d6cc22271ef45cfcfd1a627449093a78801e0356
[cascardo/linux.git] / kernel / perf_counter.c
1 /*
2  * Performance counter core code
3  *
4  *  Copyright(C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2008 Red Hat, Inc., Ingo Molnar
6  *
7  *  For licencing details see kernel-base/COPYING
8  */
9
10 #include <linux/fs.h>
11 #include <linux/cpu.h>
12 #include <linux/smp.h>
13 #include <linux/file.h>
14 #include <linux/poll.h>
15 #include <linux/sysfs.h>
16 #include <linux/ptrace.h>
17 #include <linux/percpu.h>
18 #include <linux/uaccess.h>
19 #include <linux/syscalls.h>
20 #include <linux/anon_inodes.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/perf_counter.h>
23 #include <linux/mm.h>
24 #include <linux/vmstat.h>
25 #include <linux/rculist.h>
26
27 /*
28  * Each CPU has a list of per CPU counters:
29  */
30 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
31
32 int perf_max_counters __read_mostly = 1;
33 static int perf_reserved_percpu __read_mostly;
34 static int perf_overcommit __read_mostly = 1;
35
36 /*
37  * Mutex for (sysadmin-configurable) counter reservations:
38  */
39 static DEFINE_MUTEX(perf_resource_mutex);
40
41 /*
42  * Architecture provided APIs - weak aliases:
43  */
44 extern __weak const struct hw_perf_counter_ops *
45 hw_perf_counter_init(struct perf_counter *counter)
46 {
47         return NULL;
48 }
49
50 u64 __weak hw_perf_save_disable(void)           { return 0; }
51 void __weak hw_perf_restore(u64 ctrl)           { barrier(); }
52 void __weak hw_perf_counter_setup(int cpu)      { barrier(); }
53 int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
54                struct perf_cpu_context *cpuctx,
55                struct perf_counter_context *ctx, int cpu)
56 {
57         return 0;
58 }
59
60 void __weak perf_counter_print_debug(void)      { }
61
62 static void
63 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
64 {
65         struct perf_counter *group_leader = counter->group_leader;
66
67         /*
68          * Depending on whether it is a standalone or sibling counter,
69          * add it straight to the context's counter list, or to the group
70          * leader's sibling list:
71          */
72         if (counter->group_leader == counter)
73                 list_add_tail(&counter->list_entry, &ctx->counter_list);
74         else
75                 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
76
77         list_add_rcu(&counter->event_entry, &ctx->event_list);
78 }
79
80 static void
81 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
82 {
83         struct perf_counter *sibling, *tmp;
84
85         list_del_init(&counter->list_entry);
86         list_del_rcu(&counter->event_entry);
87
88         /*
89          * If this was a group counter with sibling counters then
90          * upgrade the siblings to singleton counters by adding them
91          * to the context list directly:
92          */
93         list_for_each_entry_safe(sibling, tmp,
94                                  &counter->sibling_list, list_entry) {
95
96                 list_move_tail(&sibling->list_entry, &ctx->counter_list);
97                 sibling->group_leader = sibling;
98         }
99 }
100
101 static void
102 counter_sched_out(struct perf_counter *counter,
103                   struct perf_cpu_context *cpuctx,
104                   struct perf_counter_context *ctx)
105 {
106         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
107                 return;
108
109         counter->state = PERF_COUNTER_STATE_INACTIVE;
110         counter->hw_ops->disable(counter);
111         counter->oncpu = -1;
112
113         if (!is_software_counter(counter))
114                 cpuctx->active_oncpu--;
115         ctx->nr_active--;
116         if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
117                 cpuctx->exclusive = 0;
118 }
119
120 static void
121 group_sched_out(struct perf_counter *group_counter,
122                 struct perf_cpu_context *cpuctx,
123                 struct perf_counter_context *ctx)
124 {
125         struct perf_counter *counter;
126
127         if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
128                 return;
129
130         counter_sched_out(group_counter, cpuctx, ctx);
131
132         /*
133          * Schedule out siblings (if any):
134          */
135         list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
136                 counter_sched_out(counter, cpuctx, ctx);
137
138         if (group_counter->hw_event.exclusive)
139                 cpuctx->exclusive = 0;
140 }
141
142 /*
143  * Cross CPU call to remove a performance counter
144  *
145  * We disable the counter on the hardware level first. After that we
146  * remove it from the context list.
147  */
148 static void __perf_counter_remove_from_context(void *info)
149 {
150         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
151         struct perf_counter *counter = info;
152         struct perf_counter_context *ctx = counter->ctx;
153         unsigned long flags;
154         u64 perf_flags;
155
156         /*
157          * If this is a task context, we need to check whether it is
158          * the current task context of this cpu. If not it has been
159          * scheduled out before the smp call arrived.
160          */
161         if (ctx->task && cpuctx->task_ctx != ctx)
162                 return;
163
164         curr_rq_lock_irq_save(&flags);
165         spin_lock(&ctx->lock);
166
167         counter_sched_out(counter, cpuctx, ctx);
168
169         counter->task = NULL;
170         ctx->nr_counters--;
171
172         /*
173          * Protect the list operation against NMI by disabling the
174          * counters on a global level. NOP for non NMI based counters.
175          */
176         perf_flags = hw_perf_save_disable();
177         list_del_counter(counter, ctx);
178         hw_perf_restore(perf_flags);
179
180         if (!ctx->task) {
181                 /*
182                  * Allow more per task counters with respect to the
183                  * reservation:
184                  */
185                 cpuctx->max_pertask =
186                         min(perf_max_counters - ctx->nr_counters,
187                             perf_max_counters - perf_reserved_percpu);
188         }
189
190         spin_unlock(&ctx->lock);
191         curr_rq_unlock_irq_restore(&flags);
192 }
193
194
195 /*
196  * Remove the counter from a task's (or a CPU's) list of counters.
197  *
198  * Must be called with counter->mutex and ctx->mutex held.
199  *
200  * CPU counters are removed with a smp call. For task counters we only
201  * call when the task is on a CPU.
202  */
203 static void perf_counter_remove_from_context(struct perf_counter *counter)
204 {
205         struct perf_counter_context *ctx = counter->ctx;
206         struct task_struct *task = ctx->task;
207
208         if (!task) {
209                 /*
210                  * Per cpu counters are removed via an smp call and
211                  * the removal is always sucessful.
212                  */
213                 smp_call_function_single(counter->cpu,
214                                          __perf_counter_remove_from_context,
215                                          counter, 1);
216                 return;
217         }
218
219 retry:
220         task_oncpu_function_call(task, __perf_counter_remove_from_context,
221                                  counter);
222
223         spin_lock_irq(&ctx->lock);
224         /*
225          * If the context is active we need to retry the smp call.
226          */
227         if (ctx->nr_active && !list_empty(&counter->list_entry)) {
228                 spin_unlock_irq(&ctx->lock);
229                 goto retry;
230         }
231
232         /*
233          * The lock prevents that this context is scheduled in so we
234          * can remove the counter safely, if the call above did not
235          * succeed.
236          */
237         if (!list_empty(&counter->list_entry)) {
238                 ctx->nr_counters--;
239                 list_del_counter(counter, ctx);
240                 counter->task = NULL;
241         }
242         spin_unlock_irq(&ctx->lock);
243 }
244
245 /*
246  * Cross CPU call to disable a performance counter
247  */
248 static void __perf_counter_disable(void *info)
249 {
250         struct perf_counter *counter = info;
251         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
252         struct perf_counter_context *ctx = counter->ctx;
253         unsigned long flags;
254
255         /*
256          * If this is a per-task counter, need to check whether this
257          * counter's task is the current task on this cpu.
258          */
259         if (ctx->task && cpuctx->task_ctx != ctx)
260                 return;
261
262         curr_rq_lock_irq_save(&flags);
263         spin_lock(&ctx->lock);
264
265         /*
266          * If the counter is on, turn it off.
267          * If it is in error state, leave it in error state.
268          */
269         if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
270                 if (counter == counter->group_leader)
271                         group_sched_out(counter, cpuctx, ctx);
272                 else
273                         counter_sched_out(counter, cpuctx, ctx);
274                 counter->state = PERF_COUNTER_STATE_OFF;
275         }
276
277         spin_unlock(&ctx->lock);
278         curr_rq_unlock_irq_restore(&flags);
279 }
280
281 /*
282  * Disable a counter.
283  */
284 static void perf_counter_disable(struct perf_counter *counter)
285 {
286         struct perf_counter_context *ctx = counter->ctx;
287         struct task_struct *task = ctx->task;
288
289         if (!task) {
290                 /*
291                  * Disable the counter on the cpu that it's on
292                  */
293                 smp_call_function_single(counter->cpu, __perf_counter_disable,
294                                          counter, 1);
295                 return;
296         }
297
298  retry:
299         task_oncpu_function_call(task, __perf_counter_disable, counter);
300
301         spin_lock_irq(&ctx->lock);
302         /*
303          * If the counter is still active, we need to retry the cross-call.
304          */
305         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
306                 spin_unlock_irq(&ctx->lock);
307                 goto retry;
308         }
309
310         /*
311          * Since we have the lock this context can't be scheduled
312          * in, so we can change the state safely.
313          */
314         if (counter->state == PERF_COUNTER_STATE_INACTIVE)
315                 counter->state = PERF_COUNTER_STATE_OFF;
316
317         spin_unlock_irq(&ctx->lock);
318 }
319
320 /*
321  * Disable a counter and all its children.
322  */
323 static void perf_counter_disable_family(struct perf_counter *counter)
324 {
325         struct perf_counter *child;
326
327         perf_counter_disable(counter);
328
329         /*
330          * Lock the mutex to protect the list of children
331          */
332         mutex_lock(&counter->mutex);
333         list_for_each_entry(child, &counter->child_list, child_list)
334                 perf_counter_disable(child);
335         mutex_unlock(&counter->mutex);
336 }
337
338 static int
339 counter_sched_in(struct perf_counter *counter,
340                  struct perf_cpu_context *cpuctx,
341                  struct perf_counter_context *ctx,
342                  int cpu)
343 {
344         if (counter->state <= PERF_COUNTER_STATE_OFF)
345                 return 0;
346
347         counter->state = PERF_COUNTER_STATE_ACTIVE;
348         counter->oncpu = cpu;   /* TODO: put 'cpu' into cpuctx->cpu */
349         /*
350          * The new state must be visible before we turn it on in the hardware:
351          */
352         smp_wmb();
353
354         if (counter->hw_ops->enable(counter)) {
355                 counter->state = PERF_COUNTER_STATE_INACTIVE;
356                 counter->oncpu = -1;
357                 return -EAGAIN;
358         }
359
360         if (!is_software_counter(counter))
361                 cpuctx->active_oncpu++;
362         ctx->nr_active++;
363
364         if (counter->hw_event.exclusive)
365                 cpuctx->exclusive = 1;
366
367         return 0;
368 }
369
370 /*
371  * Return 1 for a group consisting entirely of software counters,
372  * 0 if the group contains any hardware counters.
373  */
374 static int is_software_only_group(struct perf_counter *leader)
375 {
376         struct perf_counter *counter;
377
378         if (!is_software_counter(leader))
379                 return 0;
380         list_for_each_entry(counter, &leader->sibling_list, list_entry)
381                 if (!is_software_counter(counter))
382                         return 0;
383         return 1;
384 }
385
386 /*
387  * Work out whether we can put this counter group on the CPU now.
388  */
389 static int group_can_go_on(struct perf_counter *counter,
390                            struct perf_cpu_context *cpuctx,
391                            int can_add_hw)
392 {
393         /*
394          * Groups consisting entirely of software counters can always go on.
395          */
396         if (is_software_only_group(counter))
397                 return 1;
398         /*
399          * If an exclusive group is already on, no other hardware
400          * counters can go on.
401          */
402         if (cpuctx->exclusive)
403                 return 0;
404         /*
405          * If this group is exclusive and there are already
406          * counters on the CPU, it can't go on.
407          */
408         if (counter->hw_event.exclusive && cpuctx->active_oncpu)
409                 return 0;
410         /*
411          * Otherwise, try to add it if all previous groups were able
412          * to go on.
413          */
414         return can_add_hw;
415 }
416
417 /*
418  * Cross CPU call to install and enable a performance counter
419  */
420 static void __perf_install_in_context(void *info)
421 {
422         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
423         struct perf_counter *counter = info;
424         struct perf_counter_context *ctx = counter->ctx;
425         struct perf_counter *leader = counter->group_leader;
426         int cpu = smp_processor_id();
427         unsigned long flags;
428         u64 perf_flags;
429         int err;
430
431         /*
432          * If this is a task context, we need to check whether it is
433          * the current task context of this cpu. If not it has been
434          * scheduled out before the smp call arrived.
435          */
436         if (ctx->task && cpuctx->task_ctx != ctx)
437                 return;
438
439         curr_rq_lock_irq_save(&flags);
440         spin_lock(&ctx->lock);
441
442         /*
443          * Protect the list operation against NMI by disabling the
444          * counters on a global level. NOP for non NMI based counters.
445          */
446         perf_flags = hw_perf_save_disable();
447
448         list_add_counter(counter, ctx);
449         ctx->nr_counters++;
450         counter->prev_state = PERF_COUNTER_STATE_OFF;
451
452         /*
453          * Don't put the counter on if it is disabled or if
454          * it is in a group and the group isn't on.
455          */
456         if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
457             (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
458                 goto unlock;
459
460         /*
461          * An exclusive counter can't go on if there are already active
462          * hardware counters, and no hardware counter can go on if there
463          * is already an exclusive counter on.
464          */
465         if (!group_can_go_on(counter, cpuctx, 1))
466                 err = -EEXIST;
467         else
468                 err = counter_sched_in(counter, cpuctx, ctx, cpu);
469
470         if (err) {
471                 /*
472                  * This counter couldn't go on.  If it is in a group
473                  * then we have to pull the whole group off.
474                  * If the counter group is pinned then put it in error state.
475                  */
476                 if (leader != counter)
477                         group_sched_out(leader, cpuctx, ctx);
478                 if (leader->hw_event.pinned)
479                         leader->state = PERF_COUNTER_STATE_ERROR;
480         }
481
482         if (!err && !ctx->task && cpuctx->max_pertask)
483                 cpuctx->max_pertask--;
484
485  unlock:
486         hw_perf_restore(perf_flags);
487
488         spin_unlock(&ctx->lock);
489         curr_rq_unlock_irq_restore(&flags);
490 }
491
492 /*
493  * Attach a performance counter to a context
494  *
495  * First we add the counter to the list with the hardware enable bit
496  * in counter->hw_config cleared.
497  *
498  * If the counter is attached to a task which is on a CPU we use a smp
499  * call to enable it in the task context. The task might have been
500  * scheduled away, but we check this in the smp call again.
501  *
502  * Must be called with ctx->mutex held.
503  */
504 static void
505 perf_install_in_context(struct perf_counter_context *ctx,
506                         struct perf_counter *counter,
507                         int cpu)
508 {
509         struct task_struct *task = ctx->task;
510
511         if (!task) {
512                 /*
513                  * Per cpu counters are installed via an smp call and
514                  * the install is always sucessful.
515                  */
516                 smp_call_function_single(cpu, __perf_install_in_context,
517                                          counter, 1);
518                 return;
519         }
520
521         counter->task = task;
522 retry:
523         task_oncpu_function_call(task, __perf_install_in_context,
524                                  counter);
525
526         spin_lock_irq(&ctx->lock);
527         /*
528          * we need to retry the smp call.
529          */
530         if (ctx->is_active && list_empty(&counter->list_entry)) {
531                 spin_unlock_irq(&ctx->lock);
532                 goto retry;
533         }
534
535         /*
536          * The lock prevents that this context is scheduled in so we
537          * can add the counter safely, if it the call above did not
538          * succeed.
539          */
540         if (list_empty(&counter->list_entry)) {
541                 list_add_counter(counter, ctx);
542                 ctx->nr_counters++;
543         }
544         spin_unlock_irq(&ctx->lock);
545 }
546
547 /*
548  * Cross CPU call to enable a performance counter
549  */
550 static void __perf_counter_enable(void *info)
551 {
552         struct perf_counter *counter = info;
553         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
554         struct perf_counter_context *ctx = counter->ctx;
555         struct perf_counter *leader = counter->group_leader;
556         unsigned long flags;
557         int err;
558
559         /*
560          * If this is a per-task counter, need to check whether this
561          * counter's task is the current task on this cpu.
562          */
563         if (ctx->task && cpuctx->task_ctx != ctx)
564                 return;
565
566         curr_rq_lock_irq_save(&flags);
567         spin_lock(&ctx->lock);
568
569         counter->prev_state = counter->state;
570         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
571                 goto unlock;
572         counter->state = PERF_COUNTER_STATE_INACTIVE;
573
574         /*
575          * If the counter is in a group and isn't the group leader,
576          * then don't put it on unless the group is on.
577          */
578         if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
579                 goto unlock;
580
581         if (!group_can_go_on(counter, cpuctx, 1))
582                 err = -EEXIST;
583         else
584                 err = counter_sched_in(counter, cpuctx, ctx,
585                                        smp_processor_id());
586
587         if (err) {
588                 /*
589                  * If this counter can't go on and it's part of a
590                  * group, then the whole group has to come off.
591                  */
592                 if (leader != counter)
593                         group_sched_out(leader, cpuctx, ctx);
594                 if (leader->hw_event.pinned)
595                         leader->state = PERF_COUNTER_STATE_ERROR;
596         }
597
598  unlock:
599         spin_unlock(&ctx->lock);
600         curr_rq_unlock_irq_restore(&flags);
601 }
602
603 /*
604  * Enable a counter.
605  */
606 static void perf_counter_enable(struct perf_counter *counter)
607 {
608         struct perf_counter_context *ctx = counter->ctx;
609         struct task_struct *task = ctx->task;
610
611         if (!task) {
612                 /*
613                  * Enable the counter on the cpu that it's on
614                  */
615                 smp_call_function_single(counter->cpu, __perf_counter_enable,
616                                          counter, 1);
617                 return;
618         }
619
620         spin_lock_irq(&ctx->lock);
621         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
622                 goto out;
623
624         /*
625          * If the counter is in error state, clear that first.
626          * That way, if we see the counter in error state below, we
627          * know that it has gone back into error state, as distinct
628          * from the task having been scheduled away before the
629          * cross-call arrived.
630          */
631         if (counter->state == PERF_COUNTER_STATE_ERROR)
632                 counter->state = PERF_COUNTER_STATE_OFF;
633
634  retry:
635         spin_unlock_irq(&ctx->lock);
636         task_oncpu_function_call(task, __perf_counter_enable, counter);
637
638         spin_lock_irq(&ctx->lock);
639
640         /*
641          * If the context is active and the counter is still off,
642          * we need to retry the cross-call.
643          */
644         if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
645                 goto retry;
646
647         /*
648          * Since we have the lock this context can't be scheduled
649          * in, so we can change the state safely.
650          */
651         if (counter->state == PERF_COUNTER_STATE_OFF)
652                 counter->state = PERF_COUNTER_STATE_INACTIVE;
653  out:
654         spin_unlock_irq(&ctx->lock);
655 }
656
657 /*
658  * Enable a counter and all its children.
659  */
660 static void perf_counter_enable_family(struct perf_counter *counter)
661 {
662         struct perf_counter *child;
663
664         perf_counter_enable(counter);
665
666         /*
667          * Lock the mutex to protect the list of children
668          */
669         mutex_lock(&counter->mutex);
670         list_for_each_entry(child, &counter->child_list, child_list)
671                 perf_counter_enable(child);
672         mutex_unlock(&counter->mutex);
673 }
674
675 void __perf_counter_sched_out(struct perf_counter_context *ctx,
676                               struct perf_cpu_context *cpuctx)
677 {
678         struct perf_counter *counter;
679         u64 flags;
680
681         spin_lock(&ctx->lock);
682         ctx->is_active = 0;
683         if (likely(!ctx->nr_counters))
684                 goto out;
685
686         flags = hw_perf_save_disable();
687         if (ctx->nr_active) {
688                 list_for_each_entry(counter, &ctx->counter_list, list_entry)
689                         group_sched_out(counter, cpuctx, ctx);
690         }
691         hw_perf_restore(flags);
692  out:
693         spin_unlock(&ctx->lock);
694 }
695
696 /*
697  * Called from scheduler to remove the counters of the current task,
698  * with interrupts disabled.
699  *
700  * We stop each counter and update the counter value in counter->count.
701  *
702  * This does not protect us against NMI, but disable()
703  * sets the disabled bit in the control field of counter _before_
704  * accessing the counter control register. If a NMI hits, then it will
705  * not restart the counter.
706  */
707 void perf_counter_task_sched_out(struct task_struct *task, int cpu)
708 {
709         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
710         struct perf_counter_context *ctx = &task->perf_counter_ctx;
711
712         if (likely(!cpuctx->task_ctx))
713                 return;
714
715         __perf_counter_sched_out(ctx, cpuctx);
716
717         cpuctx->task_ctx = NULL;
718 }
719
720 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
721 {
722         __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
723 }
724
725 static int
726 group_sched_in(struct perf_counter *group_counter,
727                struct perf_cpu_context *cpuctx,
728                struct perf_counter_context *ctx,
729                int cpu)
730 {
731         struct perf_counter *counter, *partial_group;
732         int ret;
733
734         if (group_counter->state == PERF_COUNTER_STATE_OFF)
735                 return 0;
736
737         ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
738         if (ret)
739                 return ret < 0 ? ret : 0;
740
741         group_counter->prev_state = group_counter->state;
742         if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
743                 return -EAGAIN;
744
745         /*
746          * Schedule in siblings as one group (if any):
747          */
748         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
749                 counter->prev_state = counter->state;
750                 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
751                         partial_group = counter;
752                         goto group_error;
753                 }
754         }
755
756         return 0;
757
758 group_error:
759         /*
760          * Groups can be scheduled in as one unit only, so undo any
761          * partial group before returning:
762          */
763         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
764                 if (counter == partial_group)
765                         break;
766                 counter_sched_out(counter, cpuctx, ctx);
767         }
768         counter_sched_out(group_counter, cpuctx, ctx);
769
770         return -EAGAIN;
771 }
772
773 static void
774 __perf_counter_sched_in(struct perf_counter_context *ctx,
775                         struct perf_cpu_context *cpuctx, int cpu)
776 {
777         struct perf_counter *counter;
778         u64 flags;
779         int can_add_hw = 1;
780
781         spin_lock(&ctx->lock);
782         ctx->is_active = 1;
783         if (likely(!ctx->nr_counters))
784                 goto out;
785
786         flags = hw_perf_save_disable();
787
788         /*
789          * First go through the list and put on any pinned groups
790          * in order to give them the best chance of going on.
791          */
792         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
793                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
794                     !counter->hw_event.pinned)
795                         continue;
796                 if (counter->cpu != -1 && counter->cpu != cpu)
797                         continue;
798
799                 if (group_can_go_on(counter, cpuctx, 1))
800                         group_sched_in(counter, cpuctx, ctx, cpu);
801
802                 /*
803                  * If this pinned group hasn't been scheduled,
804                  * put it in error state.
805                  */
806                 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
807                         counter->state = PERF_COUNTER_STATE_ERROR;
808         }
809
810         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
811                 /*
812                  * Ignore counters in OFF or ERROR state, and
813                  * ignore pinned counters since we did them already.
814                  */
815                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
816                     counter->hw_event.pinned)
817                         continue;
818
819                 /*
820                  * Listen to the 'cpu' scheduling filter constraint
821                  * of counters:
822                  */
823                 if (counter->cpu != -1 && counter->cpu != cpu)
824                         continue;
825
826                 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
827                         if (group_sched_in(counter, cpuctx, ctx, cpu))
828                                 can_add_hw = 0;
829                 }
830         }
831         hw_perf_restore(flags);
832  out:
833         spin_unlock(&ctx->lock);
834 }
835
836 /*
837  * Called from scheduler to add the counters of the current task
838  * with interrupts disabled.
839  *
840  * We restore the counter value and then enable it.
841  *
842  * This does not protect us against NMI, but enable()
843  * sets the enabled bit in the control field of counter _before_
844  * accessing the counter control register. If a NMI hits, then it will
845  * keep the counter running.
846  */
847 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
848 {
849         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
850         struct perf_counter_context *ctx = &task->perf_counter_ctx;
851
852         __perf_counter_sched_in(ctx, cpuctx, cpu);
853         cpuctx->task_ctx = ctx;
854 }
855
856 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
857 {
858         struct perf_counter_context *ctx = &cpuctx->ctx;
859
860         __perf_counter_sched_in(ctx, cpuctx, cpu);
861 }
862
863 int perf_counter_task_disable(void)
864 {
865         struct task_struct *curr = current;
866         struct perf_counter_context *ctx = &curr->perf_counter_ctx;
867         struct perf_counter *counter;
868         unsigned long flags;
869         u64 perf_flags;
870         int cpu;
871
872         if (likely(!ctx->nr_counters))
873                 return 0;
874
875         curr_rq_lock_irq_save(&flags);
876         cpu = smp_processor_id();
877
878         /* force the update of the task clock: */
879         __task_delta_exec(curr, 1);
880
881         perf_counter_task_sched_out(curr, cpu);
882
883         spin_lock(&ctx->lock);
884
885         /*
886          * Disable all the counters:
887          */
888         perf_flags = hw_perf_save_disable();
889
890         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
891                 if (counter->state != PERF_COUNTER_STATE_ERROR)
892                         counter->state = PERF_COUNTER_STATE_OFF;
893         }
894
895         hw_perf_restore(perf_flags);
896
897         spin_unlock(&ctx->lock);
898
899         curr_rq_unlock_irq_restore(&flags);
900
901         return 0;
902 }
903
904 int perf_counter_task_enable(void)
905 {
906         struct task_struct *curr = current;
907         struct perf_counter_context *ctx = &curr->perf_counter_ctx;
908         struct perf_counter *counter;
909         unsigned long flags;
910         u64 perf_flags;
911         int cpu;
912
913         if (likely(!ctx->nr_counters))
914                 return 0;
915
916         curr_rq_lock_irq_save(&flags);
917         cpu = smp_processor_id();
918
919         /* force the update of the task clock: */
920         __task_delta_exec(curr, 1);
921
922         perf_counter_task_sched_out(curr, cpu);
923
924         spin_lock(&ctx->lock);
925
926         /*
927          * Disable all the counters:
928          */
929         perf_flags = hw_perf_save_disable();
930
931         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
932                 if (counter->state > PERF_COUNTER_STATE_OFF)
933                         continue;
934                 counter->state = PERF_COUNTER_STATE_INACTIVE;
935                 counter->hw_event.disabled = 0;
936         }
937         hw_perf_restore(perf_flags);
938
939         spin_unlock(&ctx->lock);
940
941         perf_counter_task_sched_in(curr, cpu);
942
943         curr_rq_unlock_irq_restore(&flags);
944
945         return 0;
946 }
947
948 /*
949  * Round-robin a context's counters:
950  */
951 static void rotate_ctx(struct perf_counter_context *ctx)
952 {
953         struct perf_counter *counter;
954         u64 perf_flags;
955
956         if (!ctx->nr_counters)
957                 return;
958
959         spin_lock(&ctx->lock);
960         /*
961          * Rotate the first entry last (works just fine for group counters too):
962          */
963         perf_flags = hw_perf_save_disable();
964         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
965                 list_move_tail(&counter->list_entry, &ctx->counter_list);
966                 break;
967         }
968         hw_perf_restore(perf_flags);
969
970         spin_unlock(&ctx->lock);
971 }
972
973 void perf_counter_task_tick(struct task_struct *curr, int cpu)
974 {
975         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
976         struct perf_counter_context *ctx = &curr->perf_counter_ctx;
977         const int rotate_percpu = 0;
978
979         if (rotate_percpu)
980                 perf_counter_cpu_sched_out(cpuctx);
981         perf_counter_task_sched_out(curr, cpu);
982
983         if (rotate_percpu)
984                 rotate_ctx(&cpuctx->ctx);
985         rotate_ctx(ctx);
986
987         if (rotate_percpu)
988                 perf_counter_cpu_sched_in(cpuctx, cpu);
989         perf_counter_task_sched_in(curr, cpu);
990 }
991
992 /*
993  * Cross CPU call to read the hardware counter
994  */
995 static void __read(void *info)
996 {
997         struct perf_counter *counter = info;
998         unsigned long flags;
999
1000         curr_rq_lock_irq_save(&flags);
1001         counter->hw_ops->read(counter);
1002         curr_rq_unlock_irq_restore(&flags);
1003 }
1004
1005 static u64 perf_counter_read(struct perf_counter *counter)
1006 {
1007         /*
1008          * If counter is enabled and currently active on a CPU, update the
1009          * value in the counter structure:
1010          */
1011         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1012                 smp_call_function_single(counter->oncpu,
1013                                          __read, counter, 1);
1014         }
1015
1016         return atomic64_read(&counter->count);
1017 }
1018
1019 /*
1020  * Cross CPU call to switch performance data pointers
1021  */
1022 static void __perf_switch_irq_data(void *info)
1023 {
1024         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1025         struct perf_counter *counter = info;
1026         struct perf_counter_context *ctx = counter->ctx;
1027         struct perf_data *oldirqdata = counter->irqdata;
1028
1029         /*
1030          * If this is a task context, we need to check whether it is
1031          * the current task context of this cpu. If not it has been
1032          * scheduled out before the smp call arrived.
1033          */
1034         if (ctx->task) {
1035                 if (cpuctx->task_ctx != ctx)
1036                         return;
1037                 spin_lock(&ctx->lock);
1038         }
1039
1040         /* Change the pointer NMI safe */
1041         atomic_long_set((atomic_long_t *)&counter->irqdata,
1042                         (unsigned long) counter->usrdata);
1043         counter->usrdata = oldirqdata;
1044
1045         if (ctx->task)
1046                 spin_unlock(&ctx->lock);
1047 }
1048
1049 static struct perf_data *perf_switch_irq_data(struct perf_counter *counter)
1050 {
1051         struct perf_counter_context *ctx = counter->ctx;
1052         struct perf_data *oldirqdata = counter->irqdata;
1053         struct task_struct *task = ctx->task;
1054
1055         if (!task) {
1056                 smp_call_function_single(counter->cpu,
1057                                          __perf_switch_irq_data,
1058                                          counter, 1);
1059                 return counter->usrdata;
1060         }
1061
1062 retry:
1063         spin_lock_irq(&ctx->lock);
1064         if (counter->state != PERF_COUNTER_STATE_ACTIVE) {
1065                 counter->irqdata = counter->usrdata;
1066                 counter->usrdata = oldirqdata;
1067                 spin_unlock_irq(&ctx->lock);
1068                 return oldirqdata;
1069         }
1070         spin_unlock_irq(&ctx->lock);
1071         task_oncpu_function_call(task, __perf_switch_irq_data, counter);
1072         /* Might have failed, because task was scheduled out */
1073         if (counter->irqdata == oldirqdata)
1074                 goto retry;
1075
1076         return counter->usrdata;
1077 }
1078
1079 static void put_context(struct perf_counter_context *ctx)
1080 {
1081         if (ctx->task)
1082                 put_task_struct(ctx->task);
1083 }
1084
1085 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1086 {
1087         struct perf_cpu_context *cpuctx;
1088         struct perf_counter_context *ctx;
1089         struct task_struct *task;
1090
1091         /*
1092          * If cpu is not a wildcard then this is a percpu counter:
1093          */
1094         if (cpu != -1) {
1095                 /* Must be root to operate on a CPU counter: */
1096                 if (!capable(CAP_SYS_ADMIN))
1097                         return ERR_PTR(-EACCES);
1098
1099                 if (cpu < 0 || cpu > num_possible_cpus())
1100                         return ERR_PTR(-EINVAL);
1101
1102                 /*
1103                  * We could be clever and allow to attach a counter to an
1104                  * offline CPU and activate it when the CPU comes up, but
1105                  * that's for later.
1106                  */
1107                 if (!cpu_isset(cpu, cpu_online_map))
1108                         return ERR_PTR(-ENODEV);
1109
1110                 cpuctx = &per_cpu(perf_cpu_context, cpu);
1111                 ctx = &cpuctx->ctx;
1112
1113                 return ctx;
1114         }
1115
1116         rcu_read_lock();
1117         if (!pid)
1118                 task = current;
1119         else
1120                 task = find_task_by_vpid(pid);
1121         if (task)
1122                 get_task_struct(task);
1123         rcu_read_unlock();
1124
1125         if (!task)
1126                 return ERR_PTR(-ESRCH);
1127
1128         ctx = &task->perf_counter_ctx;
1129         ctx->task = task;
1130
1131         /* Reuse ptrace permission checks for now. */
1132         if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
1133                 put_context(ctx);
1134                 return ERR_PTR(-EACCES);
1135         }
1136
1137         return ctx;
1138 }
1139
1140 static void free_counter_rcu(struct rcu_head *head)
1141 {
1142         struct perf_counter *counter;
1143
1144         counter = container_of(head, struct perf_counter, rcu_head);
1145         kfree(counter);
1146 }
1147
1148 /*
1149  * Called when the last reference to the file is gone.
1150  */
1151 static int perf_release(struct inode *inode, struct file *file)
1152 {
1153         struct perf_counter *counter = file->private_data;
1154         struct perf_counter_context *ctx = counter->ctx;
1155
1156         file->private_data = NULL;
1157
1158         mutex_lock(&ctx->mutex);
1159         mutex_lock(&counter->mutex);
1160
1161         perf_counter_remove_from_context(counter);
1162
1163         mutex_unlock(&counter->mutex);
1164         mutex_unlock(&ctx->mutex);
1165
1166         call_rcu(&counter->rcu_head, free_counter_rcu);
1167         put_context(ctx);
1168
1169         return 0;
1170 }
1171
1172 /*
1173  * Read the performance counter - simple non blocking version for now
1174  */
1175 static ssize_t
1176 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1177 {
1178         u64 cntval;
1179
1180         if (count != sizeof(cntval))
1181                 return -EINVAL;
1182
1183         /*
1184          * Return end-of-file for a read on a counter that is in
1185          * error state (i.e. because it was pinned but it couldn't be
1186          * scheduled on to the CPU at some point).
1187          */
1188         if (counter->state == PERF_COUNTER_STATE_ERROR)
1189                 return 0;
1190
1191         mutex_lock(&counter->mutex);
1192         cntval = perf_counter_read(counter);
1193         mutex_unlock(&counter->mutex);
1194
1195         return put_user(cntval, (u64 __user *) buf) ? -EFAULT : sizeof(cntval);
1196 }
1197
1198 static ssize_t
1199 perf_copy_usrdata(struct perf_data *usrdata, char __user *buf, size_t count)
1200 {
1201         if (!usrdata->len)
1202                 return 0;
1203
1204         count = min(count, (size_t)usrdata->len);
1205         if (copy_to_user(buf, usrdata->data + usrdata->rd_idx, count))
1206                 return -EFAULT;
1207
1208         /* Adjust the counters */
1209         usrdata->len -= count;
1210         if (!usrdata->len)
1211                 usrdata->rd_idx = 0;
1212         else
1213                 usrdata->rd_idx += count;
1214
1215         return count;
1216 }
1217
1218 static ssize_t
1219 perf_read_irq_data(struct perf_counter  *counter,
1220                    char __user          *buf,
1221                    size_t               count,
1222                    int                  nonblocking)
1223 {
1224         struct perf_data *irqdata, *usrdata;
1225         DECLARE_WAITQUEUE(wait, current);
1226         ssize_t res, res2;
1227
1228         irqdata = counter->irqdata;
1229         usrdata = counter->usrdata;
1230
1231         if (usrdata->len + irqdata->len >= count)
1232                 goto read_pending;
1233
1234         if (nonblocking)
1235                 return -EAGAIN;
1236
1237         spin_lock_irq(&counter->waitq.lock);
1238         __add_wait_queue(&counter->waitq, &wait);
1239         for (;;) {
1240                 set_current_state(TASK_INTERRUPTIBLE);
1241                 if (usrdata->len + irqdata->len >= count)
1242                         break;
1243
1244                 if (signal_pending(current))
1245                         break;
1246
1247                 if (counter->state == PERF_COUNTER_STATE_ERROR)
1248                         break;
1249
1250                 spin_unlock_irq(&counter->waitq.lock);
1251                 schedule();
1252                 spin_lock_irq(&counter->waitq.lock);
1253         }
1254         __remove_wait_queue(&counter->waitq, &wait);
1255         __set_current_state(TASK_RUNNING);
1256         spin_unlock_irq(&counter->waitq.lock);
1257
1258         if (usrdata->len + irqdata->len < count &&
1259             counter->state != PERF_COUNTER_STATE_ERROR)
1260                 return -ERESTARTSYS;
1261 read_pending:
1262         mutex_lock(&counter->mutex);
1263
1264         /* Drain pending data first: */
1265         res = perf_copy_usrdata(usrdata, buf, count);
1266         if (res < 0 || res == count)
1267                 goto out;
1268
1269         /* Switch irq buffer: */
1270         usrdata = perf_switch_irq_data(counter);
1271         res2 = perf_copy_usrdata(usrdata, buf + res, count - res);
1272         if (res2 < 0) {
1273                 if (!res)
1274                         res = -EFAULT;
1275         } else {
1276                 res += res2;
1277         }
1278 out:
1279         mutex_unlock(&counter->mutex);
1280
1281         return res;
1282 }
1283
1284 static ssize_t
1285 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1286 {
1287         struct perf_counter *counter = file->private_data;
1288
1289         switch (counter->hw_event.record_type) {
1290         case PERF_RECORD_SIMPLE:
1291                 return perf_read_hw(counter, buf, count);
1292
1293         case PERF_RECORD_IRQ:
1294         case PERF_RECORD_GROUP:
1295                 return perf_read_irq_data(counter, buf, count,
1296                                           file->f_flags & O_NONBLOCK);
1297         }
1298         return -EINVAL;
1299 }
1300
1301 static unsigned int perf_poll(struct file *file, poll_table *wait)
1302 {
1303         struct perf_counter *counter = file->private_data;
1304         unsigned int events = 0;
1305         unsigned long flags;
1306
1307         poll_wait(file, &counter->waitq, wait);
1308
1309         spin_lock_irqsave(&counter->waitq.lock, flags);
1310         if (counter->usrdata->len || counter->irqdata->len)
1311                 events |= POLLIN;
1312         spin_unlock_irqrestore(&counter->waitq.lock, flags);
1313
1314         return events;
1315 }
1316
1317 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1318 {
1319         struct perf_counter *counter = file->private_data;
1320         int err = 0;
1321
1322         switch (cmd) {
1323         case PERF_COUNTER_IOC_ENABLE:
1324                 perf_counter_enable_family(counter);
1325                 break;
1326         case PERF_COUNTER_IOC_DISABLE:
1327                 perf_counter_disable_family(counter);
1328                 break;
1329         default:
1330                 err = -ENOTTY;
1331         }
1332         return err;
1333 }
1334
1335 static const struct file_operations perf_fops = {
1336         .release                = perf_release,
1337         .read                   = perf_read,
1338         .poll                   = perf_poll,
1339         .unlocked_ioctl         = perf_ioctl,
1340         .compat_ioctl           = perf_ioctl,
1341 };
1342
1343 /*
1344  * Generic software counter infrastructure
1345  */
1346
1347 static void perf_swcounter_update(struct perf_counter *counter)
1348 {
1349         struct hw_perf_counter *hwc = &counter->hw;
1350         u64 prev, now;
1351         s64 delta;
1352
1353 again:
1354         prev = atomic64_read(&hwc->prev_count);
1355         now = atomic64_read(&hwc->count);
1356         if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
1357                 goto again;
1358
1359         delta = now - prev;
1360
1361         atomic64_add(delta, &counter->count);
1362         atomic64_sub(delta, &hwc->period_left);
1363 }
1364
1365 static void perf_swcounter_set_period(struct perf_counter *counter)
1366 {
1367         struct hw_perf_counter *hwc = &counter->hw;
1368         s64 left = atomic64_read(&hwc->period_left);
1369         s64 period = hwc->irq_period;
1370
1371         if (unlikely(left <= -period)) {
1372                 left = period;
1373                 atomic64_set(&hwc->period_left, left);
1374         }
1375
1376         if (unlikely(left <= 0)) {
1377                 left += period;
1378                 atomic64_add(period, &hwc->period_left);
1379         }
1380
1381         atomic64_set(&hwc->prev_count, -left);
1382         atomic64_set(&hwc->count, -left);
1383 }
1384
1385 static void perf_swcounter_save_and_restart(struct perf_counter *counter)
1386 {
1387         perf_swcounter_update(counter);
1388         perf_swcounter_set_period(counter);
1389 }
1390
1391 static void perf_swcounter_store_irq(struct perf_counter *counter, u64 data)
1392 {
1393         struct perf_data *irqdata = counter->irqdata;
1394
1395         if (irqdata->len > PERF_DATA_BUFLEN - sizeof(u64)) {
1396                 irqdata->overrun++;
1397         } else {
1398                 u64 *p = (u64 *) &irqdata->data[irqdata->len];
1399
1400                 *p = data;
1401                 irqdata->len += sizeof(u64);
1402         }
1403 }
1404
1405 static void perf_swcounter_handle_group(struct perf_counter *sibling)
1406 {
1407         struct perf_counter *counter, *group_leader = sibling->group_leader;
1408
1409         list_for_each_entry(counter, &group_leader->sibling_list, list_entry) {
1410                 counter->hw_ops->read(counter);
1411                 perf_swcounter_store_irq(sibling, counter->hw_event.type);
1412                 perf_swcounter_store_irq(sibling, atomic64_read(&counter->count));
1413         }
1414 }
1415
1416 static void perf_swcounter_interrupt(struct perf_counter *counter,
1417                                      int nmi, struct pt_regs *regs)
1418 {
1419         switch (counter->hw_event.record_type) {
1420         case PERF_RECORD_SIMPLE:
1421                 break;
1422
1423         case PERF_RECORD_IRQ:
1424                 perf_swcounter_store_irq(counter, instruction_pointer(regs));
1425                 break;
1426
1427         case PERF_RECORD_GROUP:
1428                 perf_swcounter_handle_group(counter);
1429                 break;
1430         }
1431
1432         if (nmi) {
1433                 counter->wakeup_pending = 1;
1434                 set_tsk_thread_flag(current, TIF_PERF_COUNTERS);
1435         } else
1436                 wake_up(&counter->waitq);
1437 }
1438
1439 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
1440 {
1441         struct perf_counter *counter;
1442         struct pt_regs *regs;
1443
1444         counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
1445         counter->hw_ops->read(counter);
1446
1447         regs = get_irq_regs();
1448         /*
1449          * In case we exclude kernel IPs or are somehow not in interrupt
1450          * context, provide the next best thing, the user IP.
1451          */
1452         if ((counter->hw_event.exclude_kernel || !regs) &&
1453                         !counter->hw_event.exclude_user)
1454                 regs = task_pt_regs(current);
1455
1456         if (regs)
1457                 perf_swcounter_interrupt(counter, 0, regs);
1458
1459         hrtimer_forward_now(hrtimer, ns_to_ktime(counter->hw.irq_period));
1460
1461         return HRTIMER_RESTART;
1462 }
1463
1464 static void perf_swcounter_overflow(struct perf_counter *counter,
1465                                     int nmi, struct pt_regs *regs)
1466 {
1467         perf_swcounter_save_and_restart(counter);
1468         perf_swcounter_interrupt(counter, nmi, regs);
1469 }
1470
1471 static int perf_swcounter_match(struct perf_counter *counter,
1472                                 enum hw_event_types event,
1473                                 struct pt_regs *regs)
1474 {
1475         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1476                 return 0;
1477
1478         if (counter->hw_event.raw)
1479                 return 0;
1480
1481         if (counter->hw_event.type != event)
1482                 return 0;
1483
1484         if (counter->hw_event.exclude_user && user_mode(regs))
1485                 return 0;
1486
1487         if (counter->hw_event.exclude_kernel && !user_mode(regs))
1488                 return 0;
1489
1490         return 1;
1491 }
1492
1493 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
1494                                int nmi, struct pt_regs *regs)
1495 {
1496         int neg = atomic64_add_negative(nr, &counter->hw.count);
1497         if (counter->hw.irq_period && !neg)
1498                 perf_swcounter_overflow(counter, nmi, regs);
1499 }
1500
1501 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
1502                                      enum hw_event_types event, u64 nr,
1503                                      int nmi, struct pt_regs *regs)
1504 {
1505         struct perf_counter *counter;
1506
1507         if (list_empty(&ctx->event_list))
1508                 return;
1509
1510         rcu_read_lock();
1511         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
1512                 if (perf_swcounter_match(counter, event, regs))
1513                         perf_swcounter_add(counter, nr, nmi, regs);
1514         }
1515         rcu_read_unlock();
1516 }
1517
1518 void perf_swcounter_event(enum hw_event_types event, u64 nr,
1519                           int nmi, struct pt_regs *regs)
1520 {
1521         struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
1522
1523         perf_swcounter_ctx_event(&cpuctx->ctx, event, nr, nmi, regs);
1524         if (cpuctx->task_ctx)
1525                 perf_swcounter_ctx_event(cpuctx->task_ctx, event, nr, nmi, regs);
1526
1527         put_cpu_var(perf_cpu_context);
1528 }
1529
1530 static void perf_swcounter_read(struct perf_counter *counter)
1531 {
1532         perf_swcounter_update(counter);
1533 }
1534
1535 static int perf_swcounter_enable(struct perf_counter *counter)
1536 {
1537         perf_swcounter_set_period(counter);
1538         return 0;
1539 }
1540
1541 static void perf_swcounter_disable(struct perf_counter *counter)
1542 {
1543         perf_swcounter_update(counter);
1544 }
1545
1546 static const struct hw_perf_counter_ops perf_ops_generic = {
1547         .enable         = perf_swcounter_enable,
1548         .disable        = perf_swcounter_disable,
1549         .read           = perf_swcounter_read,
1550 };
1551
1552 /*
1553  * Software counter: cpu wall time clock
1554  */
1555
1556 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
1557 {
1558         int cpu = raw_smp_processor_id();
1559         s64 prev;
1560         u64 now;
1561
1562         now = cpu_clock(cpu);
1563         prev = atomic64_read(&counter->hw.prev_count);
1564         atomic64_set(&counter->hw.prev_count, now);
1565         atomic64_add(now - prev, &counter->count);
1566 }
1567
1568 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
1569 {
1570         struct hw_perf_counter *hwc = &counter->hw;
1571         int cpu = raw_smp_processor_id();
1572
1573         atomic64_set(&hwc->prev_count, cpu_clock(cpu));
1574         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1575         hwc->hrtimer.function = perf_swcounter_hrtimer;
1576         if (hwc->irq_period) {
1577                 __hrtimer_start_range_ns(&hwc->hrtimer,
1578                                 ns_to_ktime(hwc->irq_period), 0,
1579                                 HRTIMER_MODE_REL, 0);
1580         }
1581
1582         return 0;
1583 }
1584
1585 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
1586 {
1587         hrtimer_cancel(&counter->hw.hrtimer);
1588         cpu_clock_perf_counter_update(counter);
1589 }
1590
1591 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
1592 {
1593         cpu_clock_perf_counter_update(counter);
1594 }
1595
1596 static const struct hw_perf_counter_ops perf_ops_cpu_clock = {
1597         .enable         = cpu_clock_perf_counter_enable,
1598         .disable        = cpu_clock_perf_counter_disable,
1599         .read           = cpu_clock_perf_counter_read,
1600 };
1601
1602 /*
1603  * Software counter: task time clock
1604  */
1605
1606 /*
1607  * Called from within the scheduler:
1608  */
1609 static u64 task_clock_perf_counter_val(struct perf_counter *counter, int update)
1610 {
1611         struct task_struct *curr = counter->task;
1612         u64 delta;
1613
1614         delta = __task_delta_exec(curr, update);
1615
1616         return curr->se.sum_exec_runtime + delta;
1617 }
1618
1619 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
1620 {
1621         u64 prev;
1622         s64 delta;
1623
1624         prev = atomic64_read(&counter->hw.prev_count);
1625
1626         atomic64_set(&counter->hw.prev_count, now);
1627
1628         delta = now - prev;
1629
1630         atomic64_add(delta, &counter->count);
1631 }
1632
1633 static int task_clock_perf_counter_enable(struct perf_counter *counter)
1634 {
1635         struct hw_perf_counter *hwc = &counter->hw;
1636
1637         atomic64_set(&hwc->prev_count, task_clock_perf_counter_val(counter, 0));
1638         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1639         hwc->hrtimer.function = perf_swcounter_hrtimer;
1640         if (hwc->irq_period) {
1641                 __hrtimer_start_range_ns(&hwc->hrtimer,
1642                                 ns_to_ktime(hwc->irq_period), 0,
1643                                 HRTIMER_MODE_REL, 0);
1644         }
1645
1646         return 0;
1647 }
1648
1649 static void task_clock_perf_counter_disable(struct perf_counter *counter)
1650 {
1651         hrtimer_cancel(&counter->hw.hrtimer);
1652         task_clock_perf_counter_update(counter,
1653                         task_clock_perf_counter_val(counter, 0));
1654 }
1655
1656 static void task_clock_perf_counter_read(struct perf_counter *counter)
1657 {
1658         task_clock_perf_counter_update(counter,
1659                         task_clock_perf_counter_val(counter, 1));
1660 }
1661
1662 static const struct hw_perf_counter_ops perf_ops_task_clock = {
1663         .enable         = task_clock_perf_counter_enable,
1664         .disable        = task_clock_perf_counter_disable,
1665         .read           = task_clock_perf_counter_read,
1666 };
1667
1668 /*
1669  * Software counter: context switches
1670  */
1671
1672 static u64 get_context_switches(struct perf_counter *counter)
1673 {
1674         struct task_struct *curr = counter->ctx->task;
1675
1676         if (curr)
1677                 return curr->nvcsw + curr->nivcsw;
1678         return cpu_nr_switches(smp_processor_id());
1679 }
1680
1681 static void context_switches_perf_counter_update(struct perf_counter *counter)
1682 {
1683         u64 prev, now;
1684         s64 delta;
1685
1686         prev = atomic64_read(&counter->hw.prev_count);
1687         now = get_context_switches(counter);
1688
1689         atomic64_set(&counter->hw.prev_count, now);
1690
1691         delta = now - prev;
1692
1693         atomic64_add(delta, &counter->count);
1694 }
1695
1696 static void context_switches_perf_counter_read(struct perf_counter *counter)
1697 {
1698         context_switches_perf_counter_update(counter);
1699 }
1700
1701 static int context_switches_perf_counter_enable(struct perf_counter *counter)
1702 {
1703         if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
1704                 atomic64_set(&counter->hw.prev_count,
1705                              get_context_switches(counter));
1706         return 0;
1707 }
1708
1709 static void context_switches_perf_counter_disable(struct perf_counter *counter)
1710 {
1711         context_switches_perf_counter_update(counter);
1712 }
1713
1714 static const struct hw_perf_counter_ops perf_ops_context_switches = {
1715         .enable         = context_switches_perf_counter_enable,
1716         .disable        = context_switches_perf_counter_disable,
1717         .read           = context_switches_perf_counter_read,
1718 };
1719
1720 /*
1721  * Software counter: cpu migrations
1722  */
1723
1724 static inline u64 get_cpu_migrations(struct perf_counter *counter)
1725 {
1726         struct task_struct *curr = counter->ctx->task;
1727
1728         if (curr)
1729                 return curr->se.nr_migrations;
1730         return cpu_nr_migrations(smp_processor_id());
1731 }
1732
1733 static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
1734 {
1735         u64 prev, now;
1736         s64 delta;
1737
1738         prev = atomic64_read(&counter->hw.prev_count);
1739         now = get_cpu_migrations(counter);
1740
1741         atomic64_set(&counter->hw.prev_count, now);
1742
1743         delta = now - prev;
1744
1745         atomic64_add(delta, &counter->count);
1746 }
1747
1748 static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
1749 {
1750         cpu_migrations_perf_counter_update(counter);
1751 }
1752
1753 static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
1754 {
1755         if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
1756                 atomic64_set(&counter->hw.prev_count,
1757                              get_cpu_migrations(counter));
1758         return 0;
1759 }
1760
1761 static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
1762 {
1763         cpu_migrations_perf_counter_update(counter);
1764 }
1765
1766 static const struct hw_perf_counter_ops perf_ops_cpu_migrations = {
1767         .enable         = cpu_migrations_perf_counter_enable,
1768         .disable        = cpu_migrations_perf_counter_disable,
1769         .read           = cpu_migrations_perf_counter_read,
1770 };
1771
1772 static const struct hw_perf_counter_ops *
1773 sw_perf_counter_init(struct perf_counter *counter)
1774 {
1775         struct perf_counter_hw_event *hw_event = &counter->hw_event;
1776         const struct hw_perf_counter_ops *hw_ops = NULL;
1777         struct hw_perf_counter *hwc = &counter->hw;
1778
1779         /*
1780          * Software counters (currently) can't in general distinguish
1781          * between user, kernel and hypervisor events.
1782          * However, context switches and cpu migrations are considered
1783          * to be kernel events, and page faults are never hypervisor
1784          * events.
1785          */
1786         switch (counter->hw_event.type) {
1787         case PERF_COUNT_CPU_CLOCK:
1788                 hw_ops = &perf_ops_cpu_clock;
1789
1790                 if (hw_event->irq_period && hw_event->irq_period < 10000)
1791                         hw_event->irq_period = 10000;
1792                 break;
1793         case PERF_COUNT_TASK_CLOCK:
1794                 /*
1795                  * If the user instantiates this as a per-cpu counter,
1796                  * use the cpu_clock counter instead.
1797                  */
1798                 if (counter->ctx->task)
1799                         hw_ops = &perf_ops_task_clock;
1800                 else
1801                         hw_ops = &perf_ops_cpu_clock;
1802
1803                 if (hw_event->irq_period && hw_event->irq_period < 10000)
1804                         hw_event->irq_period = 10000;
1805                 break;
1806         case PERF_COUNT_PAGE_FAULTS:
1807         case PERF_COUNT_PAGE_FAULTS_MIN:
1808         case PERF_COUNT_PAGE_FAULTS_MAJ:
1809                 hw_ops = &perf_ops_generic;
1810                 break;
1811         case PERF_COUNT_CONTEXT_SWITCHES:
1812                 if (!counter->hw_event.exclude_kernel)
1813                         hw_ops = &perf_ops_context_switches;
1814                 break;
1815         case PERF_COUNT_CPU_MIGRATIONS:
1816                 if (!counter->hw_event.exclude_kernel)
1817                         hw_ops = &perf_ops_cpu_migrations;
1818                 break;
1819         default:
1820                 break;
1821         }
1822
1823         if (hw_ops)
1824                 hwc->irq_period = hw_event->irq_period;
1825
1826         return hw_ops;
1827 }
1828
1829 /*
1830  * Allocate and initialize a counter structure
1831  */
1832 static struct perf_counter *
1833 perf_counter_alloc(struct perf_counter_hw_event *hw_event,
1834                    int cpu,
1835                    struct perf_counter_context *ctx,
1836                    struct perf_counter *group_leader,
1837                    gfp_t gfpflags)
1838 {
1839         const struct hw_perf_counter_ops *hw_ops;
1840         struct perf_counter *counter;
1841
1842         counter = kzalloc(sizeof(*counter), gfpflags);
1843         if (!counter)
1844                 return NULL;
1845
1846         /*
1847          * Single counters are their own group leaders, with an
1848          * empty sibling list:
1849          */
1850         if (!group_leader)
1851                 group_leader = counter;
1852
1853         mutex_init(&counter->mutex);
1854         INIT_LIST_HEAD(&counter->list_entry);
1855         INIT_LIST_HEAD(&counter->event_entry);
1856         INIT_LIST_HEAD(&counter->sibling_list);
1857         init_waitqueue_head(&counter->waitq);
1858
1859         INIT_LIST_HEAD(&counter->child_list);
1860
1861         counter->irqdata                = &counter->data[0];
1862         counter->usrdata                = &counter->data[1];
1863         counter->cpu                    = cpu;
1864         counter->hw_event               = *hw_event;
1865         counter->wakeup_pending         = 0;
1866         counter->group_leader           = group_leader;
1867         counter->hw_ops                 = NULL;
1868         counter->ctx                    = ctx;
1869
1870         counter->state = PERF_COUNTER_STATE_INACTIVE;
1871         if (hw_event->disabled)
1872                 counter->state = PERF_COUNTER_STATE_OFF;
1873
1874         hw_ops = NULL;
1875         if (!hw_event->raw && hw_event->type < 0)
1876                 hw_ops = sw_perf_counter_init(counter);
1877         else
1878                 hw_ops = hw_perf_counter_init(counter);
1879
1880         if (!hw_ops) {
1881                 kfree(counter);
1882                 return NULL;
1883         }
1884         counter->hw_ops = hw_ops;
1885
1886         return counter;
1887 }
1888
1889 /**
1890  * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
1891  *
1892  * @hw_event_uptr:      event type attributes for monitoring/sampling
1893  * @pid:                target pid
1894  * @cpu:                target cpu
1895  * @group_fd:           group leader counter fd
1896  */
1897 SYSCALL_DEFINE5(perf_counter_open,
1898                 const struct perf_counter_hw_event __user *, hw_event_uptr,
1899                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
1900 {
1901         struct perf_counter *counter, *group_leader;
1902         struct perf_counter_hw_event hw_event;
1903         struct perf_counter_context *ctx;
1904         struct file *counter_file = NULL;
1905         struct file *group_file = NULL;
1906         int fput_needed = 0;
1907         int fput_needed2 = 0;
1908         int ret;
1909
1910         /* for future expandability... */
1911         if (flags)
1912                 return -EINVAL;
1913
1914         if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
1915                 return -EFAULT;
1916
1917         /*
1918          * Get the target context (task or percpu):
1919          */
1920         ctx = find_get_context(pid, cpu);
1921         if (IS_ERR(ctx))
1922                 return PTR_ERR(ctx);
1923
1924         /*
1925          * Look up the group leader (we will attach this counter to it):
1926          */
1927         group_leader = NULL;
1928         if (group_fd != -1) {
1929                 ret = -EINVAL;
1930                 group_file = fget_light(group_fd, &fput_needed);
1931                 if (!group_file)
1932                         goto err_put_context;
1933                 if (group_file->f_op != &perf_fops)
1934                         goto err_put_context;
1935
1936                 group_leader = group_file->private_data;
1937                 /*
1938                  * Do not allow a recursive hierarchy (this new sibling
1939                  * becoming part of another group-sibling):
1940                  */
1941                 if (group_leader->group_leader != group_leader)
1942                         goto err_put_context;
1943                 /*
1944                  * Do not allow to attach to a group in a different
1945                  * task or CPU context:
1946                  */
1947                 if (group_leader->ctx != ctx)
1948                         goto err_put_context;
1949                 /*
1950                  * Only a group leader can be exclusive or pinned
1951                  */
1952                 if (hw_event.exclusive || hw_event.pinned)
1953                         goto err_put_context;
1954         }
1955
1956         ret = -EINVAL;
1957         counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
1958                                      GFP_KERNEL);
1959         if (!counter)
1960                 goto err_put_context;
1961
1962         ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
1963         if (ret < 0)
1964                 goto err_free_put_context;
1965
1966         counter_file = fget_light(ret, &fput_needed2);
1967         if (!counter_file)
1968                 goto err_free_put_context;
1969
1970         counter->filp = counter_file;
1971         mutex_lock(&ctx->mutex);
1972         perf_install_in_context(ctx, counter, cpu);
1973         mutex_unlock(&ctx->mutex);
1974
1975         fput_light(counter_file, fput_needed2);
1976
1977 out_fput:
1978         fput_light(group_file, fput_needed);
1979
1980         return ret;
1981
1982 err_free_put_context:
1983         kfree(counter);
1984
1985 err_put_context:
1986         put_context(ctx);
1987
1988         goto out_fput;
1989 }
1990
1991 /*
1992  * Initialize the perf_counter context in a task_struct:
1993  */
1994 static void
1995 __perf_counter_init_context(struct perf_counter_context *ctx,
1996                             struct task_struct *task)
1997 {
1998         memset(ctx, 0, sizeof(*ctx));
1999         spin_lock_init(&ctx->lock);
2000         mutex_init(&ctx->mutex);
2001         INIT_LIST_HEAD(&ctx->counter_list);
2002         INIT_LIST_HEAD(&ctx->event_list);
2003         ctx->task = task;
2004 }
2005
2006 /*
2007  * inherit a counter from parent task to child task:
2008  */
2009 static struct perf_counter *
2010 inherit_counter(struct perf_counter *parent_counter,
2011               struct task_struct *parent,
2012               struct perf_counter_context *parent_ctx,
2013               struct task_struct *child,
2014               struct perf_counter *group_leader,
2015               struct perf_counter_context *child_ctx)
2016 {
2017         struct perf_counter *child_counter;
2018
2019         /*
2020          * Instead of creating recursive hierarchies of counters,
2021          * we link inherited counters back to the original parent,
2022          * which has a filp for sure, which we use as the reference
2023          * count:
2024          */
2025         if (parent_counter->parent)
2026                 parent_counter = parent_counter->parent;
2027
2028         child_counter = perf_counter_alloc(&parent_counter->hw_event,
2029                                            parent_counter->cpu, child_ctx,
2030                                            group_leader, GFP_KERNEL);
2031         if (!child_counter)
2032                 return NULL;
2033
2034         /*
2035          * Link it up in the child's context:
2036          */
2037         child_counter->task = child;
2038         list_add_counter(child_counter, child_ctx);
2039         child_ctx->nr_counters++;
2040
2041         child_counter->parent = parent_counter;
2042         /*
2043          * inherit into child's child as well:
2044          */
2045         child_counter->hw_event.inherit = 1;
2046
2047         /*
2048          * Get a reference to the parent filp - we will fput it
2049          * when the child counter exits. This is safe to do because
2050          * we are in the parent and we know that the filp still
2051          * exists and has a nonzero count:
2052          */
2053         atomic_long_inc(&parent_counter->filp->f_count);
2054
2055         /*
2056          * Link this into the parent counter's child list
2057          */
2058         mutex_lock(&parent_counter->mutex);
2059         list_add_tail(&child_counter->child_list, &parent_counter->child_list);
2060
2061         /*
2062          * Make the child state follow the state of the parent counter,
2063          * not its hw_event.disabled bit.  We hold the parent's mutex,
2064          * so we won't race with perf_counter_{en,dis}able_family.
2065          */
2066         if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
2067                 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
2068         else
2069                 child_counter->state = PERF_COUNTER_STATE_OFF;
2070
2071         mutex_unlock(&parent_counter->mutex);
2072
2073         return child_counter;
2074 }
2075
2076 static int inherit_group(struct perf_counter *parent_counter,
2077               struct task_struct *parent,
2078               struct perf_counter_context *parent_ctx,
2079               struct task_struct *child,
2080               struct perf_counter_context *child_ctx)
2081 {
2082         struct perf_counter *leader;
2083         struct perf_counter *sub;
2084
2085         leader = inherit_counter(parent_counter, parent, parent_ctx,
2086                                  child, NULL, child_ctx);
2087         if (!leader)
2088                 return -ENOMEM;
2089         list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
2090                 if (!inherit_counter(sub, parent, parent_ctx,
2091                                      child, leader, child_ctx))
2092                         return -ENOMEM;
2093         }
2094         return 0;
2095 }
2096
2097 static void sync_child_counter(struct perf_counter *child_counter,
2098                                struct perf_counter *parent_counter)
2099 {
2100         u64 parent_val, child_val;
2101
2102         parent_val = atomic64_read(&parent_counter->count);
2103         child_val = atomic64_read(&child_counter->count);
2104
2105         /*
2106          * Add back the child's count to the parent's count:
2107          */
2108         atomic64_add(child_val, &parent_counter->count);
2109
2110         /*
2111          * Remove this counter from the parent's list
2112          */
2113         mutex_lock(&parent_counter->mutex);
2114         list_del_init(&child_counter->child_list);
2115         mutex_unlock(&parent_counter->mutex);
2116
2117         /*
2118          * Release the parent counter, if this was the last
2119          * reference to it.
2120          */
2121         fput(parent_counter->filp);
2122 }
2123
2124 static void
2125 __perf_counter_exit_task(struct task_struct *child,
2126                          struct perf_counter *child_counter,
2127                          struct perf_counter_context *child_ctx)
2128 {
2129         struct perf_counter *parent_counter;
2130         struct perf_counter *sub, *tmp;
2131
2132         /*
2133          * If we do not self-reap then we have to wait for the
2134          * child task to unschedule (it will happen for sure),
2135          * so that its counter is at its final count. (This
2136          * condition triggers rarely - child tasks usually get
2137          * off their CPU before the parent has a chance to
2138          * get this far into the reaping action)
2139          */
2140         if (child != current) {
2141                 wait_task_inactive(child, 0);
2142                 list_del_init(&child_counter->list_entry);
2143         } else {
2144                 struct perf_cpu_context *cpuctx;
2145                 unsigned long flags;
2146                 u64 perf_flags;
2147
2148                 /*
2149                  * Disable and unlink this counter.
2150                  *
2151                  * Be careful about zapping the list - IRQ/NMI context
2152                  * could still be processing it:
2153                  */
2154                 curr_rq_lock_irq_save(&flags);
2155                 perf_flags = hw_perf_save_disable();
2156
2157                 cpuctx = &__get_cpu_var(perf_cpu_context);
2158
2159                 group_sched_out(child_counter, cpuctx, child_ctx);
2160
2161                 list_del_init(&child_counter->list_entry);
2162
2163                 child_ctx->nr_counters--;
2164
2165                 hw_perf_restore(perf_flags);
2166                 curr_rq_unlock_irq_restore(&flags);
2167         }
2168
2169         parent_counter = child_counter->parent;
2170         /*
2171          * It can happen that parent exits first, and has counters
2172          * that are still around due to the child reference. These
2173          * counters need to be zapped - but otherwise linger.
2174          */
2175         if (parent_counter) {
2176                 sync_child_counter(child_counter, parent_counter);
2177                 list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
2178                                          list_entry) {
2179                         if (sub->parent) {
2180                                 sync_child_counter(sub, sub->parent);
2181                                 kfree(sub);
2182                         }
2183                 }
2184                 kfree(child_counter);
2185         }
2186 }
2187
2188 /*
2189  * When a child task exits, feed back counter values to parent counters.
2190  *
2191  * Note: we may be running in child context, but the PID is not hashed
2192  * anymore so new counters will not be added.
2193  */
2194 void perf_counter_exit_task(struct task_struct *child)
2195 {
2196         struct perf_counter *child_counter, *tmp;
2197         struct perf_counter_context *child_ctx;
2198
2199         child_ctx = &child->perf_counter_ctx;
2200
2201         if (likely(!child_ctx->nr_counters))
2202                 return;
2203
2204         list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
2205                                  list_entry)
2206                 __perf_counter_exit_task(child, child_counter, child_ctx);
2207 }
2208
2209 /*
2210  * Initialize the perf_counter context in task_struct
2211  */
2212 void perf_counter_init_task(struct task_struct *child)
2213 {
2214         struct perf_counter_context *child_ctx, *parent_ctx;
2215         struct perf_counter *counter;
2216         struct task_struct *parent = current;
2217
2218         child_ctx  =  &child->perf_counter_ctx;
2219         parent_ctx = &parent->perf_counter_ctx;
2220
2221         __perf_counter_init_context(child_ctx, child);
2222
2223         /*
2224          * This is executed from the parent task context, so inherit
2225          * counters that have been marked for cloning:
2226          */
2227
2228         if (likely(!parent_ctx->nr_counters))
2229                 return;
2230
2231         /*
2232          * Lock the parent list. No need to lock the child - not PID
2233          * hashed yet and not running, so nobody can access it.
2234          */
2235         mutex_lock(&parent_ctx->mutex);
2236
2237         /*
2238          * We dont have to disable NMIs - we are only looking at
2239          * the list, not manipulating it:
2240          */
2241         list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
2242                 if (!counter->hw_event.inherit)
2243                         continue;
2244
2245                 if (inherit_group(counter, parent,
2246                                   parent_ctx, child, child_ctx))
2247                         break;
2248         }
2249
2250         mutex_unlock(&parent_ctx->mutex);
2251 }
2252
2253 static void __cpuinit perf_counter_init_cpu(int cpu)
2254 {
2255         struct perf_cpu_context *cpuctx;
2256
2257         cpuctx = &per_cpu(perf_cpu_context, cpu);
2258         __perf_counter_init_context(&cpuctx->ctx, NULL);
2259
2260         mutex_lock(&perf_resource_mutex);
2261         cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
2262         mutex_unlock(&perf_resource_mutex);
2263
2264         hw_perf_counter_setup(cpu);
2265 }
2266
2267 #ifdef CONFIG_HOTPLUG_CPU
2268 static void __perf_counter_exit_cpu(void *info)
2269 {
2270         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
2271         struct perf_counter_context *ctx = &cpuctx->ctx;
2272         struct perf_counter *counter, *tmp;
2273
2274         list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
2275                 __perf_counter_remove_from_context(counter);
2276 }
2277 static void perf_counter_exit_cpu(int cpu)
2278 {
2279         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
2280         struct perf_counter_context *ctx = &cpuctx->ctx;
2281
2282         mutex_lock(&ctx->mutex);
2283         smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
2284         mutex_unlock(&ctx->mutex);
2285 }
2286 #else
2287 static inline void perf_counter_exit_cpu(int cpu) { }
2288 #endif
2289
2290 static int __cpuinit
2291 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
2292 {
2293         unsigned int cpu = (long)hcpu;
2294
2295         switch (action) {
2296
2297         case CPU_UP_PREPARE:
2298         case CPU_UP_PREPARE_FROZEN:
2299                 perf_counter_init_cpu(cpu);
2300                 break;
2301
2302         case CPU_DOWN_PREPARE:
2303         case CPU_DOWN_PREPARE_FROZEN:
2304                 perf_counter_exit_cpu(cpu);
2305                 break;
2306
2307         default:
2308                 break;
2309         }
2310
2311         return NOTIFY_OK;
2312 }
2313
2314 static struct notifier_block __cpuinitdata perf_cpu_nb = {
2315         .notifier_call          = perf_cpu_notify,
2316 };
2317
2318 static int __init perf_counter_init(void)
2319 {
2320         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
2321                         (void *)(long)smp_processor_id());
2322         register_cpu_notifier(&perf_cpu_nb);
2323
2324         return 0;
2325 }
2326 early_initcall(perf_counter_init);
2327
2328 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
2329 {
2330         return sprintf(buf, "%d\n", perf_reserved_percpu);
2331 }
2332
2333 static ssize_t
2334 perf_set_reserve_percpu(struct sysdev_class *class,
2335                         const char *buf,
2336                         size_t count)
2337 {
2338         struct perf_cpu_context *cpuctx;
2339         unsigned long val;
2340         int err, cpu, mpt;
2341
2342         err = strict_strtoul(buf, 10, &val);
2343         if (err)
2344                 return err;
2345         if (val > perf_max_counters)
2346                 return -EINVAL;
2347
2348         mutex_lock(&perf_resource_mutex);
2349         perf_reserved_percpu = val;
2350         for_each_online_cpu(cpu) {
2351                 cpuctx = &per_cpu(perf_cpu_context, cpu);
2352                 spin_lock_irq(&cpuctx->ctx.lock);
2353                 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
2354                           perf_max_counters - perf_reserved_percpu);
2355                 cpuctx->max_pertask = mpt;
2356                 spin_unlock_irq(&cpuctx->ctx.lock);
2357         }
2358         mutex_unlock(&perf_resource_mutex);
2359
2360         return count;
2361 }
2362
2363 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
2364 {
2365         return sprintf(buf, "%d\n", perf_overcommit);
2366 }
2367
2368 static ssize_t
2369 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
2370 {
2371         unsigned long val;
2372         int err;
2373
2374         err = strict_strtoul(buf, 10, &val);
2375         if (err)
2376                 return err;
2377         if (val > 1)
2378                 return -EINVAL;
2379
2380         mutex_lock(&perf_resource_mutex);
2381         perf_overcommit = val;
2382         mutex_unlock(&perf_resource_mutex);
2383
2384         return count;
2385 }
2386
2387 static SYSDEV_CLASS_ATTR(
2388                                 reserve_percpu,
2389                                 0644,
2390                                 perf_show_reserve_percpu,
2391                                 perf_set_reserve_percpu
2392                         );
2393
2394 static SYSDEV_CLASS_ATTR(
2395                                 overcommit,
2396                                 0644,
2397                                 perf_show_overcommit,
2398                                 perf_set_overcommit
2399                         );
2400
2401 static struct attribute *perfclass_attrs[] = {
2402         &attr_reserve_percpu.attr,
2403         &attr_overcommit.attr,
2404         NULL
2405 };
2406
2407 static struct attribute_group perfclass_attr_group = {
2408         .attrs                  = perfclass_attrs,
2409         .name                   = "perf_counters",
2410 };
2411
2412 static int __init perf_counter_sysfs_init(void)
2413 {
2414         return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
2415                                   &perfclass_attr_group);
2416 }
2417 device_initcall(perf_counter_sysfs_init);