uprobes: Teach find_active_uprobe() to provide the "is_swbp" info
[cascardo/linux.git] / kernel / events / uprobes.c
1 /*
2  * User-space Probes (UProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2008-2012
19  * Authors:
20  *      Srikar Dronamraju
21  *      Jim Keniston
22  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23  */
24
25 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>      /* read_mapping_page */
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/rmap.h>         /* anon_vma_prepare */
31 #include <linux/mmu_notifier.h> /* set_pte_at_notify */
32 #include <linux/swap.h>         /* try_to_free_swap */
33 #include <linux/ptrace.h>       /* user_enable_single_step */
34 #include <linux/kdebug.h>       /* notifier mechanism */
35
36 #include <linux/uprobes.h>
37
38 #define UINSNS_PER_PAGE                 (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
39 #define MAX_UPROBE_XOL_SLOTS            UINSNS_PER_PAGE
40
41 static struct srcu_struct uprobes_srcu;
42 static struct rb_root uprobes_tree = RB_ROOT;
43
44 static DEFINE_SPINLOCK(uprobes_treelock);       /* serialize rbtree access */
45
46 #define UPROBES_HASH_SZ 13
47
48 /* serialize (un)register */
49 static struct mutex uprobes_mutex[UPROBES_HASH_SZ];
50
51 #define uprobes_hash(v)         (&uprobes_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
52
53 /* serialize uprobe->pending_list */
54 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
55 #define uprobes_mmap_hash(v)    (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
56
57 /*
58  * uprobe_events allows us to skip the uprobe_mmap if there are no uprobe
59  * events active at this time.  Probably a fine grained per inode count is
60  * better?
61  */
62 static atomic_t uprobe_events = ATOMIC_INIT(0);
63
64 /*
65  * Maintain a temporary per vma info that can be used to search if a vma
66  * has already been handled. This structure is introduced since extending
67  * vm_area_struct wasnt recommended.
68  */
69 struct vma_info {
70         struct list_head        probe_list;
71         struct mm_struct        *mm;
72         loff_t                  vaddr;
73 };
74
75 struct uprobe {
76         struct rb_node          rb_node;        /* node in the rb tree */
77         atomic_t                ref;
78         struct rw_semaphore     consumer_rwsem;
79         struct list_head        pending_list;
80         struct uprobe_consumer  *consumers;
81         struct inode            *inode;         /* Also hold a ref to inode */
82         loff_t                  offset;
83         int                     flags;
84         struct arch_uprobe      arch;
85 };
86
87 /*
88  * valid_vma: Verify if the specified vma is an executable vma
89  * Relax restrictions while unregistering: vm_flags might have
90  * changed after breakpoint was inserted.
91  *      - is_register: indicates if we are in register context.
92  *      - Return 1 if the specified virtual address is in an
93  *        executable vma.
94  */
95 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
96 {
97         if (!vma->vm_file)
98                 return false;
99
100         if (!is_register)
101                 return true;
102
103         if ((vma->vm_flags & (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)) == (VM_READ|VM_EXEC))
104                 return true;
105
106         return false;
107 }
108
109 static loff_t vma_address(struct vm_area_struct *vma, loff_t offset)
110 {
111         loff_t vaddr;
112
113         vaddr = vma->vm_start + offset;
114         vaddr -= vma->vm_pgoff << PAGE_SHIFT;
115
116         return vaddr;
117 }
118
119 /**
120  * __replace_page - replace page in vma by new page.
121  * based on replace_page in mm/ksm.c
122  *
123  * @vma:      vma that holds the pte pointing to page
124  * @page:     the cowed page we are replacing by kpage
125  * @kpage:    the modified page we replace page by
126  *
127  * Returns 0 on success, -EFAULT on failure.
128  */
129 static int __replace_page(struct vm_area_struct *vma, struct page *page, struct page *kpage)
130 {
131         struct mm_struct *mm = vma->vm_mm;
132         pgd_t *pgd;
133         pud_t *pud;
134         pmd_t *pmd;
135         pte_t *ptep;
136         spinlock_t *ptl;
137         unsigned long addr;
138         int err = -EFAULT;
139
140         addr = page_address_in_vma(page, vma);
141         if (addr == -EFAULT)
142                 goto out;
143
144         pgd = pgd_offset(mm, addr);
145         if (!pgd_present(*pgd))
146                 goto out;
147
148         pud = pud_offset(pgd, addr);
149         if (!pud_present(*pud))
150                 goto out;
151
152         pmd = pmd_offset(pud, addr);
153         if (!pmd_present(*pmd))
154                 goto out;
155
156         ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
157         if (!ptep)
158                 goto out;
159
160         get_page(kpage);
161         page_add_new_anon_rmap(kpage, vma, addr);
162
163         if (!PageAnon(page)) {
164                 dec_mm_counter(mm, MM_FILEPAGES);
165                 inc_mm_counter(mm, MM_ANONPAGES);
166         }
167
168         flush_cache_page(vma, addr, pte_pfn(*ptep));
169         ptep_clear_flush(vma, addr, ptep);
170         set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
171
172         page_remove_rmap(page);
173         if (!page_mapped(page))
174                 try_to_free_swap(page);
175         put_page(page);
176         pte_unmap_unlock(ptep, ptl);
177         err = 0;
178
179 out:
180         return err;
181 }
182
183 /**
184  * is_swbp_insn - check if instruction is breakpoint instruction.
185  * @insn: instruction to be checked.
186  * Default implementation of is_swbp_insn
187  * Returns true if @insn is a breakpoint instruction.
188  */
189 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
190 {
191         return *insn == UPROBE_SWBP_INSN;
192 }
193
194 /*
195  * NOTE:
196  * Expect the breakpoint instruction to be the smallest size instruction for
197  * the architecture. If an arch has variable length instruction and the
198  * breakpoint instruction is not of the smallest length instruction
199  * supported by that architecture then we need to modify read_opcode /
200  * write_opcode accordingly. This would never be a problem for archs that
201  * have fixed length instructions.
202  */
203
204 /*
205  * write_opcode - write the opcode at a given virtual address.
206  * @auprobe: arch breakpointing information.
207  * @mm: the probed process address space.
208  * @vaddr: the virtual address to store the opcode.
209  * @opcode: opcode to be written at @vaddr.
210  *
211  * Called with mm->mmap_sem held (for read and with a reference to
212  * mm).
213  *
214  * For mm @mm, write the opcode at @vaddr.
215  * Return 0 (success) or a negative errno.
216  */
217 static int write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
218                         unsigned long vaddr, uprobe_opcode_t opcode)
219 {
220         struct page *old_page, *new_page;
221         struct address_space *mapping;
222         void *vaddr_old, *vaddr_new;
223         struct vm_area_struct *vma;
224         struct uprobe *uprobe;
225         loff_t addr;
226         int ret;
227
228         /* Read the page with vaddr into memory */
229         ret = get_user_pages(NULL, mm, vaddr, 1, 0, 0, &old_page, &vma);
230         if (ret <= 0)
231                 return ret;
232
233         ret = -EINVAL;
234
235         /*
236          * We are interested in text pages only. Our pages of interest
237          * should be mapped for read and execute only. We desist from
238          * adding probes in write mapped pages since the breakpoints
239          * might end up in the file copy.
240          */
241         if (!valid_vma(vma, is_swbp_insn(&opcode)))
242                 goto put_out;
243
244         uprobe = container_of(auprobe, struct uprobe, arch);
245         mapping = uprobe->inode->i_mapping;
246         if (mapping != vma->vm_file->f_mapping)
247                 goto put_out;
248
249         addr = vma_address(vma, uprobe->offset);
250         if (vaddr != (unsigned long)addr)
251                 goto put_out;
252
253         ret = -ENOMEM;
254         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
255         if (!new_page)
256                 goto put_out;
257
258         __SetPageUptodate(new_page);
259
260         /*
261          * lock page will serialize against do_wp_page()'s
262          * PageAnon() handling
263          */
264         lock_page(old_page);
265         /* copy the page now that we've got it stable */
266         vaddr_old = kmap_atomic(old_page);
267         vaddr_new = kmap_atomic(new_page);
268
269         memcpy(vaddr_new, vaddr_old, PAGE_SIZE);
270
271         /* poke the new insn in, ASSUMES we don't cross page boundary */
272         vaddr &= ~PAGE_MASK;
273         BUG_ON(vaddr + UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
274         memcpy(vaddr_new + vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
275
276         kunmap_atomic(vaddr_new);
277         kunmap_atomic(vaddr_old);
278
279         ret = anon_vma_prepare(vma);
280         if (ret)
281                 goto unlock_out;
282
283         lock_page(new_page);
284         ret = __replace_page(vma, old_page, new_page);
285         unlock_page(new_page);
286
287 unlock_out:
288         unlock_page(old_page);
289         page_cache_release(new_page);
290
291 put_out:
292         put_page(old_page);
293
294         return ret;
295 }
296
297 /**
298  * read_opcode - read the opcode at a given virtual address.
299  * @mm: the probed process address space.
300  * @vaddr: the virtual address to read the opcode.
301  * @opcode: location to store the read opcode.
302  *
303  * Called with mm->mmap_sem held (for read and with a reference to
304  * mm.
305  *
306  * For mm @mm, read the opcode at @vaddr and store it in @opcode.
307  * Return 0 (success) or a negative errno.
308  */
309 static int read_opcode(struct mm_struct *mm, unsigned long vaddr, uprobe_opcode_t *opcode)
310 {
311         struct page *page;
312         void *vaddr_new;
313         int ret;
314
315         ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
316         if (ret <= 0)
317                 return ret;
318
319         lock_page(page);
320         vaddr_new = kmap_atomic(page);
321         vaddr &= ~PAGE_MASK;
322         memcpy(opcode, vaddr_new + vaddr, UPROBE_SWBP_INSN_SIZE);
323         kunmap_atomic(vaddr_new);
324         unlock_page(page);
325
326         put_page(page);
327
328         return 0;
329 }
330
331 static int is_swbp_at_addr(struct mm_struct *mm, unsigned long vaddr)
332 {
333         uprobe_opcode_t opcode;
334         int result;
335
336         if (current->mm == mm) {
337                 pagefault_disable();
338                 result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
339                                                                 sizeof(opcode));
340                 pagefault_enable();
341
342                 if (likely(result == 0))
343                         goto out;
344         }
345
346         result = read_opcode(mm, vaddr, &opcode);
347         if (result)
348                 return result;
349 out:
350         if (is_swbp_insn(&opcode))
351                 return 1;
352
353         return 0;
354 }
355
356 /**
357  * set_swbp - store breakpoint at a given address.
358  * @auprobe: arch specific probepoint information.
359  * @mm: the probed process address space.
360  * @vaddr: the virtual address to insert the opcode.
361  *
362  * For mm @mm, store the breakpoint instruction at @vaddr.
363  * Return 0 (success) or a negative errno.
364  */
365 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
366 {
367         int result;
368
369         result = is_swbp_at_addr(mm, vaddr);
370         if (result == 1)
371                 return -EEXIST;
372
373         if (result)
374                 return result;
375
376         return write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
377 }
378
379 /**
380  * set_orig_insn - Restore the original instruction.
381  * @mm: the probed process address space.
382  * @auprobe: arch specific probepoint information.
383  * @vaddr: the virtual address to insert the opcode.
384  * @verify: if true, verify existance of breakpoint instruction.
385  *
386  * For mm @mm, restore the original opcode (opcode) at @vaddr.
387  * Return 0 (success) or a negative errno.
388  */
389 int __weak
390 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr, bool verify)
391 {
392         if (verify) {
393                 int result;
394
395                 result = is_swbp_at_addr(mm, vaddr);
396                 if (!result)
397                         return -EINVAL;
398
399                 if (result != 1)
400                         return result;
401         }
402         return write_opcode(auprobe, mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
403 }
404
405 static int match_uprobe(struct uprobe *l, struct uprobe *r)
406 {
407         if (l->inode < r->inode)
408                 return -1;
409
410         if (l->inode > r->inode)
411                 return 1;
412
413         if (l->offset < r->offset)
414                 return -1;
415
416         if (l->offset > r->offset)
417                 return 1;
418
419         return 0;
420 }
421
422 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
423 {
424         struct uprobe u = { .inode = inode, .offset = offset };
425         struct rb_node *n = uprobes_tree.rb_node;
426         struct uprobe *uprobe;
427         int match;
428
429         while (n) {
430                 uprobe = rb_entry(n, struct uprobe, rb_node);
431                 match = match_uprobe(&u, uprobe);
432                 if (!match) {
433                         atomic_inc(&uprobe->ref);
434                         return uprobe;
435                 }
436
437                 if (match < 0)
438                         n = n->rb_left;
439                 else
440                         n = n->rb_right;
441         }
442         return NULL;
443 }
444
445 /*
446  * Find a uprobe corresponding to a given inode:offset
447  * Acquires uprobes_treelock
448  */
449 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
450 {
451         struct uprobe *uprobe;
452         unsigned long flags;
453
454         spin_lock_irqsave(&uprobes_treelock, flags);
455         uprobe = __find_uprobe(inode, offset);
456         spin_unlock_irqrestore(&uprobes_treelock, flags);
457
458         return uprobe;
459 }
460
461 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
462 {
463         struct rb_node **p = &uprobes_tree.rb_node;
464         struct rb_node *parent = NULL;
465         struct uprobe *u;
466         int match;
467
468         while (*p) {
469                 parent = *p;
470                 u = rb_entry(parent, struct uprobe, rb_node);
471                 match = match_uprobe(uprobe, u);
472                 if (!match) {
473                         atomic_inc(&u->ref);
474                         return u;
475                 }
476
477                 if (match < 0)
478                         p = &parent->rb_left;
479                 else
480                         p = &parent->rb_right;
481
482         }
483
484         u = NULL;
485         rb_link_node(&uprobe->rb_node, parent, p);
486         rb_insert_color(&uprobe->rb_node, &uprobes_tree);
487         /* get access + creation ref */
488         atomic_set(&uprobe->ref, 2);
489
490         return u;
491 }
492
493 /*
494  * Acquire uprobes_treelock.
495  * Matching uprobe already exists in rbtree;
496  *      increment (access refcount) and return the matching uprobe.
497  *
498  * No matching uprobe; insert the uprobe in rb_tree;
499  *      get a double refcount (access + creation) and return NULL.
500  */
501 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
502 {
503         unsigned long flags;
504         struct uprobe *u;
505
506         spin_lock_irqsave(&uprobes_treelock, flags);
507         u = __insert_uprobe(uprobe);
508         spin_unlock_irqrestore(&uprobes_treelock, flags);
509
510         /* For now assume that the instruction need not be single-stepped */
511         uprobe->flags |= UPROBE_SKIP_SSTEP;
512
513         return u;
514 }
515
516 static void put_uprobe(struct uprobe *uprobe)
517 {
518         if (atomic_dec_and_test(&uprobe->ref))
519                 kfree(uprobe);
520 }
521
522 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
523 {
524         struct uprobe *uprobe, *cur_uprobe;
525
526         uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
527         if (!uprobe)
528                 return NULL;
529
530         uprobe->inode = igrab(inode);
531         uprobe->offset = offset;
532         init_rwsem(&uprobe->consumer_rwsem);
533         INIT_LIST_HEAD(&uprobe->pending_list);
534
535         /* add to uprobes_tree, sorted on inode:offset */
536         cur_uprobe = insert_uprobe(uprobe);
537
538         /* a uprobe exists for this inode:offset combination */
539         if (cur_uprobe) {
540                 kfree(uprobe);
541                 uprobe = cur_uprobe;
542                 iput(inode);
543         } else {
544                 atomic_inc(&uprobe_events);
545         }
546
547         return uprobe;
548 }
549
550 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
551 {
552         struct uprobe_consumer *uc;
553
554         if (!(uprobe->flags & UPROBE_RUN_HANDLER))
555                 return;
556
557         down_read(&uprobe->consumer_rwsem);
558         for (uc = uprobe->consumers; uc; uc = uc->next) {
559                 if (!uc->filter || uc->filter(uc, current))
560                         uc->handler(uc, regs);
561         }
562         up_read(&uprobe->consumer_rwsem);
563 }
564
565 /* Returns the previous consumer */
566 static struct uprobe_consumer *
567 consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
568 {
569         down_write(&uprobe->consumer_rwsem);
570         uc->next = uprobe->consumers;
571         uprobe->consumers = uc;
572         up_write(&uprobe->consumer_rwsem);
573
574         return uc->next;
575 }
576
577 /*
578  * For uprobe @uprobe, delete the consumer @uc.
579  * Return true if the @uc is deleted successfully
580  * or return false.
581  */
582 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
583 {
584         struct uprobe_consumer **con;
585         bool ret = false;
586
587         down_write(&uprobe->consumer_rwsem);
588         for (con = &uprobe->consumers; *con; con = &(*con)->next) {
589                 if (*con == uc) {
590                         *con = uc->next;
591                         ret = true;
592                         break;
593                 }
594         }
595         up_write(&uprobe->consumer_rwsem);
596
597         return ret;
598 }
599
600 static int
601 __copy_insn(struct address_space *mapping, struct vm_area_struct *vma, char *insn,
602                         unsigned long nbytes, unsigned long offset)
603 {
604         struct file *filp = vma->vm_file;
605         struct page *page;
606         void *vaddr;
607         unsigned long off1;
608         unsigned long idx;
609
610         if (!filp)
611                 return -EINVAL;
612
613         idx = (unsigned long)(offset >> PAGE_CACHE_SHIFT);
614         off1 = offset &= ~PAGE_MASK;
615
616         /*
617          * Ensure that the page that has the original instruction is
618          * populated and in page-cache.
619          */
620         page = read_mapping_page(mapping, idx, filp);
621         if (IS_ERR(page))
622                 return PTR_ERR(page);
623
624         vaddr = kmap_atomic(page);
625         memcpy(insn, vaddr + off1, nbytes);
626         kunmap_atomic(vaddr);
627         page_cache_release(page);
628
629         return 0;
630 }
631
632 static int
633 copy_insn(struct uprobe *uprobe, struct vm_area_struct *vma, unsigned long addr)
634 {
635         struct address_space *mapping;
636         unsigned long nbytes;
637         int bytes;
638
639         addr &= ~PAGE_MASK;
640         nbytes = PAGE_SIZE - addr;
641         mapping = uprobe->inode->i_mapping;
642
643         /* Instruction at end of binary; copy only available bytes */
644         if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
645                 bytes = uprobe->inode->i_size - uprobe->offset;
646         else
647                 bytes = MAX_UINSN_BYTES;
648
649         /* Instruction at the page-boundary; copy bytes in second page */
650         if (nbytes < bytes) {
651                 if (__copy_insn(mapping, vma, uprobe->arch.insn + nbytes,
652                                 bytes - nbytes, uprobe->offset + nbytes))
653                         return -ENOMEM;
654
655                 bytes = nbytes;
656         }
657         return __copy_insn(mapping, vma, uprobe->arch.insn, bytes, uprobe->offset);
658 }
659
660 /*
661  * How mm->uprobes_state.count gets updated
662  * uprobe_mmap() increments the count if
663  *      - it successfully adds a breakpoint.
664  *      - it cannot add a breakpoint, but sees that there is a underlying
665  *        breakpoint (via a is_swbp_at_addr()).
666  *
667  * uprobe_munmap() decrements the count if
668  *      - it sees a underlying breakpoint, (via is_swbp_at_addr)
669  *        (Subsequent uprobe_unregister wouldnt find the breakpoint
670  *        unless a uprobe_mmap kicks in, since the old vma would be
671  *        dropped just after uprobe_munmap.)
672  *
673  * uprobe_register increments the count if:
674  *      - it successfully adds a breakpoint.
675  *
676  * uprobe_unregister decrements the count if:
677  *      - it sees a underlying breakpoint and removes successfully.
678  *        (via is_swbp_at_addr)
679  *        (Subsequent uprobe_munmap wouldnt find the breakpoint
680  *        since there is no underlying breakpoint after the
681  *        breakpoint removal.)
682  */
683 static int
684 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
685                         struct vm_area_struct *vma, loff_t vaddr)
686 {
687         unsigned long addr;
688         int ret;
689
690         /*
691          * If probe is being deleted, unregister thread could be done with
692          * the vma-rmap-walk through. Adding a probe now can be fatal since
693          * nobody will be able to cleanup. Also we could be from fork or
694          * mremap path, where the probe might have already been inserted.
695          * Hence behave as if probe already existed.
696          */
697         if (!uprobe->consumers)
698                 return -EEXIST;
699
700         addr = (unsigned long)vaddr;
701
702         if (!(uprobe->flags & UPROBE_COPY_INSN)) {
703                 ret = copy_insn(uprobe, vma, addr);
704                 if (ret)
705                         return ret;
706
707                 if (is_swbp_insn((uprobe_opcode_t *)uprobe->arch.insn))
708                         return -EEXIST;
709
710                 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm);
711                 if (ret)
712                         return ret;
713
714                 uprobe->flags |= UPROBE_COPY_INSN;
715         }
716
717         /*
718          * Ideally, should be updating the probe count after the breakpoint
719          * has been successfully inserted. However a thread could hit the
720          * breakpoint we just inserted even before the probe count is
721          * incremented. If this is the first breakpoint placed, breakpoint
722          * notifier might ignore uprobes and pass the trap to the thread.
723          * Hence increment before and decrement on failure.
724          */
725         atomic_inc(&mm->uprobes_state.count);
726         ret = set_swbp(&uprobe->arch, mm, addr);
727         if (ret)
728                 atomic_dec(&mm->uprobes_state.count);
729
730         return ret;
731 }
732
733 static void
734 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, loff_t vaddr)
735 {
736         if (!set_orig_insn(&uprobe->arch, mm, (unsigned long)vaddr, true))
737                 atomic_dec(&mm->uprobes_state.count);
738 }
739
740 /*
741  * There could be threads that have hit the breakpoint and are entering the
742  * notifier code and trying to acquire the uprobes_treelock. The thread
743  * calling delete_uprobe() that is removing the uprobe from the rb_tree can
744  * race with these threads and might acquire the uprobes_treelock compared
745  * to some of the breakpoint hit threads. In such a case, the breakpoint
746  * hit threads will not find the uprobe. The current unregistering thread
747  * waits till all other threads have hit a breakpoint, to acquire the
748  * uprobes_treelock before the uprobe is removed from the rbtree.
749  */
750 static void delete_uprobe(struct uprobe *uprobe)
751 {
752         unsigned long flags;
753
754         synchronize_srcu(&uprobes_srcu);
755         spin_lock_irqsave(&uprobes_treelock, flags);
756         rb_erase(&uprobe->rb_node, &uprobes_tree);
757         spin_unlock_irqrestore(&uprobes_treelock, flags);
758         iput(uprobe->inode);
759         put_uprobe(uprobe);
760         atomic_dec(&uprobe_events);
761 }
762
763 static struct vma_info *
764 __find_next_vma_info(struct address_space *mapping, struct list_head *head,
765                         struct vma_info *vi, loff_t offset, bool is_register)
766 {
767         struct prio_tree_iter iter;
768         struct vm_area_struct *vma;
769         struct vma_info *tmpvi;
770         unsigned long pgoff;
771         int existing_vma;
772         loff_t vaddr;
773
774         pgoff = offset >> PAGE_SHIFT;
775
776         vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
777                 if (!valid_vma(vma, is_register))
778                         continue;
779
780                 existing_vma = 0;
781                 vaddr = vma_address(vma, offset);
782
783                 list_for_each_entry(tmpvi, head, probe_list) {
784                         if (tmpvi->mm == vma->vm_mm && tmpvi->vaddr == vaddr) {
785                                 existing_vma = 1;
786                                 break;
787                         }
788                 }
789
790                 /*
791                  * Another vma needs a probe to be installed. However skip
792                  * installing the probe if the vma is about to be unlinked.
793                  */
794                 if (!existing_vma && atomic_inc_not_zero(&vma->vm_mm->mm_users)) {
795                         vi->mm = vma->vm_mm;
796                         vi->vaddr = vaddr;
797                         list_add(&vi->probe_list, head);
798
799                         return vi;
800                 }
801         }
802
803         return NULL;
804 }
805
806 /*
807  * Iterate in the rmap prio tree  and find a vma where a probe has not
808  * yet been inserted.
809  */
810 static struct vma_info *
811 find_next_vma_info(struct address_space *mapping, struct list_head *head,
812                 loff_t offset, bool is_register)
813 {
814         struct vma_info *vi, *retvi;
815
816         vi = kzalloc(sizeof(struct vma_info), GFP_KERNEL);
817         if (!vi)
818                 return ERR_PTR(-ENOMEM);
819
820         mutex_lock(&mapping->i_mmap_mutex);
821         retvi = __find_next_vma_info(mapping, head, vi, offset, is_register);
822         mutex_unlock(&mapping->i_mmap_mutex);
823
824         if (!retvi)
825                 kfree(vi);
826
827         return retvi;
828 }
829
830 static int register_for_each_vma(struct uprobe *uprobe, bool is_register)
831 {
832         struct list_head try_list;
833         struct vm_area_struct *vma;
834         struct address_space *mapping;
835         struct vma_info *vi, *tmpvi;
836         struct mm_struct *mm;
837         loff_t vaddr;
838         int ret;
839
840         mapping = uprobe->inode->i_mapping;
841         INIT_LIST_HEAD(&try_list);
842
843         ret = 0;
844
845         for (;;) {
846                 vi = find_next_vma_info(mapping, &try_list, uprobe->offset, is_register);
847                 if (!vi)
848                         break;
849
850                 if (IS_ERR(vi)) {
851                         ret = PTR_ERR(vi);
852                         break;
853                 }
854
855                 mm = vi->mm;
856                 down_read(&mm->mmap_sem);
857                 vma = find_vma(mm, (unsigned long)vi->vaddr);
858                 if (!vma || !valid_vma(vma, is_register)) {
859                         list_del(&vi->probe_list);
860                         kfree(vi);
861                         up_read(&mm->mmap_sem);
862                         mmput(mm);
863                         continue;
864                 }
865                 vaddr = vma_address(vma, uprobe->offset);
866                 if (vma->vm_file->f_mapping->host != uprobe->inode ||
867                                                 vaddr != vi->vaddr) {
868                         list_del(&vi->probe_list);
869                         kfree(vi);
870                         up_read(&mm->mmap_sem);
871                         mmput(mm);
872                         continue;
873                 }
874
875                 if (is_register)
876                         ret = install_breakpoint(uprobe, mm, vma, vi->vaddr);
877                 else
878                         remove_breakpoint(uprobe, mm, vi->vaddr);
879
880                 up_read(&mm->mmap_sem);
881                 mmput(mm);
882                 if (is_register) {
883                         if (ret && ret == -EEXIST)
884                                 ret = 0;
885                         if (ret)
886                                 break;
887                 }
888         }
889
890         list_for_each_entry_safe(vi, tmpvi, &try_list, probe_list) {
891                 list_del(&vi->probe_list);
892                 kfree(vi);
893         }
894
895         return ret;
896 }
897
898 static int __uprobe_register(struct uprobe *uprobe)
899 {
900         return register_for_each_vma(uprobe, true);
901 }
902
903 static void __uprobe_unregister(struct uprobe *uprobe)
904 {
905         if (!register_for_each_vma(uprobe, false))
906                 delete_uprobe(uprobe);
907
908         /* TODO : cant unregister? schedule a worker thread */
909 }
910
911 /*
912  * uprobe_register - register a probe
913  * @inode: the file in which the probe has to be placed.
914  * @offset: offset from the start of the file.
915  * @uc: information on howto handle the probe..
916  *
917  * Apart from the access refcount, uprobe_register() takes a creation
918  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
919  * inserted into the rbtree (i.e first consumer for a @inode:@offset
920  * tuple).  Creation refcount stops uprobe_unregister from freeing the
921  * @uprobe even before the register operation is complete. Creation
922  * refcount is released when the last @uc for the @uprobe
923  * unregisters.
924  *
925  * Return errno if it cannot successully install probes
926  * else return 0 (success)
927  */
928 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
929 {
930         struct uprobe *uprobe;
931         int ret;
932
933         if (!inode || !uc || uc->next)
934                 return -EINVAL;
935
936         if (offset > i_size_read(inode))
937                 return -EINVAL;
938
939         ret = 0;
940         mutex_lock(uprobes_hash(inode));
941         uprobe = alloc_uprobe(inode, offset);
942
943         if (uprobe && !consumer_add(uprobe, uc)) {
944                 ret = __uprobe_register(uprobe);
945                 if (ret) {
946                         uprobe->consumers = NULL;
947                         __uprobe_unregister(uprobe);
948                 } else {
949                         uprobe->flags |= UPROBE_RUN_HANDLER;
950                 }
951         }
952
953         mutex_unlock(uprobes_hash(inode));
954         put_uprobe(uprobe);
955
956         return ret;
957 }
958
959 /*
960  * uprobe_unregister - unregister a already registered probe.
961  * @inode: the file in which the probe has to be removed.
962  * @offset: offset from the start of the file.
963  * @uc: identify which probe if multiple probes are colocated.
964  */
965 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
966 {
967         struct uprobe *uprobe;
968
969         if (!inode || !uc)
970                 return;
971
972         uprobe = find_uprobe(inode, offset);
973         if (!uprobe)
974                 return;
975
976         mutex_lock(uprobes_hash(inode));
977
978         if (consumer_del(uprobe, uc)) {
979                 if (!uprobe->consumers) {
980                         __uprobe_unregister(uprobe);
981                         uprobe->flags &= ~UPROBE_RUN_HANDLER;
982                 }
983         }
984
985         mutex_unlock(uprobes_hash(inode));
986         if (uprobe)
987                 put_uprobe(uprobe);
988 }
989
990 /*
991  * Of all the nodes that correspond to the given inode, return the node
992  * with the least offset.
993  */
994 static struct rb_node *find_least_offset_node(struct inode *inode)
995 {
996         struct uprobe u = { .inode = inode, .offset = 0};
997         struct rb_node *n = uprobes_tree.rb_node;
998         struct rb_node *close_node = NULL;
999         struct uprobe *uprobe;
1000         int match;
1001
1002         while (n) {
1003                 uprobe = rb_entry(n, struct uprobe, rb_node);
1004                 match = match_uprobe(&u, uprobe);
1005
1006                 if (uprobe->inode == inode)
1007                         close_node = n;
1008
1009                 if (!match)
1010                         return close_node;
1011
1012                 if (match < 0)
1013                         n = n->rb_left;
1014                 else
1015                         n = n->rb_right;
1016         }
1017
1018         return close_node;
1019 }
1020
1021 /*
1022  * For a given inode, build a list of probes that need to be inserted.
1023  */
1024 static void build_probe_list(struct inode *inode, struct list_head *head)
1025 {
1026         struct uprobe *uprobe;
1027         unsigned long flags;
1028         struct rb_node *n;
1029
1030         spin_lock_irqsave(&uprobes_treelock, flags);
1031
1032         n = find_least_offset_node(inode);
1033
1034         for (; n; n = rb_next(n)) {
1035                 uprobe = rb_entry(n, struct uprobe, rb_node);
1036                 if (uprobe->inode != inode)
1037                         break;
1038
1039                 list_add(&uprobe->pending_list, head);
1040                 atomic_inc(&uprobe->ref);
1041         }
1042
1043         spin_unlock_irqrestore(&uprobes_treelock, flags);
1044 }
1045
1046 /*
1047  * Called from mmap_region.
1048  * called with mm->mmap_sem acquired.
1049  *
1050  * Return -ve no if we fail to insert probes and we cannot
1051  * bail-out.
1052  * Return 0 otherwise. i.e:
1053  *
1054  *      - successful insertion of probes
1055  *      - (or) no possible probes to be inserted.
1056  *      - (or) insertion of probes failed but we can bail-out.
1057  */
1058 int uprobe_mmap(struct vm_area_struct *vma)
1059 {
1060         struct list_head tmp_list;
1061         struct uprobe *uprobe, *u;
1062         struct inode *inode;
1063         int ret, count;
1064
1065         if (!atomic_read(&uprobe_events) || !valid_vma(vma, true))
1066                 return 0;
1067
1068         inode = vma->vm_file->f_mapping->host;
1069         if (!inode)
1070                 return 0;
1071
1072         INIT_LIST_HEAD(&tmp_list);
1073         mutex_lock(uprobes_mmap_hash(inode));
1074         build_probe_list(inode, &tmp_list);
1075
1076         ret = 0;
1077         count = 0;
1078
1079         list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1080                 loff_t vaddr;
1081
1082                 list_del(&uprobe->pending_list);
1083                 if (!ret) {
1084                         vaddr = vma_address(vma, uprobe->offset);
1085
1086                         if (vaddr < vma->vm_start || vaddr >= vma->vm_end) {
1087                                 put_uprobe(uprobe);
1088                                 continue;
1089                         }
1090
1091                         ret = install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1092
1093                         /* Ignore double add: */
1094                         if (ret == -EEXIST) {
1095                                 ret = 0;
1096
1097                                 if (!is_swbp_at_addr(vma->vm_mm, vaddr))
1098                                         continue;
1099
1100                                 /*
1101                                  * Unable to insert a breakpoint, but
1102                                  * breakpoint lies underneath. Increment the
1103                                  * probe count.
1104                                  */
1105                                 atomic_inc(&vma->vm_mm->uprobes_state.count);
1106                         }
1107
1108                         if (!ret)
1109                                 count++;
1110                 }
1111                 put_uprobe(uprobe);
1112         }
1113
1114         mutex_unlock(uprobes_mmap_hash(inode));
1115
1116         if (ret)
1117                 atomic_sub(count, &vma->vm_mm->uprobes_state.count);
1118
1119         return ret;
1120 }
1121
1122 /*
1123  * Called in context of a munmap of a vma.
1124  */
1125 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1126 {
1127         struct list_head tmp_list;
1128         struct uprobe *uprobe, *u;
1129         struct inode *inode;
1130
1131         if (!atomic_read(&uprobe_events) || !valid_vma(vma, false))
1132                 return;
1133
1134         if (!atomic_read(&vma->vm_mm->uprobes_state.count))
1135                 return;
1136
1137         inode = vma->vm_file->f_mapping->host;
1138         if (!inode)
1139                 return;
1140
1141         INIT_LIST_HEAD(&tmp_list);
1142         mutex_lock(uprobes_mmap_hash(inode));
1143         build_probe_list(inode, &tmp_list);
1144
1145         list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1146                 loff_t vaddr;
1147
1148                 list_del(&uprobe->pending_list);
1149                 vaddr = vma_address(vma, uprobe->offset);
1150
1151                 if (vaddr >= start && vaddr < end) {
1152                         /*
1153                          * An unregister could have removed the probe before
1154                          * unmap. So check before we decrement the count.
1155                          */
1156                         if (is_swbp_at_addr(vma->vm_mm, vaddr) == 1)
1157                                 atomic_dec(&vma->vm_mm->uprobes_state.count);
1158                 }
1159                 put_uprobe(uprobe);
1160         }
1161         mutex_unlock(uprobes_mmap_hash(inode));
1162 }
1163
1164 /* Slot allocation for XOL */
1165 static int xol_add_vma(struct xol_area *area)
1166 {
1167         struct mm_struct *mm;
1168         int ret;
1169
1170         area->page = alloc_page(GFP_HIGHUSER);
1171         if (!area->page)
1172                 return -ENOMEM;
1173
1174         ret = -EALREADY;
1175         mm = current->mm;
1176
1177         down_write(&mm->mmap_sem);
1178         if (mm->uprobes_state.xol_area)
1179                 goto fail;
1180
1181         ret = -ENOMEM;
1182
1183         /* Try to map as high as possible, this is only a hint. */
1184         area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0);
1185         if (area->vaddr & ~PAGE_MASK) {
1186                 ret = area->vaddr;
1187                 goto fail;
1188         }
1189
1190         ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1191                                 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1192         if (ret)
1193                 goto fail;
1194
1195         smp_wmb();      /* pairs with get_xol_area() */
1196         mm->uprobes_state.xol_area = area;
1197         ret = 0;
1198
1199 fail:
1200         up_write(&mm->mmap_sem);
1201         if (ret)
1202                 __free_page(area->page);
1203
1204         return ret;
1205 }
1206
1207 static struct xol_area *get_xol_area(struct mm_struct *mm)
1208 {
1209         struct xol_area *area;
1210
1211         area = mm->uprobes_state.xol_area;
1212         smp_read_barrier_depends();     /* pairs with wmb in xol_add_vma() */
1213
1214         return area;
1215 }
1216
1217 /*
1218  * xol_alloc_area - Allocate process's xol_area.
1219  * This area will be used for storing instructions for execution out of
1220  * line.
1221  *
1222  * Returns the allocated area or NULL.
1223  */
1224 static struct xol_area *xol_alloc_area(void)
1225 {
1226         struct xol_area *area;
1227
1228         area = kzalloc(sizeof(*area), GFP_KERNEL);
1229         if (unlikely(!area))
1230                 return NULL;
1231
1232         area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1233
1234         if (!area->bitmap)
1235                 goto fail;
1236
1237         init_waitqueue_head(&area->wq);
1238         if (!xol_add_vma(area))
1239                 return area;
1240
1241 fail:
1242         kfree(area->bitmap);
1243         kfree(area);
1244
1245         return get_xol_area(current->mm);
1246 }
1247
1248 /*
1249  * uprobe_clear_state - Free the area allocated for slots.
1250  */
1251 void uprobe_clear_state(struct mm_struct *mm)
1252 {
1253         struct xol_area *area = mm->uprobes_state.xol_area;
1254
1255         if (!area)
1256                 return;
1257
1258         put_page(area->page);
1259         kfree(area->bitmap);
1260         kfree(area);
1261 }
1262
1263 /*
1264  * uprobe_reset_state - Free the area allocated for slots.
1265  */
1266 void uprobe_reset_state(struct mm_struct *mm)
1267 {
1268         mm->uprobes_state.xol_area = NULL;
1269         atomic_set(&mm->uprobes_state.count, 0);
1270 }
1271
1272 /*
1273  *  - search for a free slot.
1274  */
1275 static unsigned long xol_take_insn_slot(struct xol_area *area)
1276 {
1277         unsigned long slot_addr;
1278         int slot_nr;
1279
1280         do {
1281                 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1282                 if (slot_nr < UINSNS_PER_PAGE) {
1283                         if (!test_and_set_bit(slot_nr, area->bitmap))
1284                                 break;
1285
1286                         slot_nr = UINSNS_PER_PAGE;
1287                         continue;
1288                 }
1289                 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1290         } while (slot_nr >= UINSNS_PER_PAGE);
1291
1292         slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1293         atomic_inc(&area->slot_count);
1294
1295         return slot_addr;
1296 }
1297
1298 /*
1299  * xol_get_insn_slot - If was not allocated a slot, then
1300  * allocate a slot.
1301  * Returns the allocated slot address or 0.
1302  */
1303 static unsigned long xol_get_insn_slot(struct uprobe *uprobe, unsigned long slot_addr)
1304 {
1305         struct xol_area *area;
1306         unsigned long offset;
1307         void *vaddr;
1308
1309         area = get_xol_area(current->mm);
1310         if (!area) {
1311                 area = xol_alloc_area();
1312                 if (!area)
1313                         return 0;
1314         }
1315         current->utask->xol_vaddr = xol_take_insn_slot(area);
1316
1317         /*
1318          * Initialize the slot if xol_vaddr points to valid
1319          * instruction slot.
1320          */
1321         if (unlikely(!current->utask->xol_vaddr))
1322                 return 0;
1323
1324         current->utask->vaddr = slot_addr;
1325         offset = current->utask->xol_vaddr & ~PAGE_MASK;
1326         vaddr = kmap_atomic(area->page);
1327         memcpy(vaddr + offset, uprobe->arch.insn, MAX_UINSN_BYTES);
1328         kunmap_atomic(vaddr);
1329
1330         return current->utask->xol_vaddr;
1331 }
1332
1333 /*
1334  * xol_free_insn_slot - If slot was earlier allocated by
1335  * @xol_get_insn_slot(), make the slot available for
1336  * subsequent requests.
1337  */
1338 static void xol_free_insn_slot(struct task_struct *tsk)
1339 {
1340         struct xol_area *area;
1341         unsigned long vma_end;
1342         unsigned long slot_addr;
1343
1344         if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1345                 return;
1346
1347         slot_addr = tsk->utask->xol_vaddr;
1348
1349         if (unlikely(!slot_addr || IS_ERR_VALUE(slot_addr)))
1350                 return;
1351
1352         area = tsk->mm->uprobes_state.xol_area;
1353         vma_end = area->vaddr + PAGE_SIZE;
1354         if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1355                 unsigned long offset;
1356                 int slot_nr;
1357
1358                 offset = slot_addr - area->vaddr;
1359                 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1360                 if (slot_nr >= UINSNS_PER_PAGE)
1361                         return;
1362
1363                 clear_bit(slot_nr, area->bitmap);
1364                 atomic_dec(&area->slot_count);
1365                 if (waitqueue_active(&area->wq))
1366                         wake_up(&area->wq);
1367
1368                 tsk->utask->xol_vaddr = 0;
1369         }
1370 }
1371
1372 /**
1373  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1374  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1375  * instruction.
1376  * Return the address of the breakpoint instruction.
1377  */
1378 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1379 {
1380         return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1381 }
1382
1383 /*
1384  * Called with no locks held.
1385  * Called in context of a exiting or a exec-ing thread.
1386  */
1387 void uprobe_free_utask(struct task_struct *t)
1388 {
1389         struct uprobe_task *utask = t->utask;
1390
1391         if (t->uprobe_srcu_id != -1)
1392                 srcu_read_unlock_raw(&uprobes_srcu, t->uprobe_srcu_id);
1393
1394         if (!utask)
1395                 return;
1396
1397         if (utask->active_uprobe)
1398                 put_uprobe(utask->active_uprobe);
1399
1400         xol_free_insn_slot(t);
1401         kfree(utask);
1402         t->utask = NULL;
1403 }
1404
1405 /*
1406  * Called in context of a new clone/fork from copy_process.
1407  */
1408 void uprobe_copy_process(struct task_struct *t)
1409 {
1410         t->utask = NULL;
1411         t->uprobe_srcu_id = -1;
1412 }
1413
1414 /*
1415  * Allocate a uprobe_task object for the task.
1416  * Called when the thread hits a breakpoint for the first time.
1417  *
1418  * Returns:
1419  * - pointer to new uprobe_task on success
1420  * - NULL otherwise
1421  */
1422 static struct uprobe_task *add_utask(void)
1423 {
1424         struct uprobe_task *utask;
1425
1426         utask = kzalloc(sizeof *utask, GFP_KERNEL);
1427         if (unlikely(!utask))
1428                 return NULL;
1429
1430         utask->active_uprobe = NULL;
1431         current->utask = utask;
1432         return utask;
1433 }
1434
1435 /* Prepare to single-step probed instruction out of line. */
1436 static int
1437 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long vaddr)
1438 {
1439         if (xol_get_insn_slot(uprobe, vaddr) && !arch_uprobe_pre_xol(&uprobe->arch, regs))
1440                 return 0;
1441
1442         return -EFAULT;
1443 }
1444
1445 /*
1446  * If we are singlestepping, then ensure this thread is not connected to
1447  * non-fatal signals until completion of singlestep.  When xol insn itself
1448  * triggers the signal,  restart the original insn even if the task is
1449  * already SIGKILL'ed (since coredump should report the correct ip).  This
1450  * is even more important if the task has a handler for SIGSEGV/etc, The
1451  * _same_ instruction should be repeated again after return from the signal
1452  * handler, and SSTEP can never finish in this case.
1453  */
1454 bool uprobe_deny_signal(void)
1455 {
1456         struct task_struct *t = current;
1457         struct uprobe_task *utask = t->utask;
1458
1459         if (likely(!utask || !utask->active_uprobe))
1460                 return false;
1461
1462         WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1463
1464         if (signal_pending(t)) {
1465                 spin_lock_irq(&t->sighand->siglock);
1466                 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1467                 spin_unlock_irq(&t->sighand->siglock);
1468
1469                 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1470                         utask->state = UTASK_SSTEP_TRAPPED;
1471                         set_tsk_thread_flag(t, TIF_UPROBE);
1472                         set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1473                 }
1474         }
1475
1476         return true;
1477 }
1478
1479 /*
1480  * Avoid singlestepping the original instruction if the original instruction
1481  * is a NOP or can be emulated.
1482  */
1483 static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
1484 {
1485         if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1486                 return true;
1487
1488         uprobe->flags &= ~UPROBE_SKIP_SSTEP;
1489         return false;
1490 }
1491
1492 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1493 {
1494         struct mm_struct *mm = current->mm;
1495         struct uprobe *uprobe = NULL;
1496         struct vm_area_struct *vma;
1497
1498         down_read(&mm->mmap_sem);
1499         vma = find_vma(mm, bp_vaddr);
1500         if (vma && vma->vm_start <= bp_vaddr) {
1501                 if (valid_vma(vma, false)) {
1502                         struct inode *inode;
1503                         loff_t offset;
1504
1505                         inode = vma->vm_file->f_mapping->host;
1506                         offset = bp_vaddr - vma->vm_start;
1507                         offset += (vma->vm_pgoff << PAGE_SHIFT);
1508                         uprobe = find_uprobe(inode, offset);
1509                 }
1510
1511                 if (!uprobe)
1512                         *is_swbp = is_swbp_at_addr(mm, bp_vaddr);
1513         } else {
1514                 *is_swbp = -EFAULT;
1515         }
1516
1517         srcu_read_unlock_raw(&uprobes_srcu, current->uprobe_srcu_id);
1518         current->uprobe_srcu_id = -1;
1519         up_read(&mm->mmap_sem);
1520
1521         return uprobe;
1522 }
1523
1524 /*
1525  * Run handler and ask thread to singlestep.
1526  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1527  */
1528 static void handle_swbp(struct pt_regs *regs)
1529 {
1530         struct uprobe_task *utask;
1531         struct uprobe *uprobe;
1532         unsigned long bp_vaddr;
1533         int is_swbp;
1534
1535         bp_vaddr = uprobe_get_swbp_addr(regs);
1536         uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1537
1538         if (!uprobe) {
1539                 /* No matching uprobe; signal SIGTRAP. */
1540                 send_sig(SIGTRAP, current, 0);
1541                 return;
1542         }
1543
1544         utask = current->utask;
1545         if (!utask) {
1546                 utask = add_utask();
1547                 /* Cannot allocate; re-execute the instruction. */
1548                 if (!utask)
1549                         goto cleanup_ret;
1550         }
1551         utask->active_uprobe = uprobe;
1552         handler_chain(uprobe, regs);
1553         if (uprobe->flags & UPROBE_SKIP_SSTEP && can_skip_sstep(uprobe, regs))
1554                 goto cleanup_ret;
1555
1556         utask->state = UTASK_SSTEP;
1557         if (!pre_ssout(uprobe, regs, bp_vaddr)) {
1558                 user_enable_single_step(current);
1559                 return;
1560         }
1561
1562 cleanup_ret:
1563         if (utask) {
1564                 utask->active_uprobe = NULL;
1565                 utask->state = UTASK_RUNNING;
1566         }
1567         if (uprobe) {
1568                 if (!(uprobe->flags & UPROBE_SKIP_SSTEP))
1569
1570                         /*
1571                          * cannot singlestep; cannot skip instruction;
1572                          * re-execute the instruction.
1573                          */
1574                         instruction_pointer_set(regs, bp_vaddr);
1575
1576                 put_uprobe(uprobe);
1577         }
1578 }
1579
1580 /*
1581  * Perform required fix-ups and disable singlestep.
1582  * Allow pending signals to take effect.
1583  */
1584 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1585 {
1586         struct uprobe *uprobe;
1587
1588         uprobe = utask->active_uprobe;
1589         if (utask->state == UTASK_SSTEP_ACK)
1590                 arch_uprobe_post_xol(&uprobe->arch, regs);
1591         else if (utask->state == UTASK_SSTEP_TRAPPED)
1592                 arch_uprobe_abort_xol(&uprobe->arch, regs);
1593         else
1594                 WARN_ON_ONCE(1);
1595
1596         put_uprobe(uprobe);
1597         utask->active_uprobe = NULL;
1598         utask->state = UTASK_RUNNING;
1599         user_disable_single_step(current);
1600         xol_free_insn_slot(current);
1601
1602         spin_lock_irq(&current->sighand->siglock);
1603         recalc_sigpending(); /* see uprobe_deny_signal() */
1604         spin_unlock_irq(&current->sighand->siglock);
1605 }
1606
1607 /*
1608  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag.  (and on
1609  * subsequent probe hits on the thread sets the state to UTASK_BP_HIT) and
1610  * allows the thread to return from interrupt.
1611  *
1612  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag and
1613  * also sets the state to UTASK_SSTEP_ACK and allows the thread to return from
1614  * interrupt.
1615  *
1616  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1617  * uprobe_notify_resume().
1618  */
1619 void uprobe_notify_resume(struct pt_regs *regs)
1620 {
1621         struct uprobe_task *utask;
1622
1623         utask = current->utask;
1624         if (!utask || utask->state == UTASK_BP_HIT)
1625                 handle_swbp(regs);
1626         else
1627                 handle_singlestep(utask, regs);
1628 }
1629
1630 /*
1631  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1632  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1633  */
1634 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1635 {
1636         struct uprobe_task *utask;
1637
1638         if (!current->mm || !atomic_read(&current->mm->uprobes_state.count))
1639                 /* task is currently not uprobed */
1640                 return 0;
1641
1642         utask = current->utask;
1643         if (utask)
1644                 utask->state = UTASK_BP_HIT;
1645
1646         set_thread_flag(TIF_UPROBE);
1647         current->uprobe_srcu_id = srcu_read_lock_raw(&uprobes_srcu);
1648
1649         return 1;
1650 }
1651
1652 /*
1653  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1654  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1655  */
1656 int uprobe_post_sstep_notifier(struct pt_regs *regs)
1657 {
1658         struct uprobe_task *utask = current->utask;
1659
1660         if (!current->mm || !utask || !utask->active_uprobe)
1661                 /* task is currently not uprobed */
1662                 return 0;
1663
1664         utask->state = UTASK_SSTEP_ACK;
1665         set_thread_flag(TIF_UPROBE);
1666         return 1;
1667 }
1668
1669 static struct notifier_block uprobe_exception_nb = {
1670         .notifier_call          = arch_uprobe_exception_notify,
1671         .priority               = INT_MAX-1,    /* notified after kprobes, kgdb */
1672 };
1673
1674 static int __init init_uprobes(void)
1675 {
1676         int i;
1677
1678         for (i = 0; i < UPROBES_HASH_SZ; i++) {
1679                 mutex_init(&uprobes_mutex[i]);
1680                 mutex_init(&uprobes_mmap_mutex[i]);
1681         }
1682         init_srcu_struct(&uprobes_srcu);
1683
1684         return register_die_notifier(&uprobe_exception_nb);
1685 }
1686 module_init(init_uprobes);
1687
1688 static void __exit exit_uprobes(void)
1689 {
1690 }
1691 module_exit(exit_uprobes);