PM / Hibernate: Correct additional pages number calculation
[cascardo/linux.git] / kernel / power / snapshot.c
1 /*
2  * linux/kernel/power/snapshot.c
3  *
4  * This file provides system snapshot/restore functionality for swsusp.
5  *
6  * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
7  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8  *
9  * This file is released under the GPLv2.
10  *
11  */
12
13 #include <linux/version.h>
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/suspend.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel.h>
21 #include <linux/pm.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/bootmem.h>
25 #include <linux/syscalls.h>
26 #include <linux/console.h>
27 #include <linux/highmem.h>
28 #include <linux/list.h>
29 #include <linux/slab.h>
30
31 #include <asm/uaccess.h>
32 #include <asm/mmu_context.h>
33 #include <asm/pgtable.h>
34 #include <asm/tlbflush.h>
35 #include <asm/io.h>
36
37 #include "power.h"
38
39 static int swsusp_page_is_free(struct page *);
40 static void swsusp_set_page_forbidden(struct page *);
41 static void swsusp_unset_page_forbidden(struct page *);
42
43 /*
44  * Number of bytes to reserve for memory allocations made by device drivers
45  * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
46  * cause image creation to fail (tunable via /sys/power/reserved_size).
47  */
48 unsigned long reserved_size;
49
50 void __init hibernate_reserved_size_init(void)
51 {
52         reserved_size = SPARE_PAGES * PAGE_SIZE;
53 }
54
55 /*
56  * Preferred image size in bytes (tunable via /sys/power/image_size).
57  * When it is set to N, swsusp will do its best to ensure the image
58  * size will not exceed N bytes, but if that is impossible, it will
59  * try to create the smallest image possible.
60  */
61 unsigned long image_size;
62
63 void __init hibernate_image_size_init(void)
64 {
65         image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
66 }
67
68 /* List of PBEs needed for restoring the pages that were allocated before
69  * the suspend and included in the suspend image, but have also been
70  * allocated by the "resume" kernel, so their contents cannot be written
71  * directly to their "original" page frames.
72  */
73 struct pbe *restore_pblist;
74
75 /* Pointer to an auxiliary buffer (1 page) */
76 static void *buffer;
77
78 /**
79  *      @safe_needed - on resume, for storing the PBE list and the image,
80  *      we can only use memory pages that do not conflict with the pages
81  *      used before suspend.  The unsafe pages have PageNosaveFree set
82  *      and we count them using unsafe_pages.
83  *
84  *      Each allocated image page is marked as PageNosave and PageNosaveFree
85  *      so that swsusp_free() can release it.
86  */
87
88 #define PG_ANY          0
89 #define PG_SAFE         1
90 #define PG_UNSAFE_CLEAR 1
91 #define PG_UNSAFE_KEEP  0
92
93 static unsigned int allocated_unsafe_pages;
94
95 static void *get_image_page(gfp_t gfp_mask, int safe_needed)
96 {
97         void *res;
98
99         res = (void *)get_zeroed_page(gfp_mask);
100         if (safe_needed)
101                 while (res && swsusp_page_is_free(virt_to_page(res))) {
102                         /* The page is unsafe, mark it for swsusp_free() */
103                         swsusp_set_page_forbidden(virt_to_page(res));
104                         allocated_unsafe_pages++;
105                         res = (void *)get_zeroed_page(gfp_mask);
106                 }
107         if (res) {
108                 swsusp_set_page_forbidden(virt_to_page(res));
109                 swsusp_set_page_free(virt_to_page(res));
110         }
111         return res;
112 }
113
114 unsigned long get_safe_page(gfp_t gfp_mask)
115 {
116         return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
117 }
118
119 static struct page *alloc_image_page(gfp_t gfp_mask)
120 {
121         struct page *page;
122
123         page = alloc_page(gfp_mask);
124         if (page) {
125                 swsusp_set_page_forbidden(page);
126                 swsusp_set_page_free(page);
127         }
128         return page;
129 }
130
131 /**
132  *      free_image_page - free page represented by @addr, allocated with
133  *      get_image_page (page flags set by it must be cleared)
134  */
135
136 static inline void free_image_page(void *addr, int clear_nosave_free)
137 {
138         struct page *page;
139
140         BUG_ON(!virt_addr_valid(addr));
141
142         page = virt_to_page(addr);
143
144         swsusp_unset_page_forbidden(page);
145         if (clear_nosave_free)
146                 swsusp_unset_page_free(page);
147
148         __free_page(page);
149 }
150
151 /* struct linked_page is used to build chains of pages */
152
153 #define LINKED_PAGE_DATA_SIZE   (PAGE_SIZE - sizeof(void *))
154
155 struct linked_page {
156         struct linked_page *next;
157         char data[LINKED_PAGE_DATA_SIZE];
158 } __attribute__((packed));
159
160 static inline void
161 free_list_of_pages(struct linked_page *list, int clear_page_nosave)
162 {
163         while (list) {
164                 struct linked_page *lp = list->next;
165
166                 free_image_page(list, clear_page_nosave);
167                 list = lp;
168         }
169 }
170
171 /**
172   *     struct chain_allocator is used for allocating small objects out of
173   *     a linked list of pages called 'the chain'.
174   *
175   *     The chain grows each time when there is no room for a new object in
176   *     the current page.  The allocated objects cannot be freed individually.
177   *     It is only possible to free them all at once, by freeing the entire
178   *     chain.
179   *
180   *     NOTE: The chain allocator may be inefficient if the allocated objects
181   *     are not much smaller than PAGE_SIZE.
182   */
183
184 struct chain_allocator {
185         struct linked_page *chain;      /* the chain */
186         unsigned int used_space;        /* total size of objects allocated out
187                                          * of the current page
188                                          */
189         gfp_t gfp_mask;         /* mask for allocating pages */
190         int safe_needed;        /* if set, only "safe" pages are allocated */
191 };
192
193 static void
194 chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
195 {
196         ca->chain = NULL;
197         ca->used_space = LINKED_PAGE_DATA_SIZE;
198         ca->gfp_mask = gfp_mask;
199         ca->safe_needed = safe_needed;
200 }
201
202 static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
203 {
204         void *ret;
205
206         if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
207                 struct linked_page *lp;
208
209                 lp = get_image_page(ca->gfp_mask, ca->safe_needed);
210                 if (!lp)
211                         return NULL;
212
213                 lp->next = ca->chain;
214                 ca->chain = lp;
215                 ca->used_space = 0;
216         }
217         ret = ca->chain->data + ca->used_space;
218         ca->used_space += size;
219         return ret;
220 }
221
222 /**
223  *      Data types related to memory bitmaps.
224  *
225  *      Memory bitmap is a structure consiting of many linked lists of
226  *      objects.  The main list's elements are of type struct zone_bitmap
227  *      and each of them corresonds to one zone.  For each zone bitmap
228  *      object there is a list of objects of type struct bm_block that
229  *      represent each blocks of bitmap in which information is stored.
230  *
231  *      struct memory_bitmap contains a pointer to the main list of zone
232  *      bitmap objects, a struct bm_position used for browsing the bitmap,
233  *      and a pointer to the list of pages used for allocating all of the
234  *      zone bitmap objects and bitmap block objects.
235  *
236  *      NOTE: It has to be possible to lay out the bitmap in memory
237  *      using only allocations of order 0.  Additionally, the bitmap is
238  *      designed to work with arbitrary number of zones (this is over the
239  *      top for now, but let's avoid making unnecessary assumptions ;-).
240  *
241  *      struct zone_bitmap contains a pointer to a list of bitmap block
242  *      objects and a pointer to the bitmap block object that has been
243  *      most recently used for setting bits.  Additionally, it contains the
244  *      pfns that correspond to the start and end of the represented zone.
245  *
246  *      struct bm_block contains a pointer to the memory page in which
247  *      information is stored (in the form of a block of bitmap)
248  *      It also contains the pfns that correspond to the start and end of
249  *      the represented memory area.
250  */
251
252 #define BM_END_OF_MAP   (~0UL)
253
254 #define BM_BITS_PER_BLOCK       (PAGE_SIZE * BITS_PER_BYTE)
255
256 struct bm_block {
257         struct list_head hook;  /* hook into a list of bitmap blocks */
258         unsigned long start_pfn;        /* pfn represented by the first bit */
259         unsigned long end_pfn;  /* pfn represented by the last bit plus 1 */
260         unsigned long *data;    /* bitmap representing pages */
261 };
262
263 static inline unsigned long bm_block_bits(struct bm_block *bb)
264 {
265         return bb->end_pfn - bb->start_pfn;
266 }
267
268 /* strcut bm_position is used for browsing memory bitmaps */
269
270 struct bm_position {
271         struct bm_block *block;
272         int bit;
273 };
274
275 struct memory_bitmap {
276         struct list_head blocks;        /* list of bitmap blocks */
277         struct linked_page *p_list;     /* list of pages used to store zone
278                                          * bitmap objects and bitmap block
279                                          * objects
280                                          */
281         struct bm_position cur; /* most recently used bit position */
282 };
283
284 /* Functions that operate on memory bitmaps */
285
286 static void memory_bm_position_reset(struct memory_bitmap *bm)
287 {
288         bm->cur.block = list_entry(bm->blocks.next, struct bm_block, hook);
289         bm->cur.bit = 0;
290 }
291
292 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
293
294 /**
295  *      create_bm_block_list - create a list of block bitmap objects
296  *      @pages - number of pages to track
297  *      @list - list to put the allocated blocks into
298  *      @ca - chain allocator to be used for allocating memory
299  */
300 static int create_bm_block_list(unsigned long pages,
301                                 struct list_head *list,
302                                 struct chain_allocator *ca)
303 {
304         unsigned int nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
305
306         while (nr_blocks-- > 0) {
307                 struct bm_block *bb;
308
309                 bb = chain_alloc(ca, sizeof(struct bm_block));
310                 if (!bb)
311                         return -ENOMEM;
312                 list_add(&bb->hook, list);
313         }
314
315         return 0;
316 }
317
318 struct mem_extent {
319         struct list_head hook;
320         unsigned long start;
321         unsigned long end;
322 };
323
324 /**
325  *      free_mem_extents - free a list of memory extents
326  *      @list - list of extents to empty
327  */
328 static void free_mem_extents(struct list_head *list)
329 {
330         struct mem_extent *ext, *aux;
331
332         list_for_each_entry_safe(ext, aux, list, hook) {
333                 list_del(&ext->hook);
334                 kfree(ext);
335         }
336 }
337
338 /**
339  *      create_mem_extents - create a list of memory extents representing
340  *                           contiguous ranges of PFNs
341  *      @list - list to put the extents into
342  *      @gfp_mask - mask to use for memory allocations
343  */
344 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
345 {
346         struct zone *zone;
347
348         INIT_LIST_HEAD(list);
349
350         for_each_populated_zone(zone) {
351                 unsigned long zone_start, zone_end;
352                 struct mem_extent *ext, *cur, *aux;
353
354                 zone_start = zone->zone_start_pfn;
355                 zone_end = zone->zone_start_pfn + zone->spanned_pages;
356
357                 list_for_each_entry(ext, list, hook)
358                         if (zone_start <= ext->end)
359                                 break;
360
361                 if (&ext->hook == list || zone_end < ext->start) {
362                         /* New extent is necessary */
363                         struct mem_extent *new_ext;
364
365                         new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
366                         if (!new_ext) {
367                                 free_mem_extents(list);
368                                 return -ENOMEM;
369                         }
370                         new_ext->start = zone_start;
371                         new_ext->end = zone_end;
372                         list_add_tail(&new_ext->hook, &ext->hook);
373                         continue;
374                 }
375
376                 /* Merge this zone's range of PFNs with the existing one */
377                 if (zone_start < ext->start)
378                         ext->start = zone_start;
379                 if (zone_end > ext->end)
380                         ext->end = zone_end;
381
382                 /* More merging may be possible */
383                 cur = ext;
384                 list_for_each_entry_safe_continue(cur, aux, list, hook) {
385                         if (zone_end < cur->start)
386                                 break;
387                         if (zone_end < cur->end)
388                                 ext->end = cur->end;
389                         list_del(&cur->hook);
390                         kfree(cur);
391                 }
392         }
393
394         return 0;
395 }
396
397 /**
398   *     memory_bm_create - allocate memory for a memory bitmap
399   */
400 static int
401 memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
402 {
403         struct chain_allocator ca;
404         struct list_head mem_extents;
405         struct mem_extent *ext;
406         int error;
407
408         chain_init(&ca, gfp_mask, safe_needed);
409         INIT_LIST_HEAD(&bm->blocks);
410
411         error = create_mem_extents(&mem_extents, gfp_mask);
412         if (error)
413                 return error;
414
415         list_for_each_entry(ext, &mem_extents, hook) {
416                 struct bm_block *bb;
417                 unsigned long pfn = ext->start;
418                 unsigned long pages = ext->end - ext->start;
419
420                 bb = list_entry(bm->blocks.prev, struct bm_block, hook);
421
422                 error = create_bm_block_list(pages, bm->blocks.prev, &ca);
423                 if (error)
424                         goto Error;
425
426                 list_for_each_entry_continue(bb, &bm->blocks, hook) {
427                         bb->data = get_image_page(gfp_mask, safe_needed);
428                         if (!bb->data) {
429                                 error = -ENOMEM;
430                                 goto Error;
431                         }
432
433                         bb->start_pfn = pfn;
434                         if (pages >= BM_BITS_PER_BLOCK) {
435                                 pfn += BM_BITS_PER_BLOCK;
436                                 pages -= BM_BITS_PER_BLOCK;
437                         } else {
438                                 /* This is executed only once in the loop */
439                                 pfn += pages;
440                         }
441                         bb->end_pfn = pfn;
442                 }
443         }
444
445         bm->p_list = ca.chain;
446         memory_bm_position_reset(bm);
447  Exit:
448         free_mem_extents(&mem_extents);
449         return error;
450
451  Error:
452         bm->p_list = ca.chain;
453         memory_bm_free(bm, PG_UNSAFE_CLEAR);
454         goto Exit;
455 }
456
457 /**
458   *     memory_bm_free - free memory occupied by the memory bitmap @bm
459   */
460 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
461 {
462         struct bm_block *bb;
463
464         list_for_each_entry(bb, &bm->blocks, hook)
465                 if (bb->data)
466                         free_image_page(bb->data, clear_nosave_free);
467
468         free_list_of_pages(bm->p_list, clear_nosave_free);
469
470         INIT_LIST_HEAD(&bm->blocks);
471 }
472
473 /**
474  *      memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
475  *      to given pfn.  The cur_zone_bm member of @bm and the cur_block member
476  *      of @bm->cur_zone_bm are updated.
477  */
478 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
479                                 void **addr, unsigned int *bit_nr)
480 {
481         struct bm_block *bb;
482
483         /*
484          * Check if the pfn corresponds to the current bitmap block and find
485          * the block where it fits if this is not the case.
486          */
487         bb = bm->cur.block;
488         if (pfn < bb->start_pfn)
489                 list_for_each_entry_continue_reverse(bb, &bm->blocks, hook)
490                         if (pfn >= bb->start_pfn)
491                                 break;
492
493         if (pfn >= bb->end_pfn)
494                 list_for_each_entry_continue(bb, &bm->blocks, hook)
495                         if (pfn >= bb->start_pfn && pfn < bb->end_pfn)
496                                 break;
497
498         if (&bb->hook == &bm->blocks)
499                 return -EFAULT;
500
501         /* The block has been found */
502         bm->cur.block = bb;
503         pfn -= bb->start_pfn;
504         bm->cur.bit = pfn + 1;
505         *bit_nr = pfn;
506         *addr = bb->data;
507         return 0;
508 }
509
510 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
511 {
512         void *addr;
513         unsigned int bit;
514         int error;
515
516         error = memory_bm_find_bit(bm, pfn, &addr, &bit);
517         BUG_ON(error);
518         set_bit(bit, addr);
519 }
520
521 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
522 {
523         void *addr;
524         unsigned int bit;
525         int error;
526
527         error = memory_bm_find_bit(bm, pfn, &addr, &bit);
528         if (!error)
529                 set_bit(bit, addr);
530         return error;
531 }
532
533 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
534 {
535         void *addr;
536         unsigned int bit;
537         int error;
538
539         error = memory_bm_find_bit(bm, pfn, &addr, &bit);
540         BUG_ON(error);
541         clear_bit(bit, addr);
542 }
543
544 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
545 {
546         void *addr;
547         unsigned int bit;
548         int error;
549
550         error = memory_bm_find_bit(bm, pfn, &addr, &bit);
551         BUG_ON(error);
552         return test_bit(bit, addr);
553 }
554
555 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
556 {
557         void *addr;
558         unsigned int bit;
559
560         return !memory_bm_find_bit(bm, pfn, &addr, &bit);
561 }
562
563 /**
564  *      memory_bm_next_pfn - find the pfn that corresponds to the next set bit
565  *      in the bitmap @bm.  If the pfn cannot be found, BM_END_OF_MAP is
566  *      returned.
567  *
568  *      It is required to run memory_bm_position_reset() before the first call to
569  *      this function.
570  */
571
572 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
573 {
574         struct bm_block *bb;
575         int bit;
576
577         bb = bm->cur.block;
578         do {
579                 bit = bm->cur.bit;
580                 bit = find_next_bit(bb->data, bm_block_bits(bb), bit);
581                 if (bit < bm_block_bits(bb))
582                         goto Return_pfn;
583
584                 bb = list_entry(bb->hook.next, struct bm_block, hook);
585                 bm->cur.block = bb;
586                 bm->cur.bit = 0;
587         } while (&bb->hook != &bm->blocks);
588
589         memory_bm_position_reset(bm);
590         return BM_END_OF_MAP;
591
592  Return_pfn:
593         bm->cur.bit = bit + 1;
594         return bb->start_pfn + bit;
595 }
596
597 /**
598  *      This structure represents a range of page frames the contents of which
599  *      should not be saved during the suspend.
600  */
601
602 struct nosave_region {
603         struct list_head list;
604         unsigned long start_pfn;
605         unsigned long end_pfn;
606 };
607
608 static LIST_HEAD(nosave_regions);
609
610 /**
611  *      register_nosave_region - register a range of page frames the contents
612  *      of which should not be saved during the suspend (to be used in the early
613  *      initialization code)
614  */
615
616 void __init
617 __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
618                          int use_kmalloc)
619 {
620         struct nosave_region *region;
621
622         if (start_pfn >= end_pfn)
623                 return;
624
625         if (!list_empty(&nosave_regions)) {
626                 /* Try to extend the previous region (they should be sorted) */
627                 region = list_entry(nosave_regions.prev,
628                                         struct nosave_region, list);
629                 if (region->end_pfn == start_pfn) {
630                         region->end_pfn = end_pfn;
631                         goto Report;
632                 }
633         }
634         if (use_kmalloc) {
635                 /* during init, this shouldn't fail */
636                 region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
637                 BUG_ON(!region);
638         } else
639                 /* This allocation cannot fail */
640                 region = alloc_bootmem(sizeof(struct nosave_region));
641         region->start_pfn = start_pfn;
642         region->end_pfn = end_pfn;
643         list_add_tail(&region->list, &nosave_regions);
644  Report:
645         printk(KERN_INFO "PM: Registered nosave memory: %016lx - %016lx\n",
646                 start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT);
647 }
648
649 /*
650  * Set bits in this map correspond to the page frames the contents of which
651  * should not be saved during the suspend.
652  */
653 static struct memory_bitmap *forbidden_pages_map;
654
655 /* Set bits in this map correspond to free page frames. */
656 static struct memory_bitmap *free_pages_map;
657
658 /*
659  * Each page frame allocated for creating the image is marked by setting the
660  * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
661  */
662
663 void swsusp_set_page_free(struct page *page)
664 {
665         if (free_pages_map)
666                 memory_bm_set_bit(free_pages_map, page_to_pfn(page));
667 }
668
669 static int swsusp_page_is_free(struct page *page)
670 {
671         return free_pages_map ?
672                 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
673 }
674
675 void swsusp_unset_page_free(struct page *page)
676 {
677         if (free_pages_map)
678                 memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
679 }
680
681 static void swsusp_set_page_forbidden(struct page *page)
682 {
683         if (forbidden_pages_map)
684                 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
685 }
686
687 int swsusp_page_is_forbidden(struct page *page)
688 {
689         return forbidden_pages_map ?
690                 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
691 }
692
693 static void swsusp_unset_page_forbidden(struct page *page)
694 {
695         if (forbidden_pages_map)
696                 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
697 }
698
699 /**
700  *      mark_nosave_pages - set bits corresponding to the page frames the
701  *      contents of which should not be saved in a given bitmap.
702  */
703
704 static void mark_nosave_pages(struct memory_bitmap *bm)
705 {
706         struct nosave_region *region;
707
708         if (list_empty(&nosave_regions))
709                 return;
710
711         list_for_each_entry(region, &nosave_regions, list) {
712                 unsigned long pfn;
713
714                 pr_debug("PM: Marking nosave pages: %016lx - %016lx\n",
715                                 region->start_pfn << PAGE_SHIFT,
716                                 region->end_pfn << PAGE_SHIFT);
717
718                 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
719                         if (pfn_valid(pfn)) {
720                                 /*
721                                  * It is safe to ignore the result of
722                                  * mem_bm_set_bit_check() here, since we won't
723                                  * touch the PFNs for which the error is
724                                  * returned anyway.
725                                  */
726                                 mem_bm_set_bit_check(bm, pfn);
727                         }
728         }
729 }
730
731 /**
732  *      create_basic_memory_bitmaps - create bitmaps needed for marking page
733  *      frames that should not be saved and free page frames.  The pointers
734  *      forbidden_pages_map and free_pages_map are only modified if everything
735  *      goes well, because we don't want the bits to be used before both bitmaps
736  *      are set up.
737  */
738
739 int create_basic_memory_bitmaps(void)
740 {
741         struct memory_bitmap *bm1, *bm2;
742         int error = 0;
743
744         BUG_ON(forbidden_pages_map || free_pages_map);
745
746         bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
747         if (!bm1)
748                 return -ENOMEM;
749
750         error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
751         if (error)
752                 goto Free_first_object;
753
754         bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
755         if (!bm2)
756                 goto Free_first_bitmap;
757
758         error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
759         if (error)
760                 goto Free_second_object;
761
762         forbidden_pages_map = bm1;
763         free_pages_map = bm2;
764         mark_nosave_pages(forbidden_pages_map);
765
766         pr_debug("PM: Basic memory bitmaps created\n");
767
768         return 0;
769
770  Free_second_object:
771         kfree(bm2);
772  Free_first_bitmap:
773         memory_bm_free(bm1, PG_UNSAFE_CLEAR);
774  Free_first_object:
775         kfree(bm1);
776         return -ENOMEM;
777 }
778
779 /**
780  *      free_basic_memory_bitmaps - free memory bitmaps allocated by
781  *      create_basic_memory_bitmaps().  The auxiliary pointers are necessary
782  *      so that the bitmaps themselves are not referred to while they are being
783  *      freed.
784  */
785
786 void free_basic_memory_bitmaps(void)
787 {
788         struct memory_bitmap *bm1, *bm2;
789
790         BUG_ON(!(forbidden_pages_map && free_pages_map));
791
792         bm1 = forbidden_pages_map;
793         bm2 = free_pages_map;
794         forbidden_pages_map = NULL;
795         free_pages_map = NULL;
796         memory_bm_free(bm1, PG_UNSAFE_CLEAR);
797         kfree(bm1);
798         memory_bm_free(bm2, PG_UNSAFE_CLEAR);
799         kfree(bm2);
800
801         pr_debug("PM: Basic memory bitmaps freed\n");
802 }
803
804 /**
805  *      snapshot_additional_pages - estimate the number of additional pages
806  *      be needed for setting up the suspend image data structures for given
807  *      zone (usually the returned value is greater than the exact number)
808  */
809
810 unsigned int snapshot_additional_pages(struct zone *zone)
811 {
812         unsigned int res;
813
814         res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
815         res += DIV_ROUND_UP(res * sizeof(struct bm_block),
816                             LINKED_PAGE_DATA_SIZE);
817         return 2 * res;
818 }
819
820 #ifdef CONFIG_HIGHMEM
821 /**
822  *      count_free_highmem_pages - compute the total number of free highmem
823  *      pages, system-wide.
824  */
825
826 static unsigned int count_free_highmem_pages(void)
827 {
828         struct zone *zone;
829         unsigned int cnt = 0;
830
831         for_each_populated_zone(zone)
832                 if (is_highmem(zone))
833                         cnt += zone_page_state(zone, NR_FREE_PAGES);
834
835         return cnt;
836 }
837
838 /**
839  *      saveable_highmem_page - Determine whether a highmem page should be
840  *      included in the suspend image.
841  *
842  *      We should save the page if it isn't Nosave or NosaveFree, or Reserved,
843  *      and it isn't a part of a free chunk of pages.
844  */
845 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
846 {
847         struct page *page;
848
849         if (!pfn_valid(pfn))
850                 return NULL;
851
852         page = pfn_to_page(pfn);
853         if (page_zone(page) != zone)
854                 return NULL;
855
856         BUG_ON(!PageHighMem(page));
857
858         if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
859             PageReserved(page))
860                 return NULL;
861
862         if (page_is_guard(page))
863                 return NULL;
864
865         return page;
866 }
867
868 /**
869  *      count_highmem_pages - compute the total number of saveable highmem
870  *      pages.
871  */
872
873 static unsigned int count_highmem_pages(void)
874 {
875         struct zone *zone;
876         unsigned int n = 0;
877
878         for_each_populated_zone(zone) {
879                 unsigned long pfn, max_zone_pfn;
880
881                 if (!is_highmem(zone))
882                         continue;
883
884                 mark_free_pages(zone);
885                 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
886                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
887                         if (saveable_highmem_page(zone, pfn))
888                                 n++;
889         }
890         return n;
891 }
892 #else
893 static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
894 {
895         return NULL;
896 }
897 #endif /* CONFIG_HIGHMEM */
898
899 /**
900  *      saveable_page - Determine whether a non-highmem page should be included
901  *      in the suspend image.
902  *
903  *      We should save the page if it isn't Nosave, and is not in the range
904  *      of pages statically defined as 'unsaveable', and it isn't a part of
905  *      a free chunk of pages.
906  */
907 static struct page *saveable_page(struct zone *zone, unsigned long pfn)
908 {
909         struct page *page;
910
911         if (!pfn_valid(pfn))
912                 return NULL;
913
914         page = pfn_to_page(pfn);
915         if (page_zone(page) != zone)
916                 return NULL;
917
918         BUG_ON(PageHighMem(page));
919
920         if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
921                 return NULL;
922
923         if (PageReserved(page)
924             && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
925                 return NULL;
926
927         if (page_is_guard(page))
928                 return NULL;
929
930         return page;
931 }
932
933 /**
934  *      count_data_pages - compute the total number of saveable non-highmem
935  *      pages.
936  */
937
938 static unsigned int count_data_pages(void)
939 {
940         struct zone *zone;
941         unsigned long pfn, max_zone_pfn;
942         unsigned int n = 0;
943
944         for_each_populated_zone(zone) {
945                 if (is_highmem(zone))
946                         continue;
947
948                 mark_free_pages(zone);
949                 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
950                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
951                         if (saveable_page(zone, pfn))
952                                 n++;
953         }
954         return n;
955 }
956
957 /* This is needed, because copy_page and memcpy are not usable for copying
958  * task structs.
959  */
960 static inline void do_copy_page(long *dst, long *src)
961 {
962         int n;
963
964         for (n = PAGE_SIZE / sizeof(long); n; n--)
965                 *dst++ = *src++;
966 }
967
968
969 /**
970  *      safe_copy_page - check if the page we are going to copy is marked as
971  *              present in the kernel page tables (this always is the case if
972  *              CONFIG_DEBUG_PAGEALLOC is not set and in that case
973  *              kernel_page_present() always returns 'true').
974  */
975 static void safe_copy_page(void *dst, struct page *s_page)
976 {
977         if (kernel_page_present(s_page)) {
978                 do_copy_page(dst, page_address(s_page));
979         } else {
980                 kernel_map_pages(s_page, 1, 1);
981                 do_copy_page(dst, page_address(s_page));
982                 kernel_map_pages(s_page, 1, 0);
983         }
984 }
985
986
987 #ifdef CONFIG_HIGHMEM
988 static inline struct page *
989 page_is_saveable(struct zone *zone, unsigned long pfn)
990 {
991         return is_highmem(zone) ?
992                 saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
993 }
994
995 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
996 {
997         struct page *s_page, *d_page;
998         void *src, *dst;
999
1000         s_page = pfn_to_page(src_pfn);
1001         d_page = pfn_to_page(dst_pfn);
1002         if (PageHighMem(s_page)) {
1003                 src = kmap_atomic(s_page, KM_USER0);
1004                 dst = kmap_atomic(d_page, KM_USER1);
1005                 do_copy_page(dst, src);
1006                 kunmap_atomic(dst, KM_USER1);
1007                 kunmap_atomic(src, KM_USER0);
1008         } else {
1009                 if (PageHighMem(d_page)) {
1010                         /* Page pointed to by src may contain some kernel
1011                          * data modified by kmap_atomic()
1012                          */
1013                         safe_copy_page(buffer, s_page);
1014                         dst = kmap_atomic(d_page, KM_USER0);
1015                         copy_page(dst, buffer);
1016                         kunmap_atomic(dst, KM_USER0);
1017                 } else {
1018                         safe_copy_page(page_address(d_page), s_page);
1019                 }
1020         }
1021 }
1022 #else
1023 #define page_is_saveable(zone, pfn)     saveable_page(zone, pfn)
1024
1025 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1026 {
1027         safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1028                                 pfn_to_page(src_pfn));
1029 }
1030 #endif /* CONFIG_HIGHMEM */
1031
1032 static void
1033 copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
1034 {
1035         struct zone *zone;
1036         unsigned long pfn;
1037
1038         for_each_populated_zone(zone) {
1039                 unsigned long max_zone_pfn;
1040
1041                 mark_free_pages(zone);
1042                 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1043                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1044                         if (page_is_saveable(zone, pfn))
1045                                 memory_bm_set_bit(orig_bm, pfn);
1046         }
1047         memory_bm_position_reset(orig_bm);
1048         memory_bm_position_reset(copy_bm);
1049         for(;;) {
1050                 pfn = memory_bm_next_pfn(orig_bm);
1051                 if (unlikely(pfn == BM_END_OF_MAP))
1052                         break;
1053                 copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1054         }
1055 }
1056
1057 /* Total number of image pages */
1058 static unsigned int nr_copy_pages;
1059 /* Number of pages needed for saving the original pfns of the image pages */
1060 static unsigned int nr_meta_pages;
1061 /*
1062  * Numbers of normal and highmem page frames allocated for hibernation image
1063  * before suspending devices.
1064  */
1065 unsigned int alloc_normal, alloc_highmem;
1066 /*
1067  * Memory bitmap used for marking saveable pages (during hibernation) or
1068  * hibernation image pages (during restore)
1069  */
1070 static struct memory_bitmap orig_bm;
1071 /*
1072  * Memory bitmap used during hibernation for marking allocated page frames that
1073  * will contain copies of saveable pages.  During restore it is initially used
1074  * for marking hibernation image pages, but then the set bits from it are
1075  * duplicated in @orig_bm and it is released.  On highmem systems it is next
1076  * used for marking "safe" highmem pages, but it has to be reinitialized for
1077  * this purpose.
1078  */
1079 static struct memory_bitmap copy_bm;
1080
1081 /**
1082  *      swsusp_free - free pages allocated for the suspend.
1083  *
1084  *      Suspend pages are alocated before the atomic copy is made, so we
1085  *      need to release them after the resume.
1086  */
1087
1088 void swsusp_free(void)
1089 {
1090         struct zone *zone;
1091         unsigned long pfn, max_zone_pfn;
1092
1093         for_each_populated_zone(zone) {
1094                 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1095                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1096                         if (pfn_valid(pfn)) {
1097                                 struct page *page = pfn_to_page(pfn);
1098
1099                                 if (swsusp_page_is_forbidden(page) &&
1100                                     swsusp_page_is_free(page)) {
1101                                         swsusp_unset_page_forbidden(page);
1102                                         swsusp_unset_page_free(page);
1103                                         __free_page(page);
1104                                 }
1105                         }
1106         }
1107         nr_copy_pages = 0;
1108         nr_meta_pages = 0;
1109         restore_pblist = NULL;
1110         buffer = NULL;
1111         alloc_normal = 0;
1112         alloc_highmem = 0;
1113 }
1114
1115 /* Helper functions used for the shrinking of memory. */
1116
1117 #define GFP_IMAGE       (GFP_KERNEL | __GFP_NOWARN)
1118
1119 /**
1120  * preallocate_image_pages - Allocate a number of pages for hibernation image
1121  * @nr_pages: Number of page frames to allocate.
1122  * @mask: GFP flags to use for the allocation.
1123  *
1124  * Return value: Number of page frames actually allocated
1125  */
1126 static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1127 {
1128         unsigned long nr_alloc = 0;
1129
1130         while (nr_pages > 0) {
1131                 struct page *page;
1132
1133                 page = alloc_image_page(mask);
1134                 if (!page)
1135                         break;
1136                 memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1137                 if (PageHighMem(page))
1138                         alloc_highmem++;
1139                 else
1140                         alloc_normal++;
1141                 nr_pages--;
1142                 nr_alloc++;
1143         }
1144
1145         return nr_alloc;
1146 }
1147
1148 static unsigned long preallocate_image_memory(unsigned long nr_pages,
1149                                               unsigned long avail_normal)
1150 {
1151         unsigned long alloc;
1152
1153         if (avail_normal <= alloc_normal)
1154                 return 0;
1155
1156         alloc = avail_normal - alloc_normal;
1157         if (nr_pages < alloc)
1158                 alloc = nr_pages;
1159
1160         return preallocate_image_pages(alloc, GFP_IMAGE);
1161 }
1162
1163 #ifdef CONFIG_HIGHMEM
1164 static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1165 {
1166         return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1167 }
1168
1169 /**
1170  *  __fraction - Compute (an approximation of) x * (multiplier / base)
1171  */
1172 static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1173 {
1174         x *= multiplier;
1175         do_div(x, base);
1176         return (unsigned long)x;
1177 }
1178
1179 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1180                                                 unsigned long highmem,
1181                                                 unsigned long total)
1182 {
1183         unsigned long alloc = __fraction(nr_pages, highmem, total);
1184
1185         return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1186 }
1187 #else /* CONFIG_HIGHMEM */
1188 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1189 {
1190         return 0;
1191 }
1192
1193 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1194                                                 unsigned long highmem,
1195                                                 unsigned long total)
1196 {
1197         return 0;
1198 }
1199 #endif /* CONFIG_HIGHMEM */
1200
1201 /**
1202  * free_unnecessary_pages - Release preallocated pages not needed for the image
1203  */
1204 static void free_unnecessary_pages(void)
1205 {
1206         unsigned long save, to_free_normal, to_free_highmem;
1207
1208         save = count_data_pages();
1209         if (alloc_normal >= save) {
1210                 to_free_normal = alloc_normal - save;
1211                 save = 0;
1212         } else {
1213                 to_free_normal = 0;
1214                 save -= alloc_normal;
1215         }
1216         save += count_highmem_pages();
1217         if (alloc_highmem >= save) {
1218                 to_free_highmem = alloc_highmem - save;
1219         } else {
1220                 to_free_highmem = 0;
1221                 save -= alloc_highmem;
1222                 if (to_free_normal > save)
1223                         to_free_normal -= save;
1224                 else
1225                         to_free_normal = 0;
1226         }
1227
1228         memory_bm_position_reset(&copy_bm);
1229
1230         while (to_free_normal > 0 || to_free_highmem > 0) {
1231                 unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1232                 struct page *page = pfn_to_page(pfn);
1233
1234                 if (PageHighMem(page)) {
1235                         if (!to_free_highmem)
1236                                 continue;
1237                         to_free_highmem--;
1238                         alloc_highmem--;
1239                 } else {
1240                         if (!to_free_normal)
1241                                 continue;
1242                         to_free_normal--;
1243                         alloc_normal--;
1244                 }
1245                 memory_bm_clear_bit(&copy_bm, pfn);
1246                 swsusp_unset_page_forbidden(page);
1247                 swsusp_unset_page_free(page);
1248                 __free_page(page);
1249         }
1250 }
1251
1252 /**
1253  * minimum_image_size - Estimate the minimum acceptable size of an image
1254  * @saveable: Number of saveable pages in the system.
1255  *
1256  * We want to avoid attempting to free too much memory too hard, so estimate the
1257  * minimum acceptable size of a hibernation image to use as the lower limit for
1258  * preallocating memory.
1259  *
1260  * We assume that the minimum image size should be proportional to
1261  *
1262  * [number of saveable pages] - [number of pages that can be freed in theory]
1263  *
1264  * where the second term is the sum of (1) reclaimable slab pages, (2) active
1265  * and (3) inactive anonymouns pages, (4) active and (5) inactive file pages,
1266  * minus mapped file pages.
1267  */
1268 static unsigned long minimum_image_size(unsigned long saveable)
1269 {
1270         unsigned long size;
1271
1272         size = global_page_state(NR_SLAB_RECLAIMABLE)
1273                 + global_page_state(NR_ACTIVE_ANON)
1274                 + global_page_state(NR_INACTIVE_ANON)
1275                 + global_page_state(NR_ACTIVE_FILE)
1276                 + global_page_state(NR_INACTIVE_FILE)
1277                 - global_page_state(NR_FILE_MAPPED);
1278
1279         return saveable <= size ? 0 : saveable - size;
1280 }
1281
1282 /**
1283  * hibernate_preallocate_memory - Preallocate memory for hibernation image
1284  *
1285  * To create a hibernation image it is necessary to make a copy of every page
1286  * frame in use.  We also need a number of page frames to be free during
1287  * hibernation for allocations made while saving the image and for device
1288  * drivers, in case they need to allocate memory from their hibernation
1289  * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1290  * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
1291  * /sys/power/reserved_size, respectively).  To make this happen, we compute the
1292  * total number of available page frames and allocate at least
1293  *
1294  * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1295  *  + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1296  *
1297  * of them, which corresponds to the maximum size of a hibernation image.
1298  *
1299  * If image_size is set below the number following from the above formula,
1300  * the preallocation of memory is continued until the total number of saveable
1301  * pages in the system is below the requested image size or the minimum
1302  * acceptable image size returned by minimum_image_size(), whichever is greater.
1303  */
1304 int hibernate_preallocate_memory(void)
1305 {
1306         struct zone *zone;
1307         unsigned long saveable, size, max_size, count, highmem, pages = 0;
1308         unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1309         struct timeval start, stop;
1310         int error;
1311
1312         printk(KERN_INFO "PM: Preallocating image memory... ");
1313         do_gettimeofday(&start);
1314
1315         error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1316         if (error)
1317                 goto err_out;
1318
1319         error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1320         if (error)
1321                 goto err_out;
1322
1323         alloc_normal = 0;
1324         alloc_highmem = 0;
1325
1326         /* Count the number of saveable data pages. */
1327         save_highmem = count_highmem_pages();
1328         saveable = count_data_pages();
1329
1330         /*
1331          * Compute the total number of page frames we can use (count) and the
1332          * number of pages needed for image metadata (size).
1333          */
1334         count = saveable;
1335         saveable += save_highmem;
1336         highmem = save_highmem;
1337         size = 0;
1338         for_each_populated_zone(zone) {
1339                 size += snapshot_additional_pages(zone);
1340                 if (is_highmem(zone))
1341                         highmem += zone_page_state(zone, NR_FREE_PAGES);
1342                 else
1343                         count += zone_page_state(zone, NR_FREE_PAGES);
1344         }
1345         avail_normal = count;
1346         count += highmem;
1347         count -= totalreserve_pages;
1348
1349         /* Add number of pages required for page keys (s390 only). */
1350         size += page_key_additional_pages(saveable);
1351
1352         /* Compute the maximum number of saveable pages to leave in memory. */
1353         max_size = (count - (size + PAGES_FOR_IO)) / 2
1354                         - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1355         /* Compute the desired number of image pages specified by image_size. */
1356         size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1357         if (size > max_size)
1358                 size = max_size;
1359         /*
1360          * If the desired number of image pages is at least as large as the
1361          * current number of saveable pages in memory, allocate page frames for
1362          * the image and we're done.
1363          */
1364         if (size >= saveable) {
1365                 pages = preallocate_image_highmem(save_highmem);
1366                 pages += preallocate_image_memory(saveable - pages, avail_normal);
1367                 goto out;
1368         }
1369
1370         /* Estimate the minimum size of the image. */
1371         pages = minimum_image_size(saveable);
1372         /*
1373          * To avoid excessive pressure on the normal zone, leave room in it to
1374          * accommodate an image of the minimum size (unless it's already too
1375          * small, in which case don't preallocate pages from it at all).
1376          */
1377         if (avail_normal > pages)
1378                 avail_normal -= pages;
1379         else
1380                 avail_normal = 0;
1381         if (size < pages)
1382                 size = min_t(unsigned long, pages, max_size);
1383
1384         /*
1385          * Let the memory management subsystem know that we're going to need a
1386          * large number of page frames to allocate and make it free some memory.
1387          * NOTE: If this is not done, performance will be hurt badly in some
1388          * test cases.
1389          */
1390         shrink_all_memory(saveable - size);
1391
1392         /*
1393          * The number of saveable pages in memory was too high, so apply some
1394          * pressure to decrease it.  First, make room for the largest possible
1395          * image and fail if that doesn't work.  Next, try to decrease the size
1396          * of the image as much as indicated by 'size' using allocations from
1397          * highmem and non-highmem zones separately.
1398          */
1399         pages_highmem = preallocate_image_highmem(highmem / 2);
1400         alloc = (count - max_size) - pages_highmem;
1401         pages = preallocate_image_memory(alloc, avail_normal);
1402         if (pages < alloc) {
1403                 /* We have exhausted non-highmem pages, try highmem. */
1404                 alloc -= pages;
1405                 pages += pages_highmem;
1406                 pages_highmem = preallocate_image_highmem(alloc);
1407                 if (pages_highmem < alloc)
1408                         goto err_out;
1409                 pages += pages_highmem;
1410                 /*
1411                  * size is the desired number of saveable pages to leave in
1412                  * memory, so try to preallocate (all memory - size) pages.
1413                  */
1414                 alloc = (count - pages) - size;
1415                 pages += preallocate_image_highmem(alloc);
1416         } else {
1417                 /*
1418                  * There are approximately max_size saveable pages at this point
1419                  * and we want to reduce this number down to size.
1420                  */
1421                 alloc = max_size - size;
1422                 size = preallocate_highmem_fraction(alloc, highmem, count);
1423                 pages_highmem += size;
1424                 alloc -= size;
1425                 size = preallocate_image_memory(alloc, avail_normal);
1426                 pages_highmem += preallocate_image_highmem(alloc - size);
1427                 pages += pages_highmem + size;
1428         }
1429
1430         /*
1431          * We only need as many page frames for the image as there are saveable
1432          * pages in memory, but we have allocated more.  Release the excessive
1433          * ones now.
1434          */
1435         free_unnecessary_pages();
1436
1437  out:
1438         do_gettimeofday(&stop);
1439         printk(KERN_CONT "done (allocated %lu pages)\n", pages);
1440         swsusp_show_speed(&start, &stop, pages, "Allocated");
1441
1442         return 0;
1443
1444  err_out:
1445         printk(KERN_CONT "\n");
1446         swsusp_free();
1447         return -ENOMEM;
1448 }
1449
1450 #ifdef CONFIG_HIGHMEM
1451 /**
1452   *     count_pages_for_highmem - compute the number of non-highmem pages
1453   *     that will be necessary for creating copies of highmem pages.
1454   */
1455
1456 static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1457 {
1458         unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1459
1460         if (free_highmem >= nr_highmem)
1461                 nr_highmem = 0;
1462         else
1463                 nr_highmem -= free_highmem;
1464
1465         return nr_highmem;
1466 }
1467 #else
1468 static unsigned int
1469 count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1470 #endif /* CONFIG_HIGHMEM */
1471
1472 /**
1473  *      enough_free_mem - Make sure we have enough free memory for the
1474  *      snapshot image.
1475  */
1476
1477 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1478 {
1479         struct zone *zone;
1480         unsigned int free = alloc_normal;
1481
1482         for_each_populated_zone(zone)
1483                 if (!is_highmem(zone))
1484                         free += zone_page_state(zone, NR_FREE_PAGES);
1485
1486         nr_pages += count_pages_for_highmem(nr_highmem);
1487         pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
1488                 nr_pages, PAGES_FOR_IO, free);
1489
1490         return free > nr_pages + PAGES_FOR_IO;
1491 }
1492
1493 #ifdef CONFIG_HIGHMEM
1494 /**
1495  *      get_highmem_buffer - if there are some highmem pages in the suspend
1496  *      image, we may need the buffer to copy them and/or load their data.
1497  */
1498
1499 static inline int get_highmem_buffer(int safe_needed)
1500 {
1501         buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1502         return buffer ? 0 : -ENOMEM;
1503 }
1504
1505 /**
1506  *      alloc_highmem_image_pages - allocate some highmem pages for the image.
1507  *      Try to allocate as many pages as needed, but if the number of free
1508  *      highmem pages is lesser than that, allocate them all.
1509  */
1510
1511 static inline unsigned int
1512 alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1513 {
1514         unsigned int to_alloc = count_free_highmem_pages();
1515
1516         if (to_alloc > nr_highmem)
1517                 to_alloc = nr_highmem;
1518
1519         nr_highmem -= to_alloc;
1520         while (to_alloc-- > 0) {
1521                 struct page *page;
1522
1523                 page = alloc_image_page(__GFP_HIGHMEM);
1524                 memory_bm_set_bit(bm, page_to_pfn(page));
1525         }
1526         return nr_highmem;
1527 }
1528 #else
1529 static inline int get_highmem_buffer(int safe_needed) { return 0; }
1530
1531 static inline unsigned int
1532 alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
1533 #endif /* CONFIG_HIGHMEM */
1534
1535 /**
1536  *      swsusp_alloc - allocate memory for the suspend image
1537  *
1538  *      We first try to allocate as many highmem pages as there are
1539  *      saveable highmem pages in the system.  If that fails, we allocate
1540  *      non-highmem pages for the copies of the remaining highmem ones.
1541  *
1542  *      In this approach it is likely that the copies of highmem pages will
1543  *      also be located in the high memory, because of the way in which
1544  *      copy_data_pages() works.
1545  */
1546
1547 static int
1548 swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
1549                 unsigned int nr_pages, unsigned int nr_highmem)
1550 {
1551         if (nr_highmem > 0) {
1552                 if (get_highmem_buffer(PG_ANY))
1553                         goto err_out;
1554                 if (nr_highmem > alloc_highmem) {
1555                         nr_highmem -= alloc_highmem;
1556                         nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1557                 }
1558         }
1559         if (nr_pages > alloc_normal) {
1560                 nr_pages -= alloc_normal;
1561                 while (nr_pages-- > 0) {
1562                         struct page *page;
1563
1564                         page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1565                         if (!page)
1566                                 goto err_out;
1567                         memory_bm_set_bit(copy_bm, page_to_pfn(page));
1568                 }
1569         }
1570
1571         return 0;
1572
1573  err_out:
1574         swsusp_free();
1575         return -ENOMEM;
1576 }
1577
1578 asmlinkage int swsusp_save(void)
1579 {
1580         unsigned int nr_pages, nr_highmem;
1581
1582         printk(KERN_INFO "PM: Creating hibernation image:\n");
1583
1584         drain_local_pages(NULL);
1585         nr_pages = count_data_pages();
1586         nr_highmem = count_highmem_pages();
1587         printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1588
1589         if (!enough_free_mem(nr_pages, nr_highmem)) {
1590                 printk(KERN_ERR "PM: Not enough free memory\n");
1591                 return -ENOMEM;
1592         }
1593
1594         if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
1595                 printk(KERN_ERR "PM: Memory allocation failed\n");
1596                 return -ENOMEM;
1597         }
1598
1599         /* During allocating of suspend pagedir, new cold pages may appear.
1600          * Kill them.
1601          */
1602         drain_local_pages(NULL);
1603         copy_data_pages(&copy_bm, &orig_bm);
1604
1605         /*
1606          * End of critical section. From now on, we can write to memory,
1607          * but we should not touch disk. This specially means we must _not_
1608          * touch swap space! Except we must write out our image of course.
1609          */
1610
1611         nr_pages += nr_highmem;
1612         nr_copy_pages = nr_pages;
1613         nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1614
1615         printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
1616                 nr_pages);
1617
1618         return 0;
1619 }
1620
1621 #ifndef CONFIG_ARCH_HIBERNATION_HEADER
1622 static int init_header_complete(struct swsusp_info *info)
1623 {
1624         memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1625         info->version_code = LINUX_VERSION_CODE;
1626         return 0;
1627 }
1628
1629 static char *check_image_kernel(struct swsusp_info *info)
1630 {
1631         if (info->version_code != LINUX_VERSION_CODE)
1632                 return "kernel version";
1633         if (strcmp(info->uts.sysname,init_utsname()->sysname))
1634                 return "system type";
1635         if (strcmp(info->uts.release,init_utsname()->release))
1636                 return "kernel release";
1637         if (strcmp(info->uts.version,init_utsname()->version))
1638                 return "version";
1639         if (strcmp(info->uts.machine,init_utsname()->machine))
1640                 return "machine";
1641         return NULL;
1642 }
1643 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
1644
1645 unsigned long snapshot_get_image_size(void)
1646 {
1647         return nr_copy_pages + nr_meta_pages + 1;
1648 }
1649
1650 static int init_header(struct swsusp_info *info)
1651 {
1652         memset(info, 0, sizeof(struct swsusp_info));
1653         info->num_physpages = num_physpages;
1654         info->image_pages = nr_copy_pages;
1655         info->pages = snapshot_get_image_size();
1656         info->size = info->pages;
1657         info->size <<= PAGE_SHIFT;
1658         return init_header_complete(info);
1659 }
1660
1661 /**
1662  *      pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1663  *      are stored in the array @buf[] (1 page at a time)
1664  */
1665
1666 static inline void
1667 pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1668 {
1669         int j;
1670
1671         for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1672                 buf[j] = memory_bm_next_pfn(bm);
1673                 if (unlikely(buf[j] == BM_END_OF_MAP))
1674                         break;
1675                 /* Save page key for data page (s390 only). */
1676                 page_key_read(buf + j);
1677         }
1678 }
1679
1680 /**
1681  *      snapshot_read_next - used for reading the system memory snapshot.
1682  *
1683  *      On the first call to it @handle should point to a zeroed
1684  *      snapshot_handle structure.  The structure gets updated and a pointer
1685  *      to it should be passed to this function every next time.
1686  *
1687  *      On success the function returns a positive number.  Then, the caller
1688  *      is allowed to read up to the returned number of bytes from the memory
1689  *      location computed by the data_of() macro.
1690  *
1691  *      The function returns 0 to indicate the end of data stream condition,
1692  *      and a negative number is returned on error.  In such cases the
1693  *      structure pointed to by @handle is not updated and should not be used
1694  *      any more.
1695  */
1696
1697 int snapshot_read_next(struct snapshot_handle *handle)
1698 {
1699         if (handle->cur > nr_meta_pages + nr_copy_pages)
1700                 return 0;
1701
1702         if (!buffer) {
1703                 /* This makes the buffer be freed by swsusp_free() */
1704                 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1705                 if (!buffer)
1706                         return -ENOMEM;
1707         }
1708         if (!handle->cur) {
1709                 int error;
1710
1711                 error = init_header((struct swsusp_info *)buffer);
1712                 if (error)
1713                         return error;
1714                 handle->buffer = buffer;
1715                 memory_bm_position_reset(&orig_bm);
1716                 memory_bm_position_reset(&copy_bm);
1717         } else if (handle->cur <= nr_meta_pages) {
1718                 clear_page(buffer);
1719                 pack_pfns(buffer, &orig_bm);
1720         } else {
1721                 struct page *page;
1722
1723                 page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
1724                 if (PageHighMem(page)) {
1725                         /* Highmem pages are copied to the buffer,
1726                          * because we can't return with a kmapped
1727                          * highmem page (we may not be called again).
1728                          */
1729                         void *kaddr;
1730
1731                         kaddr = kmap_atomic(page, KM_USER0);
1732                         copy_page(buffer, kaddr);
1733                         kunmap_atomic(kaddr, KM_USER0);
1734                         handle->buffer = buffer;
1735                 } else {
1736                         handle->buffer = page_address(page);
1737                 }
1738         }
1739         handle->cur++;
1740         return PAGE_SIZE;
1741 }
1742
1743 /**
1744  *      mark_unsafe_pages - mark the pages that cannot be used for storing
1745  *      the image during resume, because they conflict with the pages that
1746  *      had been used before suspend
1747  */
1748
1749 static int mark_unsafe_pages(struct memory_bitmap *bm)
1750 {
1751         struct zone *zone;
1752         unsigned long pfn, max_zone_pfn;
1753
1754         /* Clear page flags */
1755         for_each_populated_zone(zone) {
1756                 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1757                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1758                         if (pfn_valid(pfn))
1759                                 swsusp_unset_page_free(pfn_to_page(pfn));
1760         }
1761
1762         /* Mark pages that correspond to the "original" pfns as "unsafe" */
1763         memory_bm_position_reset(bm);
1764         do {
1765                 pfn = memory_bm_next_pfn(bm);
1766                 if (likely(pfn != BM_END_OF_MAP)) {
1767                         if (likely(pfn_valid(pfn)))
1768                                 swsusp_set_page_free(pfn_to_page(pfn));
1769                         else
1770                                 return -EFAULT;
1771                 }
1772         } while (pfn != BM_END_OF_MAP);
1773
1774         allocated_unsafe_pages = 0;
1775
1776         return 0;
1777 }
1778
1779 static void
1780 duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
1781 {
1782         unsigned long pfn;
1783
1784         memory_bm_position_reset(src);
1785         pfn = memory_bm_next_pfn(src);
1786         while (pfn != BM_END_OF_MAP) {
1787                 memory_bm_set_bit(dst, pfn);
1788                 pfn = memory_bm_next_pfn(src);
1789         }
1790 }
1791
1792 static int check_header(struct swsusp_info *info)
1793 {
1794         char *reason;
1795
1796         reason = check_image_kernel(info);
1797         if (!reason && info->num_physpages != num_physpages)
1798                 reason = "memory size";
1799         if (reason) {
1800                 printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
1801                 return -EPERM;
1802         }
1803         return 0;
1804 }
1805
1806 /**
1807  *      load header - check the image header and copy data from it
1808  */
1809
1810 static int
1811 load_header(struct swsusp_info *info)
1812 {
1813         int error;
1814
1815         restore_pblist = NULL;
1816         error = check_header(info);
1817         if (!error) {
1818                 nr_copy_pages = info->image_pages;
1819                 nr_meta_pages = info->pages - info->image_pages - 1;
1820         }
1821         return error;
1822 }
1823
1824 /**
1825  *      unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
1826  *      the corresponding bit in the memory bitmap @bm
1827  */
1828 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
1829 {
1830         int j;
1831
1832         for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1833                 if (unlikely(buf[j] == BM_END_OF_MAP))
1834                         break;
1835
1836                 /* Extract and buffer page key for data page (s390 only). */
1837                 page_key_memorize(buf + j);
1838
1839                 if (memory_bm_pfn_present(bm, buf[j]))
1840                         memory_bm_set_bit(bm, buf[j]);
1841                 else
1842                         return -EFAULT;
1843         }
1844
1845         return 0;
1846 }
1847
1848 /* List of "safe" pages that may be used to store data loaded from the suspend
1849  * image
1850  */
1851 static struct linked_page *safe_pages_list;
1852
1853 #ifdef CONFIG_HIGHMEM
1854 /* struct highmem_pbe is used for creating the list of highmem pages that
1855  * should be restored atomically during the resume from disk, because the page
1856  * frames they have occupied before the suspend are in use.
1857  */
1858 struct highmem_pbe {
1859         struct page *copy_page; /* data is here now */
1860         struct page *orig_page; /* data was here before the suspend */
1861         struct highmem_pbe *next;
1862 };
1863
1864 /* List of highmem PBEs needed for restoring the highmem pages that were
1865  * allocated before the suspend and included in the suspend image, but have
1866  * also been allocated by the "resume" kernel, so their contents cannot be
1867  * written directly to their "original" page frames.
1868  */
1869 static struct highmem_pbe *highmem_pblist;
1870
1871 /**
1872  *      count_highmem_image_pages - compute the number of highmem pages in the
1873  *      suspend image.  The bits in the memory bitmap @bm that correspond to the
1874  *      image pages are assumed to be set.
1875  */
1876
1877 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
1878 {
1879         unsigned long pfn;
1880         unsigned int cnt = 0;
1881
1882         memory_bm_position_reset(bm);
1883         pfn = memory_bm_next_pfn(bm);
1884         while (pfn != BM_END_OF_MAP) {
1885                 if (PageHighMem(pfn_to_page(pfn)))
1886                         cnt++;
1887
1888                 pfn = memory_bm_next_pfn(bm);
1889         }
1890         return cnt;
1891 }
1892
1893 /**
1894  *      prepare_highmem_image - try to allocate as many highmem pages as
1895  *      there are highmem image pages (@nr_highmem_p points to the variable
1896  *      containing the number of highmem image pages).  The pages that are
1897  *      "safe" (ie. will not be overwritten when the suspend image is
1898  *      restored) have the corresponding bits set in @bm (it must be
1899  *      unitialized).
1900  *
1901  *      NOTE: This function should not be called if there are no highmem
1902  *      image pages.
1903  */
1904
1905 static unsigned int safe_highmem_pages;
1906
1907 static struct memory_bitmap *safe_highmem_bm;
1908
1909 static int
1910 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1911 {
1912         unsigned int to_alloc;
1913
1914         if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
1915                 return -ENOMEM;
1916
1917         if (get_highmem_buffer(PG_SAFE))
1918                 return -ENOMEM;
1919
1920         to_alloc = count_free_highmem_pages();
1921         if (to_alloc > *nr_highmem_p)
1922                 to_alloc = *nr_highmem_p;
1923         else
1924                 *nr_highmem_p = to_alloc;
1925
1926         safe_highmem_pages = 0;
1927         while (to_alloc-- > 0) {
1928                 struct page *page;
1929
1930                 page = alloc_page(__GFP_HIGHMEM);
1931                 if (!swsusp_page_is_free(page)) {
1932                         /* The page is "safe", set its bit the bitmap */
1933                         memory_bm_set_bit(bm, page_to_pfn(page));
1934                         safe_highmem_pages++;
1935                 }
1936                 /* Mark the page as allocated */
1937                 swsusp_set_page_forbidden(page);
1938                 swsusp_set_page_free(page);
1939         }
1940         memory_bm_position_reset(bm);
1941         safe_highmem_bm = bm;
1942         return 0;
1943 }
1944
1945 /**
1946  *      get_highmem_page_buffer - for given highmem image page find the buffer
1947  *      that suspend_write_next() should set for its caller to write to.
1948  *
1949  *      If the page is to be saved to its "original" page frame or a copy of
1950  *      the page is to be made in the highmem, @buffer is returned.  Otherwise,
1951  *      the copy of the page is to be made in normal memory, so the address of
1952  *      the copy is returned.
1953  *
1954  *      If @buffer is returned, the caller of suspend_write_next() will write
1955  *      the page's contents to @buffer, so they will have to be copied to the
1956  *      right location on the next call to suspend_write_next() and it is done
1957  *      with the help of copy_last_highmem_page().  For this purpose, if
1958  *      @buffer is returned, @last_highmem page is set to the page to which
1959  *      the data will have to be copied from @buffer.
1960  */
1961
1962 static struct page *last_highmem_page;
1963
1964 static void *
1965 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1966 {
1967         struct highmem_pbe *pbe;
1968         void *kaddr;
1969
1970         if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
1971                 /* We have allocated the "original" page frame and we can
1972                  * use it directly to store the loaded page.
1973                  */
1974                 last_highmem_page = page;
1975                 return buffer;
1976         }
1977         /* The "original" page frame has not been allocated and we have to
1978          * use a "safe" page frame to store the loaded page.
1979          */
1980         pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
1981         if (!pbe) {
1982                 swsusp_free();
1983                 return ERR_PTR(-ENOMEM);
1984         }
1985         pbe->orig_page = page;
1986         if (safe_highmem_pages > 0) {
1987                 struct page *tmp;
1988
1989                 /* Copy of the page will be stored in high memory */
1990                 kaddr = buffer;
1991                 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
1992                 safe_highmem_pages--;
1993                 last_highmem_page = tmp;
1994                 pbe->copy_page = tmp;
1995         } else {
1996                 /* Copy of the page will be stored in normal memory */
1997                 kaddr = safe_pages_list;
1998                 safe_pages_list = safe_pages_list->next;
1999                 pbe->copy_page = virt_to_page(kaddr);
2000         }
2001         pbe->next = highmem_pblist;
2002         highmem_pblist = pbe;
2003         return kaddr;
2004 }
2005
2006 /**
2007  *      copy_last_highmem_page - copy the contents of a highmem image from
2008  *      @buffer, where the caller of snapshot_write_next() has place them,
2009  *      to the right location represented by @last_highmem_page .
2010  */
2011
2012 static void copy_last_highmem_page(void)
2013 {
2014         if (last_highmem_page) {
2015                 void *dst;
2016
2017                 dst = kmap_atomic(last_highmem_page, KM_USER0);
2018                 copy_page(dst, buffer);
2019                 kunmap_atomic(dst, KM_USER0);
2020                 last_highmem_page = NULL;
2021         }
2022 }
2023
2024 static inline int last_highmem_page_copied(void)
2025 {
2026         return !last_highmem_page;
2027 }
2028
2029 static inline void free_highmem_data(void)
2030 {
2031         if (safe_highmem_bm)
2032                 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2033
2034         if (buffer)
2035                 free_image_page(buffer, PG_UNSAFE_CLEAR);
2036 }
2037 #else
2038 static inline int get_safe_write_buffer(void) { return 0; }
2039
2040 static unsigned int
2041 count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2042
2043 static inline int
2044 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
2045 {
2046         return 0;
2047 }
2048
2049 static inline void *
2050 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
2051 {
2052         return ERR_PTR(-EINVAL);
2053 }
2054
2055 static inline void copy_last_highmem_page(void) {}
2056 static inline int last_highmem_page_copied(void) { return 1; }
2057 static inline void free_highmem_data(void) {}
2058 #endif /* CONFIG_HIGHMEM */
2059
2060 /**
2061  *      prepare_image - use the memory bitmap @bm to mark the pages that will
2062  *      be overwritten in the process of restoring the system memory state
2063  *      from the suspend image ("unsafe" pages) and allocate memory for the
2064  *      image.
2065  *
2066  *      The idea is to allocate a new memory bitmap first and then allocate
2067  *      as many pages as needed for the image data, but not to assign these
2068  *      pages to specific tasks initially.  Instead, we just mark them as
2069  *      allocated and create a lists of "safe" pages that will be used
2070  *      later.  On systems with high memory a list of "safe" highmem pages is
2071  *      also created.
2072  */
2073
2074 #define PBES_PER_LINKED_PAGE    (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2075
2076 static int
2077 prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2078 {
2079         unsigned int nr_pages, nr_highmem;
2080         struct linked_page *sp_list, *lp;
2081         int error;
2082
2083         /* If there is no highmem, the buffer will not be necessary */
2084         free_image_page(buffer, PG_UNSAFE_CLEAR);
2085         buffer = NULL;
2086
2087         nr_highmem = count_highmem_image_pages(bm);
2088         error = mark_unsafe_pages(bm);
2089         if (error)
2090                 goto Free;
2091
2092         error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2093         if (error)
2094                 goto Free;
2095
2096         duplicate_memory_bitmap(new_bm, bm);
2097         memory_bm_free(bm, PG_UNSAFE_KEEP);
2098         if (nr_highmem > 0) {
2099                 error = prepare_highmem_image(bm, &nr_highmem);
2100                 if (error)
2101                         goto Free;
2102         }
2103         /* Reserve some safe pages for potential later use.
2104          *
2105          * NOTE: This way we make sure there will be enough safe pages for the
2106          * chain_alloc() in get_buffer().  It is a bit wasteful, but
2107          * nr_copy_pages cannot be greater than 50% of the memory anyway.
2108          */
2109         sp_list = NULL;
2110         /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
2111         nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2112         nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2113         while (nr_pages > 0) {
2114                 lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2115                 if (!lp) {
2116                         error = -ENOMEM;
2117                         goto Free;
2118                 }
2119                 lp->next = sp_list;
2120                 sp_list = lp;
2121                 nr_pages--;
2122         }
2123         /* Preallocate memory for the image */
2124         safe_pages_list = NULL;
2125         nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2126         while (nr_pages > 0) {
2127                 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2128                 if (!lp) {
2129                         error = -ENOMEM;
2130                         goto Free;
2131                 }
2132                 if (!swsusp_page_is_free(virt_to_page(lp))) {
2133                         /* The page is "safe", add it to the list */
2134                         lp->next = safe_pages_list;
2135                         safe_pages_list = lp;
2136                 }
2137                 /* Mark the page as allocated */
2138                 swsusp_set_page_forbidden(virt_to_page(lp));
2139                 swsusp_set_page_free(virt_to_page(lp));
2140                 nr_pages--;
2141         }
2142         /* Free the reserved safe pages so that chain_alloc() can use them */
2143         while (sp_list) {
2144                 lp = sp_list->next;
2145                 free_image_page(sp_list, PG_UNSAFE_CLEAR);
2146                 sp_list = lp;
2147         }
2148         return 0;
2149
2150  Free:
2151         swsusp_free();
2152         return error;
2153 }
2154
2155 /**
2156  *      get_buffer - compute the address that snapshot_write_next() should
2157  *      set for its caller to write to.
2158  */
2159
2160 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2161 {
2162         struct pbe *pbe;
2163         struct page *page;
2164         unsigned long pfn = memory_bm_next_pfn(bm);
2165
2166         if (pfn == BM_END_OF_MAP)
2167                 return ERR_PTR(-EFAULT);
2168
2169         page = pfn_to_page(pfn);
2170         if (PageHighMem(page))
2171                 return get_highmem_page_buffer(page, ca);
2172
2173         if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2174                 /* We have allocated the "original" page frame and we can
2175                  * use it directly to store the loaded page.
2176                  */
2177                 return page_address(page);
2178
2179         /* The "original" page frame has not been allocated and we have to
2180          * use a "safe" page frame to store the loaded page.
2181          */
2182         pbe = chain_alloc(ca, sizeof(struct pbe));
2183         if (!pbe) {
2184                 swsusp_free();
2185                 return ERR_PTR(-ENOMEM);
2186         }
2187         pbe->orig_address = page_address(page);
2188         pbe->address = safe_pages_list;
2189         safe_pages_list = safe_pages_list->next;
2190         pbe->next = restore_pblist;
2191         restore_pblist = pbe;
2192         return pbe->address;
2193 }
2194
2195 /**
2196  *      snapshot_write_next - used for writing the system memory snapshot.
2197  *
2198  *      On the first call to it @handle should point to a zeroed
2199  *      snapshot_handle structure.  The structure gets updated and a pointer
2200  *      to it should be passed to this function every next time.
2201  *
2202  *      On success the function returns a positive number.  Then, the caller
2203  *      is allowed to write up to the returned number of bytes to the memory
2204  *      location computed by the data_of() macro.
2205  *
2206  *      The function returns 0 to indicate the "end of file" condition,
2207  *      and a negative number is returned on error.  In such cases the
2208  *      structure pointed to by @handle is not updated and should not be used
2209  *      any more.
2210  */
2211
2212 int snapshot_write_next(struct snapshot_handle *handle)
2213 {
2214         static struct chain_allocator ca;
2215         int error = 0;
2216
2217         /* Check if we have already loaded the entire image */
2218         if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2219                 return 0;
2220
2221         handle->sync_read = 1;
2222
2223         if (!handle->cur) {
2224                 if (!buffer)
2225                         /* This makes the buffer be freed by swsusp_free() */
2226                         buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2227
2228                 if (!buffer)
2229                         return -ENOMEM;
2230
2231                 handle->buffer = buffer;
2232         } else if (handle->cur == 1) {
2233                 error = load_header(buffer);
2234                 if (error)
2235                         return error;
2236
2237                 error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2238                 if (error)
2239                         return error;
2240
2241                 /* Allocate buffer for page keys. */
2242                 error = page_key_alloc(nr_copy_pages);
2243                 if (error)
2244                         return error;
2245
2246         } else if (handle->cur <= nr_meta_pages + 1) {
2247                 error = unpack_orig_pfns(buffer, &copy_bm);
2248                 if (error)
2249                         return error;
2250
2251                 if (handle->cur == nr_meta_pages + 1) {
2252                         error = prepare_image(&orig_bm, &copy_bm);
2253                         if (error)
2254                                 return error;
2255
2256                         chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2257                         memory_bm_position_reset(&orig_bm);
2258                         restore_pblist = NULL;
2259                         handle->buffer = get_buffer(&orig_bm, &ca);
2260                         handle->sync_read = 0;
2261                         if (IS_ERR(handle->buffer))
2262                                 return PTR_ERR(handle->buffer);
2263                 }
2264         } else {
2265                 copy_last_highmem_page();
2266                 /* Restore page key for data page (s390 only). */
2267                 page_key_write(handle->buffer);
2268                 handle->buffer = get_buffer(&orig_bm, &ca);
2269                 if (IS_ERR(handle->buffer))
2270                         return PTR_ERR(handle->buffer);
2271                 if (handle->buffer != buffer)
2272                         handle->sync_read = 0;
2273         }
2274         handle->cur++;
2275         return PAGE_SIZE;
2276 }
2277
2278 /**
2279  *      snapshot_write_finalize - must be called after the last call to
2280  *      snapshot_write_next() in case the last page in the image happens
2281  *      to be a highmem page and its contents should be stored in the
2282  *      highmem.  Additionally, it releases the memory that will not be
2283  *      used any more.
2284  */
2285
2286 void snapshot_write_finalize(struct snapshot_handle *handle)
2287 {
2288         copy_last_highmem_page();
2289         /* Restore page key for data page (s390 only). */
2290         page_key_write(handle->buffer);
2291         page_key_free();
2292         /* Free only if we have loaded the image entirely */
2293         if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2294                 memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
2295                 free_highmem_data();
2296         }
2297 }
2298
2299 int snapshot_image_loaded(struct snapshot_handle *handle)
2300 {
2301         return !(!nr_copy_pages || !last_highmem_page_copied() ||
2302                         handle->cur <= nr_meta_pages + nr_copy_pages);
2303 }
2304
2305 #ifdef CONFIG_HIGHMEM
2306 /* Assumes that @buf is ready and points to a "safe" page */
2307 static inline void
2308 swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
2309 {
2310         void *kaddr1, *kaddr2;
2311
2312         kaddr1 = kmap_atomic(p1, KM_USER0);
2313         kaddr2 = kmap_atomic(p2, KM_USER1);
2314         copy_page(buf, kaddr1);
2315         copy_page(kaddr1, kaddr2);
2316         copy_page(kaddr2, buf);
2317         kunmap_atomic(kaddr2, KM_USER1);
2318         kunmap_atomic(kaddr1, KM_USER0);
2319 }
2320
2321 /**
2322  *      restore_highmem - for each highmem page that was allocated before
2323  *      the suspend and included in the suspend image, and also has been
2324  *      allocated by the "resume" kernel swap its current (ie. "before
2325  *      resume") contents with the previous (ie. "before suspend") one.
2326  *
2327  *      If the resume eventually fails, we can call this function once
2328  *      again and restore the "before resume" highmem state.
2329  */
2330
2331 int restore_highmem(void)
2332 {
2333         struct highmem_pbe *pbe = highmem_pblist;
2334         void *buf;
2335
2336         if (!pbe)
2337                 return 0;
2338
2339         buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2340         if (!buf)
2341                 return -ENOMEM;
2342
2343         while (pbe) {
2344                 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2345                 pbe = pbe->next;
2346         }
2347         free_image_page(buf, PG_UNSAFE_CLEAR);
2348         return 0;
2349 }
2350 #endif /* CONFIG_HIGHMEM */