bpf: split state from prandom_u32() and consolidate {c, e}BPF prngs
[cascardo/linux.git] / kernel / bpf / core.c
1 /*
2  * Linux Socket Filter - Kernel level socket filtering
3  *
4  * Based on the design of the Berkeley Packet Filter. The new
5  * internal format has been designed by PLUMgrid:
6  *
7  *      Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
8  *
9  * Authors:
10  *
11  *      Jay Schulist <jschlst@samba.org>
12  *      Alexei Starovoitov <ast@plumgrid.com>
13  *      Daniel Borkmann <dborkman@redhat.com>
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  *
20  * Andi Kleen - Fix a few bad bugs and races.
21  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
22  */
23
24 #include <linux/filter.h>
25 #include <linux/skbuff.h>
26 #include <linux/vmalloc.h>
27 #include <linux/random.h>
28 #include <linux/moduleloader.h>
29 #include <linux/bpf.h>
30
31 #include <asm/unaligned.h>
32
33 /* Registers */
34 #define BPF_R0  regs[BPF_REG_0]
35 #define BPF_R1  regs[BPF_REG_1]
36 #define BPF_R2  regs[BPF_REG_2]
37 #define BPF_R3  regs[BPF_REG_3]
38 #define BPF_R4  regs[BPF_REG_4]
39 #define BPF_R5  regs[BPF_REG_5]
40 #define BPF_R6  regs[BPF_REG_6]
41 #define BPF_R7  regs[BPF_REG_7]
42 #define BPF_R8  regs[BPF_REG_8]
43 #define BPF_R9  regs[BPF_REG_9]
44 #define BPF_R10 regs[BPF_REG_10]
45
46 /* Named registers */
47 #define DST     regs[insn->dst_reg]
48 #define SRC     regs[insn->src_reg]
49 #define FP      regs[BPF_REG_FP]
50 #define ARG1    regs[BPF_REG_ARG1]
51 #define CTX     regs[BPF_REG_CTX]
52 #define IMM     insn->imm
53
54 /* No hurry in this branch
55  *
56  * Exported for the bpf jit load helper.
57  */
58 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
59 {
60         u8 *ptr = NULL;
61
62         if (k >= SKF_NET_OFF)
63                 ptr = skb_network_header(skb) + k - SKF_NET_OFF;
64         else if (k >= SKF_LL_OFF)
65                 ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
66
67         if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
68                 return ptr;
69
70         return NULL;
71 }
72
73 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
74 {
75         gfp_t gfp_flags = GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO |
76                           gfp_extra_flags;
77         struct bpf_prog_aux *aux;
78         struct bpf_prog *fp;
79
80         size = round_up(size, PAGE_SIZE);
81         fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
82         if (fp == NULL)
83                 return NULL;
84
85         kmemcheck_annotate_bitfield(fp, meta);
86
87         aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags);
88         if (aux == NULL) {
89                 vfree(fp);
90                 return NULL;
91         }
92
93         fp->pages = size / PAGE_SIZE;
94         fp->aux = aux;
95
96         return fp;
97 }
98 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
99
100 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
101                                   gfp_t gfp_extra_flags)
102 {
103         gfp_t gfp_flags = GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO |
104                           gfp_extra_flags;
105         struct bpf_prog *fp;
106
107         BUG_ON(fp_old == NULL);
108
109         size = round_up(size, PAGE_SIZE);
110         if (size <= fp_old->pages * PAGE_SIZE)
111                 return fp_old;
112
113         fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
114         if (fp != NULL) {
115                 kmemcheck_annotate_bitfield(fp, meta);
116
117                 memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
118                 fp->pages = size / PAGE_SIZE;
119
120                 /* We keep fp->aux from fp_old around in the new
121                  * reallocated structure.
122                  */
123                 fp_old->aux = NULL;
124                 __bpf_prog_free(fp_old);
125         }
126
127         return fp;
128 }
129 EXPORT_SYMBOL_GPL(bpf_prog_realloc);
130
131 void __bpf_prog_free(struct bpf_prog *fp)
132 {
133         kfree(fp->aux);
134         vfree(fp);
135 }
136 EXPORT_SYMBOL_GPL(__bpf_prog_free);
137
138 #ifdef CONFIG_BPF_JIT
139 struct bpf_binary_header *
140 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
141                      unsigned int alignment,
142                      bpf_jit_fill_hole_t bpf_fill_ill_insns)
143 {
144         struct bpf_binary_header *hdr;
145         unsigned int size, hole, start;
146
147         /* Most of BPF filters are really small, but if some of them
148          * fill a page, allow at least 128 extra bytes to insert a
149          * random section of illegal instructions.
150          */
151         size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
152         hdr = module_alloc(size);
153         if (hdr == NULL)
154                 return NULL;
155
156         /* Fill space with illegal/arch-dep instructions. */
157         bpf_fill_ill_insns(hdr, size);
158
159         hdr->pages = size / PAGE_SIZE;
160         hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
161                      PAGE_SIZE - sizeof(*hdr));
162         start = (prandom_u32() % hole) & ~(alignment - 1);
163
164         /* Leave a random number of instructions before BPF code. */
165         *image_ptr = &hdr->image[start];
166
167         return hdr;
168 }
169
170 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
171 {
172         module_memfree(hdr);
173 }
174 #endif /* CONFIG_BPF_JIT */
175
176 /* Base function for offset calculation. Needs to go into .text section,
177  * therefore keeping it non-static as well; will also be used by JITs
178  * anyway later on, so do not let the compiler omit it.
179  */
180 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
181 {
182         return 0;
183 }
184 EXPORT_SYMBOL_GPL(__bpf_call_base);
185
186 /**
187  *      __bpf_prog_run - run eBPF program on a given context
188  *      @ctx: is the data we are operating on
189  *      @insn: is the array of eBPF instructions
190  *
191  * Decode and execute eBPF instructions.
192  */
193 static unsigned int __bpf_prog_run(void *ctx, const struct bpf_insn *insn)
194 {
195         u64 stack[MAX_BPF_STACK / sizeof(u64)];
196         u64 regs[MAX_BPF_REG], tmp;
197         static const void *jumptable[256] = {
198                 [0 ... 255] = &&default_label,
199                 /* Now overwrite non-defaults ... */
200                 /* 32 bit ALU operations */
201                 [BPF_ALU | BPF_ADD | BPF_X] = &&ALU_ADD_X,
202                 [BPF_ALU | BPF_ADD | BPF_K] = &&ALU_ADD_K,
203                 [BPF_ALU | BPF_SUB | BPF_X] = &&ALU_SUB_X,
204                 [BPF_ALU | BPF_SUB | BPF_K] = &&ALU_SUB_K,
205                 [BPF_ALU | BPF_AND | BPF_X] = &&ALU_AND_X,
206                 [BPF_ALU | BPF_AND | BPF_K] = &&ALU_AND_K,
207                 [BPF_ALU | BPF_OR | BPF_X]  = &&ALU_OR_X,
208                 [BPF_ALU | BPF_OR | BPF_K]  = &&ALU_OR_K,
209                 [BPF_ALU | BPF_LSH | BPF_X] = &&ALU_LSH_X,
210                 [BPF_ALU | BPF_LSH | BPF_K] = &&ALU_LSH_K,
211                 [BPF_ALU | BPF_RSH | BPF_X] = &&ALU_RSH_X,
212                 [BPF_ALU | BPF_RSH | BPF_K] = &&ALU_RSH_K,
213                 [BPF_ALU | BPF_XOR | BPF_X] = &&ALU_XOR_X,
214                 [BPF_ALU | BPF_XOR | BPF_K] = &&ALU_XOR_K,
215                 [BPF_ALU | BPF_MUL | BPF_X] = &&ALU_MUL_X,
216                 [BPF_ALU | BPF_MUL | BPF_K] = &&ALU_MUL_K,
217                 [BPF_ALU | BPF_MOV | BPF_X] = &&ALU_MOV_X,
218                 [BPF_ALU | BPF_MOV | BPF_K] = &&ALU_MOV_K,
219                 [BPF_ALU | BPF_DIV | BPF_X] = &&ALU_DIV_X,
220                 [BPF_ALU | BPF_DIV | BPF_K] = &&ALU_DIV_K,
221                 [BPF_ALU | BPF_MOD | BPF_X] = &&ALU_MOD_X,
222                 [BPF_ALU | BPF_MOD | BPF_K] = &&ALU_MOD_K,
223                 [BPF_ALU | BPF_NEG] = &&ALU_NEG,
224                 [BPF_ALU | BPF_END | BPF_TO_BE] = &&ALU_END_TO_BE,
225                 [BPF_ALU | BPF_END | BPF_TO_LE] = &&ALU_END_TO_LE,
226                 /* 64 bit ALU operations */
227                 [BPF_ALU64 | BPF_ADD | BPF_X] = &&ALU64_ADD_X,
228                 [BPF_ALU64 | BPF_ADD | BPF_K] = &&ALU64_ADD_K,
229                 [BPF_ALU64 | BPF_SUB | BPF_X] = &&ALU64_SUB_X,
230                 [BPF_ALU64 | BPF_SUB | BPF_K] = &&ALU64_SUB_K,
231                 [BPF_ALU64 | BPF_AND | BPF_X] = &&ALU64_AND_X,
232                 [BPF_ALU64 | BPF_AND | BPF_K] = &&ALU64_AND_K,
233                 [BPF_ALU64 | BPF_OR | BPF_X] = &&ALU64_OR_X,
234                 [BPF_ALU64 | BPF_OR | BPF_K] = &&ALU64_OR_K,
235                 [BPF_ALU64 | BPF_LSH | BPF_X] = &&ALU64_LSH_X,
236                 [BPF_ALU64 | BPF_LSH | BPF_K] = &&ALU64_LSH_K,
237                 [BPF_ALU64 | BPF_RSH | BPF_X] = &&ALU64_RSH_X,
238                 [BPF_ALU64 | BPF_RSH | BPF_K] = &&ALU64_RSH_K,
239                 [BPF_ALU64 | BPF_XOR | BPF_X] = &&ALU64_XOR_X,
240                 [BPF_ALU64 | BPF_XOR | BPF_K] = &&ALU64_XOR_K,
241                 [BPF_ALU64 | BPF_MUL | BPF_X] = &&ALU64_MUL_X,
242                 [BPF_ALU64 | BPF_MUL | BPF_K] = &&ALU64_MUL_K,
243                 [BPF_ALU64 | BPF_MOV | BPF_X] = &&ALU64_MOV_X,
244                 [BPF_ALU64 | BPF_MOV | BPF_K] = &&ALU64_MOV_K,
245                 [BPF_ALU64 | BPF_ARSH | BPF_X] = &&ALU64_ARSH_X,
246                 [BPF_ALU64 | BPF_ARSH | BPF_K] = &&ALU64_ARSH_K,
247                 [BPF_ALU64 | BPF_DIV | BPF_X] = &&ALU64_DIV_X,
248                 [BPF_ALU64 | BPF_DIV | BPF_K] = &&ALU64_DIV_K,
249                 [BPF_ALU64 | BPF_MOD | BPF_X] = &&ALU64_MOD_X,
250                 [BPF_ALU64 | BPF_MOD | BPF_K] = &&ALU64_MOD_K,
251                 [BPF_ALU64 | BPF_NEG] = &&ALU64_NEG,
252                 /* Call instruction */
253                 [BPF_JMP | BPF_CALL] = &&JMP_CALL,
254                 [BPF_JMP | BPF_CALL | BPF_X] = &&JMP_TAIL_CALL,
255                 /* Jumps */
256                 [BPF_JMP | BPF_JA] = &&JMP_JA,
257                 [BPF_JMP | BPF_JEQ | BPF_X] = &&JMP_JEQ_X,
258                 [BPF_JMP | BPF_JEQ | BPF_K] = &&JMP_JEQ_K,
259                 [BPF_JMP | BPF_JNE | BPF_X] = &&JMP_JNE_X,
260                 [BPF_JMP | BPF_JNE | BPF_K] = &&JMP_JNE_K,
261                 [BPF_JMP | BPF_JGT | BPF_X] = &&JMP_JGT_X,
262                 [BPF_JMP | BPF_JGT | BPF_K] = &&JMP_JGT_K,
263                 [BPF_JMP | BPF_JGE | BPF_X] = &&JMP_JGE_X,
264                 [BPF_JMP | BPF_JGE | BPF_K] = &&JMP_JGE_K,
265                 [BPF_JMP | BPF_JSGT | BPF_X] = &&JMP_JSGT_X,
266                 [BPF_JMP | BPF_JSGT | BPF_K] = &&JMP_JSGT_K,
267                 [BPF_JMP | BPF_JSGE | BPF_X] = &&JMP_JSGE_X,
268                 [BPF_JMP | BPF_JSGE | BPF_K] = &&JMP_JSGE_K,
269                 [BPF_JMP | BPF_JSET | BPF_X] = &&JMP_JSET_X,
270                 [BPF_JMP | BPF_JSET | BPF_K] = &&JMP_JSET_K,
271                 /* Program return */
272                 [BPF_JMP | BPF_EXIT] = &&JMP_EXIT,
273                 /* Store instructions */
274                 [BPF_STX | BPF_MEM | BPF_B] = &&STX_MEM_B,
275                 [BPF_STX | BPF_MEM | BPF_H] = &&STX_MEM_H,
276                 [BPF_STX | BPF_MEM | BPF_W] = &&STX_MEM_W,
277                 [BPF_STX | BPF_MEM | BPF_DW] = &&STX_MEM_DW,
278                 [BPF_STX | BPF_XADD | BPF_W] = &&STX_XADD_W,
279                 [BPF_STX | BPF_XADD | BPF_DW] = &&STX_XADD_DW,
280                 [BPF_ST | BPF_MEM | BPF_B] = &&ST_MEM_B,
281                 [BPF_ST | BPF_MEM | BPF_H] = &&ST_MEM_H,
282                 [BPF_ST | BPF_MEM | BPF_W] = &&ST_MEM_W,
283                 [BPF_ST | BPF_MEM | BPF_DW] = &&ST_MEM_DW,
284                 /* Load instructions */
285                 [BPF_LDX | BPF_MEM | BPF_B] = &&LDX_MEM_B,
286                 [BPF_LDX | BPF_MEM | BPF_H] = &&LDX_MEM_H,
287                 [BPF_LDX | BPF_MEM | BPF_W] = &&LDX_MEM_W,
288                 [BPF_LDX | BPF_MEM | BPF_DW] = &&LDX_MEM_DW,
289                 [BPF_LD | BPF_ABS | BPF_W] = &&LD_ABS_W,
290                 [BPF_LD | BPF_ABS | BPF_H] = &&LD_ABS_H,
291                 [BPF_LD | BPF_ABS | BPF_B] = &&LD_ABS_B,
292                 [BPF_LD | BPF_IND | BPF_W] = &&LD_IND_W,
293                 [BPF_LD | BPF_IND | BPF_H] = &&LD_IND_H,
294                 [BPF_LD | BPF_IND | BPF_B] = &&LD_IND_B,
295                 [BPF_LD | BPF_IMM | BPF_DW] = &&LD_IMM_DW,
296         };
297         u32 tail_call_cnt = 0;
298         void *ptr;
299         int off;
300
301 #define CONT     ({ insn++; goto select_insn; })
302 #define CONT_JMP ({ insn++; goto select_insn; })
303
304         FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)];
305         ARG1 = (u64) (unsigned long) ctx;
306
307         /* Registers used in classic BPF programs need to be reset first. */
308         regs[BPF_REG_A] = 0;
309         regs[BPF_REG_X] = 0;
310
311 select_insn:
312         goto *jumptable[insn->code];
313
314         /* ALU */
315 #define ALU(OPCODE, OP)                 \
316         ALU64_##OPCODE##_X:             \
317                 DST = DST OP SRC;       \
318                 CONT;                   \
319         ALU_##OPCODE##_X:               \
320                 DST = (u32) DST OP (u32) SRC;   \
321                 CONT;                   \
322         ALU64_##OPCODE##_K:             \
323                 DST = DST OP IMM;               \
324                 CONT;                   \
325         ALU_##OPCODE##_K:               \
326                 DST = (u32) DST OP (u32) IMM;   \
327                 CONT;
328
329         ALU(ADD,  +)
330         ALU(SUB,  -)
331         ALU(AND,  &)
332         ALU(OR,   |)
333         ALU(LSH, <<)
334         ALU(RSH, >>)
335         ALU(XOR,  ^)
336         ALU(MUL,  *)
337 #undef ALU
338         ALU_NEG:
339                 DST = (u32) -DST;
340                 CONT;
341         ALU64_NEG:
342                 DST = -DST;
343                 CONT;
344         ALU_MOV_X:
345                 DST = (u32) SRC;
346                 CONT;
347         ALU_MOV_K:
348                 DST = (u32) IMM;
349                 CONT;
350         ALU64_MOV_X:
351                 DST = SRC;
352                 CONT;
353         ALU64_MOV_K:
354                 DST = IMM;
355                 CONT;
356         LD_IMM_DW:
357                 DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
358                 insn++;
359                 CONT;
360         ALU64_ARSH_X:
361                 (*(s64 *) &DST) >>= SRC;
362                 CONT;
363         ALU64_ARSH_K:
364                 (*(s64 *) &DST) >>= IMM;
365                 CONT;
366         ALU64_MOD_X:
367                 if (unlikely(SRC == 0))
368                         return 0;
369                 div64_u64_rem(DST, SRC, &tmp);
370                 DST = tmp;
371                 CONT;
372         ALU_MOD_X:
373                 if (unlikely(SRC == 0))
374                         return 0;
375                 tmp = (u32) DST;
376                 DST = do_div(tmp, (u32) SRC);
377                 CONT;
378         ALU64_MOD_K:
379                 div64_u64_rem(DST, IMM, &tmp);
380                 DST = tmp;
381                 CONT;
382         ALU_MOD_K:
383                 tmp = (u32) DST;
384                 DST = do_div(tmp, (u32) IMM);
385                 CONT;
386         ALU64_DIV_X:
387                 if (unlikely(SRC == 0))
388                         return 0;
389                 DST = div64_u64(DST, SRC);
390                 CONT;
391         ALU_DIV_X:
392                 if (unlikely(SRC == 0))
393                         return 0;
394                 tmp = (u32) DST;
395                 do_div(tmp, (u32) SRC);
396                 DST = (u32) tmp;
397                 CONT;
398         ALU64_DIV_K:
399                 DST = div64_u64(DST, IMM);
400                 CONT;
401         ALU_DIV_K:
402                 tmp = (u32) DST;
403                 do_div(tmp, (u32) IMM);
404                 DST = (u32) tmp;
405                 CONT;
406         ALU_END_TO_BE:
407                 switch (IMM) {
408                 case 16:
409                         DST = (__force u16) cpu_to_be16(DST);
410                         break;
411                 case 32:
412                         DST = (__force u32) cpu_to_be32(DST);
413                         break;
414                 case 64:
415                         DST = (__force u64) cpu_to_be64(DST);
416                         break;
417                 }
418                 CONT;
419         ALU_END_TO_LE:
420                 switch (IMM) {
421                 case 16:
422                         DST = (__force u16) cpu_to_le16(DST);
423                         break;
424                 case 32:
425                         DST = (__force u32) cpu_to_le32(DST);
426                         break;
427                 case 64:
428                         DST = (__force u64) cpu_to_le64(DST);
429                         break;
430                 }
431                 CONT;
432
433         /* CALL */
434         JMP_CALL:
435                 /* Function call scratches BPF_R1-BPF_R5 registers,
436                  * preserves BPF_R6-BPF_R9, and stores return value
437                  * into BPF_R0.
438                  */
439                 BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
440                                                        BPF_R4, BPF_R5);
441                 CONT;
442
443         JMP_TAIL_CALL: {
444                 struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
445                 struct bpf_array *array = container_of(map, struct bpf_array, map);
446                 struct bpf_prog *prog;
447                 u64 index = BPF_R3;
448
449                 if (unlikely(index >= array->map.max_entries))
450                         goto out;
451
452                 if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
453                         goto out;
454
455                 tail_call_cnt++;
456
457                 prog = READ_ONCE(array->ptrs[index]);
458                 if (unlikely(!prog))
459                         goto out;
460
461                 /* ARG1 at this point is guaranteed to point to CTX from
462                  * the verifier side due to the fact that the tail call is
463                  * handeled like a helper, that is, bpf_tail_call_proto,
464                  * where arg1_type is ARG_PTR_TO_CTX.
465                  */
466                 insn = prog->insnsi;
467                 goto select_insn;
468 out:
469                 CONT;
470         }
471         /* JMP */
472         JMP_JA:
473                 insn += insn->off;
474                 CONT;
475         JMP_JEQ_X:
476                 if (DST == SRC) {
477                         insn += insn->off;
478                         CONT_JMP;
479                 }
480                 CONT;
481         JMP_JEQ_K:
482                 if (DST == IMM) {
483                         insn += insn->off;
484                         CONT_JMP;
485                 }
486                 CONT;
487         JMP_JNE_X:
488                 if (DST != SRC) {
489                         insn += insn->off;
490                         CONT_JMP;
491                 }
492                 CONT;
493         JMP_JNE_K:
494                 if (DST != IMM) {
495                         insn += insn->off;
496                         CONT_JMP;
497                 }
498                 CONT;
499         JMP_JGT_X:
500                 if (DST > SRC) {
501                         insn += insn->off;
502                         CONT_JMP;
503                 }
504                 CONT;
505         JMP_JGT_K:
506                 if (DST > IMM) {
507                         insn += insn->off;
508                         CONT_JMP;
509                 }
510                 CONT;
511         JMP_JGE_X:
512                 if (DST >= SRC) {
513                         insn += insn->off;
514                         CONT_JMP;
515                 }
516                 CONT;
517         JMP_JGE_K:
518                 if (DST >= IMM) {
519                         insn += insn->off;
520                         CONT_JMP;
521                 }
522                 CONT;
523         JMP_JSGT_X:
524                 if (((s64) DST) > ((s64) SRC)) {
525                         insn += insn->off;
526                         CONT_JMP;
527                 }
528                 CONT;
529         JMP_JSGT_K:
530                 if (((s64) DST) > ((s64) IMM)) {
531                         insn += insn->off;
532                         CONT_JMP;
533                 }
534                 CONT;
535         JMP_JSGE_X:
536                 if (((s64) DST) >= ((s64) SRC)) {
537                         insn += insn->off;
538                         CONT_JMP;
539                 }
540                 CONT;
541         JMP_JSGE_K:
542                 if (((s64) DST) >= ((s64) IMM)) {
543                         insn += insn->off;
544                         CONT_JMP;
545                 }
546                 CONT;
547         JMP_JSET_X:
548                 if (DST & SRC) {
549                         insn += insn->off;
550                         CONT_JMP;
551                 }
552                 CONT;
553         JMP_JSET_K:
554                 if (DST & IMM) {
555                         insn += insn->off;
556                         CONT_JMP;
557                 }
558                 CONT;
559         JMP_EXIT:
560                 return BPF_R0;
561
562         /* STX and ST and LDX*/
563 #define LDST(SIZEOP, SIZE)                                              \
564         STX_MEM_##SIZEOP:                                               \
565                 *(SIZE *)(unsigned long) (DST + insn->off) = SRC;       \
566                 CONT;                                                   \
567         ST_MEM_##SIZEOP:                                                \
568                 *(SIZE *)(unsigned long) (DST + insn->off) = IMM;       \
569                 CONT;                                                   \
570         LDX_MEM_##SIZEOP:                                               \
571                 DST = *(SIZE *)(unsigned long) (SRC + insn->off);       \
572                 CONT;
573
574         LDST(B,   u8)
575         LDST(H,  u16)
576         LDST(W,  u32)
577         LDST(DW, u64)
578 #undef LDST
579         STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
580                 atomic_add((u32) SRC, (atomic_t *)(unsigned long)
581                            (DST + insn->off));
582                 CONT;
583         STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
584                 atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
585                              (DST + insn->off));
586                 CONT;
587         LD_ABS_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + imm32)) */
588                 off = IMM;
589 load_word:
590                 /* BPF_LD + BPD_ABS and BPF_LD + BPF_IND insns are
591                  * only appearing in the programs where ctx ==
592                  * skb. All programs keep 'ctx' in regs[BPF_REG_CTX]
593                  * == BPF_R6, bpf_convert_filter() saves it in BPF_R6,
594                  * internal BPF verifier will check that BPF_R6 ==
595                  * ctx.
596                  *
597                  * BPF_ABS and BPF_IND are wrappers of function calls,
598                  * so they scratch BPF_R1-BPF_R5 registers, preserve
599                  * BPF_R6-BPF_R9, and store return value into BPF_R0.
600                  *
601                  * Implicit input:
602                  *   ctx == skb == BPF_R6 == CTX
603                  *
604                  * Explicit input:
605                  *   SRC == any register
606                  *   IMM == 32-bit immediate
607                  *
608                  * Output:
609                  *   BPF_R0 - 8/16/32-bit skb data converted to cpu endianness
610                  */
611
612                 ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 4, &tmp);
613                 if (likely(ptr != NULL)) {
614                         BPF_R0 = get_unaligned_be32(ptr);
615                         CONT;
616                 }
617
618                 return 0;
619         LD_ABS_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + imm32)) */
620                 off = IMM;
621 load_half:
622                 ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 2, &tmp);
623                 if (likely(ptr != NULL)) {
624                         BPF_R0 = get_unaligned_be16(ptr);
625                         CONT;
626                 }
627
628                 return 0;
629         LD_ABS_B: /* BPF_R0 = *(u8 *) (skb->data + imm32) */
630                 off = IMM;
631 load_byte:
632                 ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 1, &tmp);
633                 if (likely(ptr != NULL)) {
634                         BPF_R0 = *(u8 *)ptr;
635                         CONT;
636                 }
637
638                 return 0;
639         LD_IND_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + src_reg + imm32)) */
640                 off = IMM + SRC;
641                 goto load_word;
642         LD_IND_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + src_reg + imm32)) */
643                 off = IMM + SRC;
644                 goto load_half;
645         LD_IND_B: /* BPF_R0 = *(u8 *) (skb->data + src_reg + imm32) */
646                 off = IMM + SRC;
647                 goto load_byte;
648
649         default_label:
650                 /* If we ever reach this, we have a bug somewhere. */
651                 WARN_RATELIMIT(1, "unknown opcode %02x\n", insn->code);
652                 return 0;
653 }
654
655 bool bpf_prog_array_compatible(struct bpf_array *array,
656                                const struct bpf_prog *fp)
657 {
658         if (!array->owner_prog_type) {
659                 /* There's no owner yet where we could check for
660                  * compatibility.
661                  */
662                 array->owner_prog_type = fp->type;
663                 array->owner_jited = fp->jited;
664
665                 return true;
666         }
667
668         return array->owner_prog_type == fp->type &&
669                array->owner_jited == fp->jited;
670 }
671
672 static int bpf_check_tail_call(const struct bpf_prog *fp)
673 {
674         struct bpf_prog_aux *aux = fp->aux;
675         int i;
676
677         for (i = 0; i < aux->used_map_cnt; i++) {
678                 struct bpf_map *map = aux->used_maps[i];
679                 struct bpf_array *array;
680
681                 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
682                         continue;
683
684                 array = container_of(map, struct bpf_array, map);
685                 if (!bpf_prog_array_compatible(array, fp))
686                         return -EINVAL;
687         }
688
689         return 0;
690 }
691
692 /**
693  *      bpf_prog_select_runtime - select exec runtime for BPF program
694  *      @fp: bpf_prog populated with internal BPF program
695  *
696  * Try to JIT eBPF program, if JIT is not available, use interpreter.
697  * The BPF program will be executed via BPF_PROG_RUN() macro.
698  */
699 int bpf_prog_select_runtime(struct bpf_prog *fp)
700 {
701         fp->bpf_func = (void *) __bpf_prog_run;
702
703         bpf_int_jit_compile(fp);
704         bpf_prog_lock_ro(fp);
705
706         /* The tail call compatibility check can only be done at
707          * this late stage as we need to determine, if we deal
708          * with JITed or non JITed program concatenations and not
709          * all eBPF JITs might immediately support all features.
710          */
711         return bpf_check_tail_call(fp);
712 }
713 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
714
715 static void bpf_prog_free_deferred(struct work_struct *work)
716 {
717         struct bpf_prog_aux *aux;
718
719         aux = container_of(work, struct bpf_prog_aux, work);
720         bpf_jit_free(aux->prog);
721 }
722
723 /* Free internal BPF program */
724 void bpf_prog_free(struct bpf_prog *fp)
725 {
726         struct bpf_prog_aux *aux = fp->aux;
727
728         INIT_WORK(&aux->work, bpf_prog_free_deferred);
729         aux->prog = fp;
730         schedule_work(&aux->work);
731 }
732 EXPORT_SYMBOL_GPL(bpf_prog_free);
733
734 /* RNG for unpriviledged user space with separated state from prandom_u32(). */
735 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
736
737 void bpf_user_rnd_init_once(void)
738 {
739         prandom_init_once(&bpf_user_rnd_state);
740 }
741
742 u64 bpf_user_rnd_u32(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
743 {
744         /* Should someone ever have the rather unwise idea to use some
745          * of the registers passed into this function, then note that
746          * this function is called from native eBPF and classic-to-eBPF
747          * transformations. Register assignments from both sides are
748          * different, f.e. classic always sets fn(ctx, A, X) here.
749          */
750         struct rnd_state *state;
751         u32 res;
752
753         state = &get_cpu_var(bpf_user_rnd_state);
754         res = prandom_u32_state(state);
755         put_cpu_var(state);
756
757         return res;
758 }
759
760 /* Weak definitions of helper functions in case we don't have bpf syscall. */
761 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
762 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
763 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
764
765 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
766 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
767 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
768 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
769 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
770 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
771 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
772 {
773         return NULL;
774 }
775
776 /* Always built-in helper functions. */
777 const struct bpf_func_proto bpf_tail_call_proto = {
778         .func           = NULL,
779         .gpl_only       = false,
780         .ret_type       = RET_VOID,
781         .arg1_type      = ARG_PTR_TO_CTX,
782         .arg2_type      = ARG_CONST_MAP_PTR,
783         .arg3_type      = ARG_ANYTHING,
784 };
785
786 /* For classic BPF JITs that don't implement bpf_int_jit_compile(). */
787 void __weak bpf_int_jit_compile(struct bpf_prog *prog)
788 {
789 }
790
791 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
792  * skb_copy_bits(), so provide a weak definition of it for NET-less config.
793  */
794 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
795                          int len)
796 {
797         return -EFAULT;
798 }