cpufreq: Add mechanism for registering utilization update callbacks
[cascardo/linux.git] / kernel / sched / rt.c
1 /*
2  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3  * policies)
4  */
5
6 #include "sched.h"
7
8 #include <linux/slab.h>
9 #include <linux/irq_work.h>
10
11 int sched_rr_timeslice = RR_TIMESLICE;
12
13 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
14
15 struct rt_bandwidth def_rt_bandwidth;
16
17 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
18 {
19         struct rt_bandwidth *rt_b =
20                 container_of(timer, struct rt_bandwidth, rt_period_timer);
21         int idle = 0;
22         int overrun;
23
24         raw_spin_lock(&rt_b->rt_runtime_lock);
25         for (;;) {
26                 overrun = hrtimer_forward_now(timer, rt_b->rt_period);
27                 if (!overrun)
28                         break;
29
30                 raw_spin_unlock(&rt_b->rt_runtime_lock);
31                 idle = do_sched_rt_period_timer(rt_b, overrun);
32                 raw_spin_lock(&rt_b->rt_runtime_lock);
33         }
34         if (idle)
35                 rt_b->rt_period_active = 0;
36         raw_spin_unlock(&rt_b->rt_runtime_lock);
37
38         return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
39 }
40
41 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
42 {
43         rt_b->rt_period = ns_to_ktime(period);
44         rt_b->rt_runtime = runtime;
45
46         raw_spin_lock_init(&rt_b->rt_runtime_lock);
47
48         hrtimer_init(&rt_b->rt_period_timer,
49                         CLOCK_MONOTONIC, HRTIMER_MODE_REL);
50         rt_b->rt_period_timer.function = sched_rt_period_timer;
51 }
52
53 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
54 {
55         if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
56                 return;
57
58         raw_spin_lock(&rt_b->rt_runtime_lock);
59         if (!rt_b->rt_period_active) {
60                 rt_b->rt_period_active = 1;
61                 hrtimer_forward_now(&rt_b->rt_period_timer, rt_b->rt_period);
62                 hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED);
63         }
64         raw_spin_unlock(&rt_b->rt_runtime_lock);
65 }
66
67 #if defined(CONFIG_SMP) && defined(HAVE_RT_PUSH_IPI)
68 static void push_irq_work_func(struct irq_work *work);
69 #endif
70
71 void init_rt_rq(struct rt_rq *rt_rq)
72 {
73         struct rt_prio_array *array;
74         int i;
75
76         array = &rt_rq->active;
77         for (i = 0; i < MAX_RT_PRIO; i++) {
78                 INIT_LIST_HEAD(array->queue + i);
79                 __clear_bit(i, array->bitmap);
80         }
81         /* delimiter for bitsearch: */
82         __set_bit(MAX_RT_PRIO, array->bitmap);
83
84 #if defined CONFIG_SMP
85         rt_rq->highest_prio.curr = MAX_RT_PRIO;
86         rt_rq->highest_prio.next = MAX_RT_PRIO;
87         rt_rq->rt_nr_migratory = 0;
88         rt_rq->overloaded = 0;
89         plist_head_init(&rt_rq->pushable_tasks);
90
91 #ifdef HAVE_RT_PUSH_IPI
92         rt_rq->push_flags = 0;
93         rt_rq->push_cpu = nr_cpu_ids;
94         raw_spin_lock_init(&rt_rq->push_lock);
95         init_irq_work(&rt_rq->push_work, push_irq_work_func);
96 #endif
97 #endif /* CONFIG_SMP */
98         /* We start is dequeued state, because no RT tasks are queued */
99         rt_rq->rt_queued = 0;
100
101         rt_rq->rt_time = 0;
102         rt_rq->rt_throttled = 0;
103         rt_rq->rt_runtime = 0;
104         raw_spin_lock_init(&rt_rq->rt_runtime_lock);
105 }
106
107 #ifdef CONFIG_RT_GROUP_SCHED
108 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
109 {
110         hrtimer_cancel(&rt_b->rt_period_timer);
111 }
112
113 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
114
115 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
116 {
117 #ifdef CONFIG_SCHED_DEBUG
118         WARN_ON_ONCE(!rt_entity_is_task(rt_se));
119 #endif
120         return container_of(rt_se, struct task_struct, rt);
121 }
122
123 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
124 {
125         return rt_rq->rq;
126 }
127
128 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
129 {
130         return rt_se->rt_rq;
131 }
132
133 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
134 {
135         struct rt_rq *rt_rq = rt_se->rt_rq;
136
137         return rt_rq->rq;
138 }
139
140 void free_rt_sched_group(struct task_group *tg)
141 {
142         int i;
143
144         if (tg->rt_se)
145                 destroy_rt_bandwidth(&tg->rt_bandwidth);
146
147         for_each_possible_cpu(i) {
148                 if (tg->rt_rq)
149                         kfree(tg->rt_rq[i]);
150                 if (tg->rt_se)
151                         kfree(tg->rt_se[i]);
152         }
153
154         kfree(tg->rt_rq);
155         kfree(tg->rt_se);
156 }
157
158 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
159                 struct sched_rt_entity *rt_se, int cpu,
160                 struct sched_rt_entity *parent)
161 {
162         struct rq *rq = cpu_rq(cpu);
163
164         rt_rq->highest_prio.curr = MAX_RT_PRIO;
165         rt_rq->rt_nr_boosted = 0;
166         rt_rq->rq = rq;
167         rt_rq->tg = tg;
168
169         tg->rt_rq[cpu] = rt_rq;
170         tg->rt_se[cpu] = rt_se;
171
172         if (!rt_se)
173                 return;
174
175         if (!parent)
176                 rt_se->rt_rq = &rq->rt;
177         else
178                 rt_se->rt_rq = parent->my_q;
179
180         rt_se->my_q = rt_rq;
181         rt_se->parent = parent;
182         INIT_LIST_HEAD(&rt_se->run_list);
183 }
184
185 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
186 {
187         struct rt_rq *rt_rq;
188         struct sched_rt_entity *rt_se;
189         int i;
190
191         tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
192         if (!tg->rt_rq)
193                 goto err;
194         tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
195         if (!tg->rt_se)
196                 goto err;
197
198         init_rt_bandwidth(&tg->rt_bandwidth,
199                         ktime_to_ns(def_rt_bandwidth.rt_period), 0);
200
201         for_each_possible_cpu(i) {
202                 rt_rq = kzalloc_node(sizeof(struct rt_rq),
203                                      GFP_KERNEL, cpu_to_node(i));
204                 if (!rt_rq)
205                         goto err;
206
207                 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
208                                      GFP_KERNEL, cpu_to_node(i));
209                 if (!rt_se)
210                         goto err_free_rq;
211
212                 init_rt_rq(rt_rq);
213                 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
214                 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
215         }
216
217         return 1;
218
219 err_free_rq:
220         kfree(rt_rq);
221 err:
222         return 0;
223 }
224
225 #else /* CONFIG_RT_GROUP_SCHED */
226
227 #define rt_entity_is_task(rt_se) (1)
228
229 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
230 {
231         return container_of(rt_se, struct task_struct, rt);
232 }
233
234 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
235 {
236         return container_of(rt_rq, struct rq, rt);
237 }
238
239 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
240 {
241         struct task_struct *p = rt_task_of(rt_se);
242
243         return task_rq(p);
244 }
245
246 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
247 {
248         struct rq *rq = rq_of_rt_se(rt_se);
249
250         return &rq->rt;
251 }
252
253 void free_rt_sched_group(struct task_group *tg) { }
254
255 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
256 {
257         return 1;
258 }
259 #endif /* CONFIG_RT_GROUP_SCHED */
260
261 #ifdef CONFIG_SMP
262
263 static void pull_rt_task(struct rq *this_rq);
264
265 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
266 {
267         /* Try to pull RT tasks here if we lower this rq's prio */
268         return rq->rt.highest_prio.curr > prev->prio;
269 }
270
271 static inline int rt_overloaded(struct rq *rq)
272 {
273         return atomic_read(&rq->rd->rto_count);
274 }
275
276 static inline void rt_set_overload(struct rq *rq)
277 {
278         if (!rq->online)
279                 return;
280
281         cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
282         /*
283          * Make sure the mask is visible before we set
284          * the overload count. That is checked to determine
285          * if we should look at the mask. It would be a shame
286          * if we looked at the mask, but the mask was not
287          * updated yet.
288          *
289          * Matched by the barrier in pull_rt_task().
290          */
291         smp_wmb();
292         atomic_inc(&rq->rd->rto_count);
293 }
294
295 static inline void rt_clear_overload(struct rq *rq)
296 {
297         if (!rq->online)
298                 return;
299
300         /* the order here really doesn't matter */
301         atomic_dec(&rq->rd->rto_count);
302         cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
303 }
304
305 static void update_rt_migration(struct rt_rq *rt_rq)
306 {
307         if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
308                 if (!rt_rq->overloaded) {
309                         rt_set_overload(rq_of_rt_rq(rt_rq));
310                         rt_rq->overloaded = 1;
311                 }
312         } else if (rt_rq->overloaded) {
313                 rt_clear_overload(rq_of_rt_rq(rt_rq));
314                 rt_rq->overloaded = 0;
315         }
316 }
317
318 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
319 {
320         struct task_struct *p;
321
322         if (!rt_entity_is_task(rt_se))
323                 return;
324
325         p = rt_task_of(rt_se);
326         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
327
328         rt_rq->rt_nr_total++;
329         if (p->nr_cpus_allowed > 1)
330                 rt_rq->rt_nr_migratory++;
331
332         update_rt_migration(rt_rq);
333 }
334
335 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
336 {
337         struct task_struct *p;
338
339         if (!rt_entity_is_task(rt_se))
340                 return;
341
342         p = rt_task_of(rt_se);
343         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
344
345         rt_rq->rt_nr_total--;
346         if (p->nr_cpus_allowed > 1)
347                 rt_rq->rt_nr_migratory--;
348
349         update_rt_migration(rt_rq);
350 }
351
352 static inline int has_pushable_tasks(struct rq *rq)
353 {
354         return !plist_head_empty(&rq->rt.pushable_tasks);
355 }
356
357 static DEFINE_PER_CPU(struct callback_head, rt_push_head);
358 static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
359
360 static void push_rt_tasks(struct rq *);
361 static void pull_rt_task(struct rq *);
362
363 static inline void queue_push_tasks(struct rq *rq)
364 {
365         if (!has_pushable_tasks(rq))
366                 return;
367
368         queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
369 }
370
371 static inline void queue_pull_task(struct rq *rq)
372 {
373         queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
374 }
375
376 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
377 {
378         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
379         plist_node_init(&p->pushable_tasks, p->prio);
380         plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
381
382         /* Update the highest prio pushable task */
383         if (p->prio < rq->rt.highest_prio.next)
384                 rq->rt.highest_prio.next = p->prio;
385 }
386
387 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
388 {
389         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
390
391         /* Update the new highest prio pushable task */
392         if (has_pushable_tasks(rq)) {
393                 p = plist_first_entry(&rq->rt.pushable_tasks,
394                                       struct task_struct, pushable_tasks);
395                 rq->rt.highest_prio.next = p->prio;
396         } else
397                 rq->rt.highest_prio.next = MAX_RT_PRIO;
398 }
399
400 #else
401
402 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
403 {
404 }
405
406 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
407 {
408 }
409
410 static inline
411 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
412 {
413 }
414
415 static inline
416 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
417 {
418 }
419
420 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
421 {
422         return false;
423 }
424
425 static inline void pull_rt_task(struct rq *this_rq)
426 {
427 }
428
429 static inline void queue_push_tasks(struct rq *rq)
430 {
431 }
432 #endif /* CONFIG_SMP */
433
434 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
435 static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
436
437 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
438 {
439         return !list_empty(&rt_se->run_list);
440 }
441
442 #ifdef CONFIG_RT_GROUP_SCHED
443
444 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
445 {
446         if (!rt_rq->tg)
447                 return RUNTIME_INF;
448
449         return rt_rq->rt_runtime;
450 }
451
452 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
453 {
454         return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
455 }
456
457 typedef struct task_group *rt_rq_iter_t;
458
459 static inline struct task_group *next_task_group(struct task_group *tg)
460 {
461         do {
462                 tg = list_entry_rcu(tg->list.next,
463                         typeof(struct task_group), list);
464         } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
465
466         if (&tg->list == &task_groups)
467                 tg = NULL;
468
469         return tg;
470 }
471
472 #define for_each_rt_rq(rt_rq, iter, rq)                                 \
473         for (iter = container_of(&task_groups, typeof(*iter), list);    \
474                 (iter = next_task_group(iter)) &&                       \
475                 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
476
477 #define for_each_sched_rt_entity(rt_se) \
478         for (; rt_se; rt_se = rt_se->parent)
479
480 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
481 {
482         return rt_se->my_q;
483 }
484
485 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
486 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
487
488 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
489 {
490         struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
491         struct rq *rq = rq_of_rt_rq(rt_rq);
492         struct sched_rt_entity *rt_se;
493
494         int cpu = cpu_of(rq);
495
496         rt_se = rt_rq->tg->rt_se[cpu];
497
498         if (rt_rq->rt_nr_running) {
499                 if (!rt_se)
500                         enqueue_top_rt_rq(rt_rq);
501                 else if (!on_rt_rq(rt_se))
502                         enqueue_rt_entity(rt_se, false);
503
504                 if (rt_rq->highest_prio.curr < curr->prio)
505                         resched_curr(rq);
506         }
507 }
508
509 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
510 {
511         struct sched_rt_entity *rt_se;
512         int cpu = cpu_of(rq_of_rt_rq(rt_rq));
513
514         rt_se = rt_rq->tg->rt_se[cpu];
515
516         if (!rt_se)
517                 dequeue_top_rt_rq(rt_rq);
518         else if (on_rt_rq(rt_se))
519                 dequeue_rt_entity(rt_se);
520 }
521
522 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
523 {
524         return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
525 }
526
527 static int rt_se_boosted(struct sched_rt_entity *rt_se)
528 {
529         struct rt_rq *rt_rq = group_rt_rq(rt_se);
530         struct task_struct *p;
531
532         if (rt_rq)
533                 return !!rt_rq->rt_nr_boosted;
534
535         p = rt_task_of(rt_se);
536         return p->prio != p->normal_prio;
537 }
538
539 #ifdef CONFIG_SMP
540 static inline const struct cpumask *sched_rt_period_mask(void)
541 {
542         return this_rq()->rd->span;
543 }
544 #else
545 static inline const struct cpumask *sched_rt_period_mask(void)
546 {
547         return cpu_online_mask;
548 }
549 #endif
550
551 static inline
552 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
553 {
554         return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
555 }
556
557 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
558 {
559         return &rt_rq->tg->rt_bandwidth;
560 }
561
562 #else /* !CONFIG_RT_GROUP_SCHED */
563
564 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
565 {
566         return rt_rq->rt_runtime;
567 }
568
569 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
570 {
571         return ktime_to_ns(def_rt_bandwidth.rt_period);
572 }
573
574 typedef struct rt_rq *rt_rq_iter_t;
575
576 #define for_each_rt_rq(rt_rq, iter, rq) \
577         for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
578
579 #define for_each_sched_rt_entity(rt_se) \
580         for (; rt_se; rt_se = NULL)
581
582 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
583 {
584         return NULL;
585 }
586
587 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
588 {
589         struct rq *rq = rq_of_rt_rq(rt_rq);
590
591         if (!rt_rq->rt_nr_running)
592                 return;
593
594         enqueue_top_rt_rq(rt_rq);
595         resched_curr(rq);
596 }
597
598 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
599 {
600         dequeue_top_rt_rq(rt_rq);
601 }
602
603 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
604 {
605         return rt_rq->rt_throttled;
606 }
607
608 static inline const struct cpumask *sched_rt_period_mask(void)
609 {
610         return cpu_online_mask;
611 }
612
613 static inline
614 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
615 {
616         return &cpu_rq(cpu)->rt;
617 }
618
619 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
620 {
621         return &def_rt_bandwidth;
622 }
623
624 #endif /* CONFIG_RT_GROUP_SCHED */
625
626 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
627 {
628         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
629
630         return (hrtimer_active(&rt_b->rt_period_timer) ||
631                 rt_rq->rt_time < rt_b->rt_runtime);
632 }
633
634 #ifdef CONFIG_SMP
635 /*
636  * We ran out of runtime, see if we can borrow some from our neighbours.
637  */
638 static void do_balance_runtime(struct rt_rq *rt_rq)
639 {
640         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
641         struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
642         int i, weight;
643         u64 rt_period;
644
645         weight = cpumask_weight(rd->span);
646
647         raw_spin_lock(&rt_b->rt_runtime_lock);
648         rt_period = ktime_to_ns(rt_b->rt_period);
649         for_each_cpu(i, rd->span) {
650                 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
651                 s64 diff;
652
653                 if (iter == rt_rq)
654                         continue;
655
656                 raw_spin_lock(&iter->rt_runtime_lock);
657                 /*
658                  * Either all rqs have inf runtime and there's nothing to steal
659                  * or __disable_runtime() below sets a specific rq to inf to
660                  * indicate its been disabled and disalow stealing.
661                  */
662                 if (iter->rt_runtime == RUNTIME_INF)
663                         goto next;
664
665                 /*
666                  * From runqueues with spare time, take 1/n part of their
667                  * spare time, but no more than our period.
668                  */
669                 diff = iter->rt_runtime - iter->rt_time;
670                 if (diff > 0) {
671                         diff = div_u64((u64)diff, weight);
672                         if (rt_rq->rt_runtime + diff > rt_period)
673                                 diff = rt_period - rt_rq->rt_runtime;
674                         iter->rt_runtime -= diff;
675                         rt_rq->rt_runtime += diff;
676                         if (rt_rq->rt_runtime == rt_period) {
677                                 raw_spin_unlock(&iter->rt_runtime_lock);
678                                 break;
679                         }
680                 }
681 next:
682                 raw_spin_unlock(&iter->rt_runtime_lock);
683         }
684         raw_spin_unlock(&rt_b->rt_runtime_lock);
685 }
686
687 /*
688  * Ensure this RQ takes back all the runtime it lend to its neighbours.
689  */
690 static void __disable_runtime(struct rq *rq)
691 {
692         struct root_domain *rd = rq->rd;
693         rt_rq_iter_t iter;
694         struct rt_rq *rt_rq;
695
696         if (unlikely(!scheduler_running))
697                 return;
698
699         for_each_rt_rq(rt_rq, iter, rq) {
700                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
701                 s64 want;
702                 int i;
703
704                 raw_spin_lock(&rt_b->rt_runtime_lock);
705                 raw_spin_lock(&rt_rq->rt_runtime_lock);
706                 /*
707                  * Either we're all inf and nobody needs to borrow, or we're
708                  * already disabled and thus have nothing to do, or we have
709                  * exactly the right amount of runtime to take out.
710                  */
711                 if (rt_rq->rt_runtime == RUNTIME_INF ||
712                                 rt_rq->rt_runtime == rt_b->rt_runtime)
713                         goto balanced;
714                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
715
716                 /*
717                  * Calculate the difference between what we started out with
718                  * and what we current have, that's the amount of runtime
719                  * we lend and now have to reclaim.
720                  */
721                 want = rt_b->rt_runtime - rt_rq->rt_runtime;
722
723                 /*
724                  * Greedy reclaim, take back as much as we can.
725                  */
726                 for_each_cpu(i, rd->span) {
727                         struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
728                         s64 diff;
729
730                         /*
731                          * Can't reclaim from ourselves or disabled runqueues.
732                          */
733                         if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
734                                 continue;
735
736                         raw_spin_lock(&iter->rt_runtime_lock);
737                         if (want > 0) {
738                                 diff = min_t(s64, iter->rt_runtime, want);
739                                 iter->rt_runtime -= diff;
740                                 want -= diff;
741                         } else {
742                                 iter->rt_runtime -= want;
743                                 want -= want;
744                         }
745                         raw_spin_unlock(&iter->rt_runtime_lock);
746
747                         if (!want)
748                                 break;
749                 }
750
751                 raw_spin_lock(&rt_rq->rt_runtime_lock);
752                 /*
753                  * We cannot be left wanting - that would mean some runtime
754                  * leaked out of the system.
755                  */
756                 BUG_ON(want);
757 balanced:
758                 /*
759                  * Disable all the borrow logic by pretending we have inf
760                  * runtime - in which case borrowing doesn't make sense.
761                  */
762                 rt_rq->rt_runtime = RUNTIME_INF;
763                 rt_rq->rt_throttled = 0;
764                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
765                 raw_spin_unlock(&rt_b->rt_runtime_lock);
766
767                 /* Make rt_rq available for pick_next_task() */
768                 sched_rt_rq_enqueue(rt_rq);
769         }
770 }
771
772 static void __enable_runtime(struct rq *rq)
773 {
774         rt_rq_iter_t iter;
775         struct rt_rq *rt_rq;
776
777         if (unlikely(!scheduler_running))
778                 return;
779
780         /*
781          * Reset each runqueue's bandwidth settings
782          */
783         for_each_rt_rq(rt_rq, iter, rq) {
784                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
785
786                 raw_spin_lock(&rt_b->rt_runtime_lock);
787                 raw_spin_lock(&rt_rq->rt_runtime_lock);
788                 rt_rq->rt_runtime = rt_b->rt_runtime;
789                 rt_rq->rt_time = 0;
790                 rt_rq->rt_throttled = 0;
791                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
792                 raw_spin_unlock(&rt_b->rt_runtime_lock);
793         }
794 }
795
796 static void balance_runtime(struct rt_rq *rt_rq)
797 {
798         if (!sched_feat(RT_RUNTIME_SHARE))
799                 return;
800
801         if (rt_rq->rt_time > rt_rq->rt_runtime) {
802                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
803                 do_balance_runtime(rt_rq);
804                 raw_spin_lock(&rt_rq->rt_runtime_lock);
805         }
806 }
807 #else /* !CONFIG_SMP */
808 static inline void balance_runtime(struct rt_rq *rt_rq) {}
809 #endif /* CONFIG_SMP */
810
811 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
812 {
813         int i, idle = 1, throttled = 0;
814         const struct cpumask *span;
815
816         span = sched_rt_period_mask();
817 #ifdef CONFIG_RT_GROUP_SCHED
818         /*
819          * FIXME: isolated CPUs should really leave the root task group,
820          * whether they are isolcpus or were isolated via cpusets, lest
821          * the timer run on a CPU which does not service all runqueues,
822          * potentially leaving other CPUs indefinitely throttled.  If
823          * isolation is really required, the user will turn the throttle
824          * off to kill the perturbations it causes anyway.  Meanwhile,
825          * this maintains functionality for boot and/or troubleshooting.
826          */
827         if (rt_b == &root_task_group.rt_bandwidth)
828                 span = cpu_online_mask;
829 #endif
830         for_each_cpu(i, span) {
831                 int enqueue = 0;
832                 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
833                 struct rq *rq = rq_of_rt_rq(rt_rq);
834
835                 raw_spin_lock(&rq->lock);
836                 if (rt_rq->rt_time) {
837                         u64 runtime;
838
839                         raw_spin_lock(&rt_rq->rt_runtime_lock);
840                         if (rt_rq->rt_throttled)
841                                 balance_runtime(rt_rq);
842                         runtime = rt_rq->rt_runtime;
843                         rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
844                         if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
845                                 rt_rq->rt_throttled = 0;
846                                 enqueue = 1;
847
848                                 /*
849                                  * When we're idle and a woken (rt) task is
850                                  * throttled check_preempt_curr() will set
851                                  * skip_update and the time between the wakeup
852                                  * and this unthrottle will get accounted as
853                                  * 'runtime'.
854                                  */
855                                 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
856                                         rq_clock_skip_update(rq, false);
857                         }
858                         if (rt_rq->rt_time || rt_rq->rt_nr_running)
859                                 idle = 0;
860                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
861                 } else if (rt_rq->rt_nr_running) {
862                         idle = 0;
863                         if (!rt_rq_throttled(rt_rq))
864                                 enqueue = 1;
865                 }
866                 if (rt_rq->rt_throttled)
867                         throttled = 1;
868
869                 if (enqueue)
870                         sched_rt_rq_enqueue(rt_rq);
871                 raw_spin_unlock(&rq->lock);
872         }
873
874         if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
875                 return 1;
876
877         return idle;
878 }
879
880 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
881 {
882 #ifdef CONFIG_RT_GROUP_SCHED
883         struct rt_rq *rt_rq = group_rt_rq(rt_se);
884
885         if (rt_rq)
886                 return rt_rq->highest_prio.curr;
887 #endif
888
889         return rt_task_of(rt_se)->prio;
890 }
891
892 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
893 {
894         u64 runtime = sched_rt_runtime(rt_rq);
895
896         if (rt_rq->rt_throttled)
897                 return rt_rq_throttled(rt_rq);
898
899         if (runtime >= sched_rt_period(rt_rq))
900                 return 0;
901
902         balance_runtime(rt_rq);
903         runtime = sched_rt_runtime(rt_rq);
904         if (runtime == RUNTIME_INF)
905                 return 0;
906
907         if (rt_rq->rt_time > runtime) {
908                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
909
910                 /*
911                  * Don't actually throttle groups that have no runtime assigned
912                  * but accrue some time due to boosting.
913                  */
914                 if (likely(rt_b->rt_runtime)) {
915                         rt_rq->rt_throttled = 1;
916                         printk_deferred_once("sched: RT throttling activated\n");
917                 } else {
918                         /*
919                          * In case we did anyway, make it go away,
920                          * replenishment is a joke, since it will replenish us
921                          * with exactly 0 ns.
922                          */
923                         rt_rq->rt_time = 0;
924                 }
925
926                 if (rt_rq_throttled(rt_rq)) {
927                         sched_rt_rq_dequeue(rt_rq);
928                         return 1;
929                 }
930         }
931
932         return 0;
933 }
934
935 /*
936  * Update the current task's runtime statistics. Skip current tasks that
937  * are not in our scheduling class.
938  */
939 static void update_curr_rt(struct rq *rq)
940 {
941         struct task_struct *curr = rq->curr;
942         struct sched_rt_entity *rt_se = &curr->rt;
943         u64 delta_exec;
944
945         if (curr->sched_class != &rt_sched_class)
946                 return;
947
948         /* Kick cpufreq (see the comment in linux/cpufreq.h). */
949         if (cpu_of(rq) == smp_processor_id())
950                 cpufreq_trigger_update(rq_clock(rq));
951
952         delta_exec = rq_clock_task(rq) - curr->se.exec_start;
953         if (unlikely((s64)delta_exec <= 0))
954                 return;
955
956         schedstat_set(curr->se.statistics.exec_max,
957                       max(curr->se.statistics.exec_max, delta_exec));
958
959         curr->se.sum_exec_runtime += delta_exec;
960         account_group_exec_runtime(curr, delta_exec);
961
962         curr->se.exec_start = rq_clock_task(rq);
963         cpuacct_charge(curr, delta_exec);
964
965         sched_rt_avg_update(rq, delta_exec);
966
967         if (!rt_bandwidth_enabled())
968                 return;
969
970         for_each_sched_rt_entity(rt_se) {
971                 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
972
973                 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
974                         raw_spin_lock(&rt_rq->rt_runtime_lock);
975                         rt_rq->rt_time += delta_exec;
976                         if (sched_rt_runtime_exceeded(rt_rq))
977                                 resched_curr(rq);
978                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
979                 }
980         }
981 }
982
983 static void
984 dequeue_top_rt_rq(struct rt_rq *rt_rq)
985 {
986         struct rq *rq = rq_of_rt_rq(rt_rq);
987
988         BUG_ON(&rq->rt != rt_rq);
989
990         if (!rt_rq->rt_queued)
991                 return;
992
993         BUG_ON(!rq->nr_running);
994
995         sub_nr_running(rq, rt_rq->rt_nr_running);
996         rt_rq->rt_queued = 0;
997 }
998
999 static void
1000 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1001 {
1002         struct rq *rq = rq_of_rt_rq(rt_rq);
1003
1004         BUG_ON(&rq->rt != rt_rq);
1005
1006         if (rt_rq->rt_queued)
1007                 return;
1008         if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running)
1009                 return;
1010
1011         add_nr_running(rq, rt_rq->rt_nr_running);
1012         rt_rq->rt_queued = 1;
1013 }
1014
1015 #if defined CONFIG_SMP
1016
1017 static void
1018 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1019 {
1020         struct rq *rq = rq_of_rt_rq(rt_rq);
1021
1022 #ifdef CONFIG_RT_GROUP_SCHED
1023         /*
1024          * Change rq's cpupri only if rt_rq is the top queue.
1025          */
1026         if (&rq->rt != rt_rq)
1027                 return;
1028 #endif
1029         if (rq->online && prio < prev_prio)
1030                 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1031 }
1032
1033 static void
1034 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1035 {
1036         struct rq *rq = rq_of_rt_rq(rt_rq);
1037
1038 #ifdef CONFIG_RT_GROUP_SCHED
1039         /*
1040          * Change rq's cpupri only if rt_rq is the top queue.
1041          */
1042         if (&rq->rt != rt_rq)
1043                 return;
1044 #endif
1045         if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1046                 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1047 }
1048
1049 #else /* CONFIG_SMP */
1050
1051 static inline
1052 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1053 static inline
1054 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1055
1056 #endif /* CONFIG_SMP */
1057
1058 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1059 static void
1060 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1061 {
1062         int prev_prio = rt_rq->highest_prio.curr;
1063
1064         if (prio < prev_prio)
1065                 rt_rq->highest_prio.curr = prio;
1066
1067         inc_rt_prio_smp(rt_rq, prio, prev_prio);
1068 }
1069
1070 static void
1071 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1072 {
1073         int prev_prio = rt_rq->highest_prio.curr;
1074
1075         if (rt_rq->rt_nr_running) {
1076
1077                 WARN_ON(prio < prev_prio);
1078
1079                 /*
1080                  * This may have been our highest task, and therefore
1081                  * we may have some recomputation to do
1082                  */
1083                 if (prio == prev_prio) {
1084                         struct rt_prio_array *array = &rt_rq->active;
1085
1086                         rt_rq->highest_prio.curr =
1087                                 sched_find_first_bit(array->bitmap);
1088                 }
1089
1090         } else
1091                 rt_rq->highest_prio.curr = MAX_RT_PRIO;
1092
1093         dec_rt_prio_smp(rt_rq, prio, prev_prio);
1094 }
1095
1096 #else
1097
1098 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1099 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1100
1101 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1102
1103 #ifdef CONFIG_RT_GROUP_SCHED
1104
1105 static void
1106 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1107 {
1108         if (rt_se_boosted(rt_se))
1109                 rt_rq->rt_nr_boosted++;
1110
1111         if (rt_rq->tg)
1112                 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1113 }
1114
1115 static void
1116 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1117 {
1118         if (rt_se_boosted(rt_se))
1119                 rt_rq->rt_nr_boosted--;
1120
1121         WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1122 }
1123
1124 #else /* CONFIG_RT_GROUP_SCHED */
1125
1126 static void
1127 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1128 {
1129         start_rt_bandwidth(&def_rt_bandwidth);
1130 }
1131
1132 static inline
1133 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1134
1135 #endif /* CONFIG_RT_GROUP_SCHED */
1136
1137 static inline
1138 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1139 {
1140         struct rt_rq *group_rq = group_rt_rq(rt_se);
1141
1142         if (group_rq)
1143                 return group_rq->rt_nr_running;
1144         else
1145                 return 1;
1146 }
1147
1148 static inline
1149 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1150 {
1151         int prio = rt_se_prio(rt_se);
1152
1153         WARN_ON(!rt_prio(prio));
1154         rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1155
1156         inc_rt_prio(rt_rq, prio);
1157         inc_rt_migration(rt_se, rt_rq);
1158         inc_rt_group(rt_se, rt_rq);
1159 }
1160
1161 static inline
1162 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1163 {
1164         WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1165         WARN_ON(!rt_rq->rt_nr_running);
1166         rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1167
1168         dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1169         dec_rt_migration(rt_se, rt_rq);
1170         dec_rt_group(rt_se, rt_rq);
1171 }
1172
1173 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1174 {
1175         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1176         struct rt_prio_array *array = &rt_rq->active;
1177         struct rt_rq *group_rq = group_rt_rq(rt_se);
1178         struct list_head *queue = array->queue + rt_se_prio(rt_se);
1179
1180         /*
1181          * Don't enqueue the group if its throttled, or when empty.
1182          * The latter is a consequence of the former when a child group
1183          * get throttled and the current group doesn't have any other
1184          * active members.
1185          */
1186         if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
1187                 return;
1188
1189         if (head)
1190                 list_add(&rt_se->run_list, queue);
1191         else
1192                 list_add_tail(&rt_se->run_list, queue);
1193         __set_bit(rt_se_prio(rt_se), array->bitmap);
1194
1195         inc_rt_tasks(rt_se, rt_rq);
1196 }
1197
1198 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
1199 {
1200         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1201         struct rt_prio_array *array = &rt_rq->active;
1202
1203         list_del_init(&rt_se->run_list);
1204         if (list_empty(array->queue + rt_se_prio(rt_se)))
1205                 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1206
1207         dec_rt_tasks(rt_se, rt_rq);
1208 }
1209
1210 /*
1211  * Because the prio of an upper entry depends on the lower
1212  * entries, we must remove entries top - down.
1213  */
1214 static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
1215 {
1216         struct sched_rt_entity *back = NULL;
1217
1218         for_each_sched_rt_entity(rt_se) {
1219                 rt_se->back = back;
1220                 back = rt_se;
1221         }
1222
1223         dequeue_top_rt_rq(rt_rq_of_se(back));
1224
1225         for (rt_se = back; rt_se; rt_se = rt_se->back) {
1226                 if (on_rt_rq(rt_se))
1227                         __dequeue_rt_entity(rt_se);
1228         }
1229 }
1230
1231 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1232 {
1233         struct rq *rq = rq_of_rt_se(rt_se);
1234
1235         dequeue_rt_stack(rt_se);
1236         for_each_sched_rt_entity(rt_se)
1237                 __enqueue_rt_entity(rt_se, head);
1238         enqueue_top_rt_rq(&rq->rt);
1239 }
1240
1241 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
1242 {
1243         struct rq *rq = rq_of_rt_se(rt_se);
1244
1245         dequeue_rt_stack(rt_se);
1246
1247         for_each_sched_rt_entity(rt_se) {
1248                 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1249
1250                 if (rt_rq && rt_rq->rt_nr_running)
1251                         __enqueue_rt_entity(rt_se, false);
1252         }
1253         enqueue_top_rt_rq(&rq->rt);
1254 }
1255
1256 /*
1257  * Adding/removing a task to/from a priority array:
1258  */
1259 static void
1260 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1261 {
1262         struct sched_rt_entity *rt_se = &p->rt;
1263
1264         if (flags & ENQUEUE_WAKEUP)
1265                 rt_se->timeout = 0;
1266
1267         enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
1268
1269         if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1270                 enqueue_pushable_task(rq, p);
1271 }
1272
1273 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1274 {
1275         struct sched_rt_entity *rt_se = &p->rt;
1276
1277         update_curr_rt(rq);
1278         dequeue_rt_entity(rt_se);
1279
1280         dequeue_pushable_task(rq, p);
1281 }
1282
1283 /*
1284  * Put task to the head or the end of the run list without the overhead of
1285  * dequeue followed by enqueue.
1286  */
1287 static void
1288 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1289 {
1290         if (on_rt_rq(rt_se)) {
1291                 struct rt_prio_array *array = &rt_rq->active;
1292                 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1293
1294                 if (head)
1295                         list_move(&rt_se->run_list, queue);
1296                 else
1297                         list_move_tail(&rt_se->run_list, queue);
1298         }
1299 }
1300
1301 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1302 {
1303         struct sched_rt_entity *rt_se = &p->rt;
1304         struct rt_rq *rt_rq;
1305
1306         for_each_sched_rt_entity(rt_se) {
1307                 rt_rq = rt_rq_of_se(rt_se);
1308                 requeue_rt_entity(rt_rq, rt_se, head);
1309         }
1310 }
1311
1312 static void yield_task_rt(struct rq *rq)
1313 {
1314         requeue_task_rt(rq, rq->curr, 0);
1315 }
1316
1317 #ifdef CONFIG_SMP
1318 static int find_lowest_rq(struct task_struct *task);
1319
1320 static int
1321 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1322 {
1323         struct task_struct *curr;
1324         struct rq *rq;
1325
1326         /* For anything but wake ups, just return the task_cpu */
1327         if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1328                 goto out;
1329
1330         rq = cpu_rq(cpu);
1331
1332         rcu_read_lock();
1333         curr = READ_ONCE(rq->curr); /* unlocked access */
1334
1335         /*
1336          * If the current task on @p's runqueue is an RT task, then
1337          * try to see if we can wake this RT task up on another
1338          * runqueue. Otherwise simply start this RT task
1339          * on its current runqueue.
1340          *
1341          * We want to avoid overloading runqueues. If the woken
1342          * task is a higher priority, then it will stay on this CPU
1343          * and the lower prio task should be moved to another CPU.
1344          * Even though this will probably make the lower prio task
1345          * lose its cache, we do not want to bounce a higher task
1346          * around just because it gave up its CPU, perhaps for a
1347          * lock?
1348          *
1349          * For equal prio tasks, we just let the scheduler sort it out.
1350          *
1351          * Otherwise, just let it ride on the affined RQ and the
1352          * post-schedule router will push the preempted task away
1353          *
1354          * This test is optimistic, if we get it wrong the load-balancer
1355          * will have to sort it out.
1356          */
1357         if (curr && unlikely(rt_task(curr)) &&
1358             (curr->nr_cpus_allowed < 2 ||
1359              curr->prio <= p->prio)) {
1360                 int target = find_lowest_rq(p);
1361
1362                 /*
1363                  * Don't bother moving it if the destination CPU is
1364                  * not running a lower priority task.
1365                  */
1366                 if (target != -1 &&
1367                     p->prio < cpu_rq(target)->rt.highest_prio.curr)
1368                         cpu = target;
1369         }
1370         rcu_read_unlock();
1371
1372 out:
1373         return cpu;
1374 }
1375
1376 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1377 {
1378         /*
1379          * Current can't be migrated, useless to reschedule,
1380          * let's hope p can move out.
1381          */
1382         if (rq->curr->nr_cpus_allowed == 1 ||
1383             !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1384                 return;
1385
1386         /*
1387          * p is migratable, so let's not schedule it and
1388          * see if it is pushed or pulled somewhere else.
1389          */
1390         if (p->nr_cpus_allowed != 1
1391             && cpupri_find(&rq->rd->cpupri, p, NULL))
1392                 return;
1393
1394         /*
1395          * There appears to be other cpus that can accept
1396          * current and none to run 'p', so lets reschedule
1397          * to try and push current away:
1398          */
1399         requeue_task_rt(rq, p, 1);
1400         resched_curr(rq);
1401 }
1402
1403 #endif /* CONFIG_SMP */
1404
1405 /*
1406  * Preempt the current task with a newly woken task if needed:
1407  */
1408 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1409 {
1410         if (p->prio < rq->curr->prio) {
1411                 resched_curr(rq);
1412                 return;
1413         }
1414
1415 #ifdef CONFIG_SMP
1416         /*
1417          * If:
1418          *
1419          * - the newly woken task is of equal priority to the current task
1420          * - the newly woken task is non-migratable while current is migratable
1421          * - current will be preempted on the next reschedule
1422          *
1423          * we should check to see if current can readily move to a different
1424          * cpu.  If so, we will reschedule to allow the push logic to try
1425          * to move current somewhere else, making room for our non-migratable
1426          * task.
1427          */
1428         if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1429                 check_preempt_equal_prio(rq, p);
1430 #endif
1431 }
1432
1433 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1434                                                    struct rt_rq *rt_rq)
1435 {
1436         struct rt_prio_array *array = &rt_rq->active;
1437         struct sched_rt_entity *next = NULL;
1438         struct list_head *queue;
1439         int idx;
1440
1441         idx = sched_find_first_bit(array->bitmap);
1442         BUG_ON(idx >= MAX_RT_PRIO);
1443
1444         queue = array->queue + idx;
1445         next = list_entry(queue->next, struct sched_rt_entity, run_list);
1446
1447         return next;
1448 }
1449
1450 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1451 {
1452         struct sched_rt_entity *rt_se;
1453         struct task_struct *p;
1454         struct rt_rq *rt_rq  = &rq->rt;
1455
1456         do {
1457                 rt_se = pick_next_rt_entity(rq, rt_rq);
1458                 BUG_ON(!rt_se);
1459                 rt_rq = group_rt_rq(rt_se);
1460         } while (rt_rq);
1461
1462         p = rt_task_of(rt_se);
1463         p->se.exec_start = rq_clock_task(rq);
1464
1465         return p;
1466 }
1467
1468 static struct task_struct *
1469 pick_next_task_rt(struct rq *rq, struct task_struct *prev)
1470 {
1471         struct task_struct *p;
1472         struct rt_rq *rt_rq = &rq->rt;
1473
1474         if (need_pull_rt_task(rq, prev)) {
1475                 /*
1476                  * This is OK, because current is on_cpu, which avoids it being
1477                  * picked for load-balance and preemption/IRQs are still
1478                  * disabled avoiding further scheduler activity on it and we're
1479                  * being very careful to re-start the picking loop.
1480                  */
1481                 lockdep_unpin_lock(&rq->lock);
1482                 pull_rt_task(rq);
1483                 lockdep_pin_lock(&rq->lock);
1484                 /*
1485                  * pull_rt_task() can drop (and re-acquire) rq->lock; this
1486                  * means a dl or stop task can slip in, in which case we need
1487                  * to re-start task selection.
1488                  */
1489                 if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) ||
1490                              rq->dl.dl_nr_running))
1491                         return RETRY_TASK;
1492         }
1493
1494         /*
1495          * We may dequeue prev's rt_rq in put_prev_task().
1496          * So, we update time before rt_nr_running check.
1497          */
1498         if (prev->sched_class == &rt_sched_class)
1499                 update_curr_rt(rq);
1500
1501         if (!rt_rq->rt_queued)
1502                 return NULL;
1503
1504         put_prev_task(rq, prev);
1505
1506         p = _pick_next_task_rt(rq);
1507
1508         /* The running task is never eligible for pushing */
1509         dequeue_pushable_task(rq, p);
1510
1511         queue_push_tasks(rq);
1512
1513         return p;
1514 }
1515
1516 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1517 {
1518         update_curr_rt(rq);
1519
1520         /*
1521          * The previous task needs to be made eligible for pushing
1522          * if it is still active
1523          */
1524         if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1525                 enqueue_pushable_task(rq, p);
1526 }
1527
1528 #ifdef CONFIG_SMP
1529
1530 /* Only try algorithms three times */
1531 #define RT_MAX_TRIES 3
1532
1533 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1534 {
1535         if (!task_running(rq, p) &&
1536             cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1537                 return 1;
1538         return 0;
1539 }
1540
1541 /*
1542  * Return the highest pushable rq's task, which is suitable to be executed
1543  * on the cpu, NULL otherwise
1544  */
1545 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1546 {
1547         struct plist_head *head = &rq->rt.pushable_tasks;
1548         struct task_struct *p;
1549
1550         if (!has_pushable_tasks(rq))
1551                 return NULL;
1552
1553         plist_for_each_entry(p, head, pushable_tasks) {
1554                 if (pick_rt_task(rq, p, cpu))
1555                         return p;
1556         }
1557
1558         return NULL;
1559 }
1560
1561 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1562
1563 static int find_lowest_rq(struct task_struct *task)
1564 {
1565         struct sched_domain *sd;
1566         struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1567         int this_cpu = smp_processor_id();
1568         int cpu      = task_cpu(task);
1569
1570         /* Make sure the mask is initialized first */
1571         if (unlikely(!lowest_mask))
1572                 return -1;
1573
1574         if (task->nr_cpus_allowed == 1)
1575                 return -1; /* No other targets possible */
1576
1577         if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1578                 return -1; /* No targets found */
1579
1580         /*
1581          * At this point we have built a mask of cpus representing the
1582          * lowest priority tasks in the system.  Now we want to elect
1583          * the best one based on our affinity and topology.
1584          *
1585          * We prioritize the last cpu that the task executed on since
1586          * it is most likely cache-hot in that location.
1587          */
1588         if (cpumask_test_cpu(cpu, lowest_mask))
1589                 return cpu;
1590
1591         /*
1592          * Otherwise, we consult the sched_domains span maps to figure
1593          * out which cpu is logically closest to our hot cache data.
1594          */
1595         if (!cpumask_test_cpu(this_cpu, lowest_mask))
1596                 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1597
1598         rcu_read_lock();
1599         for_each_domain(cpu, sd) {
1600                 if (sd->flags & SD_WAKE_AFFINE) {
1601                         int best_cpu;
1602
1603                         /*
1604                          * "this_cpu" is cheaper to preempt than a
1605                          * remote processor.
1606                          */
1607                         if (this_cpu != -1 &&
1608                             cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1609                                 rcu_read_unlock();
1610                                 return this_cpu;
1611                         }
1612
1613                         best_cpu = cpumask_first_and(lowest_mask,
1614                                                      sched_domain_span(sd));
1615                         if (best_cpu < nr_cpu_ids) {
1616                                 rcu_read_unlock();
1617                                 return best_cpu;
1618                         }
1619                 }
1620         }
1621         rcu_read_unlock();
1622
1623         /*
1624          * And finally, if there were no matches within the domains
1625          * just give the caller *something* to work with from the compatible
1626          * locations.
1627          */
1628         if (this_cpu != -1)
1629                 return this_cpu;
1630
1631         cpu = cpumask_any(lowest_mask);
1632         if (cpu < nr_cpu_ids)
1633                 return cpu;
1634         return -1;
1635 }
1636
1637 /* Will lock the rq it finds */
1638 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1639 {
1640         struct rq *lowest_rq = NULL;
1641         int tries;
1642         int cpu;
1643
1644         for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1645                 cpu = find_lowest_rq(task);
1646
1647                 if ((cpu == -1) || (cpu == rq->cpu))
1648                         break;
1649
1650                 lowest_rq = cpu_rq(cpu);
1651
1652                 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1653                         /*
1654                          * Target rq has tasks of equal or higher priority,
1655                          * retrying does not release any lock and is unlikely
1656                          * to yield a different result.
1657                          */
1658                         lowest_rq = NULL;
1659                         break;
1660                 }
1661
1662                 /* if the prio of this runqueue changed, try again */
1663                 if (double_lock_balance(rq, lowest_rq)) {
1664                         /*
1665                          * We had to unlock the run queue. In
1666                          * the mean time, task could have
1667                          * migrated already or had its affinity changed.
1668                          * Also make sure that it wasn't scheduled on its rq.
1669                          */
1670                         if (unlikely(task_rq(task) != rq ||
1671                                      !cpumask_test_cpu(lowest_rq->cpu,
1672                                                        tsk_cpus_allowed(task)) ||
1673                                      task_running(rq, task) ||
1674                                      !task_on_rq_queued(task))) {
1675
1676                                 double_unlock_balance(rq, lowest_rq);
1677                                 lowest_rq = NULL;
1678                                 break;
1679                         }
1680                 }
1681
1682                 /* If this rq is still suitable use it. */
1683                 if (lowest_rq->rt.highest_prio.curr > task->prio)
1684                         break;
1685
1686                 /* try again */
1687                 double_unlock_balance(rq, lowest_rq);
1688                 lowest_rq = NULL;
1689         }
1690
1691         return lowest_rq;
1692 }
1693
1694 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1695 {
1696         struct task_struct *p;
1697
1698         if (!has_pushable_tasks(rq))
1699                 return NULL;
1700
1701         p = plist_first_entry(&rq->rt.pushable_tasks,
1702                               struct task_struct, pushable_tasks);
1703
1704         BUG_ON(rq->cpu != task_cpu(p));
1705         BUG_ON(task_current(rq, p));
1706         BUG_ON(p->nr_cpus_allowed <= 1);
1707
1708         BUG_ON(!task_on_rq_queued(p));
1709         BUG_ON(!rt_task(p));
1710
1711         return p;
1712 }
1713
1714 /*
1715  * If the current CPU has more than one RT task, see if the non
1716  * running task can migrate over to a CPU that is running a task
1717  * of lesser priority.
1718  */
1719 static int push_rt_task(struct rq *rq)
1720 {
1721         struct task_struct *next_task;
1722         struct rq *lowest_rq;
1723         int ret = 0;
1724
1725         if (!rq->rt.overloaded)
1726                 return 0;
1727
1728         next_task = pick_next_pushable_task(rq);
1729         if (!next_task)
1730                 return 0;
1731
1732 retry:
1733         if (unlikely(next_task == rq->curr)) {
1734                 WARN_ON(1);
1735                 return 0;
1736         }
1737
1738         /*
1739          * It's possible that the next_task slipped in of
1740          * higher priority than current. If that's the case
1741          * just reschedule current.
1742          */
1743         if (unlikely(next_task->prio < rq->curr->prio)) {
1744                 resched_curr(rq);
1745                 return 0;
1746         }
1747
1748         /* We might release rq lock */
1749         get_task_struct(next_task);
1750
1751         /* find_lock_lowest_rq locks the rq if found */
1752         lowest_rq = find_lock_lowest_rq(next_task, rq);
1753         if (!lowest_rq) {
1754                 struct task_struct *task;
1755                 /*
1756                  * find_lock_lowest_rq releases rq->lock
1757                  * so it is possible that next_task has migrated.
1758                  *
1759                  * We need to make sure that the task is still on the same
1760                  * run-queue and is also still the next task eligible for
1761                  * pushing.
1762                  */
1763                 task = pick_next_pushable_task(rq);
1764                 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1765                         /*
1766                          * The task hasn't migrated, and is still the next
1767                          * eligible task, but we failed to find a run-queue
1768                          * to push it to.  Do not retry in this case, since
1769                          * other cpus will pull from us when ready.
1770                          */
1771                         goto out;
1772                 }
1773
1774                 if (!task)
1775                         /* No more tasks, just exit */
1776                         goto out;
1777
1778                 /*
1779                  * Something has shifted, try again.
1780                  */
1781                 put_task_struct(next_task);
1782                 next_task = task;
1783                 goto retry;
1784         }
1785
1786         deactivate_task(rq, next_task, 0);
1787         set_task_cpu(next_task, lowest_rq->cpu);
1788         activate_task(lowest_rq, next_task, 0);
1789         ret = 1;
1790
1791         resched_curr(lowest_rq);
1792
1793         double_unlock_balance(rq, lowest_rq);
1794
1795 out:
1796         put_task_struct(next_task);
1797
1798         return ret;
1799 }
1800
1801 static void push_rt_tasks(struct rq *rq)
1802 {
1803         /* push_rt_task will return true if it moved an RT */
1804         while (push_rt_task(rq))
1805                 ;
1806 }
1807
1808 #ifdef HAVE_RT_PUSH_IPI
1809 /*
1810  * The search for the next cpu always starts at rq->cpu and ends
1811  * when we reach rq->cpu again. It will never return rq->cpu.
1812  * This returns the next cpu to check, or nr_cpu_ids if the loop
1813  * is complete.
1814  *
1815  * rq->rt.push_cpu holds the last cpu returned by this function,
1816  * or if this is the first instance, it must hold rq->cpu.
1817  */
1818 static int rto_next_cpu(struct rq *rq)
1819 {
1820         int prev_cpu = rq->rt.push_cpu;
1821         int cpu;
1822
1823         cpu = cpumask_next(prev_cpu, rq->rd->rto_mask);
1824
1825         /*
1826          * If the previous cpu is less than the rq's CPU, then it already
1827          * passed the end of the mask, and has started from the beginning.
1828          * We end if the next CPU is greater or equal to rq's CPU.
1829          */
1830         if (prev_cpu < rq->cpu) {
1831                 if (cpu >= rq->cpu)
1832                         return nr_cpu_ids;
1833
1834         } else if (cpu >= nr_cpu_ids) {
1835                 /*
1836                  * We passed the end of the mask, start at the beginning.
1837                  * If the result is greater or equal to the rq's CPU, then
1838                  * the loop is finished.
1839                  */
1840                 cpu = cpumask_first(rq->rd->rto_mask);
1841                 if (cpu >= rq->cpu)
1842                         return nr_cpu_ids;
1843         }
1844         rq->rt.push_cpu = cpu;
1845
1846         /* Return cpu to let the caller know if the loop is finished or not */
1847         return cpu;
1848 }
1849
1850 static int find_next_push_cpu(struct rq *rq)
1851 {
1852         struct rq *next_rq;
1853         int cpu;
1854
1855         while (1) {
1856                 cpu = rto_next_cpu(rq);
1857                 if (cpu >= nr_cpu_ids)
1858                         break;
1859                 next_rq = cpu_rq(cpu);
1860
1861                 /* Make sure the next rq can push to this rq */
1862                 if (next_rq->rt.highest_prio.next < rq->rt.highest_prio.curr)
1863                         break;
1864         }
1865
1866         return cpu;
1867 }
1868
1869 #define RT_PUSH_IPI_EXECUTING           1
1870 #define RT_PUSH_IPI_RESTART             2
1871
1872 static void tell_cpu_to_push(struct rq *rq)
1873 {
1874         int cpu;
1875
1876         if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
1877                 raw_spin_lock(&rq->rt.push_lock);
1878                 /* Make sure it's still executing */
1879                 if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
1880                         /*
1881                          * Tell the IPI to restart the loop as things have
1882                          * changed since it started.
1883                          */
1884                         rq->rt.push_flags |= RT_PUSH_IPI_RESTART;
1885                         raw_spin_unlock(&rq->rt.push_lock);
1886                         return;
1887                 }
1888                 raw_spin_unlock(&rq->rt.push_lock);
1889         }
1890
1891         /* When here, there's no IPI going around */
1892
1893         rq->rt.push_cpu = rq->cpu;
1894         cpu = find_next_push_cpu(rq);
1895         if (cpu >= nr_cpu_ids)
1896                 return;
1897
1898         rq->rt.push_flags = RT_PUSH_IPI_EXECUTING;
1899
1900         irq_work_queue_on(&rq->rt.push_work, cpu);
1901 }
1902
1903 /* Called from hardirq context */
1904 static void try_to_push_tasks(void *arg)
1905 {
1906         struct rt_rq *rt_rq = arg;
1907         struct rq *rq, *src_rq;
1908         int this_cpu;
1909         int cpu;
1910
1911         this_cpu = rt_rq->push_cpu;
1912
1913         /* Paranoid check */
1914         BUG_ON(this_cpu != smp_processor_id());
1915
1916         rq = cpu_rq(this_cpu);
1917         src_rq = rq_of_rt_rq(rt_rq);
1918
1919 again:
1920         if (has_pushable_tasks(rq)) {
1921                 raw_spin_lock(&rq->lock);
1922                 push_rt_task(rq);
1923                 raw_spin_unlock(&rq->lock);
1924         }
1925
1926         /* Pass the IPI to the next rt overloaded queue */
1927         raw_spin_lock(&rt_rq->push_lock);
1928         /*
1929          * If the source queue changed since the IPI went out,
1930          * we need to restart the search from that CPU again.
1931          */
1932         if (rt_rq->push_flags & RT_PUSH_IPI_RESTART) {
1933                 rt_rq->push_flags &= ~RT_PUSH_IPI_RESTART;
1934                 rt_rq->push_cpu = src_rq->cpu;
1935         }
1936
1937         cpu = find_next_push_cpu(src_rq);
1938
1939         if (cpu >= nr_cpu_ids)
1940                 rt_rq->push_flags &= ~RT_PUSH_IPI_EXECUTING;
1941         raw_spin_unlock(&rt_rq->push_lock);
1942
1943         if (cpu >= nr_cpu_ids)
1944                 return;
1945
1946         /*
1947          * It is possible that a restart caused this CPU to be
1948          * chosen again. Don't bother with an IPI, just see if we
1949          * have more to push.
1950          */
1951         if (unlikely(cpu == rq->cpu))
1952                 goto again;
1953
1954         /* Try the next RT overloaded CPU */
1955         irq_work_queue_on(&rt_rq->push_work, cpu);
1956 }
1957
1958 static void push_irq_work_func(struct irq_work *work)
1959 {
1960         struct rt_rq *rt_rq = container_of(work, struct rt_rq, push_work);
1961
1962         try_to_push_tasks(rt_rq);
1963 }
1964 #endif /* HAVE_RT_PUSH_IPI */
1965
1966 static void pull_rt_task(struct rq *this_rq)
1967 {
1968         int this_cpu = this_rq->cpu, cpu;
1969         bool resched = false;
1970         struct task_struct *p;
1971         struct rq *src_rq;
1972
1973         if (likely(!rt_overloaded(this_rq)))
1974                 return;
1975
1976         /*
1977          * Match the barrier from rt_set_overloaded; this guarantees that if we
1978          * see overloaded we must also see the rto_mask bit.
1979          */
1980         smp_rmb();
1981
1982 #ifdef HAVE_RT_PUSH_IPI
1983         if (sched_feat(RT_PUSH_IPI)) {
1984                 tell_cpu_to_push(this_rq);
1985                 return;
1986         }
1987 #endif
1988
1989         for_each_cpu(cpu, this_rq->rd->rto_mask) {
1990                 if (this_cpu == cpu)
1991                         continue;
1992
1993                 src_rq = cpu_rq(cpu);
1994
1995                 /*
1996                  * Don't bother taking the src_rq->lock if the next highest
1997                  * task is known to be lower-priority than our current task.
1998                  * This may look racy, but if this value is about to go
1999                  * logically higher, the src_rq will push this task away.
2000                  * And if its going logically lower, we do not care
2001                  */
2002                 if (src_rq->rt.highest_prio.next >=
2003                     this_rq->rt.highest_prio.curr)
2004                         continue;
2005
2006                 /*
2007                  * We can potentially drop this_rq's lock in
2008                  * double_lock_balance, and another CPU could
2009                  * alter this_rq
2010                  */
2011                 double_lock_balance(this_rq, src_rq);
2012
2013                 /*
2014                  * We can pull only a task, which is pushable
2015                  * on its rq, and no others.
2016                  */
2017                 p = pick_highest_pushable_task(src_rq, this_cpu);
2018
2019                 /*
2020                  * Do we have an RT task that preempts
2021                  * the to-be-scheduled task?
2022                  */
2023                 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2024                         WARN_ON(p == src_rq->curr);
2025                         WARN_ON(!task_on_rq_queued(p));
2026
2027                         /*
2028                          * There's a chance that p is higher in priority
2029                          * than what's currently running on its cpu.
2030                          * This is just that p is wakeing up and hasn't
2031                          * had a chance to schedule. We only pull
2032                          * p if it is lower in priority than the
2033                          * current task on the run queue
2034                          */
2035                         if (p->prio < src_rq->curr->prio)
2036                                 goto skip;
2037
2038                         resched = true;
2039
2040                         deactivate_task(src_rq, p, 0);
2041                         set_task_cpu(p, this_cpu);
2042                         activate_task(this_rq, p, 0);
2043                         /*
2044                          * We continue with the search, just in
2045                          * case there's an even higher prio task
2046                          * in another runqueue. (low likelihood
2047                          * but possible)
2048                          */
2049                 }
2050 skip:
2051                 double_unlock_balance(this_rq, src_rq);
2052         }
2053
2054         if (resched)
2055                 resched_curr(this_rq);
2056 }
2057
2058 /*
2059  * If we are not running and we are not going to reschedule soon, we should
2060  * try to push tasks away now
2061  */
2062 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2063 {
2064         if (!task_running(rq, p) &&
2065             !test_tsk_need_resched(rq->curr) &&
2066             p->nr_cpus_allowed > 1 &&
2067             (dl_task(rq->curr) || rt_task(rq->curr)) &&
2068             (rq->curr->nr_cpus_allowed < 2 ||
2069              rq->curr->prio <= p->prio))
2070                 push_rt_tasks(rq);
2071 }
2072
2073 /* Assumes rq->lock is held */
2074 static void rq_online_rt(struct rq *rq)
2075 {
2076         if (rq->rt.overloaded)
2077                 rt_set_overload(rq);
2078
2079         __enable_runtime(rq);
2080
2081         cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2082 }
2083
2084 /* Assumes rq->lock is held */
2085 static void rq_offline_rt(struct rq *rq)
2086 {
2087         if (rq->rt.overloaded)
2088                 rt_clear_overload(rq);
2089
2090         __disable_runtime(rq);
2091
2092         cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2093 }
2094
2095 /*
2096  * When switch from the rt queue, we bring ourselves to a position
2097  * that we might want to pull RT tasks from other runqueues.
2098  */
2099 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2100 {
2101         /*
2102          * If there are other RT tasks then we will reschedule
2103          * and the scheduling of the other RT tasks will handle
2104          * the balancing. But if we are the last RT task
2105          * we may need to handle the pulling of RT tasks
2106          * now.
2107          */
2108         if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2109                 return;
2110
2111         queue_pull_task(rq);
2112 }
2113
2114 void __init init_sched_rt_class(void)
2115 {
2116         unsigned int i;
2117
2118         for_each_possible_cpu(i) {
2119                 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2120                                         GFP_KERNEL, cpu_to_node(i));
2121         }
2122 }
2123 #endif /* CONFIG_SMP */
2124
2125 /*
2126  * When switching a task to RT, we may overload the runqueue
2127  * with RT tasks. In this case we try to push them off to
2128  * other runqueues.
2129  */
2130 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2131 {
2132         /*
2133          * If we are already running, then there's nothing
2134          * that needs to be done. But if we are not running
2135          * we may need to preempt the current running task.
2136          * If that current running task is also an RT task
2137          * then see if we can move to another run queue.
2138          */
2139         if (task_on_rq_queued(p) && rq->curr != p) {
2140 #ifdef CONFIG_SMP
2141                 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2142                         queue_push_tasks(rq);
2143 #else
2144                 if (p->prio < rq->curr->prio)
2145                         resched_curr(rq);
2146 #endif /* CONFIG_SMP */
2147         }
2148 }
2149
2150 /*
2151  * Priority of the task has changed. This may cause
2152  * us to initiate a push or pull.
2153  */
2154 static void
2155 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2156 {
2157         if (!task_on_rq_queued(p))
2158                 return;
2159
2160         if (rq->curr == p) {
2161 #ifdef CONFIG_SMP
2162                 /*
2163                  * If our priority decreases while running, we
2164                  * may need to pull tasks to this runqueue.
2165                  */
2166                 if (oldprio < p->prio)
2167                         queue_pull_task(rq);
2168
2169                 /*
2170                  * If there's a higher priority task waiting to run
2171                  * then reschedule.
2172                  */
2173                 if (p->prio > rq->rt.highest_prio.curr)
2174                         resched_curr(rq);
2175 #else
2176                 /* For UP simply resched on drop of prio */
2177                 if (oldprio < p->prio)
2178                         resched_curr(rq);
2179 #endif /* CONFIG_SMP */
2180         } else {
2181                 /*
2182                  * This task is not running, but if it is
2183                  * greater than the current running task
2184                  * then reschedule.
2185                  */
2186                 if (p->prio < rq->curr->prio)
2187                         resched_curr(rq);
2188         }
2189 }
2190
2191 static void watchdog(struct rq *rq, struct task_struct *p)
2192 {
2193         unsigned long soft, hard;
2194
2195         /* max may change after cur was read, this will be fixed next tick */
2196         soft = task_rlimit(p, RLIMIT_RTTIME);
2197         hard = task_rlimit_max(p, RLIMIT_RTTIME);
2198
2199         if (soft != RLIM_INFINITY) {
2200                 unsigned long next;
2201
2202                 if (p->rt.watchdog_stamp != jiffies) {
2203                         p->rt.timeout++;
2204                         p->rt.watchdog_stamp = jiffies;
2205                 }
2206
2207                 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2208                 if (p->rt.timeout > next)
2209                         p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
2210         }
2211 }
2212
2213 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2214 {
2215         struct sched_rt_entity *rt_se = &p->rt;
2216
2217         update_curr_rt(rq);
2218
2219         watchdog(rq, p);
2220
2221         /*
2222          * RR tasks need a special form of timeslice management.
2223          * FIFO tasks have no timeslices.
2224          */
2225         if (p->policy != SCHED_RR)
2226                 return;
2227
2228         if (--p->rt.time_slice)
2229                 return;
2230
2231         p->rt.time_slice = sched_rr_timeslice;
2232
2233         /*
2234          * Requeue to the end of queue if we (and all of our ancestors) are not
2235          * the only element on the queue
2236          */
2237         for_each_sched_rt_entity(rt_se) {
2238                 if (rt_se->run_list.prev != rt_se->run_list.next) {
2239                         requeue_task_rt(rq, p, 0);
2240                         resched_curr(rq);
2241                         return;
2242                 }
2243         }
2244 }
2245
2246 static void set_curr_task_rt(struct rq *rq)
2247 {
2248         struct task_struct *p = rq->curr;
2249
2250         p->se.exec_start = rq_clock_task(rq);
2251
2252         /* The running task is never eligible for pushing */
2253         dequeue_pushable_task(rq, p);
2254 }
2255
2256 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2257 {
2258         /*
2259          * Time slice is 0 for SCHED_FIFO tasks
2260          */
2261         if (task->policy == SCHED_RR)
2262                 return sched_rr_timeslice;
2263         else
2264                 return 0;
2265 }
2266
2267 const struct sched_class rt_sched_class = {
2268         .next                   = &fair_sched_class,
2269         .enqueue_task           = enqueue_task_rt,
2270         .dequeue_task           = dequeue_task_rt,
2271         .yield_task             = yield_task_rt,
2272
2273         .check_preempt_curr     = check_preempt_curr_rt,
2274
2275         .pick_next_task         = pick_next_task_rt,
2276         .put_prev_task          = put_prev_task_rt,
2277
2278 #ifdef CONFIG_SMP
2279         .select_task_rq         = select_task_rq_rt,
2280
2281         .set_cpus_allowed       = set_cpus_allowed_common,
2282         .rq_online              = rq_online_rt,
2283         .rq_offline             = rq_offline_rt,
2284         .task_woken             = task_woken_rt,
2285         .switched_from          = switched_from_rt,
2286 #endif
2287
2288         .set_curr_task          = set_curr_task_rt,
2289         .task_tick              = task_tick_rt,
2290
2291         .get_rr_interval        = get_rr_interval_rt,
2292
2293         .prio_changed           = prio_changed_rt,
2294         .switched_to            = switched_to_rt,
2295
2296         .update_curr            = update_curr_rt,
2297 };
2298
2299 #ifdef CONFIG_SCHED_DEBUG
2300 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2301
2302 void print_rt_stats(struct seq_file *m, int cpu)
2303 {
2304         rt_rq_iter_t iter;
2305         struct rt_rq *rt_rq;
2306
2307         rcu_read_lock();
2308         for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2309                 print_rt_rq(m, cpu, rt_rq);
2310         rcu_read_unlock();
2311 }
2312 #endif /* CONFIG_SCHED_DEBUG */