)
297
298 #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP)
299 bool __rcu_is_watching(void);
300 #endif /* #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP) */
301
302 /*
303  * Hooks for cond_resched() and friends to avoid RCU CPU stall warnings.
304  */
305
306 #define RCU_COND_RESCHED_LIM 256        /* ms vs. 100s of ms. */
307 DECLARE_PER_CPU(int, rcu_cond_resched_count);
308 void rcu_resched(void);
309
310 /*
311  * Is it time to report RCU quiescent states?
312  *
313  * Note unsynchronized access to rcu_cond_resched_count.  Yes, we might
314  * increment some random CPU's count, and possibly also load the result from
315  * yet another CPU's count.  We might even clobber some other CPU's attempt
316  * to zero its counter.  This is all OK because the goal is not precision,
317  * but rather reasonable amortization of rcu_note_context_switch() overhead
318  * and extremely high probability of avoiding RCU CPU stall warnings.
319  * Note that this function has to be preempted in just the wrong place,
320  * many thousands of times in a row, for anything bad to happen.
321  */
322 static inline bool rcu_should_resched(void)
323 {
324         return raw_cpu_inc_return(rcu_cond_resched_count) >=
325                RCU_COND_RESCHED_LIM;
326 }
327
328 /*
329  * Report quiscent states to RCU if it is time to do so.
330  */
331 static inline void rcu_cond_resched(void)
332 {
333         if (unlikely(rcu_should_resched()))
334                 rcu_resched();
335 }
336
337 /*
338  * Infrastructure to implement the synchronize_() primitives in
339  * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
340  */
341
342 typedef void call_rcu_func_t(struct rcu_head *head,
343                              void (*func)(struct rcu_head *head));
344 void wait_rcu_gp(call_rcu_func_t crf);
345
346 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU)
347 #include <linux/rcutree.h>
348 #elif defined(CONFIG_TINY_RCU)
349 #include <linux/rcutiny.h>
350 #else
351 #error "Unknown RCU implementation specified to kernel configuration"
352 #endif
353
354 /*
355  * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic
356  * initialization and destruction of rcu_head on the stack. rcu_head structures
357  * allocated dynamically in the heap or defined statically don't need any
358  * initialization.
359  */
360 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
361 void init_rcu_head_on_stack(struct rcu_head *head);
362 void destroy_rcu_head_on_stack(struct rcu_head *head);
363 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
364 static inline void init_rcu_head_on_stack(struct rcu_head *head)
365 {
366 }
367
368 static inline void destroy_rcu_head_on_stack(struct rcu_head *head)
369 {
370 }
371 #endif  /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
372
373 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
374 bool rcu_lockdep_current_cpu_online(void);
375 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
376 static inline bool rcu_lockdep_current_cpu_online(void)
377 {
378         return 1;
379 }
380 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
381
382 #ifdef CONFIG_DEBUG_LOCK_ALLOC
383
384 static inline void rcu_lock_acquire(struct lockdep_map *map)
385 {
386         lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
387 }
388
389 static inline void rcu_lock_release(struct lockdep_map *map)
390 {
391         lock_release(map, 1, _THIS_IP_);
392 }
393
394 extern struct lockdep_map rcu_lock_map;
395 extern struct lockdep_map rcu_bh_lock_map;
396 extern struct lockdep_map rcu_sched_lock_map;
397 extern struct lockdep_map rcu_callback_map;
398 int debug_lockdep_rcu_enabled(void);
399
400 /**
401  * rcu_read_lock_held() - might we be in RCU read-side critical section?
402  *
403  * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
404  * read-side critical section.  In absence of CONFIG_DEBUG_LOCK_ALLOC,
405  * this assumes we are in an RCU read-side critical section unless it can
406  * prove otherwise.  This is useful for debug checks in functions that
407  * require that they be called within an RCU read-side critical section.
408  *
409  * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
410  * and while lockdep is disabled.
411  *
412  * Note that rcu_read_lock() and the matching rcu_read_unlock() must
413  * occur in the same context, for example, it is illegal to invoke
414  * rcu_read_unlock() in process context if the matching rcu_read_lock()
415  * was invoked from within an irq handler.
416  *
417  * Note that rcu_read_lock() is disallowed if the CPU is either idle or
418  * offline from an RCU perspective, so check for those as well.
419  */
420 static inline int rcu_read_lock_held(void)
421 {
422         if (!debug_lockdep_rcu_enabled())
423                 return 1;
424         if (!rcu_is_watching())
425                 return 0;
426         if (!rcu_lockdep_current_cpu_online())
427                 return 0;
428         return lock_is_held(&rcu_lock_map);
429 }
430
431 /*
432  * rcu_read_lock_bh_held() is defined out of line to avoid #include-file
433  * hell.
434  */
435 int rcu_read_lock_bh_held(void);
436
437 /**
438  * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
439  *
440  * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
441  * RCU-sched read-side critical section.  In absence of
442  * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
443  * critical section unless it can prove otherwise.  Note that disabling
444  * of preemption (including disabling irqs) counts as an RCU-sched
445  * read-side critical section.  This is useful for debug checks in functions
446  * that required that they be called within an RCU-sched read-side
447  * critical section.
448  *
449  * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
450  * and while lockdep is disabled.
451  *
452  * Note that if the CPU is in the idle loop from an RCU point of
453  * view (ie: that we are in the section between rcu_idle_enter() and
454  * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
455  * did an rcu_read_lock().  The reason for this is that RCU ignores CPUs
456  * that are in such a section, considering these as in extended quiescent
457  * state, so such a CPU is effectively never in an RCU read-side critical
458  * section regardless of what RCU primitives it invokes.  This state of
459  * affairs is required --- we need to keep an RCU-free window in idle
460  * where the CPU may possibly enter into low power mode. This way we can
461  * notice an extended quiescent state to other CPUs that started a grace
462  * period. Otherwise we would delay any grace period as long as we run in
463  * the idle task.
464  *
465  * Similarly, we avoid claiming an SRCU read lock held if the current
466  * CPU is offline.
467  */
468 #ifdef CONFIG_PREEMPT_COUNT
469 static inline int rcu_read_lock_sched_held(void)
470 {
471         int lockdep_opinion = 0;
472
473         if (!debug_lockdep_rcu_enabled())
474                 return 1;
475         if (!rcu_is_watching())
476                 return 0;
477         if (!rcu_lockdep_current_cpu_online())
478                 return 0;
479         if (debug_locks)
480                 lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
481         return lockdep_opinion || preempt_count() != 0 || irqs_disabled();
482 }
483 #else /* #ifdef CONFIG_PREEMPT_COUNT */
484 static inline int rcu_read_lock_sched_held(void)
485 {
486         return 1;
487 }
488 #endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
489
490 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
491
492 # define rcu_lock_acquire(a)            do { } while (0)
493 # define rcu_lock_release(a)            do { } while (0)
494
495 static inline int rcu_read_lock_held(void)
496 {
497         return 1;
498 }
499
500 static inline int rcu_read_lock_bh_held(void)
501 {
502         return 1;
503 }
504
505 #ifdef CONFIG_PREEMPT_COUNT
506 static inline int rcu_read_lock_sched_held(void)
507 {
508         return preempt_count() != 0 || irqs_disabled();
509 }
510 #else /* #ifdef CONFIG_PREEMPT_COUNT */
511 static inline int rcu_read_lock_sched_held(void)
512 {
513         return 1;
514 }
515 #endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
516
517 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
518
519 #ifdef CONFIG_PROVE_RCU
520
521 /**
522  * rcu_lockdep_assert - emit lockdep splat if specified condition not met
523  * @c: condition to check
524  * @s: informative message
525  */
526 #define rcu_lockdep_assert(c, s)                                        \
527         do {                                                            \
528                 static bool __section(.data.unlikely) __warned;         \
529                 if (debug_lockdep_rcu_enabled() && !__warned && !(c)) { \
530                         __warned = true;                                \
531                         lockdep_rcu_suspicious(__FILE__, __LINE__, s);  \
532                 }                                                       \
533         } while (0)
534
535 #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
536 static inline void rcu_preempt_sleep_check(void)
537 {
538         rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
539                            "Illegal context switch in RCU read-side critical section");
540 }
541 #else /* #ifdef CONFIG_PROVE_RCU */
542 static inline void rcu_preempt_sleep_check(void)
543 {
544 }
545 #endif /* #else #ifdef CONFIG_PROVE_RCU */
546
547 #define rcu_sleep_check()                                               \
548         do {                                                            \
549                 rcu_preempt_sleep_check();                              \
550                 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),     \
551                                    "Illegal context switch in RCU-bh read-side critical section"); \
552                 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),  \
553                                    "Illegal context switch in RCU-sched read-side critical section"); \
554         } while (0)
555
556 #else /* #ifdef CONFIG_PROVE_RCU */
557
558 #define rcu_lockdep_assert(c, s) do { } while (0)
559 #define rcu_sleep_check() do { } while (0)
560
561 #endif /* #else #ifdef CONFIG_PROVE_RCU */
562
563 /*
564  * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
565  * and rcu_assign_pointer().  Some of these could be folded into their
566  * callers, but they are left separate in order to ease introduction of
567  * multiple flavors of pointers to match the multiple flavors of RCU
568  * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in
569  * the future.
570  */
571
572 #ifdef __CHECKER__
573 #define rcu_dereference_sparse(p, space) \
574         ((void)(((typeof(*p) space *)p) == p))
575 #else /* #ifdef __CHECKER__ */
576 #define rcu_dereference_sparse(p, space)
577 #endif /* #else #ifdef __CHECKER__ */
578
579 #define __rcu_access_pointer(p, space) \
580 ({ \
581         typeof(*p) *_________p1 = (typeof(*p) *__force)ACCESS_ONCE(p); \
582         rcu_dereference_sparse(p, space); \
583         ((typeof(*p) __force __kernel *)(_________p1)); \
584 })
585 #define __rcu_dereference_check(p, c, space) \
586 ({ \
587         typeof(*p) *_________p1 = (typeof(*p) *__force)ACCESS_ONCE(p); \
588         rcu_lockdep_assert(c, "suspicious rcu_dereference_check() usage"); \
589         rcu_dereference_sparse(p, space); \
590         smp_read_barrier_depends(); /* Dependency order vs. p above. */ \
591         ((typeof(*p) __force __kernel *)(_________p1)); \
592 })
593 #define __rcu_dereference_protected(p, c, space) \
594 ({ \
595         rcu_lockdep_assert(c, "suspicious rcu_dereference_protected() usage"); \
596         rcu_dereference_sparse(p, space); \
597         ((typeof(*p) __force __kernel *)(p)); \
598 })
599
600 #define __rcu_access_index(p, space) \
601 ({ \
602         typeof(p) _________p1 = ACCESS_ONCE(p); \
603         rcu_dereference_sparse(p, space); \
604         (_________p1); \
605 })
606 #define __rcu_dereference_index_check(p, c) \
607 ({ \
608         typeof(p) _________p1 = ACCESS_ONCE(p); \
609         rcu_lockdep_assert(c, \
610                            "suspicious rcu_dereference_index_check() usage"); \
611         smp_read_barrier_depends(); /* Dependency order vs. p above. */ \
612         (_________p1); \
613 })
614
615 /**
616  * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
617  * @v: The value to statically initialize with.
618  */
619 #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
620
621 /**
622  * rcu_assign_pointer() - assign to RCU-protected pointer
623  * @p: pointer to assign to
624  * @v: value to assign (publish)
625  *
626  * Assigns the specified value to the specified RCU-protected
627  * pointer, ensuring that any concurrent RCU readers will see
628  * any prior initialization.
629  *
630  * Inserts memory barriers on architectures that require them
631  * (which is most of them), and also prevents the compiler from
632  * reordering the code that initializes the structure after the pointer
633  * assignment.  More importantly, this call documents which pointers
634  * will be dereferenced by RCU read-side code.
635  *
636  * In some special cases, you may use RCU_INIT_POINTER() instead
637  * of rcu_assign_pointer().  RCU_INIT_POINTER() is a bit faster due
638  * to the fact that it does not constrain either the CPU or the compiler.
639  * That said, using RCU_INIT_POINTER() when you should have used
640  * rcu_assign_pointer() is a very bad thing that results in
641  * impossible-to-diagnose memory corruption.  So please be careful.
642  * See the RCU_INIT_POINTER() comment header for details.
643  *
644  * Note that rcu_assign_pointer() evaluates each of its arguments only
645  * once, appearances notwithstanding.  One of the "extra" evaluations
646  * is in typeof() and the other visible only to sparse (__CHECKER__),
647  * neither of which actually execute the argument.  As with most cpp
648  * macros, this execute-arguments-only-once property is important, so
649  * please be careful when making changes to rcu_assign_pointer() and the
650  * other macros that it invokes.
651  */
652 #define rcu_assign_pointer(p, v) smp_store_release(&p, RCU_INITIALIZER(v))
653
654 /**
655  * rcu_access_pointer() - fetch RCU pointer with no dereferencing
656  * @p: The pointer to read
657  *
658  * Return the value of the specified RCU-protected pointer, but omit the
659  * smp_read_barrier_depends() and keep the ACCESS_ONCE().  This is useful
660  * when the value of this pointer is accessed, but the pointer is not
661  * dereferenced, for example, when testing an RCU-protected pointer against
662  * NULL.  Although rcu_access_pointer() may also be used in cases where
663  * update-side locks prevent the value of the pointer from changing, you
664  * should instead use rcu_dereference_protected() for this use case.
665  *
666  * It is also permissible to use rcu_access_pointer() when read-side
667  * access to the pointer was removed at least one grace period ago, as
668  * is the case in the context of the RCU callback that is freeing up
669  * the data, or after a synchronize_rcu() returns.  This can be useful
670  * when tearing down multi-linked structures after a grace period
671  * has elapsed.
672  */
673 #define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
674
675 /**
676  * rcu_dereference_check() - rcu_dereference with debug checking
677  * @p: The pointer to read, prior to dereferencing
678  * @c: The conditions under which the dereference will take place
679  *
680  * Do an rcu_dereference(), but check that the conditions under which the
681  * dereference will take place are correct.  Typically the conditions
682  * indicate the various locking conditions that should be held at that
683  * point.  The check should return true if the conditions are satisfied.
684  * An implicit check for being in an RCU read-side critical section
685  * (rcu_read_lock()) is included.
686  *
687  * For example:
688  *
689  *      bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
690  *
691  * could be used to indicate to lockdep that foo->bar may only be dereferenced
692  * if either rcu_read_lock() is held, or that the lock required to replace
693  * the bar struct at foo->bar is held.
694  *
695  * Note that the list of conditions may also include indications of when a lock
696  * need not be held, for example during initialisation or destruction of the
697  * target struct:
698  *
699  *      bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
700  *                                            atomic_read(&foo->usage) == 0);
701  *
702  * Inserts memory barriers on architectures that require them
703  * (currently only the Alpha), prevents the compiler from refetching
704  * (and from merging fetches), and, more importantly, documents exactly
705  * which pointers are protected by RCU and checks that the pointer is
706  * annotated as __rcu.
707  */
708 #define rcu_dereference_check(p, c) \
709         __rcu_dereference_check((p), rcu_read_lock_held() || (c), __rcu)
710
711 /**
712  * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
713  * @p: The pointer to read, prior to dereferencing
714  * @c: The conditions under which the dereference will take place
715  *
716  * This is the RCU-bh counterpart to rcu_dereference_check().
717  */
718 #define rcu_dereference_bh_check(p, c) \
719         __rcu_dereference_check((p), rcu_read_lock_bh_held() || (c), __rcu)
720
721 /**
722  * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
723  * @p: The pointer to read, prior to dereferencing
724  * @c: The conditions under which the dereference will take place
725  *
726  * This is the RCU-sched counterpart to rcu_dereference_check().
727  */
728 #define rcu_dereference_sched_check(p, c) \
729         __rcu_dereference_check((p), rcu_read_lock_sched_held() || (c), \
730                                 __rcu)
731
732 #define rcu_dereference_raw(p) rcu_dereference_check(p, 1) /*@@@ needed? @@@*/
733
734 /*
735  * The tracing infrastructure traces RCU (we want that), but unfortunately
736  * some of the RCU checks causes tracing to lock up the system.
737  *
738  * The tracing version of rcu_dereference_raw() must not call
739  * rcu_read_lock_held().
740  */
741 #define rcu_dereference_raw_notrace(p) __rcu_dereference_check((p), 1, __rcu)
742
743 /**
744  * rcu_access_index() - fetch RCU index with no dereferencing
745  * @p: The index to read
746  *
747  * Return the value of the specified RCU-protected index, but omit the
748  * smp_read_barrier_depends() and keep the ACCESS_ONCE().  This is useful
749  * when the value of this index is accessed, but the index is not
750  * dereferenced, for example, when testing an RCU-protected index against
751  * -1.  Although rcu_access_index() may also be used in cases where
752  * update-side locks prevent the value of the index from changing, you
753  * should instead use rcu_dereference_index_protected() for this use case.
754  */
755 #define rcu_access_index(p) __rcu_access_index((p), __rcu)
756
757 /**
758  * rcu_dereference_index_check() - rcu_dereference for indices with debug checking
759  * @p: The pointer to read, prior to dereferencing
760  * @c: The conditions under which the dereference will take place
761  *
762  * Similar to rcu_dereference_check(), but omits the sparse checking.
763  * This allows rcu_dereference_index_check() to be used on integers,
764  * which can then be used as array indices.  Attempting to use
765  * rcu_dereference_check() on an integer will give compiler warnings
766  * because the sparse address-space mechanism relies on dereferencing
767  * the RCU-protected pointer.  Dereferencing integers is not something
768  * that even gcc will put up with.
769  *
770  * Note that this function does not implicitly check for RCU read-side
771  * critical sections.  If this function gains lots of uses, it might
772  * make sense to provide versions for each flavor of RCU, but it does
773  * not make sense as of early 2010.
774  */
775 #define rcu_dereference_index_check(p, c) \
776         __rcu_dereference_index_check((p), (c))
777
778 /**
779  * rcu_dereference_protected() - fetch RCU pointer when updates prevented
780  * @p: The pointer to read, prior to dereferencing
781  * @c: The conditions under which the dereference will take place
782  *
783  * Return the value of the specified RCU-protected pointer, but omit
784  * both the smp_read_barrier_depends() and the ACCESS_ONCE().  This
785  * is useful in cases where update-side locks prevent the value of the
786  * pointer from changing.  Please note that this primitive does -not-
787  * prevent the compiler from repeating this reference or combining it
788  * with other references, so it should not be used without protection
789  * of appropriate locks.
790  *
791  * This function is only for update-side use.  Using this function
792  * when protected only by rcu_read_lock() will result in infrequent
793  * but very ugly failures.
794  */
795 #define rcu_dereference_protected(p, c) \
796         __rcu_dereference_protected((p), (c), __rcu)
797
798
799 /**
800  * rcu_dereference() - fetch RCU-protected pointer for dereferencing
801  * @p: The pointer to read, prior to dereferencing
802  *
803  * This is a simple wrapper around rcu_dereference_check().
804  */
805 #define rcu_dereference(p) rcu_dereference_check(p, 0)
806
807 /**
808  * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
809  * @p: The pointer to read, prior to dereferencing
810  *
811  * Makes rcu_dereference_check() do the dirty work.
812  */
813 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
814
815 /**
816  * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
817  * @p: The pointer to read, prior to dereferencing
818  *
819  * Makes rcu_dereference_check() do the dirty work.
820  */
821 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
822
823 /**
824  * rcu_read_lock() - mark the beginning of an RCU read-side critical section
825  *
826  * When synchronize_rcu() is invoked on one CPU while other CPUs
827  * are within RCU read-side critical sections, then the
828  * synchronize_rcu() is guaranteed to block until after all the other
829  * CPUs exit their critical sections.  Similarly, if call_rcu() is invoked
830  * on one CPU while other CPUs are within RCU read-side critical
831  * sections, invocation of the corresponding RCU callback is deferred
832  * until after the all the other CPUs exit their critical sections.
833  *
834  * Note, however, that RCU callbacks are permitted to run concurrently
835  * with new RCU read-side critical sections.  One way that this can happen
836  * is via the following sequence of events: (1) CPU 0 enters an RCU
837  * read-side critical section, (2) CPU 1 invokes call_rcu() to register
838  * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
839  * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
840  * callback is invoked.  This is legal, because the RCU read-side critical
841  * section that was running concurrently with the call_rcu() (and which
842  * therefore might be referencing something that the corresponding RCU
843  * callback would free up) has completed before the corresponding
844  * RCU callback is invoked.
845  *
846  * RCU read-side critical sections may be nested.  Any deferred actions
847  * will be deferred until the outermost RCU read-side critical section
848  * completes.
849  *
850  * You can avoid reading and understanding the next paragraph by
851  * following this rule: don't put anything in an rcu_read_lock() RCU
852  * read-side critical section that would block in a !PREEMPT kernel.
853  * But if you want the full story, read on!
854  *
855  * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU), it
856  * is illegal to block while in an RCU read-side critical section.  In
857  * preemptible RCU implementations (TREE_PREEMPT_RCU and TINY_PREEMPT_RCU)
858  * in CONFIG_PREEMPT kernel builds, RCU read-side critical sections may
859  * be preempted, but explicit blocking is illegal.  Finally, in preemptible
860  * RCU implementations in real-time (with -rt patchset) kernel builds,
861  * RCU read-side critical sections may be preempted and they may also
862  * block, but only when acquiring spinlocks that are subject to priority
863  * inheritance.
864  */
865 static inline void rcu_read_lock(void)
866 {
867         __rcu_read_lock();
868         __acquire(RCU);
869         rcu_lock_acquire(&rcu_lock_map);
870         rcu_lockdep_assert(rcu_is_watching(),
871                            "rcu_read_lock() used illegally while idle");
872 }
873
874 /*
875  * So where is rcu_write_lock()?  It does not exist, as there is no
876  * way for writers to lock out RCU readers.  This is a feature, not
877  * a bug -- this property is what provides RCU's performance benefits.
878  * Of course, writers must coordinate with each other.  The normal
879  * spinlock primitives work well for this, but any other technique may be
880  * used as well.  RCU does not care how the writers keep out of each
881  * others' way, as long as they do so.
882  */
883
884 /**
885  * rcu_read_unlock() - marks the end of an RCU read-side critical section.
886  *
887  * See rcu_read_lock() for more information.
888  */
889 static inline void rcu_read_unlock(void)
890 {
891         rcu_lockdep_assert(rcu_is_watching(),
892                            "rcu_read_unlock() used illegally while idle");
893         rcu_lock_release(&rcu_lock_map);
894         __release(RCU);
895         __rcu_read_unlock();
896 }
897
898 /**
899  * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
900  *
901  * This is equivalent of rcu_read_lock(), but to be used when updates
902  * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since
903  * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a
904  * softirq handler to be a quiescent state, a process in RCU read-side
905  * critical section must be protected by disabling softirqs. Read-side
906  * critical sections in interrupt context can use just rcu_read_lock(),
907  * though this should at least be commented to avoid confusing people
908  * reading the code.
909  *
910  * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
911  * must occur in the same context, for example, it is illegal to invoke
912  * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
913  * was invoked from some other task.
914  */
915 static inline void rcu_read_lock_bh(void)
916 {
917         local_bh_disable();
918         __acquire(RCU_BH);
919         rcu_lock_acquire(&rcu_bh_lock_map);
920         rcu_lockdep_assert(rcu_is_watching(),
921                            "rcu_read_lock_bh() used illegally while idle");
922 }
923
924 /*
925  * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
926  *
927  * See rcu_read_lock_bh() for more information.
928  */
929 static inline void rcu_read_unlock_bh(void)
930 {
931         rcu_lockdep_assert(rcu_is_watching(),
932                            "rcu_read_unlock_bh() used illegally while idle");
933         rcu_lock_release(&rcu_bh_lock_map);
934         __release(RCU_BH);
935         local_bh_enable();
936 }
937
938 /**
939  * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
940  *
941  * This is equivalent of rcu_read_lock(), but to be used when updates
942  * are being done using call_rcu_sched() or synchronize_rcu_sched().
943  * Read-side critical sections can also be introduced by anything that
944  * disables preemption, including local_irq_disable() and friends.
945  *
946  * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
947  * must occur in the same context, for example, it is illegal to invoke
948  * rcu_read_unlock_sched() from process context if the matching
949  * rcu_read_lock_sched() was invoked from an NMI handler.
950  */
951 static inline void rcu_read_lock_sched(void)
952 {
953         preempt_disable();
954         __acquire(RCU_SCHED);
955         rcu_lock_acquire(&rcu_sched_lock_map);
956         rcu_lockdep_assert(rcu_is_watching(),
957                            "rcu_read_lock_sched() used illegally while idle");
958 }
959
960 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
961 static inline notrace void rcu_read_lock_sched_notrace(void)
962 {
963         preempt_disable_notrace();
964         __acquire(RCU_SCHED);
965 }
966
967 /*
968  * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
969  *
970  * See rcu_read_lock_sched for more information.
971  */
972 static inline void rcu_read_unlock_sched(void)
973 {
974         rcu_lockdep_assert(rcu_is_watching(),
975                            "rcu_read_unlock_sched() used illegally while idle");
976         rcu_lock_release(&rcu_sched_lock_map);
977         __release(RCU_SCHED);
978         preempt_enable();
979 }
980
981 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
982 static inline notrace void rcu_read_unlock_sched_notrace(void)
983 {
984         __release(RCU_SCHED);
985         preempt_enable_notrace();
986 }
987
988 /**
989  * RCU_INIT_POINTER() - initialize an RCU protected pointer
990  *
991  * Initialize an RCU-protected pointer in special cases where readers
992  * do not need ordering constraints on the CPU or the compiler.  These
993  * special cases are:
994  *
995  * 1.   This use of RCU_INIT_POINTER() is NULLing out the pointer -or-
996  * 2.   The caller has taken whatever steps are required to prevent
997  *      RCU readers from concurrently accessing this pointer -or-
998  * 3.   The referenced data structure has already been exposed to
999  *      readers either at compile time or via rcu_assign_pointer() -and-
1000  *      a.      You have not made -any- reader-visible changes to
1001  *              this structure since then -or-
1002  *      b.      It is OK for readers accessing this structure from its
1003  *              new location to see the old state of the structure.  (For
1004  *              example, the changes were to statistical counters or to
1005  *              other state where exact synchronization is not required.)
1006  *
1007  * Failure to follow these rules governing use of RCU_INIT_POINTER() will
1008  * result in impossible-to-diagnose memory corruption.  As in the structures
1009  * will look OK in crash dumps, but any concurrent RCU readers might
1010  * see pre-initialized values of the referenced data structure.  So
1011  * please be very careful how you use RCU_INIT_POINTER()!!!
1012  *
1013  * If you are creating an RCU-protected linked structure that is accessed
1014  * by a single external-to-structure RCU-protected pointer, then you may
1015  * use RCU_INIT_POINTER() to initialize the internal RCU-protected
1016  * pointers, but you must use rcu_assign_pointer() to initialize the
1017  * external-to-structure pointer -after- you have completely initialized
1018  * the reader-accessible portions of the linked structure.
1019  *
1020  * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
1021  * ordering guarantees for either the CPU or the compiler.
1022  */
1023 #define RCU_INIT_POINTER(p, v) \
1024         do { \
1025                 p = RCU_INITIALIZER(v); \
1026         } while (0)
1027
1028 /**
1029  * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
1030  *
1031  * GCC-style initialization for an RCU-protected pointer in a structure field.
1032  */
1033 #define RCU_POINTER_INITIALIZER(p, v) \
1034                 .p = RCU_INITIALIZER(v)
1035
1036 /*
1037  * Does the specified offset indicate that the corresponding rcu_head
1038  * structure can be handled by kfree_rcu()?
1039  */
1040 #define __is_kfree_rcu_offset(offset) ((offset) < 4096)
1041
1042 /*
1043  * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
1044  */
1045 #define __kfree_rcu(head, offset) \
1046         do { \
1047                 BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \
1048                 kfree_call_rcu(head, (void (*)(struct rcu_head *))(unsigned long)(offset)); \
1049         } while (0)
1050
1051 /**
1052  * kfree_rcu() - kfree an object after a grace period.
1053  * @ptr:        pointer to kfree
1054  * @rcu_head:   the name of the struct rcu_head within the type of @ptr.
1055  *
1056  * Many rcu callbacks functions just call kfree() on the base structure.
1057  * These functions are trivial, but their size adds up, and furthermore
1058  * when they are used in a kernel module, that module must invoke the
1059  * high-latency rcu_barrier() function at module-unload time.
1060  *
1061  * The kfree_rcu() function handles this issue.  Rather than encoding a
1062  * function address in the embedded rcu_head structure, kfree_rcu() instead
1063  * encodes the offset of the rcu_head structure within the base structure.
1064  * Because the functions are not allowed in the low-order 4096 bytes of
1065  * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
1066  * If the offset is larger than 4095 bytes, a compile-time error will
1067  * be generated in __kfree_rcu().  If this error is triggered, you can
1068  * either fall back to use of call_rcu() or rearrange the structure to
1069  * position the rcu_head structure into the first 4096 bytes.
1070  *
1071  * Note that the allowable offset might decrease in the future, for example,
1072  * to allow something like kmem_cache_free_rcu().
1073  *
1074  * The BUILD_BUG_ON check must not involve any function calls, hence the
1075  * checks are done in macros here.
1076  */
1077 #define kfree_rcu(ptr, rcu_head)                                        \
1078         __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head))
1079
1080 #if defined(CONFIG_TINY_RCU) || defined(CONFIG_RCU_NOCB_CPU_ALL)
1081 static inline int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
1082 {
1083         *delta_jiffies = ULONG_MAX;
1084         return 0;
1085 }
1086 #endif /* #if defined(CONFIG_TINY_RCU) || defined(CONFIG_RCU_NOCB_CPU_ALL) */
1087
1088 #if defined(CONFIG_RCU_NOCB_CPU_ALL)
1089 static inline bool rcu_is_nocb_cpu(int cpu) { return true; }
1090 #elif defined(CONFIG_RCU_NOCB_CPU)
1091 bool rcu_is_nocb_cpu(int cpu);
1092 #else
1093 static inline bool rcu_is_nocb_cpu(int cpu) { return false; }
1094 #endif
1095
1096
1097 /* Only for use by adaptive-ticks code. */
1098 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
1099 bool rcu_sys_is_idle(void);
1100 void rcu_sysidle_force_exit(void);
1101 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
1102
1103 static inline bool rcu_sys_is_idle(void)
1104 {
1105         return false;
1106 }
1107
1108 static inline void rcu_sysidle_force_exit(void)
1109 {
1110 }
1111
1112 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
1113
1114
1115 #endif /* __LINUX_RCUPDATE_H */