Merge branch 'for-4.6-ns' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
[cascardo/linux.git] / kernel / cpu.c
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched.h>
11 #include <linux/unistd.h>
12 #include <linux/cpu.h>
13 #include <linux/oom.h>
14 #include <linux/rcupdate.h>
15 #include <linux/export.h>
16 #include <linux/bug.h>
17 #include <linux/kthread.h>
18 #include <linux/stop_machine.h>
19 #include <linux/mutex.h>
20 #include <linux/gfp.h>
21 #include <linux/suspend.h>
22 #include <linux/lockdep.h>
23 #include <linux/tick.h>
24 #include <linux/irq.h>
25 #include <linux/smpboot.h>
26
27 #include <trace/events/power.h>
28 #define CREATE_TRACE_POINTS
29 #include <trace/events/cpuhp.h>
30
31 #include "smpboot.h"
32
33 /**
34  * cpuhp_cpu_state - Per cpu hotplug state storage
35  * @state:      The current cpu state
36  * @target:     The target state
37  * @thread:     Pointer to the hotplug thread
38  * @should_run: Thread should execute
39  * @cb_stat:    The state for a single callback (install/uninstall)
40  * @cb:         Single callback function (install/uninstall)
41  * @result:     Result of the operation
42  * @done:       Signal completion to the issuer of the task
43  */
44 struct cpuhp_cpu_state {
45         enum cpuhp_state        state;
46         enum cpuhp_state        target;
47 #ifdef CONFIG_SMP
48         struct task_struct      *thread;
49         bool                    should_run;
50         enum cpuhp_state        cb_state;
51         int                     (*cb)(unsigned int cpu);
52         int                     result;
53         struct completion       done;
54 #endif
55 };
56
57 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state);
58
59 /**
60  * cpuhp_step - Hotplug state machine step
61  * @name:       Name of the step
62  * @startup:    Startup function of the step
63  * @teardown:   Teardown function of the step
64  * @skip_onerr: Do not invoke the functions on error rollback
65  *              Will go away once the notifiers are gone
66  * @cant_stop:  Bringup/teardown can't be stopped at this step
67  */
68 struct cpuhp_step {
69         const char      *name;
70         int             (*startup)(unsigned int cpu);
71         int             (*teardown)(unsigned int cpu);
72         bool            skip_onerr;
73         bool            cant_stop;
74 };
75
76 static DEFINE_MUTEX(cpuhp_state_mutex);
77 static struct cpuhp_step cpuhp_bp_states[];
78 static struct cpuhp_step cpuhp_ap_states[];
79
80 /**
81  * cpuhp_invoke_callback _ Invoke the callbacks for a given state
82  * @cpu:        The cpu for which the callback should be invoked
83  * @step:       The step in the state machine
84  * @cb:         The callback function to invoke
85  *
86  * Called from cpu hotplug and from the state register machinery
87  */
88 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state step,
89                                  int (*cb)(unsigned int))
90 {
91         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
92         int ret = 0;
93
94         if (cb) {
95                 trace_cpuhp_enter(cpu, st->target, step, cb);
96                 ret = cb(cpu);
97                 trace_cpuhp_exit(cpu, st->state, step, ret);
98         }
99         return ret;
100 }
101
102 #ifdef CONFIG_SMP
103 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
104 static DEFINE_MUTEX(cpu_add_remove_lock);
105 bool cpuhp_tasks_frozen;
106 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
107
108 /*
109  * The following two APIs (cpu_maps_update_begin/done) must be used when
110  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
111  * The APIs cpu_notifier_register_begin/done() must be used to protect CPU
112  * hotplug callback (un)registration performed using __register_cpu_notifier()
113  * or __unregister_cpu_notifier().
114  */
115 void cpu_maps_update_begin(void)
116 {
117         mutex_lock(&cpu_add_remove_lock);
118 }
119 EXPORT_SYMBOL(cpu_notifier_register_begin);
120
121 void cpu_maps_update_done(void)
122 {
123         mutex_unlock(&cpu_add_remove_lock);
124 }
125 EXPORT_SYMBOL(cpu_notifier_register_done);
126
127 static RAW_NOTIFIER_HEAD(cpu_chain);
128
129 /* If set, cpu_up and cpu_down will return -EBUSY and do nothing.
130  * Should always be manipulated under cpu_add_remove_lock
131  */
132 static int cpu_hotplug_disabled;
133
134 #ifdef CONFIG_HOTPLUG_CPU
135
136 static struct {
137         struct task_struct *active_writer;
138         /* wait queue to wake up the active_writer */
139         wait_queue_head_t wq;
140         /* verifies that no writer will get active while readers are active */
141         struct mutex lock;
142         /*
143          * Also blocks the new readers during
144          * an ongoing cpu hotplug operation.
145          */
146         atomic_t refcount;
147
148 #ifdef CONFIG_DEBUG_LOCK_ALLOC
149         struct lockdep_map dep_map;
150 #endif
151 } cpu_hotplug = {
152         .active_writer = NULL,
153         .wq = __WAIT_QUEUE_HEAD_INITIALIZER(cpu_hotplug.wq),
154         .lock = __MUTEX_INITIALIZER(cpu_hotplug.lock),
155 #ifdef CONFIG_DEBUG_LOCK_ALLOC
156         .dep_map = {.name = "cpu_hotplug.lock" },
157 #endif
158 };
159
160 /* Lockdep annotations for get/put_online_cpus() and cpu_hotplug_begin/end() */
161 #define cpuhp_lock_acquire_read() lock_map_acquire_read(&cpu_hotplug.dep_map)
162 #define cpuhp_lock_acquire_tryread() \
163                                   lock_map_acquire_tryread(&cpu_hotplug.dep_map)
164 #define cpuhp_lock_acquire()      lock_map_acquire(&cpu_hotplug.dep_map)
165 #define cpuhp_lock_release()      lock_map_release(&cpu_hotplug.dep_map)
166
167
168 void get_online_cpus(void)
169 {
170         might_sleep();
171         if (cpu_hotplug.active_writer == current)
172                 return;
173         cpuhp_lock_acquire_read();
174         mutex_lock(&cpu_hotplug.lock);
175         atomic_inc(&cpu_hotplug.refcount);
176         mutex_unlock(&cpu_hotplug.lock);
177 }
178 EXPORT_SYMBOL_GPL(get_online_cpus);
179
180 void put_online_cpus(void)
181 {
182         int refcount;
183
184         if (cpu_hotplug.active_writer == current)
185                 return;
186
187         refcount = atomic_dec_return(&cpu_hotplug.refcount);
188         if (WARN_ON(refcount < 0)) /* try to fix things up */
189                 atomic_inc(&cpu_hotplug.refcount);
190
191         if (refcount <= 0 && waitqueue_active(&cpu_hotplug.wq))
192                 wake_up(&cpu_hotplug.wq);
193
194         cpuhp_lock_release();
195
196 }
197 EXPORT_SYMBOL_GPL(put_online_cpus);
198
199 /*
200  * This ensures that the hotplug operation can begin only when the
201  * refcount goes to zero.
202  *
203  * Note that during a cpu-hotplug operation, the new readers, if any,
204  * will be blocked by the cpu_hotplug.lock
205  *
206  * Since cpu_hotplug_begin() is always called after invoking
207  * cpu_maps_update_begin(), we can be sure that only one writer is active.
208  *
209  * Note that theoretically, there is a possibility of a livelock:
210  * - Refcount goes to zero, last reader wakes up the sleeping
211  *   writer.
212  * - Last reader unlocks the cpu_hotplug.lock.
213  * - A new reader arrives at this moment, bumps up the refcount.
214  * - The writer acquires the cpu_hotplug.lock finds the refcount
215  *   non zero and goes to sleep again.
216  *
217  * However, this is very difficult to achieve in practice since
218  * get_online_cpus() not an api which is called all that often.
219  *
220  */
221 void cpu_hotplug_begin(void)
222 {
223         DEFINE_WAIT(wait);
224
225         cpu_hotplug.active_writer = current;
226         cpuhp_lock_acquire();
227
228         for (;;) {
229                 mutex_lock(&cpu_hotplug.lock);
230                 prepare_to_wait(&cpu_hotplug.wq, &wait, TASK_UNINTERRUPTIBLE);
231                 if (likely(!atomic_read(&cpu_hotplug.refcount)))
232                                 break;
233                 mutex_unlock(&cpu_hotplug.lock);
234                 schedule();
235         }
236         finish_wait(&cpu_hotplug.wq, &wait);
237 }
238
239 void cpu_hotplug_done(void)
240 {
241         cpu_hotplug.active_writer = NULL;
242         mutex_unlock(&cpu_hotplug.lock);
243         cpuhp_lock_release();
244 }
245
246 /*
247  * Wait for currently running CPU hotplug operations to complete (if any) and
248  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
249  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
250  * hotplug path before performing hotplug operations. So acquiring that lock
251  * guarantees mutual exclusion from any currently running hotplug operations.
252  */
253 void cpu_hotplug_disable(void)
254 {
255         cpu_maps_update_begin();
256         cpu_hotplug_disabled++;
257         cpu_maps_update_done();
258 }
259 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
260
261 void cpu_hotplug_enable(void)
262 {
263         cpu_maps_update_begin();
264         WARN_ON(--cpu_hotplug_disabled < 0);
265         cpu_maps_update_done();
266 }
267 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
268 #endif  /* CONFIG_HOTPLUG_CPU */
269
270 /* Need to know about CPUs going up/down? */
271 int register_cpu_notifier(struct notifier_block *nb)
272 {
273         int ret;
274         cpu_maps_update_begin();
275         ret = raw_notifier_chain_register(&cpu_chain, nb);
276         cpu_maps_update_done();
277         return ret;
278 }
279
280 int __register_cpu_notifier(struct notifier_block *nb)
281 {
282         return raw_notifier_chain_register(&cpu_chain, nb);
283 }
284
285 static int __cpu_notify(unsigned long val, unsigned int cpu, int nr_to_call,
286                         int *nr_calls)
287 {
288         unsigned long mod = cpuhp_tasks_frozen ? CPU_TASKS_FROZEN : 0;
289         void *hcpu = (void *)(long)cpu;
290
291         int ret;
292
293         ret = __raw_notifier_call_chain(&cpu_chain, val | mod, hcpu, nr_to_call,
294                                         nr_calls);
295
296         return notifier_to_errno(ret);
297 }
298
299 static int cpu_notify(unsigned long val, unsigned int cpu)
300 {
301         return __cpu_notify(val, cpu, -1, NULL);
302 }
303
304 /* Notifier wrappers for transitioning to state machine */
305 static int notify_prepare(unsigned int cpu)
306 {
307         int nr_calls = 0;
308         int ret;
309
310         ret = __cpu_notify(CPU_UP_PREPARE, cpu, -1, &nr_calls);
311         if (ret) {
312                 nr_calls--;
313                 printk(KERN_WARNING "%s: attempt to bring up CPU %u failed\n",
314                                 __func__, cpu);
315                 __cpu_notify(CPU_UP_CANCELED, cpu, nr_calls, NULL);
316         }
317         return ret;
318 }
319
320 static int notify_online(unsigned int cpu)
321 {
322         cpu_notify(CPU_ONLINE, cpu);
323         return 0;
324 }
325
326 static int notify_starting(unsigned int cpu)
327 {
328         cpu_notify(CPU_STARTING, cpu);
329         return 0;
330 }
331
332 static int bringup_wait_for_ap(unsigned int cpu)
333 {
334         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
335
336         wait_for_completion(&st->done);
337         return st->result;
338 }
339
340 static int bringup_cpu(unsigned int cpu)
341 {
342         struct task_struct *idle = idle_thread_get(cpu);
343         int ret;
344
345         /* Arch-specific enabling code. */
346         ret = __cpu_up(cpu, idle);
347         if (ret) {
348                 cpu_notify(CPU_UP_CANCELED, cpu);
349                 return ret;
350         }
351         ret = bringup_wait_for_ap(cpu);
352         BUG_ON(!cpu_online(cpu));
353         return ret;
354 }
355
356 /*
357  * Hotplug state machine related functions
358  */
359 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st,
360                           struct cpuhp_step *steps)
361 {
362         for (st->state++; st->state < st->target; st->state++) {
363                 struct cpuhp_step *step = steps + st->state;
364
365                 if (!step->skip_onerr)
366                         cpuhp_invoke_callback(cpu, st->state, step->startup);
367         }
368 }
369
370 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
371                                 struct cpuhp_step *steps, enum cpuhp_state target)
372 {
373         enum cpuhp_state prev_state = st->state;
374         int ret = 0;
375
376         for (; st->state > target; st->state--) {
377                 struct cpuhp_step *step = steps + st->state;
378
379                 ret = cpuhp_invoke_callback(cpu, st->state, step->teardown);
380                 if (ret) {
381                         st->target = prev_state;
382                         undo_cpu_down(cpu, st, steps);
383                         break;
384                 }
385         }
386         return ret;
387 }
388
389 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st,
390                         struct cpuhp_step *steps)
391 {
392         for (st->state--; st->state > st->target; st->state--) {
393                 struct cpuhp_step *step = steps + st->state;
394
395                 if (!step->skip_onerr)
396                         cpuhp_invoke_callback(cpu, st->state, step->teardown);
397         }
398 }
399
400 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
401                               struct cpuhp_step *steps, enum cpuhp_state target)
402 {
403         enum cpuhp_state prev_state = st->state;
404         int ret = 0;
405
406         while (st->state < target) {
407                 struct cpuhp_step *step;
408
409                 st->state++;
410                 step = steps + st->state;
411                 ret = cpuhp_invoke_callback(cpu, st->state, step->startup);
412                 if (ret) {
413                         st->target = prev_state;
414                         undo_cpu_up(cpu, st, steps);
415                         break;
416                 }
417         }
418         return ret;
419 }
420
421 /*
422  * The cpu hotplug threads manage the bringup and teardown of the cpus
423  */
424 static void cpuhp_create(unsigned int cpu)
425 {
426         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
427
428         init_completion(&st->done);
429 }
430
431 static int cpuhp_should_run(unsigned int cpu)
432 {
433         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
434
435         return st->should_run;
436 }
437
438 /* Execute the teardown callbacks. Used to be CPU_DOWN_PREPARE */
439 static int cpuhp_ap_offline(unsigned int cpu, struct cpuhp_cpu_state *st)
440 {
441         enum cpuhp_state target = max((int)st->target, CPUHP_TEARDOWN_CPU);
442
443         return cpuhp_down_callbacks(cpu, st, cpuhp_ap_states, target);
444 }
445
446 /* Execute the online startup callbacks. Used to be CPU_ONLINE */
447 static int cpuhp_ap_online(unsigned int cpu, struct cpuhp_cpu_state *st)
448 {
449         return cpuhp_up_callbacks(cpu, st, cpuhp_ap_states, st->target);
450 }
451
452 /*
453  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
454  * callbacks when a state gets [un]installed at runtime.
455  */
456 static void cpuhp_thread_fun(unsigned int cpu)
457 {
458         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
459         int ret = 0;
460
461         /*
462          * Paired with the mb() in cpuhp_kick_ap_work and
463          * cpuhp_invoke_ap_callback, so the work set is consistent visible.
464          */
465         smp_mb();
466         if (!st->should_run)
467                 return;
468
469         st->should_run = false;
470
471         /* Single callback invocation for [un]install ? */
472         if (st->cb) {
473                 if (st->cb_state < CPUHP_AP_ONLINE) {
474                         local_irq_disable();
475                         ret = cpuhp_invoke_callback(cpu, st->cb_state, st->cb);
476                         local_irq_enable();
477                 } else {
478                         ret = cpuhp_invoke_callback(cpu, st->cb_state, st->cb);
479                 }
480         } else {
481                 /* Cannot happen .... */
482                 BUG_ON(st->state < CPUHP_AP_ONLINE_IDLE);
483
484                 /* Regular hotplug work */
485                 if (st->state < st->target)
486                         ret = cpuhp_ap_online(cpu, st);
487                 else if (st->state > st->target)
488                         ret = cpuhp_ap_offline(cpu, st);
489         }
490         st->result = ret;
491         complete(&st->done);
492 }
493
494 /* Invoke a single callback on a remote cpu */
495 static int cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state,
496                                     int (*cb)(unsigned int))
497 {
498         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
499
500         if (!cpu_online(cpu))
501                 return 0;
502
503         st->cb_state = state;
504         st->cb = cb;
505         /*
506          * Make sure the above stores are visible before should_run becomes
507          * true. Paired with the mb() above in cpuhp_thread_fun()
508          */
509         smp_mb();
510         st->should_run = true;
511         wake_up_process(st->thread);
512         wait_for_completion(&st->done);
513         return st->result;
514 }
515
516 /* Regular hotplug invocation of the AP hotplug thread */
517 static void __cpuhp_kick_ap_work(struct cpuhp_cpu_state *st)
518 {
519         st->result = 0;
520         st->cb = NULL;
521         /*
522          * Make sure the above stores are visible before should_run becomes
523          * true. Paired with the mb() above in cpuhp_thread_fun()
524          */
525         smp_mb();
526         st->should_run = true;
527         wake_up_process(st->thread);
528 }
529
530 static int cpuhp_kick_ap_work(unsigned int cpu)
531 {
532         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
533         enum cpuhp_state state = st->state;
534
535         trace_cpuhp_enter(cpu, st->target, state, cpuhp_kick_ap_work);
536         __cpuhp_kick_ap_work(st);
537         wait_for_completion(&st->done);
538         trace_cpuhp_exit(cpu, st->state, state, st->result);
539         return st->result;
540 }
541
542 static struct smp_hotplug_thread cpuhp_threads = {
543         .store                  = &cpuhp_state.thread,
544         .create                 = &cpuhp_create,
545         .thread_should_run      = cpuhp_should_run,
546         .thread_fn              = cpuhp_thread_fun,
547         .thread_comm            = "cpuhp/%u",
548         .selfparking            = true,
549 };
550
551 void __init cpuhp_threads_init(void)
552 {
553         BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
554         kthread_unpark(this_cpu_read(cpuhp_state.thread));
555 }
556
557 #ifdef CONFIG_HOTPLUG_CPU
558 EXPORT_SYMBOL(register_cpu_notifier);
559 EXPORT_SYMBOL(__register_cpu_notifier);
560 void unregister_cpu_notifier(struct notifier_block *nb)
561 {
562         cpu_maps_update_begin();
563         raw_notifier_chain_unregister(&cpu_chain, nb);
564         cpu_maps_update_done();
565 }
566 EXPORT_SYMBOL(unregister_cpu_notifier);
567
568 void __unregister_cpu_notifier(struct notifier_block *nb)
569 {
570         raw_notifier_chain_unregister(&cpu_chain, nb);
571 }
572 EXPORT_SYMBOL(__unregister_cpu_notifier);
573
574 /**
575  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
576  * @cpu: a CPU id
577  *
578  * This function walks all processes, finds a valid mm struct for each one and
579  * then clears a corresponding bit in mm's cpumask.  While this all sounds
580  * trivial, there are various non-obvious corner cases, which this function
581  * tries to solve in a safe manner.
582  *
583  * Also note that the function uses a somewhat relaxed locking scheme, so it may
584  * be called only for an already offlined CPU.
585  */
586 void clear_tasks_mm_cpumask(int cpu)
587 {
588         struct task_struct *p;
589
590         /*
591          * This function is called after the cpu is taken down and marked
592          * offline, so its not like new tasks will ever get this cpu set in
593          * their mm mask. -- Peter Zijlstra
594          * Thus, we may use rcu_read_lock() here, instead of grabbing
595          * full-fledged tasklist_lock.
596          */
597         WARN_ON(cpu_online(cpu));
598         rcu_read_lock();
599         for_each_process(p) {
600                 struct task_struct *t;
601
602                 /*
603                  * Main thread might exit, but other threads may still have
604                  * a valid mm. Find one.
605                  */
606                 t = find_lock_task_mm(p);
607                 if (!t)
608                         continue;
609                 cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
610                 task_unlock(t);
611         }
612         rcu_read_unlock();
613 }
614
615 static inline void check_for_tasks(int dead_cpu)
616 {
617         struct task_struct *g, *p;
618
619         read_lock(&tasklist_lock);
620         for_each_process_thread(g, p) {
621                 if (!p->on_rq)
622                         continue;
623                 /*
624                  * We do the check with unlocked task_rq(p)->lock.
625                  * Order the reading to do not warn about a task,
626                  * which was running on this cpu in the past, and
627                  * it's just been woken on another cpu.
628                  */
629                 rmb();
630                 if (task_cpu(p) != dead_cpu)
631                         continue;
632
633                 pr_warn("Task %s (pid=%d) is on cpu %d (state=%ld, flags=%x)\n",
634                         p->comm, task_pid_nr(p), dead_cpu, p->state, p->flags);
635         }
636         read_unlock(&tasklist_lock);
637 }
638
639 static void cpu_notify_nofail(unsigned long val, unsigned int cpu)
640 {
641         BUG_ON(cpu_notify(val, cpu));
642 }
643
644 static int notify_down_prepare(unsigned int cpu)
645 {
646         int err, nr_calls = 0;
647
648         err = __cpu_notify(CPU_DOWN_PREPARE, cpu, -1, &nr_calls);
649         if (err) {
650                 nr_calls--;
651                 __cpu_notify(CPU_DOWN_FAILED, cpu, nr_calls, NULL);
652                 pr_warn("%s: attempt to take down CPU %u failed\n",
653                                 __func__, cpu);
654         }
655         return err;
656 }
657
658 static int notify_dying(unsigned int cpu)
659 {
660         cpu_notify(CPU_DYING, cpu);
661         return 0;
662 }
663
664 /* Take this CPU down. */
665 static int take_cpu_down(void *_param)
666 {
667         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
668         enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
669         int err, cpu = smp_processor_id();
670
671         /* Ensure this CPU doesn't handle any more interrupts. */
672         err = __cpu_disable();
673         if (err < 0)
674                 return err;
675
676         /* Invoke the former CPU_DYING callbacks */
677         for (; st->state > target; st->state--) {
678                 struct cpuhp_step *step = cpuhp_ap_states + st->state;
679
680                 cpuhp_invoke_callback(cpu, st->state, step->teardown);
681         }
682         /* Give up timekeeping duties */
683         tick_handover_do_timer();
684         /* Park the stopper thread */
685         stop_machine_park(cpu);
686         return 0;
687 }
688
689 static int takedown_cpu(unsigned int cpu)
690 {
691         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
692         int err;
693
694         /*
695          * By now we've cleared cpu_active_mask, wait for all preempt-disabled
696          * and RCU users of this state to go away such that all new such users
697          * will observe it.
698          *
699          * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
700          * not imply sync_sched(), so wait for both.
701          *
702          * Do sync before park smpboot threads to take care the rcu boost case.
703          */
704         if (IS_ENABLED(CONFIG_PREEMPT))
705                 synchronize_rcu_mult(call_rcu, call_rcu_sched);
706         else
707                 synchronize_rcu();
708
709         /* Park the smpboot threads */
710         kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
711         smpboot_park_threads(cpu);
712
713         /*
714          * Prevent irq alloc/free while the dying cpu reorganizes the
715          * interrupt affinities.
716          */
717         irq_lock_sparse();
718
719         /*
720          * So now all preempt/rcu users must observe !cpu_active().
721          */
722         err = stop_machine(take_cpu_down, NULL, cpumask_of(cpu));
723         if (err) {
724                 /* CPU didn't die: tell everyone.  Can't complain. */
725                 cpu_notify_nofail(CPU_DOWN_FAILED, cpu);
726                 irq_unlock_sparse();
727                 return err;
728         }
729         BUG_ON(cpu_online(cpu));
730
731         /*
732          * The migration_call() CPU_DYING callback will have removed all
733          * runnable tasks from the cpu, there's only the idle task left now
734          * that the migration thread is done doing the stop_machine thing.
735          *
736          * Wait for the stop thread to go away.
737          */
738         wait_for_completion(&st->done);
739         BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
740
741         /* Interrupts are moved away from the dying cpu, reenable alloc/free */
742         irq_unlock_sparse();
743
744         hotplug_cpu__broadcast_tick_pull(cpu);
745         /* This actually kills the CPU. */
746         __cpu_die(cpu);
747
748         tick_cleanup_dead_cpu(cpu);
749         return 0;
750 }
751
752 static int notify_dead(unsigned int cpu)
753 {
754         cpu_notify_nofail(CPU_DEAD, cpu);
755         check_for_tasks(cpu);
756         return 0;
757 }
758
759 static void cpuhp_complete_idle_dead(void *arg)
760 {
761         struct cpuhp_cpu_state *st = arg;
762
763         complete(&st->done);
764 }
765
766 void cpuhp_report_idle_dead(void)
767 {
768         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
769
770         BUG_ON(st->state != CPUHP_AP_OFFLINE);
771         rcu_report_dead(smp_processor_id());
772         st->state = CPUHP_AP_IDLE_DEAD;
773         /*
774          * We cannot call complete after rcu_report_dead() so we delegate it
775          * to an online cpu.
776          */
777         smp_call_function_single(cpumask_first(cpu_online_mask),
778                                  cpuhp_complete_idle_dead, st, 0);
779 }
780
781 #else
782 #define notify_down_prepare     NULL
783 #define takedown_cpu            NULL
784 #define notify_dead             NULL
785 #define notify_dying            NULL
786 #endif
787
788 #ifdef CONFIG_HOTPLUG_CPU
789
790 /* Requires cpu_add_remove_lock to be held */
791 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
792                            enum cpuhp_state target)
793 {
794         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
795         int prev_state, ret = 0;
796         bool hasdied = false;
797
798         if (num_online_cpus() == 1)
799                 return -EBUSY;
800
801         if (!cpu_present(cpu))
802                 return -EINVAL;
803
804         cpu_hotplug_begin();
805
806         cpuhp_tasks_frozen = tasks_frozen;
807
808         prev_state = st->state;
809         st->target = target;
810         /*
811          * If the current CPU state is in the range of the AP hotplug thread,
812          * then we need to kick the thread.
813          */
814         if (st->state > CPUHP_TEARDOWN_CPU) {
815                 ret = cpuhp_kick_ap_work(cpu);
816                 /*
817                  * The AP side has done the error rollback already. Just
818                  * return the error code..
819                  */
820                 if (ret)
821                         goto out;
822
823                 /*
824                  * We might have stopped still in the range of the AP hotplug
825                  * thread. Nothing to do anymore.
826                  */
827                 if (st->state > CPUHP_TEARDOWN_CPU)
828                         goto out;
829         }
830         /*
831          * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
832          * to do the further cleanups.
833          */
834         ret = cpuhp_down_callbacks(cpu, st, cpuhp_bp_states, target);
835
836         hasdied = prev_state != st->state && st->state == CPUHP_OFFLINE;
837 out:
838         cpu_hotplug_done();
839         /* This post dead nonsense must die */
840         if (!ret && hasdied)
841                 cpu_notify_nofail(CPU_POST_DEAD, cpu);
842         return ret;
843 }
844
845 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
846 {
847         int err;
848
849         cpu_maps_update_begin();
850
851         if (cpu_hotplug_disabled) {
852                 err = -EBUSY;
853                 goto out;
854         }
855
856         err = _cpu_down(cpu, 0, target);
857
858 out:
859         cpu_maps_update_done();
860         return err;
861 }
862 int cpu_down(unsigned int cpu)
863 {
864         return do_cpu_down(cpu, CPUHP_OFFLINE);
865 }
866 EXPORT_SYMBOL(cpu_down);
867 #endif /*CONFIG_HOTPLUG_CPU*/
868
869 /**
870  * notify_cpu_starting(cpu) - call the CPU_STARTING notifiers
871  * @cpu: cpu that just started
872  *
873  * This function calls the cpu_chain notifiers with CPU_STARTING.
874  * It must be called by the arch code on the new cpu, before the new cpu
875  * enables interrupts and before the "boot" cpu returns from __cpu_up().
876  */
877 void notify_cpu_starting(unsigned int cpu)
878 {
879         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
880         enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
881
882         while (st->state < target) {
883                 struct cpuhp_step *step;
884
885                 st->state++;
886                 step = cpuhp_ap_states + st->state;
887                 cpuhp_invoke_callback(cpu, st->state, step->startup);
888         }
889 }
890
891 /*
892  * Called from the idle task. We need to set active here, so we can kick off
893  * the stopper thread and unpark the smpboot threads. If the target state is
894  * beyond CPUHP_AP_ONLINE_IDLE we kick cpuhp thread and let it bring up the
895  * cpu further.
896  */
897 void cpuhp_online_idle(enum cpuhp_state state)
898 {
899         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
900         unsigned int cpu = smp_processor_id();
901
902         /* Happens for the boot cpu */
903         if (state != CPUHP_AP_ONLINE_IDLE)
904                 return;
905
906         st->state = CPUHP_AP_ONLINE_IDLE;
907
908         /* The cpu is marked online, set it active now */
909         set_cpu_active(cpu, true);
910         /* Unpark the stopper thread and the hotplug thread of this cpu */
911         stop_machine_unpark(cpu);
912         kthread_unpark(st->thread);
913
914         /* Should we go further up ? */
915         if (st->target > CPUHP_AP_ONLINE_IDLE)
916                 __cpuhp_kick_ap_work(st);
917         else
918                 complete(&st->done);
919 }
920
921 /* Requires cpu_add_remove_lock to be held */
922 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
923 {
924         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
925         struct task_struct *idle;
926         int ret = 0;
927
928         cpu_hotplug_begin();
929
930         if (!cpu_present(cpu)) {
931                 ret = -EINVAL;
932                 goto out;
933         }
934
935         /*
936          * The caller of do_cpu_up might have raced with another
937          * caller. Ignore it for now.
938          */
939         if (st->state >= target)
940                 goto out;
941
942         if (st->state == CPUHP_OFFLINE) {
943                 /* Let it fail before we try to bring the cpu up */
944                 idle = idle_thread_get(cpu);
945                 if (IS_ERR(idle)) {
946                         ret = PTR_ERR(idle);
947                         goto out;
948                 }
949         }
950
951         cpuhp_tasks_frozen = tasks_frozen;
952
953         st->target = target;
954         /*
955          * If the current CPU state is in the range of the AP hotplug thread,
956          * then we need to kick the thread once more.
957          */
958         if (st->state > CPUHP_BRINGUP_CPU) {
959                 ret = cpuhp_kick_ap_work(cpu);
960                 /*
961                  * The AP side has done the error rollback already. Just
962                  * return the error code..
963                  */
964                 if (ret)
965                         goto out;
966         }
967
968         /*
969          * Try to reach the target state. We max out on the BP at
970          * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
971          * responsible for bringing it up to the target state.
972          */
973         target = min((int)target, CPUHP_BRINGUP_CPU);
974         ret = cpuhp_up_callbacks(cpu, st, cpuhp_bp_states, target);
975 out:
976         cpu_hotplug_done();
977         return ret;
978 }
979
980 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
981 {
982         int err = 0;
983
984         if (!cpu_possible(cpu)) {
985                 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
986                        cpu);
987 #if defined(CONFIG_IA64)
988                 pr_err("please check additional_cpus= boot parameter\n");
989 #endif
990                 return -EINVAL;
991         }
992
993         err = try_online_node(cpu_to_node(cpu));
994         if (err)
995                 return err;
996
997         cpu_maps_update_begin();
998
999         if (cpu_hotplug_disabled) {
1000                 err = -EBUSY;
1001                 goto out;
1002         }
1003
1004         err = _cpu_up(cpu, 0, target);
1005 out:
1006         cpu_maps_update_done();
1007         return err;
1008 }
1009
1010 int cpu_up(unsigned int cpu)
1011 {
1012         return do_cpu_up(cpu, CPUHP_ONLINE);
1013 }
1014 EXPORT_SYMBOL_GPL(cpu_up);
1015
1016 #ifdef CONFIG_PM_SLEEP_SMP
1017 static cpumask_var_t frozen_cpus;
1018
1019 int disable_nonboot_cpus(void)
1020 {
1021         int cpu, first_cpu, error = 0;
1022
1023         cpu_maps_update_begin();
1024         first_cpu = cpumask_first(cpu_online_mask);
1025         /*
1026          * We take down all of the non-boot CPUs in one shot to avoid races
1027          * with the userspace trying to use the CPU hotplug at the same time
1028          */
1029         cpumask_clear(frozen_cpus);
1030
1031         pr_info("Disabling non-boot CPUs ...\n");
1032         for_each_online_cpu(cpu) {
1033                 if (cpu == first_cpu)
1034                         continue;
1035                 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1036                 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1037                 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1038                 if (!error)
1039                         cpumask_set_cpu(cpu, frozen_cpus);
1040                 else {
1041                         pr_err("Error taking CPU%d down: %d\n", cpu, error);
1042                         break;
1043                 }
1044         }
1045
1046         if (!error)
1047                 BUG_ON(num_online_cpus() > 1);
1048         else
1049                 pr_err("Non-boot CPUs are not disabled\n");
1050
1051         /*
1052          * Make sure the CPUs won't be enabled by someone else. We need to do
1053          * this even in case of failure as all disable_nonboot_cpus() users are
1054          * supposed to do enable_nonboot_cpus() on the failure path.
1055          */
1056         cpu_hotplug_disabled++;
1057
1058         cpu_maps_update_done();
1059         return error;
1060 }
1061
1062 void __weak arch_enable_nonboot_cpus_begin(void)
1063 {
1064 }
1065
1066 void __weak arch_enable_nonboot_cpus_end(void)
1067 {
1068 }
1069
1070 void enable_nonboot_cpus(void)
1071 {
1072         int cpu, error;
1073
1074         /* Allow everyone to use the CPU hotplug again */
1075         cpu_maps_update_begin();
1076         WARN_ON(--cpu_hotplug_disabled < 0);
1077         if (cpumask_empty(frozen_cpus))
1078                 goto out;
1079
1080         pr_info("Enabling non-boot CPUs ...\n");
1081
1082         arch_enable_nonboot_cpus_begin();
1083
1084         for_each_cpu(cpu, frozen_cpus) {
1085                 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1086                 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1087                 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1088                 if (!error) {
1089                         pr_info("CPU%d is up\n", cpu);
1090                         continue;
1091                 }
1092                 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1093         }
1094
1095         arch_enable_nonboot_cpus_end();
1096
1097         cpumask_clear(frozen_cpus);
1098 out:
1099         cpu_maps_update_done();
1100 }
1101
1102 static int __init alloc_frozen_cpus(void)
1103 {
1104         if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1105                 return -ENOMEM;
1106         return 0;
1107 }
1108 core_initcall(alloc_frozen_cpus);
1109
1110 /*
1111  * When callbacks for CPU hotplug notifications are being executed, we must
1112  * ensure that the state of the system with respect to the tasks being frozen
1113  * or not, as reported by the notification, remains unchanged *throughout the
1114  * duration* of the execution of the callbacks.
1115  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1116  *
1117  * This synchronization is implemented by mutually excluding regular CPU
1118  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1119  * Hibernate notifications.
1120  */
1121 static int
1122 cpu_hotplug_pm_callback(struct notifier_block *nb,
1123                         unsigned long action, void *ptr)
1124 {
1125         switch (action) {
1126
1127         case PM_SUSPEND_PREPARE:
1128         case PM_HIBERNATION_PREPARE:
1129                 cpu_hotplug_disable();
1130                 break;
1131
1132         case PM_POST_SUSPEND:
1133         case PM_POST_HIBERNATION:
1134                 cpu_hotplug_enable();
1135                 break;
1136
1137         default:
1138                 return NOTIFY_DONE;
1139         }
1140
1141         return NOTIFY_OK;
1142 }
1143
1144
1145 static int __init cpu_hotplug_pm_sync_init(void)
1146 {
1147         /*
1148          * cpu_hotplug_pm_callback has higher priority than x86
1149          * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1150          * to disable cpu hotplug to avoid cpu hotplug race.
1151          */
1152         pm_notifier(cpu_hotplug_pm_callback, 0);
1153         return 0;
1154 }
1155 core_initcall(cpu_hotplug_pm_sync_init);
1156
1157 #endif /* CONFIG_PM_SLEEP_SMP */
1158
1159 #endif /* CONFIG_SMP */
1160
1161 /* Boot processor state steps */
1162 static struct cpuhp_step cpuhp_bp_states[] = {
1163         [CPUHP_OFFLINE] = {
1164                 .name                   = "offline",
1165                 .startup                = NULL,
1166                 .teardown               = NULL,
1167         },
1168 #ifdef CONFIG_SMP
1169         [CPUHP_CREATE_THREADS]= {
1170                 .name                   = "threads:create",
1171                 .startup                = smpboot_create_threads,
1172                 .teardown               = NULL,
1173                 .cant_stop              = true,
1174         },
1175         /*
1176          * Preparatory and dead notifiers. Will be replaced once the notifiers
1177          * are converted to states.
1178          */
1179         [CPUHP_NOTIFY_PREPARE] = {
1180                 .name                   = "notify:prepare",
1181                 .startup                = notify_prepare,
1182                 .teardown               = notify_dead,
1183                 .skip_onerr             = true,
1184                 .cant_stop              = true,
1185         },
1186         /* Kicks the plugged cpu into life */
1187         [CPUHP_BRINGUP_CPU] = {
1188                 .name                   = "cpu:bringup",
1189                 .startup                = bringup_cpu,
1190                 .teardown               = NULL,
1191                 .cant_stop              = true,
1192         },
1193         /*
1194          * Handled on controll processor until the plugged processor manages
1195          * this itself.
1196          */
1197         [CPUHP_TEARDOWN_CPU] = {
1198                 .name                   = "cpu:teardown",
1199                 .startup                = NULL,
1200                 .teardown               = takedown_cpu,
1201                 .cant_stop              = true,
1202         },
1203 #endif
1204 };
1205
1206 /* Application processor state steps */
1207 static struct cpuhp_step cpuhp_ap_states[] = {
1208 #ifdef CONFIG_SMP
1209         /* Final state before CPU kills itself */
1210         [CPUHP_AP_IDLE_DEAD] = {
1211                 .name                   = "idle:dead",
1212         },
1213         /*
1214          * Last state before CPU enters the idle loop to die. Transient state
1215          * for synchronization.
1216          */
1217         [CPUHP_AP_OFFLINE] = {
1218                 .name                   = "ap:offline",
1219                 .cant_stop              = true,
1220         },
1221         /*
1222          * Low level startup/teardown notifiers. Run with interrupts
1223          * disabled. Will be removed once the notifiers are converted to
1224          * states.
1225          */
1226         [CPUHP_AP_NOTIFY_STARTING] = {
1227                 .name                   = "notify:starting",
1228                 .startup                = notify_starting,
1229                 .teardown               = notify_dying,
1230                 .skip_onerr             = true,
1231                 .cant_stop              = true,
1232         },
1233         /* Entry state on starting. Interrupts enabled from here on. Transient
1234          * state for synchronsization */
1235         [CPUHP_AP_ONLINE] = {
1236                 .name                   = "ap:online",
1237         },
1238         /* Handle smpboot threads park/unpark */
1239         [CPUHP_AP_SMPBOOT_THREADS] = {
1240                 .name                   = "smpboot:threads",
1241                 .startup                = smpboot_unpark_threads,
1242                 .teardown               = NULL,
1243         },
1244         /*
1245          * Online/down_prepare notifiers. Will be removed once the notifiers
1246          * are converted to states.
1247          */
1248         [CPUHP_AP_NOTIFY_ONLINE] = {
1249                 .name                   = "notify:online",
1250                 .startup                = notify_online,
1251                 .teardown               = notify_down_prepare,
1252         },
1253 #endif
1254         /*
1255          * The dynamically registered state space is here
1256          */
1257
1258         /* CPU is fully up and running. */
1259         [CPUHP_ONLINE] = {
1260                 .name                   = "online",
1261                 .startup                = NULL,
1262                 .teardown               = NULL,
1263         },
1264 };
1265
1266 /* Sanity check for callbacks */
1267 static int cpuhp_cb_check(enum cpuhp_state state)
1268 {
1269         if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1270                 return -EINVAL;
1271         return 0;
1272 }
1273
1274 static bool cpuhp_is_ap_state(enum cpuhp_state state)
1275 {
1276         /*
1277          * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
1278          * purposes as that state is handled explicitely in cpu_down.
1279          */
1280         return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
1281 }
1282
1283 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
1284 {
1285         struct cpuhp_step *sp;
1286
1287         sp = cpuhp_is_ap_state(state) ? cpuhp_ap_states : cpuhp_bp_states;
1288         return sp + state;
1289 }
1290
1291 static void cpuhp_store_callbacks(enum cpuhp_state state,
1292                                   const char *name,
1293                                   int (*startup)(unsigned int cpu),
1294                                   int (*teardown)(unsigned int cpu))
1295 {
1296         /* (Un)Install the callbacks for further cpu hotplug operations */
1297         struct cpuhp_step *sp;
1298
1299         mutex_lock(&cpuhp_state_mutex);
1300         sp = cpuhp_get_step(state);
1301         sp->startup = startup;
1302         sp->teardown = teardown;
1303         sp->name = name;
1304         mutex_unlock(&cpuhp_state_mutex);
1305 }
1306
1307 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1308 {
1309         return cpuhp_get_step(state)->teardown;
1310 }
1311
1312 /*
1313  * Call the startup/teardown function for a step either on the AP or
1314  * on the current CPU.
1315  */
1316 static int cpuhp_issue_call(int cpu, enum cpuhp_state state,
1317                             int (*cb)(unsigned int), bool bringup)
1318 {
1319         int ret;
1320
1321         if (!cb)
1322                 return 0;
1323         /*
1324          * The non AP bound callbacks can fail on bringup. On teardown
1325          * e.g. module removal we crash for now.
1326          */
1327 #ifdef CONFIG_SMP
1328         if (cpuhp_is_ap_state(state))
1329                 ret = cpuhp_invoke_ap_callback(cpu, state, cb);
1330         else
1331                 ret = cpuhp_invoke_callback(cpu, state, cb);
1332 #else
1333         ret = cpuhp_invoke_callback(cpu, state, cb);
1334 #endif
1335         BUG_ON(ret && !bringup);
1336         return ret;
1337 }
1338
1339 /*
1340  * Called from __cpuhp_setup_state on a recoverable failure.
1341  *
1342  * Note: The teardown callbacks for rollback are not allowed to fail!
1343  */
1344 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1345                                    int (*teardown)(unsigned int cpu))
1346 {
1347         int cpu;
1348
1349         if (!teardown)
1350                 return;
1351
1352         /* Roll back the already executed steps on the other cpus */
1353         for_each_present_cpu(cpu) {
1354                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1355                 int cpustate = st->state;
1356
1357                 if (cpu >= failedcpu)
1358                         break;
1359
1360                 /* Did we invoke the startup call on that cpu ? */
1361                 if (cpustate >= state)
1362                         cpuhp_issue_call(cpu, state, teardown, false);
1363         }
1364 }
1365
1366 /*
1367  * Returns a free for dynamic slot assignment of the Online state. The states
1368  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1369  * by having no name assigned.
1370  */
1371 static int cpuhp_reserve_state(enum cpuhp_state state)
1372 {
1373         enum cpuhp_state i;
1374
1375         mutex_lock(&cpuhp_state_mutex);
1376         for (i = CPUHP_AP_ONLINE_DYN; i <= CPUHP_AP_ONLINE_DYN_END; i++) {
1377                 if (cpuhp_ap_states[i].name)
1378                         continue;
1379
1380                 cpuhp_ap_states[i].name = "Reserved";
1381                 mutex_unlock(&cpuhp_state_mutex);
1382                 return i;
1383         }
1384         mutex_unlock(&cpuhp_state_mutex);
1385         WARN(1, "No more dynamic states available for CPU hotplug\n");
1386         return -ENOSPC;
1387 }
1388
1389 /**
1390  * __cpuhp_setup_state - Setup the callbacks for an hotplug machine state
1391  * @state:      The state to setup
1392  * @invoke:     If true, the startup function is invoked for cpus where
1393  *              cpu state >= @state
1394  * @startup:    startup callback function
1395  * @teardown:   teardown callback function
1396  *
1397  * Returns 0 if successful, otherwise a proper error code
1398  */
1399 int __cpuhp_setup_state(enum cpuhp_state state,
1400                         const char *name, bool invoke,
1401                         int (*startup)(unsigned int cpu),
1402                         int (*teardown)(unsigned int cpu))
1403 {
1404         int cpu, ret = 0;
1405         int dyn_state = 0;
1406
1407         if (cpuhp_cb_check(state) || !name)
1408                 return -EINVAL;
1409
1410         get_online_cpus();
1411
1412         /* currently assignments for the ONLINE state are possible */
1413         if (state == CPUHP_AP_ONLINE_DYN) {
1414                 dyn_state = 1;
1415                 ret = cpuhp_reserve_state(state);
1416                 if (ret < 0)
1417                         goto out;
1418                 state = ret;
1419         }
1420
1421         cpuhp_store_callbacks(state, name, startup, teardown);
1422
1423         if (!invoke || !startup)
1424                 goto out;
1425
1426         /*
1427          * Try to call the startup callback for each present cpu
1428          * depending on the hotplug state of the cpu.
1429          */
1430         for_each_present_cpu(cpu) {
1431                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1432                 int cpustate = st->state;
1433
1434                 if (cpustate < state)
1435                         continue;
1436
1437                 ret = cpuhp_issue_call(cpu, state, startup, true);
1438                 if (ret) {
1439                         cpuhp_rollback_install(cpu, state, teardown);
1440                         cpuhp_store_callbacks(state, NULL, NULL, NULL);
1441                         goto out;
1442                 }
1443         }
1444 out:
1445         put_online_cpus();
1446         if (!ret && dyn_state)
1447                 return state;
1448         return ret;
1449 }
1450 EXPORT_SYMBOL(__cpuhp_setup_state);
1451
1452 /**
1453  * __cpuhp_remove_state - Remove the callbacks for an hotplug machine state
1454  * @state:      The state to remove
1455  * @invoke:     If true, the teardown function is invoked for cpus where
1456  *              cpu state >= @state
1457  *
1458  * The teardown callback is currently not allowed to fail. Think
1459  * about module removal!
1460  */
1461 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1462 {
1463         int (*teardown)(unsigned int cpu) = cpuhp_get_teardown_cb(state);
1464         int cpu;
1465
1466         BUG_ON(cpuhp_cb_check(state));
1467
1468         get_online_cpus();
1469
1470         if (!invoke || !teardown)
1471                 goto remove;
1472
1473         /*
1474          * Call the teardown callback for each present cpu depending
1475          * on the hotplug state of the cpu. This function is not
1476          * allowed to fail currently!
1477          */
1478         for_each_present_cpu(cpu) {
1479                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1480                 int cpustate = st->state;
1481
1482                 if (cpustate >= state)
1483                         cpuhp_issue_call(cpu, state, teardown, false);
1484         }
1485 remove:
1486         cpuhp_store_callbacks(state, NULL, NULL, NULL);
1487         put_online_cpus();
1488 }
1489 EXPORT_SYMBOL(__cpuhp_remove_state);
1490
1491 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1492 static ssize_t show_cpuhp_state(struct device *dev,
1493                                 struct device_attribute *attr, char *buf)
1494 {
1495         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1496
1497         return sprintf(buf, "%d\n", st->state);
1498 }
1499 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1500
1501 static ssize_t write_cpuhp_target(struct device *dev,
1502                                   struct device_attribute *attr,
1503                                   const char *buf, size_t count)
1504 {
1505         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1506         struct cpuhp_step *sp;
1507         int target, ret;
1508
1509         ret = kstrtoint(buf, 10, &target);
1510         if (ret)
1511                 return ret;
1512
1513 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1514         if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1515                 return -EINVAL;
1516 #else
1517         if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1518                 return -EINVAL;
1519 #endif
1520
1521         ret = lock_device_hotplug_sysfs();
1522         if (ret)
1523                 return ret;
1524
1525         mutex_lock(&cpuhp_state_mutex);
1526         sp = cpuhp_get_step(target);
1527         ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1528         mutex_unlock(&cpuhp_state_mutex);
1529         if (ret)
1530                 return ret;
1531
1532         if (st->state < target)
1533                 ret = do_cpu_up(dev->id, target);
1534         else
1535                 ret = do_cpu_down(dev->id, target);
1536
1537         unlock_device_hotplug();
1538         return ret ? ret : count;
1539 }
1540
1541 static ssize_t show_cpuhp_target(struct device *dev,
1542                                  struct device_attribute *attr, char *buf)
1543 {
1544         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1545
1546         return sprintf(buf, "%d\n", st->target);
1547 }
1548 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1549
1550 static struct attribute *cpuhp_cpu_attrs[] = {
1551         &dev_attr_state.attr,
1552         &dev_attr_target.attr,
1553         NULL
1554 };
1555
1556 static struct attribute_group cpuhp_cpu_attr_group = {
1557         .attrs = cpuhp_cpu_attrs,
1558         .name = "hotplug",
1559         NULL
1560 };
1561
1562 static ssize_t show_cpuhp_states(struct device *dev,
1563                                  struct device_attribute *attr, char *buf)
1564 {
1565         ssize_t cur, res = 0;
1566         int i;
1567
1568         mutex_lock(&cpuhp_state_mutex);
1569         for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
1570                 struct cpuhp_step *sp = cpuhp_get_step(i);
1571
1572                 if (sp->name) {
1573                         cur = sprintf(buf, "%3d: %s\n", i, sp->name);
1574                         buf += cur;
1575                         res += cur;
1576                 }
1577         }
1578         mutex_unlock(&cpuhp_state_mutex);
1579         return res;
1580 }
1581 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
1582
1583 static struct attribute *cpuhp_cpu_root_attrs[] = {
1584         &dev_attr_states.attr,
1585         NULL
1586 };
1587
1588 static struct attribute_group cpuhp_cpu_root_attr_group = {
1589         .attrs = cpuhp_cpu_root_attrs,
1590         .name = "hotplug",
1591         NULL
1592 };
1593
1594 static int __init cpuhp_sysfs_init(void)
1595 {
1596         int cpu, ret;
1597
1598         ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
1599                                  &cpuhp_cpu_root_attr_group);
1600         if (ret)
1601                 return ret;
1602
1603         for_each_possible_cpu(cpu) {
1604                 struct device *dev = get_cpu_device(cpu);
1605
1606                 if (!dev)
1607                         continue;
1608                 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
1609                 if (ret)
1610                         return ret;
1611         }
1612         return 0;
1613 }
1614 device_initcall(cpuhp_sysfs_init);
1615 #endif
1616
1617 /*
1618  * cpu_bit_bitmap[] is a special, "compressed" data structure that
1619  * represents all NR_CPUS bits binary values of 1<<nr.
1620  *
1621  * It is used by cpumask_of() to get a constant address to a CPU
1622  * mask value that has a single bit set only.
1623  */
1624
1625 /* cpu_bit_bitmap[0] is empty - so we can back into it */
1626 #define MASK_DECLARE_1(x)       [x+1][0] = (1UL << (x))
1627 #define MASK_DECLARE_2(x)       MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
1628 #define MASK_DECLARE_4(x)       MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
1629 #define MASK_DECLARE_8(x)       MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
1630
1631 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
1632
1633         MASK_DECLARE_8(0),      MASK_DECLARE_8(8),
1634         MASK_DECLARE_8(16),     MASK_DECLARE_8(24),
1635 #if BITS_PER_LONG > 32
1636         MASK_DECLARE_8(32),     MASK_DECLARE_8(40),
1637         MASK_DECLARE_8(48),     MASK_DECLARE_8(56),
1638 #endif
1639 };
1640 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
1641
1642 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
1643 EXPORT_SYMBOL(cpu_all_bits);
1644
1645 #ifdef CONFIG_INIT_ALL_POSSIBLE
1646 struct cpumask __cpu_possible_mask __read_mostly
1647         = {CPU_BITS_ALL};
1648 #else
1649 struct cpumask __cpu_possible_mask __read_mostly;
1650 #endif
1651 EXPORT_SYMBOL(__cpu_possible_mask);
1652
1653 struct cpumask __cpu_online_mask __read_mostly;
1654 EXPORT_SYMBOL(__cpu_online_mask);
1655
1656 struct cpumask __cpu_present_mask __read_mostly;
1657 EXPORT_SYMBOL(__cpu_present_mask);
1658
1659 struct cpumask __cpu_active_mask __read_mostly;
1660 EXPORT_SYMBOL(__cpu_active_mask);
1661
1662 void init_cpu_present(const struct cpumask *src)
1663 {
1664         cpumask_copy(&__cpu_present_mask, src);
1665 }
1666
1667 void init_cpu_possible(const struct cpumask *src)
1668 {
1669         cpumask_copy(&__cpu_possible_mask, src);
1670 }
1671
1672 void init_cpu_online(const struct cpumask *src)
1673 {
1674         cpumask_copy(&__cpu_online_mask, src);
1675 }
1676
1677 /*
1678  * Activate the first processor.
1679  */
1680 void __init boot_cpu_init(void)
1681 {
1682         int cpu = smp_processor_id();
1683
1684         /* Mark the boot cpu "present", "online" etc for SMP and UP case */
1685         set_cpu_online(cpu, true);
1686         set_cpu_active(cpu, true);
1687         set_cpu_present(cpu, true);
1688         set_cpu_possible(cpu, true);
1689 }
1690
1691 /*
1692  * Must be called _AFTER_ setting up the per_cpu areas
1693  */
1694 void __init boot_cpu_state_init(void)
1695 {
1696         per_cpu_ptr(&cpuhp_state, smp_processor_id())->state = CPUHP_ONLINE;
1697 }