kexec: remove CONFIG_KEXEC dependency on crypto
[cascardo/linux.git] / kernel / bpf / core.c
1 /*
2  * Linux Socket Filter - Kernel level socket filtering
3  *
4  * Based on the design of the Berkeley Packet Filter. The new
5  * internal format has been designed by PLUMgrid:
6  *
7  *      Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
8  *
9  * Authors:
10  *
11  *      Jay Schulist <jschlst@samba.org>
12  *      Alexei Starovoitov <ast@plumgrid.com>
13  *      Daniel Borkmann <dborkman@redhat.com>
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  *
20  * Andi Kleen - Fix a few bad bugs and races.
21  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
22  */
23 #include <linux/filter.h>
24 #include <linux/skbuff.h>
25 #include <asm/unaligned.h>
26
27 /* Registers */
28 #define BPF_R0  regs[BPF_REG_0]
29 #define BPF_R1  regs[BPF_REG_1]
30 #define BPF_R2  regs[BPF_REG_2]
31 #define BPF_R3  regs[BPF_REG_3]
32 #define BPF_R4  regs[BPF_REG_4]
33 #define BPF_R5  regs[BPF_REG_5]
34 #define BPF_R6  regs[BPF_REG_6]
35 #define BPF_R7  regs[BPF_REG_7]
36 #define BPF_R8  regs[BPF_REG_8]
37 #define BPF_R9  regs[BPF_REG_9]
38 #define BPF_R10 regs[BPF_REG_10]
39
40 /* Named registers */
41 #define DST     regs[insn->dst_reg]
42 #define SRC     regs[insn->src_reg]
43 #define FP      regs[BPF_REG_FP]
44 #define ARG1    regs[BPF_REG_ARG1]
45 #define CTX     regs[BPF_REG_CTX]
46 #define IMM     insn->imm
47
48 /* No hurry in this branch
49  *
50  * Exported for the bpf jit load helper.
51  */
52 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
53 {
54         u8 *ptr = NULL;
55
56         if (k >= SKF_NET_OFF)
57                 ptr = skb_network_header(skb) + k - SKF_NET_OFF;
58         else if (k >= SKF_LL_OFF)
59                 ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
60         if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
61                 return ptr;
62
63         return NULL;
64 }
65
66 /* Base function for offset calculation. Needs to go into .text section,
67  * therefore keeping it non-static as well; will also be used by JITs
68  * anyway later on, so do not let the compiler omit it.
69  */
70 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
71 {
72         return 0;
73 }
74
75 /**
76  *      __bpf_prog_run - run eBPF program on a given context
77  *      @ctx: is the data we are operating on
78  *      @insn: is the array of eBPF instructions
79  *
80  * Decode and execute eBPF instructions.
81  */
82 static unsigned int __bpf_prog_run(void *ctx, const struct bpf_insn *insn)
83 {
84         u64 stack[MAX_BPF_STACK / sizeof(u64)];
85         u64 regs[MAX_BPF_REG], tmp;
86         static const void *jumptable[256] = {
87                 [0 ... 255] = &&default_label,
88                 /* Now overwrite non-defaults ... */
89                 /* 32 bit ALU operations */
90                 [BPF_ALU | BPF_ADD | BPF_X] = &&ALU_ADD_X,
91                 [BPF_ALU | BPF_ADD | BPF_K] = &&ALU_ADD_K,
92                 [BPF_ALU | BPF_SUB | BPF_X] = &&ALU_SUB_X,
93                 [BPF_ALU | BPF_SUB | BPF_K] = &&ALU_SUB_K,
94                 [BPF_ALU | BPF_AND | BPF_X] = &&ALU_AND_X,
95                 [BPF_ALU | BPF_AND | BPF_K] = &&ALU_AND_K,
96                 [BPF_ALU | BPF_OR | BPF_X]  = &&ALU_OR_X,
97                 [BPF_ALU | BPF_OR | BPF_K]  = &&ALU_OR_K,
98                 [BPF_ALU | BPF_LSH | BPF_X] = &&ALU_LSH_X,
99                 [BPF_ALU | BPF_LSH | BPF_K] = &&ALU_LSH_K,
100                 [BPF_ALU | BPF_RSH | BPF_X] = &&ALU_RSH_X,
101                 [BPF_ALU | BPF_RSH | BPF_K] = &&ALU_RSH_K,
102                 [BPF_ALU | BPF_XOR | BPF_X] = &&ALU_XOR_X,
103                 [BPF_ALU | BPF_XOR | BPF_K] = &&ALU_XOR_K,
104                 [BPF_ALU | BPF_MUL | BPF_X] = &&ALU_MUL_X,
105                 [BPF_ALU | BPF_MUL | BPF_K] = &&ALU_MUL_K,
106                 [BPF_ALU | BPF_MOV | BPF_X] = &&ALU_MOV_X,
107                 [BPF_ALU | BPF_MOV | BPF_K] = &&ALU_MOV_K,
108                 [BPF_ALU | BPF_DIV | BPF_X] = &&ALU_DIV_X,
109                 [BPF_ALU | BPF_DIV | BPF_K] = &&ALU_DIV_K,
110                 [BPF_ALU | BPF_MOD | BPF_X] = &&ALU_MOD_X,
111                 [BPF_ALU | BPF_MOD | BPF_K] = &&ALU_MOD_K,
112                 [BPF_ALU | BPF_NEG] = &&ALU_NEG,
113                 [BPF_ALU | BPF_END | BPF_TO_BE] = &&ALU_END_TO_BE,
114                 [BPF_ALU | BPF_END | BPF_TO_LE] = &&ALU_END_TO_LE,
115                 /* 64 bit ALU operations */
116                 [BPF_ALU64 | BPF_ADD | BPF_X] = &&ALU64_ADD_X,
117                 [BPF_ALU64 | BPF_ADD | BPF_K] = &&ALU64_ADD_K,
118                 [BPF_ALU64 | BPF_SUB | BPF_X] = &&ALU64_SUB_X,
119                 [BPF_ALU64 | BPF_SUB | BPF_K] = &&ALU64_SUB_K,
120                 [BPF_ALU64 | BPF_AND | BPF_X] = &&ALU64_AND_X,
121                 [BPF_ALU64 | BPF_AND | BPF_K] = &&ALU64_AND_K,
122                 [BPF_ALU64 | BPF_OR | BPF_X] = &&ALU64_OR_X,
123                 [BPF_ALU64 | BPF_OR | BPF_K] = &&ALU64_OR_K,
124                 [BPF_ALU64 | BPF_LSH | BPF_X] = &&ALU64_LSH_X,
125                 [BPF_ALU64 | BPF_LSH | BPF_K] = &&ALU64_LSH_K,
126                 [BPF_ALU64 | BPF_RSH | BPF_X] = &&ALU64_RSH_X,
127                 [BPF_ALU64 | BPF_RSH | BPF_K] = &&ALU64_RSH_K,
128                 [BPF_ALU64 | BPF_XOR | BPF_X] = &&ALU64_XOR_X,
129                 [BPF_ALU64 | BPF_XOR | BPF_K] = &&ALU64_XOR_K,
130                 [BPF_ALU64 | BPF_MUL | BPF_X] = &&ALU64_MUL_X,
131                 [BPF_ALU64 | BPF_MUL | BPF_K] = &&ALU64_MUL_K,
132                 [BPF_ALU64 | BPF_MOV | BPF_X] = &&ALU64_MOV_X,
133                 [BPF_ALU64 | BPF_MOV | BPF_K] = &&ALU64_MOV_K,
134                 [BPF_ALU64 | BPF_ARSH | BPF_X] = &&ALU64_ARSH_X,
135                 [BPF_ALU64 | BPF_ARSH | BPF_K] = &&ALU64_ARSH_K,
136                 [BPF_ALU64 | BPF_DIV | BPF_X] = &&ALU64_DIV_X,
137                 [BPF_ALU64 | BPF_DIV | BPF_K] = &&ALU64_DIV_K,
138                 [BPF_ALU64 | BPF_MOD | BPF_X] = &&ALU64_MOD_X,
139                 [BPF_ALU64 | BPF_MOD | BPF_K] = &&ALU64_MOD_K,
140                 [BPF_ALU64 | BPF_NEG] = &&ALU64_NEG,
141                 /* Call instruction */
142                 [BPF_JMP | BPF_CALL] = &&JMP_CALL,
143                 /* Jumps */
144                 [BPF_JMP | BPF_JA] = &&JMP_JA,
145                 [BPF_JMP | BPF_JEQ | BPF_X] = &&JMP_JEQ_X,
146                 [BPF_JMP | BPF_JEQ | BPF_K] = &&JMP_JEQ_K,
147                 [BPF_JMP | BPF_JNE | BPF_X] = &&JMP_JNE_X,
148                 [BPF_JMP | BPF_JNE | BPF_K] = &&JMP_JNE_K,
149                 [BPF_JMP | BPF_JGT | BPF_X] = &&JMP_JGT_X,
150                 [BPF_JMP | BPF_JGT | BPF_K] = &&JMP_JGT_K,
151                 [BPF_JMP | BPF_JGE | BPF_X] = &&JMP_JGE_X,
152                 [BPF_JMP | BPF_JGE | BPF_K] = &&JMP_JGE_K,
153                 [BPF_JMP | BPF_JSGT | BPF_X] = &&JMP_JSGT_X,
154                 [BPF_JMP | BPF_JSGT | BPF_K] = &&JMP_JSGT_K,
155                 [BPF_JMP | BPF_JSGE | BPF_X] = &&JMP_JSGE_X,
156                 [BPF_JMP | BPF_JSGE | BPF_K] = &&JMP_JSGE_K,
157                 [BPF_JMP | BPF_JSET | BPF_X] = &&JMP_JSET_X,
158                 [BPF_JMP | BPF_JSET | BPF_K] = &&JMP_JSET_K,
159                 /* Program return */
160                 [BPF_JMP | BPF_EXIT] = &&JMP_EXIT,
161                 /* Store instructions */
162                 [BPF_STX | BPF_MEM | BPF_B] = &&STX_MEM_B,
163                 [BPF_STX | BPF_MEM | BPF_H] = &&STX_MEM_H,
164                 [BPF_STX | BPF_MEM | BPF_W] = &&STX_MEM_W,
165                 [BPF_STX | BPF_MEM | BPF_DW] = &&STX_MEM_DW,
166                 [BPF_STX | BPF_XADD | BPF_W] = &&STX_XADD_W,
167                 [BPF_STX | BPF_XADD | BPF_DW] = &&STX_XADD_DW,
168                 [BPF_ST | BPF_MEM | BPF_B] = &&ST_MEM_B,
169                 [BPF_ST | BPF_MEM | BPF_H] = &&ST_MEM_H,
170                 [BPF_ST | BPF_MEM | BPF_W] = &&ST_MEM_W,
171                 [BPF_ST | BPF_MEM | BPF_DW] = &&ST_MEM_DW,
172                 /* Load instructions */
173                 [BPF_LDX | BPF_MEM | BPF_B] = &&LDX_MEM_B,
174                 [BPF_LDX | BPF_MEM | BPF_H] = &&LDX_MEM_H,
175                 [BPF_LDX | BPF_MEM | BPF_W] = &&LDX_MEM_W,
176                 [BPF_LDX | BPF_MEM | BPF_DW] = &&LDX_MEM_DW,
177                 [BPF_LD | BPF_ABS | BPF_W] = &&LD_ABS_W,
178                 [BPF_LD | BPF_ABS | BPF_H] = &&LD_ABS_H,
179                 [BPF_LD | BPF_ABS | BPF_B] = &&LD_ABS_B,
180                 [BPF_LD | BPF_IND | BPF_W] = &&LD_IND_W,
181                 [BPF_LD | BPF_IND | BPF_H] = &&LD_IND_H,
182                 [BPF_LD | BPF_IND | BPF_B] = &&LD_IND_B,
183         };
184         void *ptr;
185         int off;
186
187 #define CONT     ({ insn++; goto select_insn; })
188 #define CONT_JMP ({ insn++; goto select_insn; })
189
190         FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)];
191         ARG1 = (u64) (unsigned long) ctx;
192
193         /* Registers used in classic BPF programs need to be reset first. */
194         regs[BPF_REG_A] = 0;
195         regs[BPF_REG_X] = 0;
196
197 select_insn:
198         goto *jumptable[insn->code];
199
200         /* ALU */
201 #define ALU(OPCODE, OP)                 \
202         ALU64_##OPCODE##_X:             \
203                 DST = DST OP SRC;       \
204                 CONT;                   \
205         ALU_##OPCODE##_X:               \
206                 DST = (u32) DST OP (u32) SRC;   \
207                 CONT;                   \
208         ALU64_##OPCODE##_K:             \
209                 DST = DST OP IMM;               \
210                 CONT;                   \
211         ALU_##OPCODE##_K:               \
212                 DST = (u32) DST OP (u32) IMM;   \
213                 CONT;
214
215         ALU(ADD,  +)
216         ALU(SUB,  -)
217         ALU(AND,  &)
218         ALU(OR,   |)
219         ALU(LSH, <<)
220         ALU(RSH, >>)
221         ALU(XOR,  ^)
222         ALU(MUL,  *)
223 #undef ALU
224         ALU_NEG:
225                 DST = (u32) -DST;
226                 CONT;
227         ALU64_NEG:
228                 DST = -DST;
229                 CONT;
230         ALU_MOV_X:
231                 DST = (u32) SRC;
232                 CONT;
233         ALU_MOV_K:
234                 DST = (u32) IMM;
235                 CONT;
236         ALU64_MOV_X:
237                 DST = SRC;
238                 CONT;
239         ALU64_MOV_K:
240                 DST = IMM;
241                 CONT;
242         ALU64_ARSH_X:
243                 (*(s64 *) &DST) >>= SRC;
244                 CONT;
245         ALU64_ARSH_K:
246                 (*(s64 *) &DST) >>= IMM;
247                 CONT;
248         ALU64_MOD_X:
249                 if (unlikely(SRC == 0))
250                         return 0;
251                 tmp = DST;
252                 DST = do_div(tmp, SRC);
253                 CONT;
254         ALU_MOD_X:
255                 if (unlikely(SRC == 0))
256                         return 0;
257                 tmp = (u32) DST;
258                 DST = do_div(tmp, (u32) SRC);
259                 CONT;
260         ALU64_MOD_K:
261                 tmp = DST;
262                 DST = do_div(tmp, IMM);
263                 CONT;
264         ALU_MOD_K:
265                 tmp = (u32) DST;
266                 DST = do_div(tmp, (u32) IMM);
267                 CONT;
268         ALU64_DIV_X:
269                 if (unlikely(SRC == 0))
270                         return 0;
271                 do_div(DST, SRC);
272                 CONT;
273         ALU_DIV_X:
274                 if (unlikely(SRC == 0))
275                         return 0;
276                 tmp = (u32) DST;
277                 do_div(tmp, (u32) SRC);
278                 DST = (u32) tmp;
279                 CONT;
280         ALU64_DIV_K:
281                 do_div(DST, IMM);
282                 CONT;
283         ALU_DIV_K:
284                 tmp = (u32) DST;
285                 do_div(tmp, (u32) IMM);
286                 DST = (u32) tmp;
287                 CONT;
288         ALU_END_TO_BE:
289                 switch (IMM) {
290                 case 16:
291                         DST = (__force u16) cpu_to_be16(DST);
292                         break;
293                 case 32:
294                         DST = (__force u32) cpu_to_be32(DST);
295                         break;
296                 case 64:
297                         DST = (__force u64) cpu_to_be64(DST);
298                         break;
299                 }
300                 CONT;
301         ALU_END_TO_LE:
302                 switch (IMM) {
303                 case 16:
304                         DST = (__force u16) cpu_to_le16(DST);
305                         break;
306                 case 32:
307                         DST = (__force u32) cpu_to_le32(DST);
308                         break;
309                 case 64:
310                         DST = (__force u64) cpu_to_le64(DST);
311                         break;
312                 }
313                 CONT;
314
315         /* CALL */
316         JMP_CALL:
317                 /* Function call scratches BPF_R1-BPF_R5 registers,
318                  * preserves BPF_R6-BPF_R9, and stores return value
319                  * into BPF_R0.
320                  */
321                 BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
322                                                        BPF_R4, BPF_R5);
323                 CONT;
324
325         /* JMP */
326         JMP_JA:
327                 insn += insn->off;
328                 CONT;
329         JMP_JEQ_X:
330                 if (DST == SRC) {
331                         insn += insn->off;
332                         CONT_JMP;
333                 }
334                 CONT;
335         JMP_JEQ_K:
336                 if (DST == IMM) {
337                         insn += insn->off;
338                         CONT_JMP;
339                 }
340                 CONT;
341         JMP_JNE_X:
342                 if (DST != SRC) {
343                         insn += insn->off;
344                         CONT_JMP;
345                 }
346                 CONT;
347         JMP_JNE_K:
348                 if (DST != IMM) {
349                         insn += insn->off;
350                         CONT_JMP;
351                 }
352                 CONT;
353         JMP_JGT_X:
354                 if (DST > SRC) {
355                         insn += insn->off;
356                         CONT_JMP;
357                 }
358                 CONT;
359         JMP_JGT_K:
360                 if (DST > IMM) {
361                         insn += insn->off;
362                         CONT_JMP;
363                 }
364                 CONT;
365         JMP_JGE_X:
366                 if (DST >= SRC) {
367                         insn += insn->off;
368                         CONT_JMP;
369                 }
370                 CONT;
371         JMP_JGE_K:
372                 if (DST >= IMM) {
373                         insn += insn->off;
374                         CONT_JMP;
375                 }
376                 CONT;
377         JMP_JSGT_X:
378                 if (((s64) DST) > ((s64) SRC)) {
379                         insn += insn->off;
380                         CONT_JMP;
381                 }
382                 CONT;
383         JMP_JSGT_K:
384                 if (((s64) DST) > ((s64) IMM)) {
385                         insn += insn->off;
386                         CONT_JMP;
387                 }
388                 CONT;
389         JMP_JSGE_X:
390                 if (((s64) DST) >= ((s64) SRC)) {
391                         insn += insn->off;
392                         CONT_JMP;
393                 }
394                 CONT;
395         JMP_JSGE_K:
396                 if (((s64) DST) >= ((s64) IMM)) {
397                         insn += insn->off;
398                         CONT_JMP;
399                 }
400                 CONT;
401         JMP_JSET_X:
402                 if (DST & SRC) {
403                         insn += insn->off;
404                         CONT_JMP;
405                 }
406                 CONT;
407         JMP_JSET_K:
408                 if (DST & IMM) {
409                         insn += insn->off;
410                         CONT_JMP;
411                 }
412                 CONT;
413         JMP_EXIT:
414                 return BPF_R0;
415
416         /* STX and ST and LDX*/
417 #define LDST(SIZEOP, SIZE)                                              \
418         STX_MEM_##SIZEOP:                                               \
419                 *(SIZE *)(unsigned long) (DST + insn->off) = SRC;       \
420                 CONT;                                                   \
421         ST_MEM_##SIZEOP:                                                \
422                 *(SIZE *)(unsigned long) (DST + insn->off) = IMM;       \
423                 CONT;                                                   \
424         LDX_MEM_##SIZEOP:                                               \
425                 DST = *(SIZE *)(unsigned long) (SRC + insn->off);       \
426                 CONT;
427
428         LDST(B,   u8)
429         LDST(H,  u16)
430         LDST(W,  u32)
431         LDST(DW, u64)
432 #undef LDST
433         STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
434                 atomic_add((u32) SRC, (atomic_t *)(unsigned long)
435                            (DST + insn->off));
436                 CONT;
437         STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
438                 atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
439                              (DST + insn->off));
440                 CONT;
441         LD_ABS_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + imm32)) */
442                 off = IMM;
443 load_word:
444                 /* BPF_LD + BPD_ABS and BPF_LD + BPF_IND insns are
445                  * only appearing in the programs where ctx ==
446                  * skb. All programs keep 'ctx' in regs[BPF_REG_CTX]
447                  * == BPF_R6, bpf_convert_filter() saves it in BPF_R6,
448                  * internal BPF verifier will check that BPF_R6 ==
449                  * ctx.
450                  *
451                  * BPF_ABS and BPF_IND are wrappers of function calls,
452                  * so they scratch BPF_R1-BPF_R5 registers, preserve
453                  * BPF_R6-BPF_R9, and store return value into BPF_R0.
454                  *
455                  * Implicit input:
456                  *   ctx == skb == BPF_R6 == CTX
457                  *
458                  * Explicit input:
459                  *   SRC == any register
460                  *   IMM == 32-bit immediate
461                  *
462                  * Output:
463                  *   BPF_R0 - 8/16/32-bit skb data converted to cpu endianness
464                  */
465
466                 ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 4, &tmp);
467                 if (likely(ptr != NULL)) {
468                         BPF_R0 = get_unaligned_be32(ptr);
469                         CONT;
470                 }
471
472                 return 0;
473         LD_ABS_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + imm32)) */
474                 off = IMM;
475 load_half:
476                 ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 2, &tmp);
477                 if (likely(ptr != NULL)) {
478                         BPF_R0 = get_unaligned_be16(ptr);
479                         CONT;
480                 }
481
482                 return 0;
483         LD_ABS_B: /* BPF_R0 = *(u8 *) (skb->data + imm32) */
484                 off = IMM;
485 load_byte:
486                 ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 1, &tmp);
487                 if (likely(ptr != NULL)) {
488                         BPF_R0 = *(u8 *)ptr;
489                         CONT;
490                 }
491
492                 return 0;
493         LD_IND_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + src_reg + imm32)) */
494                 off = IMM + SRC;
495                 goto load_word;
496         LD_IND_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + src_reg + imm32)) */
497                 off = IMM + SRC;
498                 goto load_half;
499         LD_IND_B: /* BPF_R0 = *(u8 *) (skb->data + src_reg + imm32) */
500                 off = IMM + SRC;
501                 goto load_byte;
502
503         default_label:
504                 /* If we ever reach this, we have a bug somewhere. */
505                 WARN_RATELIMIT(1, "unknown opcode %02x\n", insn->code);
506                 return 0;
507 }
508
509 void __weak bpf_int_jit_compile(struct bpf_prog *prog)
510 {
511 }
512
513 /**
514  *      bpf_prog_select_runtime - select execution runtime for BPF program
515  *      @fp: bpf_prog populated with internal BPF program
516  *
517  * try to JIT internal BPF program, if JIT is not available select interpreter
518  * BPF program will be executed via BPF_PROG_RUN() macro
519  */
520 void bpf_prog_select_runtime(struct bpf_prog *fp)
521 {
522         fp->bpf_func = (void *) __bpf_prog_run;
523
524         /* Probe if internal BPF can be JITed */
525         bpf_int_jit_compile(fp);
526 }
527 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
528
529 /* free internal BPF program */
530 void bpf_prog_free(struct bpf_prog *fp)
531 {
532         bpf_jit_free(fp);
533 }
534 EXPORT_SYMBOL_GPL(bpf_prog_free);