[SCSI] SCSI: aic7xxx_osm_pci resource leak fix.
[cascardo/linux.git] / kernel / fork.c
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13
14 #include <linux/config.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/unistd.h>
18 #include <linux/smp_lock.h>
19 #include <linux/module.h>
20 #include <linux/vmalloc.h>
21 #include <linux/completion.h>
22 #include <linux/namespace.h>
23 #include <linux/personality.h>
24 #include <linux/mempolicy.h>
25 #include <linux/sem.h>
26 #include <linux/file.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
30 #include <linux/fs.h>
31 #include <linux/capability.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/security.h>
35 #include <linux/swap.h>
36 #include <linux/syscalls.h>
37 #include <linux/jiffies.h>
38 #include <linux/futex.h>
39 #include <linux/rcupdate.h>
40 #include <linux/ptrace.h>
41 #include <linux/mount.h>
42 #include <linux/audit.h>
43 #include <linux/profile.h>
44 #include <linux/rmap.h>
45 #include <linux/acct.h>
46 #include <linux/cn_proc.h>
47
48 #include <asm/pgtable.h>
49 #include <asm/pgalloc.h>
50 #include <asm/uaccess.h>
51 #include <asm/mmu_context.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlbflush.h>
54
55 /*
56  * Protected counters by write_lock_irq(&tasklist_lock)
57  */
58 unsigned long total_forks;      /* Handle normal Linux uptimes. */
59 int nr_threads;                 /* The idle threads do not count.. */
60
61 int max_threads;                /* tunable limit on nr_threads */
62
63 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
64
65  __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
66
67 EXPORT_SYMBOL(tasklist_lock);
68
69 int nr_processes(void)
70 {
71         int cpu;
72         int total = 0;
73
74         for_each_online_cpu(cpu)
75                 total += per_cpu(process_counts, cpu);
76
77         return total;
78 }
79
80 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
81 # define alloc_task_struct()    kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
82 # define free_task_struct(tsk)  kmem_cache_free(task_struct_cachep, (tsk))
83 static kmem_cache_t *task_struct_cachep;
84 #endif
85
86 /* SLAB cache for signal_struct structures (tsk->signal) */
87 static kmem_cache_t *signal_cachep;
88
89 /* SLAB cache for sighand_struct structures (tsk->sighand) */
90 kmem_cache_t *sighand_cachep;
91
92 /* SLAB cache for files_struct structures (tsk->files) */
93 kmem_cache_t *files_cachep;
94
95 /* SLAB cache for fs_struct structures (tsk->fs) */
96 kmem_cache_t *fs_cachep;
97
98 /* SLAB cache for vm_area_struct structures */
99 kmem_cache_t *vm_area_cachep;
100
101 /* SLAB cache for mm_struct structures (tsk->mm) */
102 static kmem_cache_t *mm_cachep;
103
104 void free_task(struct task_struct *tsk)
105 {
106         free_thread_info(tsk->thread_info);
107         free_task_struct(tsk);
108 }
109 EXPORT_SYMBOL(free_task);
110
111 void __put_task_struct(struct task_struct *tsk)
112 {
113         WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
114         WARN_ON(atomic_read(&tsk->usage));
115         WARN_ON(tsk == current);
116
117         if (unlikely(tsk->audit_context))
118                 audit_free(tsk);
119         security_task_free(tsk);
120         free_uid(tsk->user);
121         put_group_info(tsk->group_info);
122
123         if (!profile_handoff_task(tsk))
124                 free_task(tsk);
125 }
126
127 void __init fork_init(unsigned long mempages)
128 {
129 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
130 #ifndef ARCH_MIN_TASKALIGN
131 #define ARCH_MIN_TASKALIGN      L1_CACHE_BYTES
132 #endif
133         /* create a slab on which task_structs can be allocated */
134         task_struct_cachep =
135                 kmem_cache_create("task_struct", sizeof(struct task_struct),
136                         ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
137 #endif
138
139         /*
140          * The default maximum number of threads is set to a safe
141          * value: the thread structures can take up at most half
142          * of memory.
143          */
144         max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
145
146         /*
147          * we need to allow at least 20 threads to boot a system
148          */
149         if(max_threads < 20)
150                 max_threads = 20;
151
152         init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
153         init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
154         init_task.signal->rlim[RLIMIT_SIGPENDING] =
155                 init_task.signal->rlim[RLIMIT_NPROC];
156 }
157
158 static struct task_struct *dup_task_struct(struct task_struct *orig)
159 {
160         struct task_struct *tsk;
161         struct thread_info *ti;
162
163         prepare_to_copy(orig);
164
165         tsk = alloc_task_struct();
166         if (!tsk)
167                 return NULL;
168
169         ti = alloc_thread_info(tsk);
170         if (!ti) {
171                 free_task_struct(tsk);
172                 return NULL;
173         }
174
175         *tsk = *orig;
176         tsk->thread_info = ti;
177         setup_thread_stack(tsk, orig);
178
179         /* One for us, one for whoever does the "release_task()" (usually parent) */
180         atomic_set(&tsk->usage,2);
181         atomic_set(&tsk->fs_excl, 0);
182         tsk->btrace_seq = 0;
183         return tsk;
184 }
185
186 #ifdef CONFIG_MMU
187 static inline int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
188 {
189         struct vm_area_struct *mpnt, *tmp, **pprev;
190         struct rb_node **rb_link, *rb_parent;
191         int retval;
192         unsigned long charge;
193         struct mempolicy *pol;
194
195         down_write(&oldmm->mmap_sem);
196         flush_cache_mm(oldmm);
197         down_write(&mm->mmap_sem);
198
199         mm->locked_vm = 0;
200         mm->mmap = NULL;
201         mm->mmap_cache = NULL;
202         mm->free_area_cache = oldmm->mmap_base;
203         mm->cached_hole_size = ~0UL;
204         mm->map_count = 0;
205         cpus_clear(mm->cpu_vm_mask);
206         mm->mm_rb = RB_ROOT;
207         rb_link = &mm->mm_rb.rb_node;
208         rb_parent = NULL;
209         pprev = &mm->mmap;
210
211         for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
212                 struct file *file;
213
214                 if (mpnt->vm_flags & VM_DONTCOPY) {
215                         long pages = vma_pages(mpnt);
216                         mm->total_vm -= pages;
217                         vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
218                                                                 -pages);
219                         continue;
220                 }
221                 charge = 0;
222                 if (mpnt->vm_flags & VM_ACCOUNT) {
223                         unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
224                         if (security_vm_enough_memory(len))
225                                 goto fail_nomem;
226                         charge = len;
227                 }
228                 tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
229                 if (!tmp)
230                         goto fail_nomem;
231                 *tmp = *mpnt;
232                 pol = mpol_copy(vma_policy(mpnt));
233                 retval = PTR_ERR(pol);
234                 if (IS_ERR(pol))
235                         goto fail_nomem_policy;
236                 vma_set_policy(tmp, pol);
237                 tmp->vm_flags &= ~VM_LOCKED;
238                 tmp->vm_mm = mm;
239                 tmp->vm_next = NULL;
240                 anon_vma_link(tmp);
241                 file = tmp->vm_file;
242                 if (file) {
243                         struct inode *inode = file->f_dentry->d_inode;
244                         get_file(file);
245                         if (tmp->vm_flags & VM_DENYWRITE)
246                                 atomic_dec(&inode->i_writecount);
247       
248                         /* insert tmp into the share list, just after mpnt */
249                         spin_lock(&file->f_mapping->i_mmap_lock);
250                         tmp->vm_truncate_count = mpnt->vm_truncate_count;
251                         flush_dcache_mmap_lock(file->f_mapping);
252                         vma_prio_tree_add(tmp, mpnt);
253                         flush_dcache_mmap_unlock(file->f_mapping);
254                         spin_unlock(&file->f_mapping->i_mmap_lock);
255                 }
256
257                 /*
258                  * Link in the new vma and copy the page table entries.
259                  */
260                 *pprev = tmp;
261                 pprev = &tmp->vm_next;
262
263                 __vma_link_rb(mm, tmp, rb_link, rb_parent);
264                 rb_link = &tmp->vm_rb.rb_right;
265                 rb_parent = &tmp->vm_rb;
266
267                 mm->map_count++;
268                 retval = copy_page_range(mm, oldmm, mpnt);
269
270                 if (tmp->vm_ops && tmp->vm_ops->open)
271                         tmp->vm_ops->open(tmp);
272
273                 if (retval)
274                         goto out;
275         }
276         retval = 0;
277 out:
278         up_write(&mm->mmap_sem);
279         flush_tlb_mm(oldmm);
280         up_write(&oldmm->mmap_sem);
281         return retval;
282 fail_nomem_policy:
283         kmem_cache_free(vm_area_cachep, tmp);
284 fail_nomem:
285         retval = -ENOMEM;
286         vm_unacct_memory(charge);
287         goto out;
288 }
289
290 static inline int mm_alloc_pgd(struct mm_struct * mm)
291 {
292         mm->pgd = pgd_alloc(mm);
293         if (unlikely(!mm->pgd))
294                 return -ENOMEM;
295         return 0;
296 }
297
298 static inline void mm_free_pgd(struct mm_struct * mm)
299 {
300         pgd_free(mm->pgd);
301 }
302 #else
303 #define dup_mmap(mm, oldmm)     (0)
304 #define mm_alloc_pgd(mm)        (0)
305 #define mm_free_pgd(mm)
306 #endif /* CONFIG_MMU */
307
308  __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
309
310 #define allocate_mm()   (kmem_cache_alloc(mm_cachep, SLAB_KERNEL))
311 #define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
312
313 #include <linux/init_task.h>
314
315 static struct mm_struct * mm_init(struct mm_struct * mm)
316 {
317         atomic_set(&mm->mm_users, 1);
318         atomic_set(&mm->mm_count, 1);
319         init_rwsem(&mm->mmap_sem);
320         INIT_LIST_HEAD(&mm->mmlist);
321         mm->core_waiters = 0;
322         mm->nr_ptes = 0;
323         set_mm_counter(mm, file_rss, 0);
324         set_mm_counter(mm, anon_rss, 0);
325         spin_lock_init(&mm->page_table_lock);
326         rwlock_init(&mm->ioctx_list_lock);
327         mm->ioctx_list = NULL;
328         mm->free_area_cache = TASK_UNMAPPED_BASE;
329         mm->cached_hole_size = ~0UL;
330
331         if (likely(!mm_alloc_pgd(mm))) {
332                 mm->def_flags = 0;
333                 return mm;
334         }
335         free_mm(mm);
336         return NULL;
337 }
338
339 /*
340  * Allocate and initialize an mm_struct.
341  */
342 struct mm_struct * mm_alloc(void)
343 {
344         struct mm_struct * mm;
345
346         mm = allocate_mm();
347         if (mm) {
348                 memset(mm, 0, sizeof(*mm));
349                 mm = mm_init(mm);
350         }
351         return mm;
352 }
353
354 /*
355  * Called when the last reference to the mm
356  * is dropped: either by a lazy thread or by
357  * mmput. Free the page directory and the mm.
358  */
359 void fastcall __mmdrop(struct mm_struct *mm)
360 {
361         BUG_ON(mm == &init_mm);
362         mm_free_pgd(mm);
363         destroy_context(mm);
364         free_mm(mm);
365 }
366
367 /*
368  * Decrement the use count and release all resources for an mm.
369  */
370 void mmput(struct mm_struct *mm)
371 {
372         if (atomic_dec_and_test(&mm->mm_users)) {
373                 exit_aio(mm);
374                 exit_mmap(mm);
375                 if (!list_empty(&mm->mmlist)) {
376                         spin_lock(&mmlist_lock);
377                         list_del(&mm->mmlist);
378                         spin_unlock(&mmlist_lock);
379                 }
380                 put_swap_token(mm);
381                 mmdrop(mm);
382         }
383 }
384 EXPORT_SYMBOL_GPL(mmput);
385
386 /**
387  * get_task_mm - acquire a reference to the task's mm
388  *
389  * Returns %NULL if the task has no mm.  Checks PF_BORROWED_MM (meaning
390  * this kernel workthread has transiently adopted a user mm with use_mm,
391  * to do its AIO) is not set and if so returns a reference to it, after
392  * bumping up the use count.  User must release the mm via mmput()
393  * after use.  Typically used by /proc and ptrace.
394  */
395 struct mm_struct *get_task_mm(struct task_struct *task)
396 {
397         struct mm_struct *mm;
398
399         task_lock(task);
400         mm = task->mm;
401         if (mm) {
402                 if (task->flags & PF_BORROWED_MM)
403                         mm = NULL;
404                 else
405                         atomic_inc(&mm->mm_users);
406         }
407         task_unlock(task);
408         return mm;
409 }
410 EXPORT_SYMBOL_GPL(get_task_mm);
411
412 /* Please note the differences between mmput and mm_release.
413  * mmput is called whenever we stop holding onto a mm_struct,
414  * error success whatever.
415  *
416  * mm_release is called after a mm_struct has been removed
417  * from the current process.
418  *
419  * This difference is important for error handling, when we
420  * only half set up a mm_struct for a new process and need to restore
421  * the old one.  Because we mmput the new mm_struct before
422  * restoring the old one. . .
423  * Eric Biederman 10 January 1998
424  */
425 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
426 {
427         struct completion *vfork_done = tsk->vfork_done;
428
429         /* Get rid of any cached register state */
430         deactivate_mm(tsk, mm);
431
432         /* notify parent sleeping on vfork() */
433         if (vfork_done) {
434                 tsk->vfork_done = NULL;
435                 complete(vfork_done);
436         }
437         if (tsk->clear_child_tid && atomic_read(&mm->mm_users) > 1) {
438                 u32 __user * tidptr = tsk->clear_child_tid;
439                 tsk->clear_child_tid = NULL;
440
441                 /*
442                  * We don't check the error code - if userspace has
443                  * not set up a proper pointer then tough luck.
444                  */
445                 put_user(0, tidptr);
446                 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
447         }
448 }
449
450 /*
451  * Allocate a new mm structure and copy contents from the
452  * mm structure of the passed in task structure.
453  */
454 static struct mm_struct *dup_mm(struct task_struct *tsk)
455 {
456         struct mm_struct *mm, *oldmm = current->mm;
457         int err;
458
459         if (!oldmm)
460                 return NULL;
461
462         mm = allocate_mm();
463         if (!mm)
464                 goto fail_nomem;
465
466         memcpy(mm, oldmm, sizeof(*mm));
467
468         if (!mm_init(mm))
469                 goto fail_nomem;
470
471         if (init_new_context(tsk, mm))
472                 goto fail_nocontext;
473
474         err = dup_mmap(mm, oldmm);
475         if (err)
476                 goto free_pt;
477
478         mm->hiwater_rss = get_mm_rss(mm);
479         mm->hiwater_vm = mm->total_vm;
480
481         return mm;
482
483 free_pt:
484         mmput(mm);
485
486 fail_nomem:
487         return NULL;
488
489 fail_nocontext:
490         /*
491          * If init_new_context() failed, we cannot use mmput() to free the mm
492          * because it calls destroy_context()
493          */
494         mm_free_pgd(mm);
495         free_mm(mm);
496         return NULL;
497 }
498
499 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
500 {
501         struct mm_struct * mm, *oldmm;
502         int retval;
503
504         tsk->min_flt = tsk->maj_flt = 0;
505         tsk->nvcsw = tsk->nivcsw = 0;
506
507         tsk->mm = NULL;
508         tsk->active_mm = NULL;
509
510         /*
511          * Are we cloning a kernel thread?
512          *
513          * We need to steal a active VM for that..
514          */
515         oldmm = current->mm;
516         if (!oldmm)
517                 return 0;
518
519         if (clone_flags & CLONE_VM) {
520                 atomic_inc(&oldmm->mm_users);
521                 mm = oldmm;
522                 goto good_mm;
523         }
524
525         retval = -ENOMEM;
526         mm = dup_mm(tsk);
527         if (!mm)
528                 goto fail_nomem;
529
530 good_mm:
531         tsk->mm = mm;
532         tsk->active_mm = mm;
533         return 0;
534
535 fail_nomem:
536         return retval;
537 }
538
539 static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
540 {
541         struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
542         /* We don't need to lock fs - think why ;-) */
543         if (fs) {
544                 atomic_set(&fs->count, 1);
545                 rwlock_init(&fs->lock);
546                 fs->umask = old->umask;
547                 read_lock(&old->lock);
548                 fs->rootmnt = mntget(old->rootmnt);
549                 fs->root = dget(old->root);
550                 fs->pwdmnt = mntget(old->pwdmnt);
551                 fs->pwd = dget(old->pwd);
552                 if (old->altroot) {
553                         fs->altrootmnt = mntget(old->altrootmnt);
554                         fs->altroot = dget(old->altroot);
555                 } else {
556                         fs->altrootmnt = NULL;
557                         fs->altroot = NULL;
558                 }
559                 read_unlock(&old->lock);
560         }
561         return fs;
562 }
563
564 struct fs_struct *copy_fs_struct(struct fs_struct *old)
565 {
566         return __copy_fs_struct(old);
567 }
568
569 EXPORT_SYMBOL_GPL(copy_fs_struct);
570
571 static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
572 {
573         if (clone_flags & CLONE_FS) {
574                 atomic_inc(&current->fs->count);
575                 return 0;
576         }
577         tsk->fs = __copy_fs_struct(current->fs);
578         if (!tsk->fs)
579                 return -ENOMEM;
580         return 0;
581 }
582
583 static int count_open_files(struct fdtable *fdt)
584 {
585         int size = fdt->max_fdset;
586         int i;
587
588         /* Find the last open fd */
589         for (i = size/(8*sizeof(long)); i > 0; ) {
590                 if (fdt->open_fds->fds_bits[--i])
591                         break;
592         }
593         i = (i+1) * 8 * sizeof(long);
594         return i;
595 }
596
597 static struct files_struct *alloc_files(void)
598 {
599         struct files_struct *newf;
600         struct fdtable *fdt;
601
602         newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL);
603         if (!newf)
604                 goto out;
605
606         atomic_set(&newf->count, 1);
607
608         spin_lock_init(&newf->file_lock);
609         newf->next_fd = 0;
610         fdt = &newf->fdtab;
611         fdt->max_fds = NR_OPEN_DEFAULT;
612         fdt->max_fdset = EMBEDDED_FD_SET_SIZE;
613         fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
614         fdt->open_fds = (fd_set *)&newf->open_fds_init;
615         fdt->fd = &newf->fd_array[0];
616         INIT_RCU_HEAD(&fdt->rcu);
617         fdt->free_files = NULL;
618         fdt->next = NULL;
619         rcu_assign_pointer(newf->fdt, fdt);
620 out:
621         return newf;
622 }
623
624 /*
625  * Allocate a new files structure and copy contents from the
626  * passed in files structure.
627  */
628 static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
629 {
630         struct files_struct *newf;
631         struct file **old_fds, **new_fds;
632         int open_files, size, i, expand;
633         struct fdtable *old_fdt, *new_fdt;
634
635         newf = alloc_files();
636         if (!newf)
637                 goto out;
638
639         spin_lock(&oldf->file_lock);
640         old_fdt = files_fdtable(oldf);
641         new_fdt = files_fdtable(newf);
642         size = old_fdt->max_fdset;
643         open_files = count_open_files(old_fdt);
644         expand = 0;
645
646         /*
647          * Check whether we need to allocate a larger fd array or fd set.
648          * Note: we're not a clone task, so the open count won't  change.
649          */
650         if (open_files > new_fdt->max_fdset) {
651                 new_fdt->max_fdset = 0;
652                 expand = 1;
653         }
654         if (open_files > new_fdt->max_fds) {
655                 new_fdt->max_fds = 0;
656                 expand = 1;
657         }
658
659         /* if the old fdset gets grown now, we'll only copy up to "size" fds */
660         if (expand) {
661                 spin_unlock(&oldf->file_lock);
662                 spin_lock(&newf->file_lock);
663                 *errorp = expand_files(newf, open_files-1);
664                 spin_unlock(&newf->file_lock);
665                 if (*errorp < 0)
666                         goto out_release;
667                 new_fdt = files_fdtable(newf);
668                 /*
669                  * Reacquire the oldf lock and a pointer to its fd table
670                  * who knows it may have a new bigger fd table. We need
671                  * the latest pointer.
672                  */
673                 spin_lock(&oldf->file_lock);
674                 old_fdt = files_fdtable(oldf);
675         }
676
677         old_fds = old_fdt->fd;
678         new_fds = new_fdt->fd;
679
680         memcpy(new_fdt->open_fds->fds_bits, old_fdt->open_fds->fds_bits, open_files/8);
681         memcpy(new_fdt->close_on_exec->fds_bits, old_fdt->close_on_exec->fds_bits, open_files/8);
682
683         for (i = open_files; i != 0; i--) {
684                 struct file *f = *old_fds++;
685                 if (f) {
686                         get_file(f);
687                 } else {
688                         /*
689                          * The fd may be claimed in the fd bitmap but not yet
690                          * instantiated in the files array if a sibling thread
691                          * is partway through open().  So make sure that this
692                          * fd is available to the new process.
693                          */
694                         FD_CLR(open_files - i, new_fdt->open_fds);
695                 }
696                 rcu_assign_pointer(*new_fds++, f);
697         }
698         spin_unlock(&oldf->file_lock);
699
700         /* compute the remainder to be cleared */
701         size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
702
703         /* This is long word aligned thus could use a optimized version */ 
704         memset(new_fds, 0, size); 
705
706         if (new_fdt->max_fdset > open_files) {
707                 int left = (new_fdt->max_fdset-open_files)/8;
708                 int start = open_files / (8 * sizeof(unsigned long));
709
710                 memset(&new_fdt->open_fds->fds_bits[start], 0, left);
711                 memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
712         }
713
714 out:
715         return newf;
716
717 out_release:
718         free_fdset (new_fdt->close_on_exec, new_fdt->max_fdset);
719         free_fdset (new_fdt->open_fds, new_fdt->max_fdset);
720         free_fd_array(new_fdt->fd, new_fdt->max_fds);
721         kmem_cache_free(files_cachep, newf);
722         return NULL;
723 }
724
725 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
726 {
727         struct files_struct *oldf, *newf;
728         int error = 0;
729
730         /*
731          * A background process may not have any files ...
732          */
733         oldf = current->files;
734         if (!oldf)
735                 goto out;
736
737         if (clone_flags & CLONE_FILES) {
738                 atomic_inc(&oldf->count);
739                 goto out;
740         }
741
742         /*
743          * Note: we may be using current for both targets (See exec.c)
744          * This works because we cache current->files (old) as oldf. Don't
745          * break this.
746          */
747         tsk->files = NULL;
748         error = -ENOMEM;
749         newf = dup_fd(oldf, &error);
750         if (!newf)
751                 goto out;
752
753         tsk->files = newf;
754         error = 0;
755 out:
756         return error;
757 }
758
759 /*
760  *      Helper to unshare the files of the current task.
761  *      We don't want to expose copy_files internals to
762  *      the exec layer of the kernel.
763  */
764
765 int unshare_files(void)
766 {
767         struct files_struct *files  = current->files;
768         int rc;
769
770         BUG_ON(!files);
771
772         /* This can race but the race causes us to copy when we don't
773            need to and drop the copy */
774         if(atomic_read(&files->count) == 1)
775         {
776                 atomic_inc(&files->count);
777                 return 0;
778         }
779         rc = copy_files(0, current);
780         if(rc)
781                 current->files = files;
782         return rc;
783 }
784
785 EXPORT_SYMBOL(unshare_files);
786
787 static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
788 {
789         struct sighand_struct *sig;
790
791         if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
792                 atomic_inc(&current->sighand->count);
793                 return 0;
794         }
795         sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
796         rcu_assign_pointer(tsk->sighand, sig);
797         if (!sig)
798                 return -ENOMEM;
799         atomic_set(&sig->count, 1);
800         memcpy(sig->action, current->sighand->action, sizeof(sig->action));
801         return 0;
802 }
803
804 void __cleanup_sighand(struct sighand_struct *sighand)
805 {
806         if (atomic_dec_and_test(&sighand->count))
807                 kmem_cache_free(sighand_cachep, sighand);
808 }
809
810 static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
811 {
812         struct signal_struct *sig;
813         int ret;
814
815         if (clone_flags & CLONE_THREAD) {
816                 atomic_inc(&current->signal->count);
817                 atomic_inc(&current->signal->live);
818                 return 0;
819         }
820         sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
821         tsk->signal = sig;
822         if (!sig)
823                 return -ENOMEM;
824
825         ret = copy_thread_group_keys(tsk);
826         if (ret < 0) {
827                 kmem_cache_free(signal_cachep, sig);
828                 return ret;
829         }
830
831         atomic_set(&sig->count, 1);
832         atomic_set(&sig->live, 1);
833         init_waitqueue_head(&sig->wait_chldexit);
834         sig->flags = 0;
835         sig->group_exit_code = 0;
836         sig->group_exit_task = NULL;
837         sig->group_stop_count = 0;
838         sig->curr_target = NULL;
839         init_sigpending(&sig->shared_pending);
840         INIT_LIST_HEAD(&sig->posix_timers);
841
842         hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_REL);
843         sig->it_real_incr.tv64 = 0;
844         sig->real_timer.function = it_real_fn;
845         sig->tsk = tsk;
846
847         sig->it_virt_expires = cputime_zero;
848         sig->it_virt_incr = cputime_zero;
849         sig->it_prof_expires = cputime_zero;
850         sig->it_prof_incr = cputime_zero;
851
852         sig->leader = 0;        /* session leadership doesn't inherit */
853         sig->tty_old_pgrp = 0;
854
855         sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
856         sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
857         sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
858         sig->sched_time = 0;
859         INIT_LIST_HEAD(&sig->cpu_timers[0]);
860         INIT_LIST_HEAD(&sig->cpu_timers[1]);
861         INIT_LIST_HEAD(&sig->cpu_timers[2]);
862
863         task_lock(current->group_leader);
864         memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
865         task_unlock(current->group_leader);
866
867         if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
868                 /*
869                  * New sole thread in the process gets an expiry time
870                  * of the whole CPU time limit.
871                  */
872                 tsk->it_prof_expires =
873                         secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
874         }
875
876         return 0;
877 }
878
879 void __cleanup_signal(struct signal_struct *sig)
880 {
881         exit_thread_group_keys(sig);
882         kmem_cache_free(signal_cachep, sig);
883 }
884
885 static inline void cleanup_signal(struct task_struct *tsk)
886 {
887         struct signal_struct *sig = tsk->signal;
888
889         atomic_dec(&sig->live);
890
891         if (atomic_dec_and_test(&sig->count))
892                 __cleanup_signal(sig);
893 }
894
895 static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
896 {
897         unsigned long new_flags = p->flags;
898
899         new_flags &= ~(PF_SUPERPRIV | PF_NOFREEZE);
900         new_flags |= PF_FORKNOEXEC;
901         if (!(clone_flags & CLONE_PTRACE))
902                 p->ptrace = 0;
903         p->flags = new_flags;
904 }
905
906 asmlinkage long sys_set_tid_address(int __user *tidptr)
907 {
908         current->clear_child_tid = tidptr;
909
910         return current->pid;
911 }
912
913 /*
914  * This creates a new process as a copy of the old one,
915  * but does not actually start it yet.
916  *
917  * It copies the registers, and all the appropriate
918  * parts of the process environment (as per the clone
919  * flags). The actual kick-off is left to the caller.
920  */
921 static task_t *copy_process(unsigned long clone_flags,
922                                  unsigned long stack_start,
923                                  struct pt_regs *regs,
924                                  unsigned long stack_size,
925                                  int __user *parent_tidptr,
926                                  int __user *child_tidptr,
927                                  int pid)
928 {
929         int retval;
930         struct task_struct *p = NULL;
931
932         if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
933                 return ERR_PTR(-EINVAL);
934
935         /*
936          * Thread groups must share signals as well, and detached threads
937          * can only be started up within the thread group.
938          */
939         if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
940                 return ERR_PTR(-EINVAL);
941
942         /*
943          * Shared signal handlers imply shared VM. By way of the above,
944          * thread groups also imply shared VM. Blocking this case allows
945          * for various simplifications in other code.
946          */
947         if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
948                 return ERR_PTR(-EINVAL);
949
950         retval = security_task_create(clone_flags);
951         if (retval)
952                 goto fork_out;
953
954         retval = -ENOMEM;
955         p = dup_task_struct(current);
956         if (!p)
957                 goto fork_out;
958
959         retval = -EAGAIN;
960         if (atomic_read(&p->user->processes) >=
961                         p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
962                 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
963                                 p->user != &root_user)
964                         goto bad_fork_free;
965         }
966
967         atomic_inc(&p->user->__count);
968         atomic_inc(&p->user->processes);
969         get_group_info(p->group_info);
970
971         /*
972          * If multiple threads are within copy_process(), then this check
973          * triggers too late. This doesn't hurt, the check is only there
974          * to stop root fork bombs.
975          */
976         if (nr_threads >= max_threads)
977                 goto bad_fork_cleanup_count;
978
979         if (!try_module_get(task_thread_info(p)->exec_domain->module))
980                 goto bad_fork_cleanup_count;
981
982         if (p->binfmt && !try_module_get(p->binfmt->module))
983                 goto bad_fork_cleanup_put_domain;
984
985         p->did_exec = 0;
986         copy_flags(clone_flags, p);
987         p->pid = pid;
988         retval = -EFAULT;
989         if (clone_flags & CLONE_PARENT_SETTID)
990                 if (put_user(p->pid, parent_tidptr))
991                         goto bad_fork_cleanup;
992
993         p->proc_dentry = NULL;
994
995         INIT_LIST_HEAD(&p->children);
996         INIT_LIST_HEAD(&p->sibling);
997         p->vfork_done = NULL;
998         spin_lock_init(&p->alloc_lock);
999         spin_lock_init(&p->proc_lock);
1000
1001         clear_tsk_thread_flag(p, TIF_SIGPENDING);
1002         init_sigpending(&p->pending);
1003
1004         p->utime = cputime_zero;
1005         p->stime = cputime_zero;
1006         p->sched_time = 0;
1007         p->rchar = 0;           /* I/O counter: bytes read */
1008         p->wchar = 0;           /* I/O counter: bytes written */
1009         p->syscr = 0;           /* I/O counter: read syscalls */
1010         p->syscw = 0;           /* I/O counter: write syscalls */
1011         acct_clear_integrals(p);
1012
1013         p->it_virt_expires = cputime_zero;
1014         p->it_prof_expires = cputime_zero;
1015         p->it_sched_expires = 0;
1016         INIT_LIST_HEAD(&p->cpu_timers[0]);
1017         INIT_LIST_HEAD(&p->cpu_timers[1]);
1018         INIT_LIST_HEAD(&p->cpu_timers[2]);
1019
1020         p->lock_depth = -1;             /* -1 = no lock */
1021         do_posix_clock_monotonic_gettime(&p->start_time);
1022         p->security = NULL;
1023         p->io_context = NULL;
1024         p->io_wait = NULL;
1025         p->audit_context = NULL;
1026         cpuset_fork(p);
1027 #ifdef CONFIG_NUMA
1028         p->mempolicy = mpol_copy(p->mempolicy);
1029         if (IS_ERR(p->mempolicy)) {
1030                 retval = PTR_ERR(p->mempolicy);
1031                 p->mempolicy = NULL;
1032                 goto bad_fork_cleanup_cpuset;
1033         }
1034         mpol_fix_fork_child_flag(p);
1035 #endif
1036
1037 #ifdef CONFIG_DEBUG_MUTEXES
1038         p->blocked_on = NULL; /* not blocked yet */
1039 #endif
1040
1041         p->tgid = p->pid;
1042         if (clone_flags & CLONE_THREAD)
1043                 p->tgid = current->tgid;
1044
1045         if ((retval = security_task_alloc(p)))
1046                 goto bad_fork_cleanup_policy;
1047         if ((retval = audit_alloc(p)))
1048                 goto bad_fork_cleanup_security;
1049         /* copy all the process information */
1050         if ((retval = copy_semundo(clone_flags, p)))
1051                 goto bad_fork_cleanup_audit;
1052         if ((retval = copy_files(clone_flags, p)))
1053                 goto bad_fork_cleanup_semundo;
1054         if ((retval = copy_fs(clone_flags, p)))
1055                 goto bad_fork_cleanup_files;
1056         if ((retval = copy_sighand(clone_flags, p)))
1057                 goto bad_fork_cleanup_fs;
1058         if ((retval = copy_signal(clone_flags, p)))
1059                 goto bad_fork_cleanup_sighand;
1060         if ((retval = copy_mm(clone_flags, p)))
1061                 goto bad_fork_cleanup_signal;
1062         if ((retval = copy_keys(clone_flags, p)))
1063                 goto bad_fork_cleanup_mm;
1064         if ((retval = copy_namespace(clone_flags, p)))
1065                 goto bad_fork_cleanup_keys;
1066         retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1067         if (retval)
1068                 goto bad_fork_cleanup_namespace;
1069
1070         p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1071         /*
1072          * Clear TID on mm_release()?
1073          */
1074         p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1075         p->robust_list = NULL;
1076 #ifdef CONFIG_COMPAT
1077         p->compat_robust_list = NULL;
1078 #endif
1079         /*
1080          * sigaltstack should be cleared when sharing the same VM
1081          */
1082         if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1083                 p->sas_ss_sp = p->sas_ss_size = 0;
1084
1085         /*
1086          * Syscall tracing should be turned off in the child regardless
1087          * of CLONE_PTRACE.
1088          */
1089         clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1090 #ifdef TIF_SYSCALL_EMU
1091         clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1092 #endif
1093
1094         /* Our parent execution domain becomes current domain
1095            These must match for thread signalling to apply */
1096            
1097         p->parent_exec_id = p->self_exec_id;
1098
1099         /* ok, now we should be set up.. */
1100         p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1101         p->pdeath_signal = 0;
1102         p->exit_state = 0;
1103
1104         /*
1105          * Ok, make it visible to the rest of the system.
1106          * We dont wake it up yet.
1107          */
1108         p->group_leader = p;
1109         INIT_LIST_HEAD(&p->thread_group);
1110         INIT_LIST_HEAD(&p->ptrace_children);
1111         INIT_LIST_HEAD(&p->ptrace_list);
1112
1113         /* Perform scheduler related setup. Assign this task to a CPU. */
1114         sched_fork(p, clone_flags);
1115
1116         /* Need tasklist lock for parent etc handling! */
1117         write_lock_irq(&tasklist_lock);
1118
1119         /*
1120          * The task hasn't been attached yet, so its cpus_allowed mask will
1121          * not be changed, nor will its assigned CPU.
1122          *
1123          * The cpus_allowed mask of the parent may have changed after it was
1124          * copied first time - so re-copy it here, then check the child's CPU
1125          * to ensure it is on a valid CPU (and if not, just force it back to
1126          * parent's CPU). This avoids alot of nasty races.
1127          */
1128         p->cpus_allowed = current->cpus_allowed;
1129         if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1130                         !cpu_online(task_cpu(p))))
1131                 set_task_cpu(p, smp_processor_id());
1132
1133         /* CLONE_PARENT re-uses the old parent */
1134         if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1135                 p->real_parent = current->real_parent;
1136         else
1137                 p->real_parent = current;
1138         p->parent = p->real_parent;
1139
1140         spin_lock(&current->sighand->siglock);
1141
1142         /*
1143          * Process group and session signals need to be delivered to just the
1144          * parent before the fork or both the parent and the child after the
1145          * fork. Restart if a signal comes in before we add the new process to
1146          * it's process group.
1147          * A fatal signal pending means that current will exit, so the new
1148          * thread can't slip out of an OOM kill (or normal SIGKILL).
1149          */
1150         recalc_sigpending();
1151         if (signal_pending(current)) {
1152                 spin_unlock(&current->sighand->siglock);
1153                 write_unlock_irq(&tasklist_lock);
1154                 retval = -ERESTARTNOINTR;
1155                 goto bad_fork_cleanup_namespace;
1156         }
1157
1158         if (clone_flags & CLONE_THREAD) {
1159                 /*
1160                  * Important: if an exit-all has been started then
1161                  * do not create this new thread - the whole thread
1162                  * group is supposed to exit anyway.
1163                  */
1164                 if (current->signal->flags & SIGNAL_GROUP_EXIT) {
1165                         spin_unlock(&current->sighand->siglock);
1166                         write_unlock_irq(&tasklist_lock);
1167                         retval = -EAGAIN;
1168                         goto bad_fork_cleanup_namespace;
1169                 }
1170
1171                 p->group_leader = current->group_leader;
1172                 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1173
1174                 if (!cputime_eq(current->signal->it_virt_expires,
1175                                 cputime_zero) ||
1176                     !cputime_eq(current->signal->it_prof_expires,
1177                                 cputime_zero) ||
1178                     current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1179                     !list_empty(&current->signal->cpu_timers[0]) ||
1180                     !list_empty(&current->signal->cpu_timers[1]) ||
1181                     !list_empty(&current->signal->cpu_timers[2])) {
1182                         /*
1183                          * Have child wake up on its first tick to check
1184                          * for process CPU timers.
1185                          */
1186                         p->it_prof_expires = jiffies_to_cputime(1);
1187                 }
1188         }
1189
1190         /*
1191          * inherit ioprio
1192          */
1193         p->ioprio = current->ioprio;
1194
1195         if (likely(p->pid)) {
1196                 add_parent(p);
1197                 if (unlikely(p->ptrace & PT_PTRACED))
1198                         __ptrace_link(p, current->parent);
1199
1200                 if (thread_group_leader(p)) {
1201                         p->signal->tty = current->signal->tty;
1202                         p->signal->pgrp = process_group(current);
1203                         p->signal->session = current->signal->session;
1204                         attach_pid(p, PIDTYPE_PGID, process_group(p));
1205                         attach_pid(p, PIDTYPE_SID, p->signal->session);
1206
1207                         list_add_tail_rcu(&p->tasks, &init_task.tasks);
1208                         __get_cpu_var(process_counts)++;
1209                 }
1210                 attach_pid(p, PIDTYPE_PID, p->pid);
1211                 nr_threads++;
1212         }
1213
1214         total_forks++;
1215         spin_unlock(&current->sighand->siglock);
1216         write_unlock_irq(&tasklist_lock);
1217         proc_fork_connector(p);
1218         return p;
1219
1220 bad_fork_cleanup_namespace:
1221         exit_namespace(p);
1222 bad_fork_cleanup_keys:
1223         exit_keys(p);
1224 bad_fork_cleanup_mm:
1225         if (p->mm)
1226                 mmput(p->mm);
1227 bad_fork_cleanup_signal:
1228         cleanup_signal(p);
1229 bad_fork_cleanup_sighand:
1230         __cleanup_sighand(p->sighand);
1231 bad_fork_cleanup_fs:
1232         exit_fs(p); /* blocking */
1233 bad_fork_cleanup_files:
1234         exit_files(p); /* blocking */
1235 bad_fork_cleanup_semundo:
1236         exit_sem(p);
1237 bad_fork_cleanup_audit:
1238         audit_free(p);
1239 bad_fork_cleanup_security:
1240         security_task_free(p);
1241 bad_fork_cleanup_policy:
1242 #ifdef CONFIG_NUMA
1243         mpol_free(p->mempolicy);
1244 bad_fork_cleanup_cpuset:
1245 #endif
1246         cpuset_exit(p);
1247 bad_fork_cleanup:
1248         if (p->binfmt)
1249                 module_put(p->binfmt->module);
1250 bad_fork_cleanup_put_domain:
1251         module_put(task_thread_info(p)->exec_domain->module);
1252 bad_fork_cleanup_count:
1253         put_group_info(p->group_info);
1254         atomic_dec(&p->user->processes);
1255         free_uid(p->user);
1256 bad_fork_free:
1257         free_task(p);
1258 fork_out:
1259         return ERR_PTR(retval);
1260 }
1261
1262 struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1263 {
1264         memset(regs, 0, sizeof(struct pt_regs));
1265         return regs;
1266 }
1267
1268 task_t * __devinit fork_idle(int cpu)
1269 {
1270         task_t *task;
1271         struct pt_regs regs;
1272
1273         task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL, 0);
1274         if (!task)
1275                 return ERR_PTR(-ENOMEM);
1276         init_idle(task, cpu);
1277
1278         return task;
1279 }
1280
1281 static inline int fork_traceflag (unsigned clone_flags)
1282 {
1283         if (clone_flags & CLONE_UNTRACED)
1284                 return 0;
1285         else if (clone_flags & CLONE_VFORK) {
1286                 if (current->ptrace & PT_TRACE_VFORK)
1287                         return PTRACE_EVENT_VFORK;
1288         } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1289                 if (current->ptrace & PT_TRACE_CLONE)
1290                         return PTRACE_EVENT_CLONE;
1291         } else if (current->ptrace & PT_TRACE_FORK)
1292                 return PTRACE_EVENT_FORK;
1293
1294         return 0;
1295 }
1296
1297 /*
1298  *  Ok, this is the main fork-routine.
1299  *
1300  * It copies the process, and if successful kick-starts
1301  * it and waits for it to finish using the VM if required.
1302  */
1303 long do_fork(unsigned long clone_flags,
1304               unsigned long stack_start,
1305               struct pt_regs *regs,
1306               unsigned long stack_size,
1307               int __user *parent_tidptr,
1308               int __user *child_tidptr)
1309 {
1310         struct task_struct *p;
1311         int trace = 0;
1312         struct pid *pid = alloc_pid();
1313         long nr;
1314
1315         if (!pid)
1316                 return -EAGAIN;
1317         nr = pid->nr;
1318         if (unlikely(current->ptrace)) {
1319                 trace = fork_traceflag (clone_flags);
1320                 if (trace)
1321                         clone_flags |= CLONE_PTRACE;
1322         }
1323
1324         p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, nr);
1325         /*
1326          * Do this prior waking up the new thread - the thread pointer
1327          * might get invalid after that point, if the thread exits quickly.
1328          */
1329         if (!IS_ERR(p)) {
1330                 struct completion vfork;
1331
1332                 if (clone_flags & CLONE_VFORK) {
1333                         p->vfork_done = &vfork;
1334                         init_completion(&vfork);
1335                 }
1336
1337                 if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1338                         /*
1339                          * We'll start up with an immediate SIGSTOP.
1340                          */
1341                         sigaddset(&p->pending.signal, SIGSTOP);
1342                         set_tsk_thread_flag(p, TIF_SIGPENDING);
1343                 }
1344
1345                 if (!(clone_flags & CLONE_STOPPED))
1346                         wake_up_new_task(p, clone_flags);
1347                 else
1348                         p->state = TASK_STOPPED;
1349
1350                 if (unlikely (trace)) {
1351                         current->ptrace_message = nr;
1352                         ptrace_notify ((trace << 8) | SIGTRAP);
1353                 }
1354
1355                 if (clone_flags & CLONE_VFORK) {
1356                         wait_for_completion(&vfork);
1357                         if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE))
1358                                 ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1359                 }
1360         } else {
1361                 free_pid(pid);
1362                 nr = PTR_ERR(p);
1363         }
1364         return nr;
1365 }
1366
1367 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1368 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1369 #endif
1370
1371 static void sighand_ctor(void *data, kmem_cache_t *cachep, unsigned long flags)
1372 {
1373         struct sighand_struct *sighand = data;
1374
1375         if ((flags & (SLAB_CTOR_VERIFY | SLAB_CTOR_CONSTRUCTOR)) ==
1376                                         SLAB_CTOR_CONSTRUCTOR)
1377                 spin_lock_init(&sighand->siglock);
1378 }
1379
1380 void __init proc_caches_init(void)
1381 {
1382         sighand_cachep = kmem_cache_create("sighand_cache",
1383                         sizeof(struct sighand_struct), 0,
1384                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1385                         sighand_ctor, NULL);
1386         signal_cachep = kmem_cache_create("signal_cache",
1387                         sizeof(struct signal_struct), 0,
1388                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1389         files_cachep = kmem_cache_create("files_cache", 
1390                         sizeof(struct files_struct), 0,
1391                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1392         fs_cachep = kmem_cache_create("fs_cache", 
1393                         sizeof(struct fs_struct), 0,
1394                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1395         vm_area_cachep = kmem_cache_create("vm_area_struct",
1396                         sizeof(struct vm_area_struct), 0,
1397                         SLAB_PANIC, NULL, NULL);
1398         mm_cachep = kmem_cache_create("mm_struct",
1399                         sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1400                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1401 }
1402
1403
1404 /*
1405  * Check constraints on flags passed to the unshare system call and
1406  * force unsharing of additional process context as appropriate.
1407  */
1408 static inline void check_unshare_flags(unsigned long *flags_ptr)
1409 {
1410         /*
1411          * If unsharing a thread from a thread group, must also
1412          * unshare vm.
1413          */
1414         if (*flags_ptr & CLONE_THREAD)
1415                 *flags_ptr |= CLONE_VM;
1416
1417         /*
1418          * If unsharing vm, must also unshare signal handlers.
1419          */
1420         if (*flags_ptr & CLONE_VM)
1421                 *flags_ptr |= CLONE_SIGHAND;
1422
1423         /*
1424          * If unsharing signal handlers and the task was created
1425          * using CLONE_THREAD, then must unshare the thread
1426          */
1427         if ((*flags_ptr & CLONE_SIGHAND) &&
1428             (atomic_read(&current->signal->count) > 1))
1429                 *flags_ptr |= CLONE_THREAD;
1430
1431         /*
1432          * If unsharing namespace, must also unshare filesystem information.
1433          */
1434         if (*flags_ptr & CLONE_NEWNS)
1435                 *flags_ptr |= CLONE_FS;
1436 }
1437
1438 /*
1439  * Unsharing of tasks created with CLONE_THREAD is not supported yet
1440  */
1441 static int unshare_thread(unsigned long unshare_flags)
1442 {
1443         if (unshare_flags & CLONE_THREAD)
1444                 return -EINVAL;
1445
1446         return 0;
1447 }
1448
1449 /*
1450  * Unshare the filesystem structure if it is being shared
1451  */
1452 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1453 {
1454         struct fs_struct *fs = current->fs;
1455
1456         if ((unshare_flags & CLONE_FS) &&
1457             (fs && atomic_read(&fs->count) > 1)) {
1458                 *new_fsp = __copy_fs_struct(current->fs);
1459                 if (!*new_fsp)
1460                         return -ENOMEM;
1461         }
1462
1463         return 0;
1464 }
1465
1466 /*
1467  * Unshare the namespace structure if it is being shared
1468  */
1469 static int unshare_namespace(unsigned long unshare_flags, struct namespace **new_nsp, struct fs_struct *new_fs)
1470 {
1471         struct namespace *ns = current->namespace;
1472
1473         if ((unshare_flags & CLONE_NEWNS) &&
1474             (ns && atomic_read(&ns->count) > 1)) {
1475                 if (!capable(CAP_SYS_ADMIN))
1476                         return -EPERM;
1477
1478                 *new_nsp = dup_namespace(current, new_fs ? new_fs : current->fs);
1479                 if (!*new_nsp)
1480                         return -ENOMEM;
1481         }
1482
1483         return 0;
1484 }
1485
1486 /*
1487  * Unsharing of sighand for tasks created with CLONE_SIGHAND is not
1488  * supported yet
1489  */
1490 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1491 {
1492         struct sighand_struct *sigh = current->sighand;
1493
1494         if ((unshare_flags & CLONE_SIGHAND) &&
1495             (sigh && atomic_read(&sigh->count) > 1))
1496                 return -EINVAL;
1497         else
1498                 return 0;
1499 }
1500
1501 /*
1502  * Unshare vm if it is being shared
1503  */
1504 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1505 {
1506         struct mm_struct *mm = current->mm;
1507
1508         if ((unshare_flags & CLONE_VM) &&
1509             (mm && atomic_read(&mm->mm_users) > 1)) {
1510                 return -EINVAL;
1511         }
1512
1513         return 0;
1514 }
1515
1516 /*
1517  * Unshare file descriptor table if it is being shared
1518  */
1519 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1520 {
1521         struct files_struct *fd = current->files;
1522         int error = 0;
1523
1524         if ((unshare_flags & CLONE_FILES) &&
1525             (fd && atomic_read(&fd->count) > 1)) {
1526                 *new_fdp = dup_fd(fd, &error);
1527                 if (!*new_fdp)
1528                         return error;
1529         }
1530
1531         return 0;
1532 }
1533
1534 /*
1535  * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
1536  * supported yet
1537  */
1538 static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp)
1539 {
1540         if (unshare_flags & CLONE_SYSVSEM)
1541                 return -EINVAL;
1542
1543         return 0;
1544 }
1545
1546 /*
1547  * unshare allows a process to 'unshare' part of the process
1548  * context which was originally shared using clone.  copy_*
1549  * functions used by do_fork() cannot be used here directly
1550  * because they modify an inactive task_struct that is being
1551  * constructed. Here we are modifying the current, active,
1552  * task_struct.
1553  */
1554 asmlinkage long sys_unshare(unsigned long unshare_flags)
1555 {
1556         int err = 0;
1557         struct fs_struct *fs, *new_fs = NULL;
1558         struct namespace *ns, *new_ns = NULL;
1559         struct sighand_struct *sigh, *new_sigh = NULL;
1560         struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1561         struct files_struct *fd, *new_fd = NULL;
1562         struct sem_undo_list *new_ulist = NULL;
1563
1564         check_unshare_flags(&unshare_flags);
1565
1566         /* Return -EINVAL for all unsupported flags */
1567         err = -EINVAL;
1568         if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1569                                 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM))
1570                 goto bad_unshare_out;
1571
1572         if ((err = unshare_thread(unshare_flags)))
1573                 goto bad_unshare_out;
1574         if ((err = unshare_fs(unshare_flags, &new_fs)))
1575                 goto bad_unshare_cleanup_thread;
1576         if ((err = unshare_namespace(unshare_flags, &new_ns, new_fs)))
1577                 goto bad_unshare_cleanup_fs;
1578         if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1579                 goto bad_unshare_cleanup_ns;
1580         if ((err = unshare_vm(unshare_flags, &new_mm)))
1581                 goto bad_unshare_cleanup_sigh;
1582         if ((err = unshare_fd(unshare_flags, &new_fd)))
1583                 goto bad_unshare_cleanup_vm;
1584         if ((err = unshare_semundo(unshare_flags, &new_ulist)))
1585                 goto bad_unshare_cleanup_fd;
1586
1587         if (new_fs || new_ns || new_sigh || new_mm || new_fd || new_ulist) {
1588
1589                 task_lock(current);
1590
1591                 if (new_fs) {
1592                         fs = current->fs;
1593                         current->fs = new_fs;
1594                         new_fs = fs;
1595                 }
1596
1597                 if (new_ns) {
1598                         ns = current->namespace;
1599                         current->namespace = new_ns;
1600                         new_ns = ns;
1601                 }
1602
1603                 if (new_sigh) {
1604                         sigh = current->sighand;
1605                         rcu_assign_pointer(current->sighand, new_sigh);
1606                         new_sigh = sigh;
1607                 }
1608
1609                 if (new_mm) {
1610                         mm = current->mm;
1611                         active_mm = current->active_mm;
1612                         current->mm = new_mm;
1613                         current->active_mm = new_mm;
1614                         activate_mm(active_mm, new_mm);
1615                         new_mm = mm;
1616                 }
1617
1618                 if (new_fd) {
1619                         fd = current->files;
1620                         current->files = new_fd;
1621                         new_fd = fd;
1622                 }
1623
1624                 task_unlock(current);
1625         }
1626
1627 bad_unshare_cleanup_fd:
1628         if (new_fd)
1629                 put_files_struct(new_fd);
1630
1631 bad_unshare_cleanup_vm:
1632         if (new_mm)
1633                 mmput(new_mm);
1634
1635 bad_unshare_cleanup_sigh:
1636         if (new_sigh)
1637                 if (atomic_dec_and_test(&new_sigh->count))
1638                         kmem_cache_free(sighand_cachep, new_sigh);
1639
1640 bad_unshare_cleanup_ns:
1641         if (new_ns)
1642                 put_namespace(new_ns);
1643
1644 bad_unshare_cleanup_fs:
1645         if (new_fs)
1646                 put_fs_struct(new_fs);
1647
1648 bad_unshare_cleanup_thread:
1649 bad_unshare_out:
1650         return err;
1651 }