fork: reset mm->pinned_vm
[cascardo/linux.git] / kernel / fork.c
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/mm.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/cn_proc.h>
60 #include <linux/freezer.h>
61 #include <linux/delayacct.h>
62 #include <linux/taskstats_kern.h>
63 #include <linux/random.h>
64 #include <linux/tty.h>
65 #include <linux/blkdev.h>
66 #include <linux/fs_struct.h>
67 #include <linux/magic.h>
68 #include <linux/perf_event.h>
69 #include <linux/posix-timers.h>
70 #include <linux/user-return-notifier.h>
71 #include <linux/oom.h>
72 #include <linux/khugepaged.h>
73 #include <linux/signalfd.h>
74 #include <linux/uprobes.h>
75 #include <linux/aio.h>
76 #include <linux/compiler.h>
77
78 #include <asm/pgtable.h>
79 #include <asm/pgalloc.h>
80 #include <asm/uaccess.h>
81 #include <asm/mmu_context.h>
82 #include <asm/cacheflush.h>
83 #include <asm/tlbflush.h>
84
85 #include <trace/events/sched.h>
86
87 #define CREATE_TRACE_POINTS
88 #include <trace/events/task.h>
89
90 /*
91  * Protected counters by write_lock_irq(&tasklist_lock)
92  */
93 unsigned long total_forks;      /* Handle normal Linux uptimes. */
94 int nr_threads;                 /* The idle threads do not count.. */
95
96 int max_threads;                /* tunable limit on nr_threads */
97
98 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
99
100 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
101
102 #ifdef CONFIG_PROVE_RCU
103 int lockdep_tasklist_lock_is_held(void)
104 {
105         return lockdep_is_held(&tasklist_lock);
106 }
107 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
108 #endif /* #ifdef CONFIG_PROVE_RCU */
109
110 int nr_processes(void)
111 {
112         int cpu;
113         int total = 0;
114
115         for_each_possible_cpu(cpu)
116                 total += per_cpu(process_counts, cpu);
117
118         return total;
119 }
120
121 void __weak arch_release_task_struct(struct task_struct *tsk)
122 {
123 }
124
125 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
126 static struct kmem_cache *task_struct_cachep;
127
128 static inline struct task_struct *alloc_task_struct_node(int node)
129 {
130         return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
131 }
132
133 static inline void free_task_struct(struct task_struct *tsk)
134 {
135         kmem_cache_free(task_struct_cachep, tsk);
136 }
137 #endif
138
139 void __weak arch_release_thread_info(struct thread_info *ti)
140 {
141 }
142
143 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
144
145 /*
146  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
147  * kmemcache based allocator.
148  */
149 # if THREAD_SIZE >= PAGE_SIZE
150 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
151                                                   int node)
152 {
153         struct page *page = alloc_kmem_pages_node(node, THREADINFO_GFP,
154                                                   THREAD_SIZE_ORDER);
155
156         return page ? page_address(page) : NULL;
157 }
158
159 static inline void free_thread_info(struct thread_info *ti)
160 {
161         free_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
162 }
163 # else
164 static struct kmem_cache *thread_info_cache;
165
166 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
167                                                   int node)
168 {
169         return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
170 }
171
172 static void free_thread_info(struct thread_info *ti)
173 {
174         kmem_cache_free(thread_info_cache, ti);
175 }
176
177 void thread_info_cache_init(void)
178 {
179         thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
180                                               THREAD_SIZE, 0, NULL);
181         BUG_ON(thread_info_cache == NULL);
182 }
183 # endif
184 #endif
185
186 /* SLAB cache for signal_struct structures (tsk->signal) */
187 static struct kmem_cache *signal_cachep;
188
189 /* SLAB cache for sighand_struct structures (tsk->sighand) */
190 struct kmem_cache *sighand_cachep;
191
192 /* SLAB cache for files_struct structures (tsk->files) */
193 struct kmem_cache *files_cachep;
194
195 /* SLAB cache for fs_struct structures (tsk->fs) */
196 struct kmem_cache *fs_cachep;
197
198 /* SLAB cache for vm_area_struct structures */
199 struct kmem_cache *vm_area_cachep;
200
201 /* SLAB cache for mm_struct structures (tsk->mm) */
202 static struct kmem_cache *mm_cachep;
203
204 static void account_kernel_stack(struct thread_info *ti, int account)
205 {
206         struct zone *zone = page_zone(virt_to_page(ti));
207
208         mod_zone_page_state(zone, NR_KERNEL_STACK, account);
209 }
210
211 void free_task(struct task_struct *tsk)
212 {
213         account_kernel_stack(tsk->stack, -1);
214         arch_release_thread_info(tsk->stack);
215         free_thread_info(tsk->stack);
216         rt_mutex_debug_task_free(tsk);
217         ftrace_graph_exit_task(tsk);
218         put_seccomp_filter(tsk);
219         arch_release_task_struct(tsk);
220         free_task_struct(tsk);
221 }
222 EXPORT_SYMBOL(free_task);
223
224 static inline void free_signal_struct(struct signal_struct *sig)
225 {
226         taskstats_tgid_free(sig);
227         sched_autogroup_exit(sig);
228         kmem_cache_free(signal_cachep, sig);
229 }
230
231 static inline void put_signal_struct(struct signal_struct *sig)
232 {
233         if (atomic_dec_and_test(&sig->sigcnt))
234                 free_signal_struct(sig);
235 }
236
237 void __put_task_struct(struct task_struct *tsk)
238 {
239         WARN_ON(!tsk->exit_state);
240         WARN_ON(atomic_read(&tsk->usage));
241         WARN_ON(tsk == current);
242
243         task_numa_free(tsk);
244         security_task_free(tsk);
245         exit_creds(tsk);
246         delayacct_tsk_free(tsk);
247         put_signal_struct(tsk->signal);
248
249         if (!profile_handoff_task(tsk))
250                 free_task(tsk);
251 }
252 EXPORT_SYMBOL_GPL(__put_task_struct);
253
254 void __init __weak arch_task_cache_init(void) { }
255
256 void __init fork_init(unsigned long mempages)
257 {
258 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
259 #ifndef ARCH_MIN_TASKALIGN
260 #define ARCH_MIN_TASKALIGN      L1_CACHE_BYTES
261 #endif
262         /* create a slab on which task_structs can be allocated */
263         task_struct_cachep =
264                 kmem_cache_create("task_struct", sizeof(struct task_struct),
265                         ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
266 #endif
267
268         /* do the arch specific task caches init */
269         arch_task_cache_init();
270
271         /*
272          * The default maximum number of threads is set to a safe
273          * value: the thread structures can take up at most half
274          * of memory.
275          */
276         max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
277
278         /*
279          * we need to allow at least 20 threads to boot a system
280          */
281         if (max_threads < 20)
282                 max_threads = 20;
283
284         init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
285         init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
286         init_task.signal->rlim[RLIMIT_SIGPENDING] =
287                 init_task.signal->rlim[RLIMIT_NPROC];
288 }
289
290 int __weak arch_dup_task_struct(struct task_struct *dst,
291                                                struct task_struct *src)
292 {
293         *dst = *src;
294         return 0;
295 }
296
297 static struct task_struct *dup_task_struct(struct task_struct *orig)
298 {
299         struct task_struct *tsk;
300         struct thread_info *ti;
301         unsigned long *stackend;
302         int node = tsk_fork_get_node(orig);
303         int err;
304
305         tsk = alloc_task_struct_node(node);
306         if (!tsk)
307                 return NULL;
308
309         ti = alloc_thread_info_node(tsk, node);
310         if (!ti)
311                 goto free_tsk;
312
313         err = arch_dup_task_struct(tsk, orig);
314         if (err)
315                 goto free_ti;
316
317         tsk->stack = ti;
318 #ifdef CONFIG_SECCOMP
319         /*
320          * We must handle setting up seccomp filters once we're under
321          * the sighand lock in case orig has changed between now and
322          * then. Until then, filter must be NULL to avoid messing up
323          * the usage counts on the error path calling free_task.
324          */
325         tsk->seccomp.filter = NULL;
326 #endif
327
328         setup_thread_stack(tsk, orig);
329         clear_user_return_notifier(tsk);
330         clear_tsk_need_resched(tsk);
331         stackend = end_of_stack(tsk);
332         *stackend = STACK_END_MAGIC;    /* for overflow detection */
333
334 #ifdef CONFIG_CC_STACKPROTECTOR
335         tsk->stack_canary = get_random_int();
336 #endif
337
338         /*
339          * One for us, one for whoever does the "release_task()" (usually
340          * parent)
341          */
342         atomic_set(&tsk->usage, 2);
343 #ifdef CONFIG_BLK_DEV_IO_TRACE
344         tsk->btrace_seq = 0;
345 #endif
346         tsk->splice_pipe = NULL;
347         tsk->task_frag.page = NULL;
348
349         account_kernel_stack(ti, 1);
350
351         return tsk;
352
353 free_ti:
354         free_thread_info(ti);
355 free_tsk:
356         free_task_struct(tsk);
357         return NULL;
358 }
359
360 #ifdef CONFIG_MMU
361 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
362 {
363         struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
364         struct rb_node **rb_link, *rb_parent;
365         int retval;
366         unsigned long charge;
367
368         uprobe_start_dup_mmap();
369         down_write(&oldmm->mmap_sem);
370         flush_cache_dup_mm(oldmm);
371         uprobe_dup_mmap(oldmm, mm);
372         /*
373          * Not linked in yet - no deadlock potential:
374          */
375         down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
376
377         rb_link = &mm->mm_rb.rb_node;
378         rb_parent = NULL;
379         pprev = &mm->mmap;
380         retval = ksm_fork(mm, oldmm);
381         if (retval)
382                 goto out;
383         retval = khugepaged_fork(mm, oldmm);
384         if (retval)
385                 goto out;
386
387         prev = NULL;
388         for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
389                 struct file *file;
390
391                 if (mpnt->vm_flags & VM_DONTCOPY) {
392                         vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
393                                                         -vma_pages(mpnt));
394                         continue;
395                 }
396                 charge = 0;
397                 if (mpnt->vm_flags & VM_ACCOUNT) {
398                         unsigned long len = vma_pages(mpnt);
399
400                         if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
401                                 goto fail_nomem;
402                         charge = len;
403                 }
404                 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
405                 if (!tmp)
406                         goto fail_nomem;
407                 *tmp = *mpnt;
408                 INIT_LIST_HEAD(&tmp->anon_vma_chain);
409                 retval = vma_dup_policy(mpnt, tmp);
410                 if (retval)
411                         goto fail_nomem_policy;
412                 tmp->vm_mm = mm;
413                 if (anon_vma_fork(tmp, mpnt))
414                         goto fail_nomem_anon_vma_fork;
415                 tmp->vm_flags &= ~VM_LOCKED;
416                 tmp->vm_next = tmp->vm_prev = NULL;
417                 file = tmp->vm_file;
418                 if (file) {
419                         struct inode *inode = file_inode(file);
420                         struct address_space *mapping = file->f_mapping;
421
422                         get_file(file);
423                         if (tmp->vm_flags & VM_DENYWRITE)
424                                 atomic_dec(&inode->i_writecount);
425                         mutex_lock(&mapping->i_mmap_mutex);
426                         if (tmp->vm_flags & VM_SHARED)
427                                 mapping->i_mmap_writable++;
428                         flush_dcache_mmap_lock(mapping);
429                         /* insert tmp into the share list, just after mpnt */
430                         if (unlikely(tmp->vm_flags & VM_NONLINEAR))
431                                 vma_nonlinear_insert(tmp,
432                                                 &mapping->i_mmap_nonlinear);
433                         else
434                                 vma_interval_tree_insert_after(tmp, mpnt,
435                                                         &mapping->i_mmap);
436                         flush_dcache_mmap_unlock(mapping);
437                         mutex_unlock(&mapping->i_mmap_mutex);
438                 }
439
440                 /*
441                  * Clear hugetlb-related page reserves for children. This only
442                  * affects MAP_PRIVATE mappings. Faults generated by the child
443                  * are not guaranteed to succeed, even if read-only
444                  */
445                 if (is_vm_hugetlb_page(tmp))
446                         reset_vma_resv_huge_pages(tmp);
447
448                 /*
449                  * Link in the new vma and copy the page table entries.
450                  */
451                 *pprev = tmp;
452                 pprev = &tmp->vm_next;
453                 tmp->vm_prev = prev;
454                 prev = tmp;
455
456                 __vma_link_rb(mm, tmp, rb_link, rb_parent);
457                 rb_link = &tmp->vm_rb.rb_right;
458                 rb_parent = &tmp->vm_rb;
459
460                 mm->map_count++;
461                 retval = copy_page_range(mm, oldmm, mpnt);
462
463                 if (tmp->vm_ops && tmp->vm_ops->open)
464                         tmp->vm_ops->open(tmp);
465
466                 if (retval)
467                         goto out;
468         }
469         /* a new mm has just been created */
470         arch_dup_mmap(oldmm, mm);
471         retval = 0;
472 out:
473         up_write(&mm->mmap_sem);
474         flush_tlb_mm(oldmm);
475         up_write(&oldmm->mmap_sem);
476         uprobe_end_dup_mmap();
477         return retval;
478 fail_nomem_anon_vma_fork:
479         mpol_put(vma_policy(tmp));
480 fail_nomem_policy:
481         kmem_cache_free(vm_area_cachep, tmp);
482 fail_nomem:
483         retval = -ENOMEM;
484         vm_unacct_memory(charge);
485         goto out;
486 }
487
488 static inline int mm_alloc_pgd(struct mm_struct *mm)
489 {
490         mm->pgd = pgd_alloc(mm);
491         if (unlikely(!mm->pgd))
492                 return -ENOMEM;
493         return 0;
494 }
495
496 static inline void mm_free_pgd(struct mm_struct *mm)
497 {
498         pgd_free(mm, mm->pgd);
499 }
500 #else
501 #define dup_mmap(mm, oldmm)     (0)
502 #define mm_alloc_pgd(mm)        (0)
503 #define mm_free_pgd(mm)
504 #endif /* CONFIG_MMU */
505
506 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
507
508 #define allocate_mm()   (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
509 #define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
510
511 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
512
513 static int __init coredump_filter_setup(char *s)
514 {
515         default_dump_filter =
516                 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
517                 MMF_DUMP_FILTER_MASK;
518         return 1;
519 }
520
521 __setup("coredump_filter=", coredump_filter_setup);
522
523 #include <linux/init_task.h>
524
525 static void mm_init_aio(struct mm_struct *mm)
526 {
527 #ifdef CONFIG_AIO
528         spin_lock_init(&mm->ioctx_lock);
529         mm->ioctx_table = NULL;
530 #endif
531 }
532
533 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
534 {
535         mm->mmap = NULL;
536         mm->mm_rb = RB_ROOT;
537         mm->vmacache_seqnum = 0;
538         atomic_set(&mm->mm_users, 1);
539         atomic_set(&mm->mm_count, 1);
540         init_rwsem(&mm->mmap_sem);
541         INIT_LIST_HEAD(&mm->mmlist);
542         mm->core_state = NULL;
543         atomic_long_set(&mm->nr_ptes, 0);
544         mm->map_count = 0;
545         mm->locked_vm = 0;
546         mm->pinned_vm = 0;
547         memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
548         spin_lock_init(&mm->page_table_lock);
549         mm_init_cpumask(mm);
550         mm_init_aio(mm);
551         mm_init_owner(mm, p);
552         mmu_notifier_mm_init(mm);
553         clear_tlb_flush_pending(mm);
554 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
555         mm->pmd_huge_pte = NULL;
556 #endif
557
558         if (current->mm) {
559                 mm->flags = current->mm->flags & MMF_INIT_MASK;
560                 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
561         } else {
562                 mm->flags = default_dump_filter;
563                 mm->def_flags = 0;
564         }
565
566         if (mm_alloc_pgd(mm))
567                 goto fail_nopgd;
568
569         if (init_new_context(p, mm))
570                 goto fail_nocontext;
571
572         return mm;
573
574 fail_nocontext:
575         mm_free_pgd(mm);
576 fail_nopgd:
577         free_mm(mm);
578         return NULL;
579 }
580
581 static void check_mm(struct mm_struct *mm)
582 {
583         int i;
584
585         for (i = 0; i < NR_MM_COUNTERS; i++) {
586                 long x = atomic_long_read(&mm->rss_stat.count[i]);
587
588                 if (unlikely(x))
589                         printk(KERN_ALERT "BUG: Bad rss-counter state "
590                                           "mm:%p idx:%d val:%ld\n", mm, i, x);
591         }
592
593 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
594         VM_BUG_ON(mm->pmd_huge_pte);
595 #endif
596 }
597
598 /*
599  * Allocate and initialize an mm_struct.
600  */
601 struct mm_struct *mm_alloc(void)
602 {
603         struct mm_struct *mm;
604
605         mm = allocate_mm();
606         if (!mm)
607                 return NULL;
608
609         memset(mm, 0, sizeof(*mm));
610         return mm_init(mm, current);
611 }
612
613 /*
614  * Called when the last reference to the mm
615  * is dropped: either by a lazy thread or by
616  * mmput. Free the page directory and the mm.
617  */
618 void __mmdrop(struct mm_struct *mm)
619 {
620         BUG_ON(mm == &init_mm);
621         mm_free_pgd(mm);
622         destroy_context(mm);
623         mmu_notifier_mm_destroy(mm);
624         check_mm(mm);
625         free_mm(mm);
626 }
627 EXPORT_SYMBOL_GPL(__mmdrop);
628
629 /*
630  * Decrement the use count and release all resources for an mm.
631  */
632 void mmput(struct mm_struct *mm)
633 {
634         might_sleep();
635
636         if (atomic_dec_and_test(&mm->mm_users)) {
637                 uprobe_clear_state(mm);
638                 exit_aio(mm);
639                 ksm_exit(mm);
640                 khugepaged_exit(mm); /* must run before exit_mmap */
641                 exit_mmap(mm);
642                 set_mm_exe_file(mm, NULL);
643                 if (!list_empty(&mm->mmlist)) {
644                         spin_lock(&mmlist_lock);
645                         list_del(&mm->mmlist);
646                         spin_unlock(&mmlist_lock);
647                 }
648                 if (mm->binfmt)
649                         module_put(mm->binfmt->module);
650                 mmdrop(mm);
651         }
652 }
653 EXPORT_SYMBOL_GPL(mmput);
654
655 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
656 {
657         if (new_exe_file)
658                 get_file(new_exe_file);
659         if (mm->exe_file)
660                 fput(mm->exe_file);
661         mm->exe_file = new_exe_file;
662 }
663
664 struct file *get_mm_exe_file(struct mm_struct *mm)
665 {
666         struct file *exe_file;
667
668         /* We need mmap_sem to protect against races with removal of exe_file */
669         down_read(&mm->mmap_sem);
670         exe_file = mm->exe_file;
671         if (exe_file)
672                 get_file(exe_file);
673         up_read(&mm->mmap_sem);
674         return exe_file;
675 }
676
677 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
678 {
679         /* It's safe to write the exe_file pointer without exe_file_lock because
680          * this is called during fork when the task is not yet in /proc */
681         newmm->exe_file = get_mm_exe_file(oldmm);
682 }
683
684 /**
685  * get_task_mm - acquire a reference to the task's mm
686  *
687  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
688  * this kernel workthread has transiently adopted a user mm with use_mm,
689  * to do its AIO) is not set and if so returns a reference to it, after
690  * bumping up the use count.  User must release the mm via mmput()
691  * after use.  Typically used by /proc and ptrace.
692  */
693 struct mm_struct *get_task_mm(struct task_struct *task)
694 {
695         struct mm_struct *mm;
696
697         task_lock(task);
698         mm = task->mm;
699         if (mm) {
700                 if (task->flags & PF_KTHREAD)
701                         mm = NULL;
702                 else
703                         atomic_inc(&mm->mm_users);
704         }
705         task_unlock(task);
706         return mm;
707 }
708 EXPORT_SYMBOL_GPL(get_task_mm);
709
710 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
711 {
712         struct mm_struct *mm;
713         int err;
714
715         err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
716         if (err)
717                 return ERR_PTR(err);
718
719         mm = get_task_mm(task);
720         if (mm && mm != current->mm &&
721                         !ptrace_may_access(task, mode)) {
722                 mmput(mm);
723                 mm = ERR_PTR(-EACCES);
724         }
725         mutex_unlock(&task->signal->cred_guard_mutex);
726
727         return mm;
728 }
729
730 static void complete_vfork_done(struct task_struct *tsk)
731 {
732         struct completion *vfork;
733
734         task_lock(tsk);
735         vfork = tsk->vfork_done;
736         if (likely(vfork)) {
737                 tsk->vfork_done = NULL;
738                 complete(vfork);
739         }
740         task_unlock(tsk);
741 }
742
743 static int wait_for_vfork_done(struct task_struct *child,
744                                 struct completion *vfork)
745 {
746         int killed;
747
748         freezer_do_not_count();
749         killed = wait_for_completion_killable(vfork);
750         freezer_count();
751
752         if (killed) {
753                 task_lock(child);
754                 child->vfork_done = NULL;
755                 task_unlock(child);
756         }
757
758         put_task_struct(child);
759         return killed;
760 }
761
762 /* Please note the differences between mmput and mm_release.
763  * mmput is called whenever we stop holding onto a mm_struct,
764  * error success whatever.
765  *
766  * mm_release is called after a mm_struct has been removed
767  * from the current process.
768  *
769  * This difference is important for error handling, when we
770  * only half set up a mm_struct for a new process and need to restore
771  * the old one.  Because we mmput the new mm_struct before
772  * restoring the old one. . .
773  * Eric Biederman 10 January 1998
774  */
775 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
776 {
777         /* Get rid of any futexes when releasing the mm */
778 #ifdef CONFIG_FUTEX
779         if (unlikely(tsk->robust_list)) {
780                 exit_robust_list(tsk);
781                 tsk->robust_list = NULL;
782         }
783 #ifdef CONFIG_COMPAT
784         if (unlikely(tsk->compat_robust_list)) {
785                 compat_exit_robust_list(tsk);
786                 tsk->compat_robust_list = NULL;
787         }
788 #endif
789         if (unlikely(!list_empty(&tsk->pi_state_list)))
790                 exit_pi_state_list(tsk);
791 #endif
792
793         uprobe_free_utask(tsk);
794
795         /* Get rid of any cached register state */
796         deactivate_mm(tsk, mm);
797
798         /*
799          * If we're exiting normally, clear a user-space tid field if
800          * requested.  We leave this alone when dying by signal, to leave
801          * the value intact in a core dump, and to save the unnecessary
802          * trouble, say, a killed vfork parent shouldn't touch this mm.
803          * Userland only wants this done for a sys_exit.
804          */
805         if (tsk->clear_child_tid) {
806                 if (!(tsk->flags & PF_SIGNALED) &&
807                     atomic_read(&mm->mm_users) > 1) {
808                         /*
809                          * We don't check the error code - if userspace has
810                          * not set up a proper pointer then tough luck.
811                          */
812                         put_user(0, tsk->clear_child_tid);
813                         sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
814                                         1, NULL, NULL, 0);
815                 }
816                 tsk->clear_child_tid = NULL;
817         }
818
819         /*
820          * All done, finally we can wake up parent and return this mm to him.
821          * Also kthread_stop() uses this completion for synchronization.
822          */
823         if (tsk->vfork_done)
824                 complete_vfork_done(tsk);
825 }
826
827 /*
828  * Allocate a new mm structure and copy contents from the
829  * mm structure of the passed in task structure.
830  */
831 static struct mm_struct *dup_mm(struct task_struct *tsk)
832 {
833         struct mm_struct *mm, *oldmm = current->mm;
834         int err;
835
836         mm = allocate_mm();
837         if (!mm)
838                 goto fail_nomem;
839
840         memcpy(mm, oldmm, sizeof(*mm));
841
842         if (!mm_init(mm, tsk))
843                 goto fail_nomem;
844
845         dup_mm_exe_file(oldmm, mm);
846
847         err = dup_mmap(mm, oldmm);
848         if (err)
849                 goto free_pt;
850
851         mm->hiwater_rss = get_mm_rss(mm);
852         mm->hiwater_vm = mm->total_vm;
853
854         if (mm->binfmt && !try_module_get(mm->binfmt->module))
855                 goto free_pt;
856
857         return mm;
858
859 free_pt:
860         /* don't put binfmt in mmput, we haven't got module yet */
861         mm->binfmt = NULL;
862         mmput(mm);
863
864 fail_nomem:
865         return NULL;
866 }
867
868 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
869 {
870         struct mm_struct *mm, *oldmm;
871         int retval;
872
873         tsk->min_flt = tsk->maj_flt = 0;
874         tsk->nvcsw = tsk->nivcsw = 0;
875 #ifdef CONFIG_DETECT_HUNG_TASK
876         tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
877 #endif
878
879         tsk->mm = NULL;
880         tsk->active_mm = NULL;
881
882         /*
883          * Are we cloning a kernel thread?
884          *
885          * We need to steal a active VM for that..
886          */
887         oldmm = current->mm;
888         if (!oldmm)
889                 return 0;
890
891         /* initialize the new vmacache entries */
892         vmacache_flush(tsk);
893
894         if (clone_flags & CLONE_VM) {
895                 atomic_inc(&oldmm->mm_users);
896                 mm = oldmm;
897                 goto good_mm;
898         }
899
900         retval = -ENOMEM;
901         mm = dup_mm(tsk);
902         if (!mm)
903                 goto fail_nomem;
904
905 good_mm:
906         tsk->mm = mm;
907         tsk->active_mm = mm;
908         return 0;
909
910 fail_nomem:
911         return retval;
912 }
913
914 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
915 {
916         struct fs_struct *fs = current->fs;
917         if (clone_flags & CLONE_FS) {
918                 /* tsk->fs is already what we want */
919                 spin_lock(&fs->lock);
920                 if (fs->in_exec) {
921                         spin_unlock(&fs->lock);
922                         return -EAGAIN;
923                 }
924                 fs->users++;
925                 spin_unlock(&fs->lock);
926                 return 0;
927         }
928         tsk->fs = copy_fs_struct(fs);
929         if (!tsk->fs)
930                 return -ENOMEM;
931         return 0;
932 }
933
934 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
935 {
936         struct files_struct *oldf, *newf;
937         int error = 0;
938
939         /*
940          * A background process may not have any files ...
941          */
942         oldf = current->files;
943         if (!oldf)
944                 goto out;
945
946         if (clone_flags & CLONE_FILES) {
947                 atomic_inc(&oldf->count);
948                 goto out;
949         }
950
951         newf = dup_fd(oldf, &error);
952         if (!newf)
953                 goto out;
954
955         tsk->files = newf;
956         error = 0;
957 out:
958         return error;
959 }
960
961 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
962 {
963 #ifdef CONFIG_BLOCK
964         struct io_context *ioc = current->io_context;
965         struct io_context *new_ioc;
966
967         if (!ioc)
968                 return 0;
969         /*
970          * Share io context with parent, if CLONE_IO is set
971          */
972         if (clone_flags & CLONE_IO) {
973                 ioc_task_link(ioc);
974                 tsk->io_context = ioc;
975         } else if (ioprio_valid(ioc->ioprio)) {
976                 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
977                 if (unlikely(!new_ioc))
978                         return -ENOMEM;
979
980                 new_ioc->ioprio = ioc->ioprio;
981                 put_io_context(new_ioc);
982         }
983 #endif
984         return 0;
985 }
986
987 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
988 {
989         struct sighand_struct *sig;
990
991         if (clone_flags & CLONE_SIGHAND) {
992                 atomic_inc(&current->sighand->count);
993                 return 0;
994         }
995         sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
996         rcu_assign_pointer(tsk->sighand, sig);
997         if (!sig)
998                 return -ENOMEM;
999         atomic_set(&sig->count, 1);
1000         memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1001         return 0;
1002 }
1003
1004 void __cleanup_sighand(struct sighand_struct *sighand)
1005 {
1006         if (atomic_dec_and_test(&sighand->count)) {
1007                 signalfd_cleanup(sighand);
1008                 kmem_cache_free(sighand_cachep, sighand);
1009         }
1010 }
1011
1012
1013 /*
1014  * Initialize POSIX timer handling for a thread group.
1015  */
1016 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1017 {
1018         unsigned long cpu_limit;
1019
1020         /* Thread group counters. */
1021         thread_group_cputime_init(sig);
1022
1023         cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1024         if (cpu_limit != RLIM_INFINITY) {
1025                 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1026                 sig->cputimer.running = 1;
1027         }
1028
1029         /* The timer lists. */
1030         INIT_LIST_HEAD(&sig->cpu_timers[0]);
1031         INIT_LIST_HEAD(&sig->cpu_timers[1]);
1032         INIT_LIST_HEAD(&sig->cpu_timers[2]);
1033 }
1034
1035 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1036 {
1037         struct signal_struct *sig;
1038
1039         if (clone_flags & CLONE_THREAD)
1040                 return 0;
1041
1042         sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1043         tsk->signal = sig;
1044         if (!sig)
1045                 return -ENOMEM;
1046
1047         sig->nr_threads = 1;
1048         atomic_set(&sig->live, 1);
1049         atomic_set(&sig->sigcnt, 1);
1050
1051         /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1052         sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1053         tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1054
1055         init_waitqueue_head(&sig->wait_chldexit);
1056         sig->curr_target = tsk;
1057         init_sigpending(&sig->shared_pending);
1058         INIT_LIST_HEAD(&sig->posix_timers);
1059
1060         hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1061         sig->real_timer.function = it_real_fn;
1062
1063         task_lock(current->group_leader);
1064         memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1065         task_unlock(current->group_leader);
1066
1067         posix_cpu_timers_init_group(sig);
1068
1069         tty_audit_fork(sig);
1070         sched_autogroup_fork(sig);
1071
1072 #ifdef CONFIG_CGROUPS
1073         init_rwsem(&sig->group_rwsem);
1074 #endif
1075
1076         sig->oom_score_adj = current->signal->oom_score_adj;
1077         sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1078
1079         sig->has_child_subreaper = current->signal->has_child_subreaper ||
1080                                    current->signal->is_child_subreaper;
1081
1082         mutex_init(&sig->cred_guard_mutex);
1083
1084         return 0;
1085 }
1086
1087 static void copy_seccomp(struct task_struct *p)
1088 {
1089 #ifdef CONFIG_SECCOMP
1090         /*
1091          * Must be called with sighand->lock held, which is common to
1092          * all threads in the group. Holding cred_guard_mutex is not
1093          * needed because this new task is not yet running and cannot
1094          * be racing exec.
1095          */
1096         BUG_ON(!spin_is_locked(&current->sighand->siglock));
1097
1098         /* Ref-count the new filter user, and assign it. */
1099         get_seccomp_filter(current);
1100         p->seccomp = current->seccomp;
1101
1102         /*
1103          * Explicitly enable no_new_privs here in case it got set
1104          * between the task_struct being duplicated and holding the
1105          * sighand lock. The seccomp state and nnp must be in sync.
1106          */
1107         if (task_no_new_privs(current))
1108                 task_set_no_new_privs(p);
1109
1110         /*
1111          * If the parent gained a seccomp mode after copying thread
1112          * flags and between before we held the sighand lock, we have
1113          * to manually enable the seccomp thread flag here.
1114          */
1115         if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1116                 set_tsk_thread_flag(p, TIF_SECCOMP);
1117 #endif
1118 }
1119
1120 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1121 {
1122         current->clear_child_tid = tidptr;
1123
1124         return task_pid_vnr(current);
1125 }
1126
1127 static void rt_mutex_init_task(struct task_struct *p)
1128 {
1129         raw_spin_lock_init(&p->pi_lock);
1130 #ifdef CONFIG_RT_MUTEXES
1131         p->pi_waiters = RB_ROOT;
1132         p->pi_waiters_leftmost = NULL;
1133         p->pi_blocked_on = NULL;
1134 #endif
1135 }
1136
1137 #ifdef CONFIG_MEMCG
1138 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1139 {
1140         mm->owner = p;
1141 }
1142 #endif /* CONFIG_MEMCG */
1143
1144 /*
1145  * Initialize POSIX timer handling for a single task.
1146  */
1147 static void posix_cpu_timers_init(struct task_struct *tsk)
1148 {
1149         tsk->cputime_expires.prof_exp = 0;
1150         tsk->cputime_expires.virt_exp = 0;
1151         tsk->cputime_expires.sched_exp = 0;
1152         INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1153         INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1154         INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1155 }
1156
1157 static inline void
1158 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1159 {
1160          task->pids[type].pid = pid;
1161 }
1162
1163 /*
1164  * This creates a new process as a copy of the old one,
1165  * but does not actually start it yet.
1166  *
1167  * It copies the registers, and all the appropriate
1168  * parts of the process environment (as per the clone
1169  * flags). The actual kick-off is left to the caller.
1170  */
1171 static struct task_struct *copy_process(unsigned long clone_flags,
1172                                         unsigned long stack_start,
1173                                         unsigned long stack_size,
1174                                         int __user *child_tidptr,
1175                                         struct pid *pid,
1176                                         int trace)
1177 {
1178         int retval;
1179         struct task_struct *p;
1180
1181         if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1182                 return ERR_PTR(-EINVAL);
1183
1184         if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1185                 return ERR_PTR(-EINVAL);
1186
1187         /*
1188          * Thread groups must share signals as well, and detached threads
1189          * can only be started up within the thread group.
1190          */
1191         if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1192                 return ERR_PTR(-EINVAL);
1193
1194         /*
1195          * Shared signal handlers imply shared VM. By way of the above,
1196          * thread groups also imply shared VM. Blocking this case allows
1197          * for various simplifications in other code.
1198          */
1199         if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1200                 return ERR_PTR(-EINVAL);
1201
1202         /*
1203          * Siblings of global init remain as zombies on exit since they are
1204          * not reaped by their parent (swapper). To solve this and to avoid
1205          * multi-rooted process trees, prevent global and container-inits
1206          * from creating siblings.
1207          */
1208         if ((clone_flags & CLONE_PARENT) &&
1209                                 current->signal->flags & SIGNAL_UNKILLABLE)
1210                 return ERR_PTR(-EINVAL);
1211
1212         /*
1213          * If the new process will be in a different pid or user namespace
1214          * do not allow it to share a thread group or signal handlers or
1215          * parent with the forking task.
1216          */
1217         if (clone_flags & CLONE_SIGHAND) {
1218                 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1219                     (task_active_pid_ns(current) !=
1220                                 current->nsproxy->pid_ns_for_children))
1221                         return ERR_PTR(-EINVAL);
1222         }
1223
1224         retval = security_task_create(clone_flags);
1225         if (retval)
1226                 goto fork_out;
1227
1228         retval = -ENOMEM;
1229         p = dup_task_struct(current);
1230         if (!p)
1231                 goto fork_out;
1232
1233         ftrace_graph_init_task(p);
1234
1235         rt_mutex_init_task(p);
1236
1237 #ifdef CONFIG_PROVE_LOCKING
1238         DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1239         DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1240 #endif
1241         retval = -EAGAIN;
1242         if (atomic_read(&p->real_cred->user->processes) >=
1243                         task_rlimit(p, RLIMIT_NPROC)) {
1244                 if (p->real_cred->user != INIT_USER &&
1245                     !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1246                         goto bad_fork_free;
1247         }
1248         current->flags &= ~PF_NPROC_EXCEEDED;
1249
1250         retval = copy_creds(p, clone_flags);
1251         if (retval < 0)
1252                 goto bad_fork_free;
1253
1254         /*
1255          * If multiple threads are within copy_process(), then this check
1256          * triggers too late. This doesn't hurt, the check is only there
1257          * to stop root fork bombs.
1258          */
1259         retval = -EAGAIN;
1260         if (nr_threads >= max_threads)
1261                 goto bad_fork_cleanup_count;
1262
1263         if (!try_module_get(task_thread_info(p)->exec_domain->module))
1264                 goto bad_fork_cleanup_count;
1265
1266         delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
1267         p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1268         p->flags |= PF_FORKNOEXEC;
1269         INIT_LIST_HEAD(&p->children);
1270         INIT_LIST_HEAD(&p->sibling);
1271         rcu_copy_process(p);
1272         p->vfork_done = NULL;
1273         spin_lock_init(&p->alloc_lock);
1274
1275         init_sigpending(&p->pending);
1276
1277         p->utime = p->stime = p->gtime = 0;
1278         p->utimescaled = p->stimescaled = 0;
1279 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1280         p->prev_cputime.utime = p->prev_cputime.stime = 0;
1281 #endif
1282 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1283         seqlock_init(&p->vtime_seqlock);
1284         p->vtime_snap = 0;
1285         p->vtime_snap_whence = VTIME_SLEEPING;
1286 #endif
1287
1288 #if defined(SPLIT_RSS_COUNTING)
1289         memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1290 #endif
1291
1292         p->default_timer_slack_ns = current->timer_slack_ns;
1293
1294         task_io_accounting_init(&p->ioac);
1295         acct_clear_integrals(p);
1296
1297         posix_cpu_timers_init(p);
1298
1299         p->start_time = ktime_get_ns();
1300         p->real_start_time = ktime_get_boot_ns();
1301         p->io_context = NULL;
1302         p->audit_context = NULL;
1303         if (clone_flags & CLONE_THREAD)
1304                 threadgroup_change_begin(current);
1305         cgroup_fork(p);
1306 #ifdef CONFIG_NUMA
1307         p->mempolicy = mpol_dup(p->mempolicy);
1308         if (IS_ERR(p->mempolicy)) {
1309                 retval = PTR_ERR(p->mempolicy);
1310                 p->mempolicy = NULL;
1311                 goto bad_fork_cleanup_threadgroup_lock;
1312         }
1313 #endif
1314 #ifdef CONFIG_CPUSETS
1315         p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1316         p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1317         seqcount_init(&p->mems_allowed_seq);
1318 #endif
1319 #ifdef CONFIG_TRACE_IRQFLAGS
1320         p->irq_events = 0;
1321         p->hardirqs_enabled = 0;
1322         p->hardirq_enable_ip = 0;
1323         p->hardirq_enable_event = 0;
1324         p->hardirq_disable_ip = _THIS_IP_;
1325         p->hardirq_disable_event = 0;
1326         p->softirqs_enabled = 1;
1327         p->softirq_enable_ip = _THIS_IP_;
1328         p->softirq_enable_event = 0;
1329         p->softirq_disable_ip = 0;
1330         p->softirq_disable_event = 0;
1331         p->hardirq_context = 0;
1332         p->softirq_context = 0;
1333 #endif
1334 #ifdef CONFIG_LOCKDEP
1335         p->lockdep_depth = 0; /* no locks held yet */
1336         p->curr_chain_key = 0;
1337         p->lockdep_recursion = 0;
1338 #endif
1339
1340 #ifdef CONFIG_DEBUG_MUTEXES
1341         p->blocked_on = NULL; /* not blocked yet */
1342 #endif
1343 #ifdef CONFIG_BCACHE
1344         p->sequential_io        = 0;
1345         p->sequential_io_avg    = 0;
1346 #endif
1347
1348         /* Perform scheduler related setup. Assign this task to a CPU. */
1349         retval = sched_fork(clone_flags, p);
1350         if (retval)
1351                 goto bad_fork_cleanup_policy;
1352
1353         retval = perf_event_init_task(p);
1354         if (retval)
1355                 goto bad_fork_cleanup_policy;
1356         retval = audit_alloc(p);
1357         if (retval)
1358                 goto bad_fork_cleanup_policy;
1359         /* copy all the process information */
1360         retval = copy_semundo(clone_flags, p);
1361         if (retval)
1362                 goto bad_fork_cleanup_audit;
1363         retval = copy_files(clone_flags, p);
1364         if (retval)
1365                 goto bad_fork_cleanup_semundo;
1366         retval = copy_fs(clone_flags, p);
1367         if (retval)
1368                 goto bad_fork_cleanup_files;
1369         retval = copy_sighand(clone_flags, p);
1370         if (retval)
1371                 goto bad_fork_cleanup_fs;
1372         retval = copy_signal(clone_flags, p);
1373         if (retval)
1374                 goto bad_fork_cleanup_sighand;
1375         retval = copy_mm(clone_flags, p);
1376         if (retval)
1377                 goto bad_fork_cleanup_signal;
1378         retval = copy_namespaces(clone_flags, p);
1379         if (retval)
1380                 goto bad_fork_cleanup_mm;
1381         retval = copy_io(clone_flags, p);
1382         if (retval)
1383                 goto bad_fork_cleanup_namespaces;
1384         retval = copy_thread(clone_flags, stack_start, stack_size, p);
1385         if (retval)
1386                 goto bad_fork_cleanup_io;
1387
1388         if (pid != &init_struct_pid) {
1389                 retval = -ENOMEM;
1390                 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1391                 if (!pid)
1392                         goto bad_fork_cleanup_io;
1393         }
1394
1395         p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1396         /*
1397          * Clear TID on mm_release()?
1398          */
1399         p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1400 #ifdef CONFIG_BLOCK
1401         p->plug = NULL;
1402 #endif
1403 #ifdef CONFIG_FUTEX
1404         p->robust_list = NULL;
1405 #ifdef CONFIG_COMPAT
1406         p->compat_robust_list = NULL;
1407 #endif
1408         INIT_LIST_HEAD(&p->pi_state_list);
1409         p->pi_state_cache = NULL;
1410 #endif
1411         /*
1412          * sigaltstack should be cleared when sharing the same VM
1413          */
1414         if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1415                 p->sas_ss_sp = p->sas_ss_size = 0;
1416
1417         /*
1418          * Syscall tracing and stepping should be turned off in the
1419          * child regardless of CLONE_PTRACE.
1420          */
1421         user_disable_single_step(p);
1422         clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1423 #ifdef TIF_SYSCALL_EMU
1424         clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1425 #endif
1426         clear_all_latency_tracing(p);
1427
1428         /* ok, now we should be set up.. */
1429         p->pid = pid_nr(pid);
1430         if (clone_flags & CLONE_THREAD) {
1431                 p->exit_signal = -1;
1432                 p->group_leader = current->group_leader;
1433                 p->tgid = current->tgid;
1434         } else {
1435                 if (clone_flags & CLONE_PARENT)
1436                         p->exit_signal = current->group_leader->exit_signal;
1437                 else
1438                         p->exit_signal = (clone_flags & CSIGNAL);
1439                 p->group_leader = p;
1440                 p->tgid = p->pid;
1441         }
1442
1443         p->nr_dirtied = 0;
1444         p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1445         p->dirty_paused_when = 0;
1446
1447         p->pdeath_signal = 0;
1448         INIT_LIST_HEAD(&p->thread_group);
1449         p->task_works = NULL;
1450
1451         /*
1452          * Make it visible to the rest of the system, but dont wake it up yet.
1453          * Need tasklist lock for parent etc handling!
1454          */
1455         write_lock_irq(&tasklist_lock);
1456
1457         /* CLONE_PARENT re-uses the old parent */
1458         if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1459                 p->real_parent = current->real_parent;
1460                 p->parent_exec_id = current->parent_exec_id;
1461         } else {
1462                 p->real_parent = current;
1463                 p->parent_exec_id = current->self_exec_id;
1464         }
1465
1466         spin_lock(&current->sighand->siglock);
1467
1468         /*
1469          * Copy seccomp details explicitly here, in case they were changed
1470          * before holding sighand lock.
1471          */
1472         copy_seccomp(p);
1473
1474         /*
1475          * Process group and session signals need to be delivered to just the
1476          * parent before the fork or both the parent and the child after the
1477          * fork. Restart if a signal comes in before we add the new process to
1478          * it's process group.
1479          * A fatal signal pending means that current will exit, so the new
1480          * thread can't slip out of an OOM kill (or normal SIGKILL).
1481         */
1482         recalc_sigpending();
1483         if (signal_pending(current)) {
1484                 spin_unlock(&current->sighand->siglock);
1485                 write_unlock_irq(&tasklist_lock);
1486                 retval = -ERESTARTNOINTR;
1487                 goto bad_fork_free_pid;
1488         }
1489
1490         if (likely(p->pid)) {
1491                 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1492
1493                 init_task_pid(p, PIDTYPE_PID, pid);
1494                 if (thread_group_leader(p)) {
1495                         init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1496                         init_task_pid(p, PIDTYPE_SID, task_session(current));
1497
1498                         if (is_child_reaper(pid)) {
1499                                 ns_of_pid(pid)->child_reaper = p;
1500                                 p->signal->flags |= SIGNAL_UNKILLABLE;
1501                         }
1502
1503                         p->signal->leader_pid = pid;
1504                         p->signal->tty = tty_kref_get(current->signal->tty);
1505                         list_add_tail(&p->sibling, &p->real_parent->children);
1506                         list_add_tail_rcu(&p->tasks, &init_task.tasks);
1507                         attach_pid(p, PIDTYPE_PGID);
1508                         attach_pid(p, PIDTYPE_SID);
1509                         __this_cpu_inc(process_counts);
1510                 } else {
1511                         current->signal->nr_threads++;
1512                         atomic_inc(&current->signal->live);
1513                         atomic_inc(&current->signal->sigcnt);
1514                         list_add_tail_rcu(&p->thread_group,
1515                                           &p->group_leader->thread_group);
1516                         list_add_tail_rcu(&p->thread_node,
1517                                           &p->signal->thread_head);
1518                 }
1519                 attach_pid(p, PIDTYPE_PID);
1520                 nr_threads++;
1521         }
1522
1523         total_forks++;
1524         spin_unlock(&current->sighand->siglock);
1525         syscall_tracepoint_update(p);
1526         write_unlock_irq(&tasklist_lock);
1527
1528         proc_fork_connector(p);
1529         cgroup_post_fork(p);
1530         if (clone_flags & CLONE_THREAD)
1531                 threadgroup_change_end(current);
1532         perf_event_fork(p);
1533
1534         trace_task_newtask(p, clone_flags);
1535         uprobe_copy_process(p, clone_flags);
1536
1537         return p;
1538
1539 bad_fork_free_pid:
1540         if (pid != &init_struct_pid)
1541                 free_pid(pid);
1542 bad_fork_cleanup_io:
1543         if (p->io_context)
1544                 exit_io_context(p);
1545 bad_fork_cleanup_namespaces:
1546         exit_task_namespaces(p);
1547 bad_fork_cleanup_mm:
1548         if (p->mm)
1549                 mmput(p->mm);
1550 bad_fork_cleanup_signal:
1551         if (!(clone_flags & CLONE_THREAD))
1552                 free_signal_struct(p->signal);
1553 bad_fork_cleanup_sighand:
1554         __cleanup_sighand(p->sighand);
1555 bad_fork_cleanup_fs:
1556         exit_fs(p); /* blocking */
1557 bad_fork_cleanup_files:
1558         exit_files(p); /* blocking */
1559 bad_fork_cleanup_semundo:
1560         exit_sem(p);
1561 bad_fork_cleanup_audit:
1562         audit_free(p);
1563 bad_fork_cleanup_policy:
1564         perf_event_free_task(p);
1565 #ifdef CONFIG_NUMA
1566         mpol_put(p->mempolicy);
1567 bad_fork_cleanup_threadgroup_lock:
1568 #endif
1569         if (clone_flags & CLONE_THREAD)
1570                 threadgroup_change_end(current);
1571         delayacct_tsk_free(p);
1572         module_put(task_thread_info(p)->exec_domain->module);
1573 bad_fork_cleanup_count:
1574         atomic_dec(&p->cred->user->processes);
1575         exit_creds(p);
1576 bad_fork_free:
1577         free_task(p);
1578 fork_out:
1579         return ERR_PTR(retval);
1580 }
1581
1582 static inline void init_idle_pids(struct pid_link *links)
1583 {
1584         enum pid_type type;
1585
1586         for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1587                 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1588                 links[type].pid = &init_struct_pid;
1589         }
1590 }
1591
1592 struct task_struct *fork_idle(int cpu)
1593 {
1594         struct task_struct *task;
1595         task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0);
1596         if (!IS_ERR(task)) {
1597                 init_idle_pids(task->pids);
1598                 init_idle(task, cpu);
1599         }
1600
1601         return task;
1602 }
1603
1604 /*
1605  *  Ok, this is the main fork-routine.
1606  *
1607  * It copies the process, and if successful kick-starts
1608  * it and waits for it to finish using the VM if required.
1609  */
1610 long do_fork(unsigned long clone_flags,
1611               unsigned long stack_start,
1612               unsigned long stack_size,
1613               int __user *parent_tidptr,
1614               int __user *child_tidptr)
1615 {
1616         struct task_struct *p;
1617         int trace = 0;
1618         long nr;
1619
1620         /*
1621          * Determine whether and which event to report to ptracer.  When
1622          * called from kernel_thread or CLONE_UNTRACED is explicitly
1623          * requested, no event is reported; otherwise, report if the event
1624          * for the type of forking is enabled.
1625          */
1626         if (!(clone_flags & CLONE_UNTRACED)) {
1627                 if (clone_flags & CLONE_VFORK)
1628                         trace = PTRACE_EVENT_VFORK;
1629                 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1630                         trace = PTRACE_EVENT_CLONE;
1631                 else
1632                         trace = PTRACE_EVENT_FORK;
1633
1634                 if (likely(!ptrace_event_enabled(current, trace)))
1635                         trace = 0;
1636         }
1637
1638         p = copy_process(clone_flags, stack_start, stack_size,
1639                          child_tidptr, NULL, trace);
1640         /*
1641          * Do this prior waking up the new thread - the thread pointer
1642          * might get invalid after that point, if the thread exits quickly.
1643          */
1644         if (!IS_ERR(p)) {
1645                 struct completion vfork;
1646                 struct pid *pid;
1647
1648                 trace_sched_process_fork(current, p);
1649
1650                 pid = get_task_pid(p, PIDTYPE_PID);
1651                 nr = pid_vnr(pid);
1652
1653                 if (clone_flags & CLONE_PARENT_SETTID)
1654                         put_user(nr, parent_tidptr);
1655
1656                 if (clone_flags & CLONE_VFORK) {
1657                         p->vfork_done = &vfork;
1658                         init_completion(&vfork);
1659                         get_task_struct(p);
1660                 }
1661
1662                 wake_up_new_task(p);
1663
1664                 /* forking complete and child started to run, tell ptracer */
1665                 if (unlikely(trace))
1666                         ptrace_event_pid(trace, pid);
1667
1668                 if (clone_flags & CLONE_VFORK) {
1669                         if (!wait_for_vfork_done(p, &vfork))
1670                                 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1671                 }
1672
1673                 put_pid(pid);
1674         } else {
1675                 nr = PTR_ERR(p);
1676         }
1677         return nr;
1678 }
1679
1680 /*
1681  * Create a kernel thread.
1682  */
1683 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1684 {
1685         return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1686                 (unsigned long)arg, NULL, NULL);
1687 }
1688
1689 #ifdef __ARCH_WANT_SYS_FORK
1690 SYSCALL_DEFINE0(fork)
1691 {
1692 #ifdef CONFIG_MMU
1693         return do_fork(SIGCHLD, 0, 0, NULL, NULL);
1694 #else
1695         /* can not support in nommu mode */
1696         return -EINVAL;
1697 #endif
1698 }
1699 #endif
1700
1701 #ifdef __ARCH_WANT_SYS_VFORK
1702 SYSCALL_DEFINE0(vfork)
1703 {
1704         return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1705                         0, NULL, NULL);
1706 }
1707 #endif
1708
1709 #ifdef __ARCH_WANT_SYS_CLONE
1710 #ifdef CONFIG_CLONE_BACKWARDS
1711 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1712                  int __user *, parent_tidptr,
1713                  int, tls_val,
1714                  int __user *, child_tidptr)
1715 #elif defined(CONFIG_CLONE_BACKWARDS2)
1716 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1717                  int __user *, parent_tidptr,
1718                  int __user *, child_tidptr,
1719                  int, tls_val)
1720 #elif defined(CONFIG_CLONE_BACKWARDS3)
1721 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1722                 int, stack_size,
1723                 int __user *, parent_tidptr,
1724                 int __user *, child_tidptr,
1725                 int, tls_val)
1726 #else
1727 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1728                  int __user *, parent_tidptr,
1729                  int __user *, child_tidptr,
1730                  int, tls_val)
1731 #endif
1732 {
1733         return do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr);
1734 }
1735 #endif
1736
1737 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1738 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1739 #endif
1740
1741 static void sighand_ctor(void *data)
1742 {
1743         struct sighand_struct *sighand = data;
1744
1745         spin_lock_init(&sighand->siglock);
1746         init_waitqueue_head(&sighand->signalfd_wqh);
1747 }
1748
1749 void __init proc_caches_init(void)
1750 {
1751         sighand_cachep = kmem_cache_create("sighand_cache",
1752                         sizeof(struct sighand_struct), 0,
1753                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1754                         SLAB_NOTRACK, sighand_ctor);
1755         signal_cachep = kmem_cache_create("signal_cache",
1756                         sizeof(struct signal_struct), 0,
1757                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1758         files_cachep = kmem_cache_create("files_cache",
1759                         sizeof(struct files_struct), 0,
1760                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1761         fs_cachep = kmem_cache_create("fs_cache",
1762                         sizeof(struct fs_struct), 0,
1763                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1764         /*
1765          * FIXME! The "sizeof(struct mm_struct)" currently includes the
1766          * whole struct cpumask for the OFFSTACK case. We could change
1767          * this to *only* allocate as much of it as required by the
1768          * maximum number of CPU's we can ever have.  The cpumask_allocation
1769          * is at the end of the structure, exactly for that reason.
1770          */
1771         mm_cachep = kmem_cache_create("mm_struct",
1772                         sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1773                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1774         vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1775         mmap_init();
1776         nsproxy_cache_init();
1777 }
1778
1779 /*
1780  * Check constraints on flags passed to the unshare system call.
1781  */
1782 static int check_unshare_flags(unsigned long unshare_flags)
1783 {
1784         if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1785                                 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1786                                 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1787                                 CLONE_NEWUSER|CLONE_NEWPID))
1788                 return -EINVAL;
1789         /*
1790          * Not implemented, but pretend it works if there is nothing to
1791          * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1792          * needs to unshare vm.
1793          */
1794         if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1795                 /* FIXME: get_task_mm() increments ->mm_users */
1796                 if (atomic_read(&current->mm->mm_users) > 1)
1797                         return -EINVAL;
1798         }
1799
1800         return 0;
1801 }
1802
1803 /*
1804  * Unshare the filesystem structure if it is being shared
1805  */
1806 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1807 {
1808         struct fs_struct *fs = current->fs;
1809
1810         if (!(unshare_flags & CLONE_FS) || !fs)
1811                 return 0;
1812
1813         /* don't need lock here; in the worst case we'll do useless copy */
1814         if (fs->users == 1)
1815                 return 0;
1816
1817         *new_fsp = copy_fs_struct(fs);
1818         if (!*new_fsp)
1819                 return -ENOMEM;
1820
1821         return 0;
1822 }
1823
1824 /*
1825  * Unshare file descriptor table if it is being shared
1826  */
1827 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1828 {
1829         struct files_struct *fd = current->files;
1830         int error = 0;
1831
1832         if ((unshare_flags & CLONE_FILES) &&
1833             (fd && atomic_read(&fd->count) > 1)) {
1834                 *new_fdp = dup_fd(fd, &error);
1835                 if (!*new_fdp)
1836                         return error;
1837         }
1838
1839         return 0;
1840 }
1841
1842 /*
1843  * unshare allows a process to 'unshare' part of the process
1844  * context which was originally shared using clone.  copy_*
1845  * functions used by do_fork() cannot be used here directly
1846  * because they modify an inactive task_struct that is being
1847  * constructed. Here we are modifying the current, active,
1848  * task_struct.
1849  */
1850 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1851 {
1852         struct fs_struct *fs, *new_fs = NULL;
1853         struct files_struct *fd, *new_fd = NULL;
1854         struct cred *new_cred = NULL;
1855         struct nsproxy *new_nsproxy = NULL;
1856         int do_sysvsem = 0;
1857         int err;
1858
1859         /*
1860          * If unsharing a user namespace must also unshare the thread.
1861          */
1862         if (unshare_flags & CLONE_NEWUSER)
1863                 unshare_flags |= CLONE_THREAD | CLONE_FS;
1864         /*
1865          * If unsharing a thread from a thread group, must also unshare vm.
1866          */
1867         if (unshare_flags & CLONE_THREAD)
1868                 unshare_flags |= CLONE_VM;
1869         /*
1870          * If unsharing vm, must also unshare signal handlers.
1871          */
1872         if (unshare_flags & CLONE_VM)
1873                 unshare_flags |= CLONE_SIGHAND;
1874         /*
1875          * If unsharing namespace, must also unshare filesystem information.
1876          */
1877         if (unshare_flags & CLONE_NEWNS)
1878                 unshare_flags |= CLONE_FS;
1879
1880         err = check_unshare_flags(unshare_flags);
1881         if (err)
1882                 goto bad_unshare_out;
1883         /*
1884          * CLONE_NEWIPC must also detach from the undolist: after switching
1885          * to a new ipc namespace, the semaphore arrays from the old
1886          * namespace are unreachable.
1887          */
1888         if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1889                 do_sysvsem = 1;
1890         err = unshare_fs(unshare_flags, &new_fs);
1891         if (err)
1892                 goto bad_unshare_out;
1893         err = unshare_fd(unshare_flags, &new_fd);
1894         if (err)
1895                 goto bad_unshare_cleanup_fs;
1896         err = unshare_userns(unshare_flags, &new_cred);
1897         if (err)
1898                 goto bad_unshare_cleanup_fd;
1899         err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1900                                          new_cred, new_fs);
1901         if (err)
1902                 goto bad_unshare_cleanup_cred;
1903
1904         if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
1905                 if (do_sysvsem) {
1906                         /*
1907                          * CLONE_SYSVSEM is equivalent to sys_exit().
1908                          */
1909                         exit_sem(current);
1910                 }
1911
1912                 if (new_nsproxy)
1913                         switch_task_namespaces(current, new_nsproxy);
1914
1915                 task_lock(current);
1916
1917                 if (new_fs) {
1918                         fs = current->fs;
1919                         spin_lock(&fs->lock);
1920                         current->fs = new_fs;
1921                         if (--fs->users)
1922                                 new_fs = NULL;
1923                         else
1924                                 new_fs = fs;
1925                         spin_unlock(&fs->lock);
1926                 }
1927
1928                 if (new_fd) {
1929                         fd = current->files;
1930                         current->files = new_fd;
1931                         new_fd = fd;
1932                 }
1933
1934                 task_unlock(current);
1935
1936                 if (new_cred) {
1937                         /* Install the new user namespace */
1938                         commit_creds(new_cred);
1939                         new_cred = NULL;
1940                 }
1941         }
1942
1943 bad_unshare_cleanup_cred:
1944         if (new_cred)
1945                 put_cred(new_cred);
1946 bad_unshare_cleanup_fd:
1947         if (new_fd)
1948                 put_files_struct(new_fd);
1949
1950 bad_unshare_cleanup_fs:
1951         if (new_fs)
1952                 free_fs_struct(new_fs);
1953
1954 bad_unshare_out:
1955         return err;
1956 }
1957
1958 /*
1959  *      Helper to unshare the files of the current task.
1960  *      We don't want to expose copy_files internals to
1961  *      the exec layer of the kernel.
1962  */
1963
1964 int unshare_files(struct files_struct **displaced)
1965 {
1966         struct task_struct *task = current;
1967         struct files_struct *copy = NULL;
1968         int error;
1969
1970         error = unshare_fd(CLONE_FILES, &copy);
1971         if (error || !copy) {
1972                 *displaced = NULL;
1973                 return error;
1974         }
1975         *displaced = task->files;
1976         task_lock(task);
1977         task->files = copy;
1978         task_unlock(task);
1979         return 0;
1980 }