Merge branch 'timers/core' into sched/hrtimers
[cascardo/linux.git] / kernel / sched / rt.c
1 /*
2  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3  * policies)
4  */
5
6 #include "sched.h"
7
8 #include <linux/slab.h>
9 #include <linux/irq_work.h>
10
11 int sched_rr_timeslice = RR_TIMESLICE;
12
13 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
14
15 struct rt_bandwidth def_rt_bandwidth;
16
17 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
18 {
19         struct rt_bandwidth *rt_b =
20                 container_of(timer, struct rt_bandwidth, rt_period_timer);
21         int idle = 0;
22         int overrun;
23
24         raw_spin_lock(&rt_b->rt_runtime_lock);
25         for (;;) {
26                 overrun = hrtimer_forward_now(timer, rt_b->rt_period);
27                 if (!overrun)
28                         break;
29
30                 raw_spin_unlock(&rt_b->rt_runtime_lock);
31                 idle = do_sched_rt_period_timer(rt_b, overrun);
32                 raw_spin_lock(&rt_b->rt_runtime_lock);
33         }
34         if (idle)
35                 rt_b->rt_period_active = 0;
36         raw_spin_unlock(&rt_b->rt_runtime_lock);
37
38         return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
39 }
40
41 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
42 {
43         rt_b->rt_period = ns_to_ktime(period);
44         rt_b->rt_runtime = runtime;
45
46         raw_spin_lock_init(&rt_b->rt_runtime_lock);
47
48         hrtimer_init(&rt_b->rt_period_timer,
49                         CLOCK_MONOTONIC, HRTIMER_MODE_REL);
50         rt_b->rt_period_timer.function = sched_rt_period_timer;
51 }
52
53 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
54 {
55         if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
56                 return;
57
58         raw_spin_lock(&rt_b->rt_runtime_lock);
59         if (!rt_b->rt_period_active) {
60                 rt_b->rt_period_active = 1;
61                 hrtimer_forward_now(&rt_b->rt_period_timer, rt_b->rt_period);
62                 hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED);
63         }
64         raw_spin_unlock(&rt_b->rt_runtime_lock);
65 }
66
67 #ifdef CONFIG_SMP
68 static void push_irq_work_func(struct irq_work *work);
69 #endif
70
71 void init_rt_rq(struct rt_rq *rt_rq)
72 {
73         struct rt_prio_array *array;
74         int i;
75
76         array = &rt_rq->active;
77         for (i = 0; i < MAX_RT_PRIO; i++) {
78                 INIT_LIST_HEAD(array->queue + i);
79                 __clear_bit(i, array->bitmap);
80         }
81         /* delimiter for bitsearch: */
82         __set_bit(MAX_RT_PRIO, array->bitmap);
83
84 #if defined CONFIG_SMP
85         rt_rq->highest_prio.curr = MAX_RT_PRIO;
86         rt_rq->highest_prio.next = MAX_RT_PRIO;
87         rt_rq->rt_nr_migratory = 0;
88         rt_rq->overloaded = 0;
89         plist_head_init(&rt_rq->pushable_tasks);
90
91 #ifdef HAVE_RT_PUSH_IPI
92         rt_rq->push_flags = 0;
93         rt_rq->push_cpu = nr_cpu_ids;
94         raw_spin_lock_init(&rt_rq->push_lock);
95         init_irq_work(&rt_rq->push_work, push_irq_work_func);
96 #endif
97 #endif /* CONFIG_SMP */
98         /* We start is dequeued state, because no RT tasks are queued */
99         rt_rq->rt_queued = 0;
100
101         rt_rq->rt_time = 0;
102         rt_rq->rt_throttled = 0;
103         rt_rq->rt_runtime = 0;
104         raw_spin_lock_init(&rt_rq->rt_runtime_lock);
105 }
106
107 #ifdef CONFIG_RT_GROUP_SCHED
108 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
109 {
110         hrtimer_cancel(&rt_b->rt_period_timer);
111 }
112
113 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
114
115 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
116 {
117 #ifdef CONFIG_SCHED_DEBUG
118         WARN_ON_ONCE(!rt_entity_is_task(rt_se));
119 #endif
120         return container_of(rt_se, struct task_struct, rt);
121 }
122
123 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
124 {
125         return rt_rq->rq;
126 }
127
128 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
129 {
130         return rt_se->rt_rq;
131 }
132
133 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
134 {
135         struct rt_rq *rt_rq = rt_se->rt_rq;
136
137         return rt_rq->rq;
138 }
139
140 void free_rt_sched_group(struct task_group *tg)
141 {
142         int i;
143
144         if (tg->rt_se)
145                 destroy_rt_bandwidth(&tg->rt_bandwidth);
146
147         for_each_possible_cpu(i) {
148                 if (tg->rt_rq)
149                         kfree(tg->rt_rq[i]);
150                 if (tg->rt_se)
151                         kfree(tg->rt_se[i]);
152         }
153
154         kfree(tg->rt_rq);
155         kfree(tg->rt_se);
156 }
157
158 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
159                 struct sched_rt_entity *rt_se, int cpu,
160                 struct sched_rt_entity *parent)
161 {
162         struct rq *rq = cpu_rq(cpu);
163
164         rt_rq->highest_prio.curr = MAX_RT_PRIO;
165         rt_rq->rt_nr_boosted = 0;
166         rt_rq->rq = rq;
167         rt_rq->tg = tg;
168
169         tg->rt_rq[cpu] = rt_rq;
170         tg->rt_se[cpu] = rt_se;
171
172         if (!rt_se)
173                 return;
174
175         if (!parent)
176                 rt_se->rt_rq = &rq->rt;
177         else
178                 rt_se->rt_rq = parent->my_q;
179
180         rt_se->my_q = rt_rq;
181         rt_se->parent = parent;
182         INIT_LIST_HEAD(&rt_se->run_list);
183 }
184
185 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
186 {
187         struct rt_rq *rt_rq;
188         struct sched_rt_entity *rt_se;
189         int i;
190
191         tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
192         if (!tg->rt_rq)
193                 goto err;
194         tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
195         if (!tg->rt_se)
196                 goto err;
197
198         init_rt_bandwidth(&tg->rt_bandwidth,
199                         ktime_to_ns(def_rt_bandwidth.rt_period), 0);
200
201         for_each_possible_cpu(i) {
202                 rt_rq = kzalloc_node(sizeof(struct rt_rq),
203                                      GFP_KERNEL, cpu_to_node(i));
204                 if (!rt_rq)
205                         goto err;
206
207                 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
208                                      GFP_KERNEL, cpu_to_node(i));
209                 if (!rt_se)
210                         goto err_free_rq;
211
212                 init_rt_rq(rt_rq);
213                 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
214                 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
215         }
216
217         return 1;
218
219 err_free_rq:
220         kfree(rt_rq);
221 err:
222         return 0;
223 }
224
225 #else /* CONFIG_RT_GROUP_SCHED */
226
227 #define rt_entity_is_task(rt_se) (1)
228
229 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
230 {
231         return container_of(rt_se, struct task_struct, rt);
232 }
233
234 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
235 {
236         return container_of(rt_rq, struct rq, rt);
237 }
238
239 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
240 {
241         struct task_struct *p = rt_task_of(rt_se);
242
243         return task_rq(p);
244 }
245
246 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
247 {
248         struct rq *rq = rq_of_rt_se(rt_se);
249
250         return &rq->rt;
251 }
252
253 void free_rt_sched_group(struct task_group *tg) { }
254
255 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
256 {
257         return 1;
258 }
259 #endif /* CONFIG_RT_GROUP_SCHED */
260
261 #ifdef CONFIG_SMP
262
263 static int pull_rt_task(struct rq *this_rq);
264
265 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
266 {
267         /* Try to pull RT tasks here if we lower this rq's prio */
268         return rq->rt.highest_prio.curr > prev->prio;
269 }
270
271 static inline int rt_overloaded(struct rq *rq)
272 {
273         return atomic_read(&rq->rd->rto_count);
274 }
275
276 static inline void rt_set_overload(struct rq *rq)
277 {
278         if (!rq->online)
279                 return;
280
281         cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
282         /*
283          * Make sure the mask is visible before we set
284          * the overload count. That is checked to determine
285          * if we should look at the mask. It would be a shame
286          * if we looked at the mask, but the mask was not
287          * updated yet.
288          *
289          * Matched by the barrier in pull_rt_task().
290          */
291         smp_wmb();
292         atomic_inc(&rq->rd->rto_count);
293 }
294
295 static inline void rt_clear_overload(struct rq *rq)
296 {
297         if (!rq->online)
298                 return;
299
300         /* the order here really doesn't matter */
301         atomic_dec(&rq->rd->rto_count);
302         cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
303 }
304
305 static void update_rt_migration(struct rt_rq *rt_rq)
306 {
307         if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
308                 if (!rt_rq->overloaded) {
309                         rt_set_overload(rq_of_rt_rq(rt_rq));
310                         rt_rq->overloaded = 1;
311                 }
312         } else if (rt_rq->overloaded) {
313                 rt_clear_overload(rq_of_rt_rq(rt_rq));
314                 rt_rq->overloaded = 0;
315         }
316 }
317
318 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
319 {
320         struct task_struct *p;
321
322         if (!rt_entity_is_task(rt_se))
323                 return;
324
325         p = rt_task_of(rt_se);
326         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
327
328         rt_rq->rt_nr_total++;
329         if (p->nr_cpus_allowed > 1)
330                 rt_rq->rt_nr_migratory++;
331
332         update_rt_migration(rt_rq);
333 }
334
335 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
336 {
337         struct task_struct *p;
338
339         if (!rt_entity_is_task(rt_se))
340                 return;
341
342         p = rt_task_of(rt_se);
343         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
344
345         rt_rq->rt_nr_total--;
346         if (p->nr_cpus_allowed > 1)
347                 rt_rq->rt_nr_migratory--;
348
349         update_rt_migration(rt_rq);
350 }
351
352 static inline int has_pushable_tasks(struct rq *rq)
353 {
354         return !plist_head_empty(&rq->rt.pushable_tasks);
355 }
356
357 static inline void set_post_schedule(struct rq *rq)
358 {
359         /*
360          * We detect this state here so that we can avoid taking the RQ
361          * lock again later if there is no need to push
362          */
363         rq->post_schedule = has_pushable_tasks(rq);
364 }
365
366 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
367 {
368         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
369         plist_node_init(&p->pushable_tasks, p->prio);
370         plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
371
372         /* Update the highest prio pushable task */
373         if (p->prio < rq->rt.highest_prio.next)
374                 rq->rt.highest_prio.next = p->prio;
375 }
376
377 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
378 {
379         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
380
381         /* Update the new highest prio pushable task */
382         if (has_pushable_tasks(rq)) {
383                 p = plist_first_entry(&rq->rt.pushable_tasks,
384                                       struct task_struct, pushable_tasks);
385                 rq->rt.highest_prio.next = p->prio;
386         } else
387                 rq->rt.highest_prio.next = MAX_RT_PRIO;
388 }
389
390 #else
391
392 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
393 {
394 }
395
396 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
397 {
398 }
399
400 static inline
401 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
402 {
403 }
404
405 static inline
406 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
407 {
408 }
409
410 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
411 {
412         return false;
413 }
414
415 static inline int pull_rt_task(struct rq *this_rq)
416 {
417         return 0;
418 }
419
420 static inline void set_post_schedule(struct rq *rq)
421 {
422 }
423 #endif /* CONFIG_SMP */
424
425 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
426 static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
427
428 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
429 {
430         return !list_empty(&rt_se->run_list);
431 }
432
433 #ifdef CONFIG_RT_GROUP_SCHED
434
435 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
436 {
437         if (!rt_rq->tg)
438                 return RUNTIME_INF;
439
440         return rt_rq->rt_runtime;
441 }
442
443 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
444 {
445         return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
446 }
447
448 typedef struct task_group *rt_rq_iter_t;
449
450 static inline struct task_group *next_task_group(struct task_group *tg)
451 {
452         do {
453                 tg = list_entry_rcu(tg->list.next,
454                         typeof(struct task_group), list);
455         } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
456
457         if (&tg->list == &task_groups)
458                 tg = NULL;
459
460         return tg;
461 }
462
463 #define for_each_rt_rq(rt_rq, iter, rq)                                 \
464         for (iter = container_of(&task_groups, typeof(*iter), list);    \
465                 (iter = next_task_group(iter)) &&                       \
466                 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
467
468 #define for_each_sched_rt_entity(rt_se) \
469         for (; rt_se; rt_se = rt_se->parent)
470
471 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
472 {
473         return rt_se->my_q;
474 }
475
476 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
477 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
478
479 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
480 {
481         struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
482         struct rq *rq = rq_of_rt_rq(rt_rq);
483         struct sched_rt_entity *rt_se;
484
485         int cpu = cpu_of(rq);
486
487         rt_se = rt_rq->tg->rt_se[cpu];
488
489         if (rt_rq->rt_nr_running) {
490                 if (!rt_se)
491                         enqueue_top_rt_rq(rt_rq);
492                 else if (!on_rt_rq(rt_se))
493                         enqueue_rt_entity(rt_se, false);
494
495                 if (rt_rq->highest_prio.curr < curr->prio)
496                         resched_curr(rq);
497         }
498 }
499
500 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
501 {
502         struct sched_rt_entity *rt_se;
503         int cpu = cpu_of(rq_of_rt_rq(rt_rq));
504
505         rt_se = rt_rq->tg->rt_se[cpu];
506
507         if (!rt_se)
508                 dequeue_top_rt_rq(rt_rq);
509         else if (on_rt_rq(rt_se))
510                 dequeue_rt_entity(rt_se);
511 }
512
513 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
514 {
515         return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
516 }
517
518 static int rt_se_boosted(struct sched_rt_entity *rt_se)
519 {
520         struct rt_rq *rt_rq = group_rt_rq(rt_se);
521         struct task_struct *p;
522
523         if (rt_rq)
524                 return !!rt_rq->rt_nr_boosted;
525
526         p = rt_task_of(rt_se);
527         return p->prio != p->normal_prio;
528 }
529
530 #ifdef CONFIG_SMP
531 static inline const struct cpumask *sched_rt_period_mask(void)
532 {
533         return this_rq()->rd->span;
534 }
535 #else
536 static inline const struct cpumask *sched_rt_period_mask(void)
537 {
538         return cpu_online_mask;
539 }
540 #endif
541
542 static inline
543 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
544 {
545         return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
546 }
547
548 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
549 {
550         return &rt_rq->tg->rt_bandwidth;
551 }
552
553 #else /* !CONFIG_RT_GROUP_SCHED */
554
555 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
556 {
557         return rt_rq->rt_runtime;
558 }
559
560 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
561 {
562         return ktime_to_ns(def_rt_bandwidth.rt_period);
563 }
564
565 typedef struct rt_rq *rt_rq_iter_t;
566
567 #define for_each_rt_rq(rt_rq, iter, rq) \
568         for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
569
570 #define for_each_sched_rt_entity(rt_se) \
571         for (; rt_se; rt_se = NULL)
572
573 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
574 {
575         return NULL;
576 }
577
578 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
579 {
580         struct rq *rq = rq_of_rt_rq(rt_rq);
581
582         if (!rt_rq->rt_nr_running)
583                 return;
584
585         enqueue_top_rt_rq(rt_rq);
586         resched_curr(rq);
587 }
588
589 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
590 {
591         dequeue_top_rt_rq(rt_rq);
592 }
593
594 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
595 {
596         return rt_rq->rt_throttled;
597 }
598
599 static inline const struct cpumask *sched_rt_period_mask(void)
600 {
601         return cpu_online_mask;
602 }
603
604 static inline
605 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
606 {
607         return &cpu_rq(cpu)->rt;
608 }
609
610 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
611 {
612         return &def_rt_bandwidth;
613 }
614
615 #endif /* CONFIG_RT_GROUP_SCHED */
616
617 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
618 {
619         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
620
621         return (hrtimer_active(&rt_b->rt_period_timer) ||
622                 rt_rq->rt_time < rt_b->rt_runtime);
623 }
624
625 #ifdef CONFIG_SMP
626 /*
627  * We ran out of runtime, see if we can borrow some from our neighbours.
628  */
629 static int do_balance_runtime(struct rt_rq *rt_rq)
630 {
631         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
632         struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
633         int i, weight, more = 0;
634         u64 rt_period;
635
636         weight = cpumask_weight(rd->span);
637
638         raw_spin_lock(&rt_b->rt_runtime_lock);
639         rt_period = ktime_to_ns(rt_b->rt_period);
640         for_each_cpu(i, rd->span) {
641                 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
642                 s64 diff;
643
644                 if (iter == rt_rq)
645                         continue;
646
647                 raw_spin_lock(&iter->rt_runtime_lock);
648                 /*
649                  * Either all rqs have inf runtime and there's nothing to steal
650                  * or __disable_runtime() below sets a specific rq to inf to
651                  * indicate its been disabled and disalow stealing.
652                  */
653                 if (iter->rt_runtime == RUNTIME_INF)
654                         goto next;
655
656                 /*
657                  * From runqueues with spare time, take 1/n part of their
658                  * spare time, but no more than our period.
659                  */
660                 diff = iter->rt_runtime - iter->rt_time;
661                 if (diff > 0) {
662                         diff = div_u64((u64)diff, weight);
663                         if (rt_rq->rt_runtime + diff > rt_period)
664                                 diff = rt_period - rt_rq->rt_runtime;
665                         iter->rt_runtime -= diff;
666                         rt_rq->rt_runtime += diff;
667                         more = 1;
668                         if (rt_rq->rt_runtime == rt_period) {
669                                 raw_spin_unlock(&iter->rt_runtime_lock);
670                                 break;
671                         }
672                 }
673 next:
674                 raw_spin_unlock(&iter->rt_runtime_lock);
675         }
676         raw_spin_unlock(&rt_b->rt_runtime_lock);
677
678         return more;
679 }
680
681 /*
682  * Ensure this RQ takes back all the runtime it lend to its neighbours.
683  */
684 static void __disable_runtime(struct rq *rq)
685 {
686         struct root_domain *rd = rq->rd;
687         rt_rq_iter_t iter;
688         struct rt_rq *rt_rq;
689
690         if (unlikely(!scheduler_running))
691                 return;
692
693         for_each_rt_rq(rt_rq, iter, rq) {
694                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
695                 s64 want;
696                 int i;
697
698                 raw_spin_lock(&rt_b->rt_runtime_lock);
699                 raw_spin_lock(&rt_rq->rt_runtime_lock);
700                 /*
701                  * Either we're all inf and nobody needs to borrow, or we're
702                  * already disabled and thus have nothing to do, or we have
703                  * exactly the right amount of runtime to take out.
704                  */
705                 if (rt_rq->rt_runtime == RUNTIME_INF ||
706                                 rt_rq->rt_runtime == rt_b->rt_runtime)
707                         goto balanced;
708                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
709
710                 /*
711                  * Calculate the difference between what we started out with
712                  * and what we current have, that's the amount of runtime
713                  * we lend and now have to reclaim.
714                  */
715                 want = rt_b->rt_runtime - rt_rq->rt_runtime;
716
717                 /*
718                  * Greedy reclaim, take back as much as we can.
719                  */
720                 for_each_cpu(i, rd->span) {
721                         struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
722                         s64 diff;
723
724                         /*
725                          * Can't reclaim from ourselves or disabled runqueues.
726                          */
727                         if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
728                                 continue;
729
730                         raw_spin_lock(&iter->rt_runtime_lock);
731                         if (want > 0) {
732                                 diff = min_t(s64, iter->rt_runtime, want);
733                                 iter->rt_runtime -= diff;
734                                 want -= diff;
735                         } else {
736                                 iter->rt_runtime -= want;
737                                 want -= want;
738                         }
739                         raw_spin_unlock(&iter->rt_runtime_lock);
740
741                         if (!want)
742                                 break;
743                 }
744
745                 raw_spin_lock(&rt_rq->rt_runtime_lock);
746                 /*
747                  * We cannot be left wanting - that would mean some runtime
748                  * leaked out of the system.
749                  */
750                 BUG_ON(want);
751 balanced:
752                 /*
753                  * Disable all the borrow logic by pretending we have inf
754                  * runtime - in which case borrowing doesn't make sense.
755                  */
756                 rt_rq->rt_runtime = RUNTIME_INF;
757                 rt_rq->rt_throttled = 0;
758                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
759                 raw_spin_unlock(&rt_b->rt_runtime_lock);
760
761                 /* Make rt_rq available for pick_next_task() */
762                 sched_rt_rq_enqueue(rt_rq);
763         }
764 }
765
766 static void __enable_runtime(struct rq *rq)
767 {
768         rt_rq_iter_t iter;
769         struct rt_rq *rt_rq;
770
771         if (unlikely(!scheduler_running))
772                 return;
773
774         /*
775          * Reset each runqueue's bandwidth settings
776          */
777         for_each_rt_rq(rt_rq, iter, rq) {
778                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
779
780                 raw_spin_lock(&rt_b->rt_runtime_lock);
781                 raw_spin_lock(&rt_rq->rt_runtime_lock);
782                 rt_rq->rt_runtime = rt_b->rt_runtime;
783                 rt_rq->rt_time = 0;
784                 rt_rq->rt_throttled = 0;
785                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
786                 raw_spin_unlock(&rt_b->rt_runtime_lock);
787         }
788 }
789
790 static int balance_runtime(struct rt_rq *rt_rq)
791 {
792         int more = 0;
793
794         if (!sched_feat(RT_RUNTIME_SHARE))
795                 return more;
796
797         if (rt_rq->rt_time > rt_rq->rt_runtime) {
798                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
799                 more = do_balance_runtime(rt_rq);
800                 raw_spin_lock(&rt_rq->rt_runtime_lock);
801         }
802
803         return more;
804 }
805 #else /* !CONFIG_SMP */
806 static inline int balance_runtime(struct rt_rq *rt_rq)
807 {
808         return 0;
809 }
810 #endif /* CONFIG_SMP */
811
812 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
813 {
814         int i, idle = 1, throttled = 0;
815         const struct cpumask *span;
816
817         span = sched_rt_period_mask();
818 #ifdef CONFIG_RT_GROUP_SCHED
819         /*
820          * FIXME: isolated CPUs should really leave the root task group,
821          * whether they are isolcpus or were isolated via cpusets, lest
822          * the timer run on a CPU which does not service all runqueues,
823          * potentially leaving other CPUs indefinitely throttled.  If
824          * isolation is really required, the user will turn the throttle
825          * off to kill the perturbations it causes anyway.  Meanwhile,
826          * this maintains functionality for boot and/or troubleshooting.
827          */
828         if (rt_b == &root_task_group.rt_bandwidth)
829                 span = cpu_online_mask;
830 #endif
831         for_each_cpu(i, span) {
832                 int enqueue = 0;
833                 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
834                 struct rq *rq = rq_of_rt_rq(rt_rq);
835
836                 raw_spin_lock(&rq->lock);
837                 if (rt_rq->rt_time) {
838                         u64 runtime;
839
840                         raw_spin_lock(&rt_rq->rt_runtime_lock);
841                         if (rt_rq->rt_throttled)
842                                 balance_runtime(rt_rq);
843                         runtime = rt_rq->rt_runtime;
844                         rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
845                         if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
846                                 rt_rq->rt_throttled = 0;
847                                 enqueue = 1;
848
849                                 /*
850                                  * When we're idle and a woken (rt) task is
851                                  * throttled check_preempt_curr() will set
852                                  * skip_update and the time between the wakeup
853                                  * and this unthrottle will get accounted as
854                                  * 'runtime'.
855                                  */
856                                 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
857                                         rq_clock_skip_update(rq, false);
858                         }
859                         if (rt_rq->rt_time || rt_rq->rt_nr_running)
860                                 idle = 0;
861                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
862                 } else if (rt_rq->rt_nr_running) {
863                         idle = 0;
864                         if (!rt_rq_throttled(rt_rq))
865                                 enqueue = 1;
866                 }
867                 if (rt_rq->rt_throttled)
868                         throttled = 1;
869
870                 if (enqueue)
871                         sched_rt_rq_enqueue(rt_rq);
872                 raw_spin_unlock(&rq->lock);
873         }
874
875         if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
876                 return 1;
877
878         return idle;
879 }
880
881 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
882 {
883 #ifdef CONFIG_RT_GROUP_SCHED
884         struct rt_rq *rt_rq = group_rt_rq(rt_se);
885
886         if (rt_rq)
887                 return rt_rq->highest_prio.curr;
888 #endif
889
890         return rt_task_of(rt_se)->prio;
891 }
892
893 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
894 {
895         u64 runtime = sched_rt_runtime(rt_rq);
896
897         if (rt_rq->rt_throttled)
898                 return rt_rq_throttled(rt_rq);
899
900         if (runtime >= sched_rt_period(rt_rq))
901                 return 0;
902
903         balance_runtime(rt_rq);
904         runtime = sched_rt_runtime(rt_rq);
905         if (runtime == RUNTIME_INF)
906                 return 0;
907
908         if (rt_rq->rt_time > runtime) {
909                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
910
911                 /*
912                  * Don't actually throttle groups that have no runtime assigned
913                  * but accrue some time due to boosting.
914                  */
915                 if (likely(rt_b->rt_runtime)) {
916                         rt_rq->rt_throttled = 1;
917                         printk_deferred_once("sched: RT throttling activated\n");
918                 } else {
919                         /*
920                          * In case we did anyway, make it go away,
921                          * replenishment is a joke, since it will replenish us
922                          * with exactly 0 ns.
923                          */
924                         rt_rq->rt_time = 0;
925                 }
926
927                 if (rt_rq_throttled(rt_rq)) {
928                         sched_rt_rq_dequeue(rt_rq);
929                         return 1;
930                 }
931         }
932
933         return 0;
934 }
935
936 /*
937  * Update the current task's runtime statistics. Skip current tasks that
938  * are not in our scheduling class.
939  */
940 static void update_curr_rt(struct rq *rq)
941 {
942         struct task_struct *curr = rq->curr;
943         struct sched_rt_entity *rt_se = &curr->rt;
944         u64 delta_exec;
945
946         if (curr->sched_class != &rt_sched_class)
947                 return;
948
949         delta_exec = rq_clock_task(rq) - curr->se.exec_start;
950         if (unlikely((s64)delta_exec <= 0))
951                 return;
952
953         schedstat_set(curr->se.statistics.exec_max,
954                       max(curr->se.statistics.exec_max, delta_exec));
955
956         curr->se.sum_exec_runtime += delta_exec;
957         account_group_exec_runtime(curr, delta_exec);
958
959         curr->se.exec_start = rq_clock_task(rq);
960         cpuacct_charge(curr, delta_exec);
961
962         sched_rt_avg_update(rq, delta_exec);
963
964         if (!rt_bandwidth_enabled())
965                 return;
966
967         for_each_sched_rt_entity(rt_se) {
968                 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
969
970                 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
971                         raw_spin_lock(&rt_rq->rt_runtime_lock);
972                         rt_rq->rt_time += delta_exec;
973                         if (sched_rt_runtime_exceeded(rt_rq))
974                                 resched_curr(rq);
975                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
976                 }
977         }
978 }
979
980 static void
981 dequeue_top_rt_rq(struct rt_rq *rt_rq)
982 {
983         struct rq *rq = rq_of_rt_rq(rt_rq);
984
985         BUG_ON(&rq->rt != rt_rq);
986
987         if (!rt_rq->rt_queued)
988                 return;
989
990         BUG_ON(!rq->nr_running);
991
992         sub_nr_running(rq, rt_rq->rt_nr_running);
993         rt_rq->rt_queued = 0;
994 }
995
996 static void
997 enqueue_top_rt_rq(struct rt_rq *rt_rq)
998 {
999         struct rq *rq = rq_of_rt_rq(rt_rq);
1000
1001         BUG_ON(&rq->rt != rt_rq);
1002
1003         if (rt_rq->rt_queued)
1004                 return;
1005         if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running)
1006                 return;
1007
1008         add_nr_running(rq, rt_rq->rt_nr_running);
1009         rt_rq->rt_queued = 1;
1010 }
1011
1012 #if defined CONFIG_SMP
1013
1014 static void
1015 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1016 {
1017         struct rq *rq = rq_of_rt_rq(rt_rq);
1018
1019 #ifdef CONFIG_RT_GROUP_SCHED
1020         /*
1021          * Change rq's cpupri only if rt_rq is the top queue.
1022          */
1023         if (&rq->rt != rt_rq)
1024                 return;
1025 #endif
1026         if (rq->online && prio < prev_prio)
1027                 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1028 }
1029
1030 static void
1031 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1032 {
1033         struct rq *rq = rq_of_rt_rq(rt_rq);
1034
1035 #ifdef CONFIG_RT_GROUP_SCHED
1036         /*
1037          * Change rq's cpupri only if rt_rq is the top queue.
1038          */
1039         if (&rq->rt != rt_rq)
1040                 return;
1041 #endif
1042         if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1043                 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1044 }
1045
1046 #else /* CONFIG_SMP */
1047
1048 static inline
1049 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1050 static inline
1051 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1052
1053 #endif /* CONFIG_SMP */
1054
1055 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1056 static void
1057 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1058 {
1059         int prev_prio = rt_rq->highest_prio.curr;
1060
1061         if (prio < prev_prio)
1062                 rt_rq->highest_prio.curr = prio;
1063
1064         inc_rt_prio_smp(rt_rq, prio, prev_prio);
1065 }
1066
1067 static void
1068 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1069 {
1070         int prev_prio = rt_rq->highest_prio.curr;
1071
1072         if (rt_rq->rt_nr_running) {
1073
1074                 WARN_ON(prio < prev_prio);
1075
1076                 /*
1077                  * This may have been our highest task, and therefore
1078                  * we may have some recomputation to do
1079                  */
1080                 if (prio == prev_prio) {
1081                         struct rt_prio_array *array = &rt_rq->active;
1082
1083                         rt_rq->highest_prio.curr =
1084                                 sched_find_first_bit(array->bitmap);
1085                 }
1086
1087         } else
1088                 rt_rq->highest_prio.curr = MAX_RT_PRIO;
1089
1090         dec_rt_prio_smp(rt_rq, prio, prev_prio);
1091 }
1092
1093 #else
1094
1095 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1096 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1097
1098 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1099
1100 #ifdef CONFIG_RT_GROUP_SCHED
1101
1102 static void
1103 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1104 {
1105         if (rt_se_boosted(rt_se))
1106                 rt_rq->rt_nr_boosted++;
1107
1108         if (rt_rq->tg)
1109                 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1110 }
1111
1112 static void
1113 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1114 {
1115         if (rt_se_boosted(rt_se))
1116                 rt_rq->rt_nr_boosted--;
1117
1118         WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1119 }
1120
1121 #else /* CONFIG_RT_GROUP_SCHED */
1122
1123 static void
1124 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1125 {
1126         start_rt_bandwidth(&def_rt_bandwidth);
1127 }
1128
1129 static inline
1130 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1131
1132 #endif /* CONFIG_RT_GROUP_SCHED */
1133
1134 static inline
1135 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1136 {
1137         struct rt_rq *group_rq = group_rt_rq(rt_se);
1138
1139         if (group_rq)
1140                 return group_rq->rt_nr_running;
1141         else
1142                 return 1;
1143 }
1144
1145 static inline
1146 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1147 {
1148         int prio = rt_se_prio(rt_se);
1149
1150         WARN_ON(!rt_prio(prio));
1151         rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1152
1153         inc_rt_prio(rt_rq, prio);
1154         inc_rt_migration(rt_se, rt_rq);
1155         inc_rt_group(rt_se, rt_rq);
1156 }
1157
1158 static inline
1159 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1160 {
1161         WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1162         WARN_ON(!rt_rq->rt_nr_running);
1163         rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1164
1165         dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1166         dec_rt_migration(rt_se, rt_rq);
1167         dec_rt_group(rt_se, rt_rq);
1168 }
1169
1170 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1171 {
1172         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1173         struct rt_prio_array *array = &rt_rq->active;
1174         struct rt_rq *group_rq = group_rt_rq(rt_se);
1175         struct list_head *queue = array->queue + rt_se_prio(rt_se);
1176
1177         /*
1178          * Don't enqueue the group if its throttled, or when empty.
1179          * The latter is a consequence of the former when a child group
1180          * get throttled and the current group doesn't have any other
1181          * active members.
1182          */
1183         if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
1184                 return;
1185
1186         if (head)
1187                 list_add(&rt_se->run_list, queue);
1188         else
1189                 list_add_tail(&rt_se->run_list, queue);
1190         __set_bit(rt_se_prio(rt_se), array->bitmap);
1191
1192         inc_rt_tasks(rt_se, rt_rq);
1193 }
1194
1195 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
1196 {
1197         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1198         struct rt_prio_array *array = &rt_rq->active;
1199
1200         list_del_init(&rt_se->run_list);
1201         if (list_empty(array->queue + rt_se_prio(rt_se)))
1202                 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1203
1204         dec_rt_tasks(rt_se, rt_rq);
1205 }
1206
1207 /*
1208  * Because the prio of an upper entry depends on the lower
1209  * entries, we must remove entries top - down.
1210  */
1211 static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
1212 {
1213         struct sched_rt_entity *back = NULL;
1214
1215         for_each_sched_rt_entity(rt_se) {
1216                 rt_se->back = back;
1217                 back = rt_se;
1218         }
1219
1220         dequeue_top_rt_rq(rt_rq_of_se(back));
1221
1222         for (rt_se = back; rt_se; rt_se = rt_se->back) {
1223                 if (on_rt_rq(rt_se))
1224                         __dequeue_rt_entity(rt_se);
1225         }
1226 }
1227
1228 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1229 {
1230         struct rq *rq = rq_of_rt_se(rt_se);
1231
1232         dequeue_rt_stack(rt_se);
1233         for_each_sched_rt_entity(rt_se)
1234                 __enqueue_rt_entity(rt_se, head);
1235         enqueue_top_rt_rq(&rq->rt);
1236 }
1237
1238 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
1239 {
1240         struct rq *rq = rq_of_rt_se(rt_se);
1241
1242         dequeue_rt_stack(rt_se);
1243
1244         for_each_sched_rt_entity(rt_se) {
1245                 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1246
1247                 if (rt_rq && rt_rq->rt_nr_running)
1248                         __enqueue_rt_entity(rt_se, false);
1249         }
1250         enqueue_top_rt_rq(&rq->rt);
1251 }
1252
1253 /*
1254  * Adding/removing a task to/from a priority array:
1255  */
1256 static void
1257 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1258 {
1259         struct sched_rt_entity *rt_se = &p->rt;
1260
1261         if (flags & ENQUEUE_WAKEUP)
1262                 rt_se->timeout = 0;
1263
1264         enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
1265
1266         if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1267                 enqueue_pushable_task(rq, p);
1268 }
1269
1270 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1271 {
1272         struct sched_rt_entity *rt_se = &p->rt;
1273
1274         update_curr_rt(rq);
1275         dequeue_rt_entity(rt_se);
1276
1277         dequeue_pushable_task(rq, p);
1278 }
1279
1280 /*
1281  * Put task to the head or the end of the run list without the overhead of
1282  * dequeue followed by enqueue.
1283  */
1284 static void
1285 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1286 {
1287         if (on_rt_rq(rt_se)) {
1288                 struct rt_prio_array *array = &rt_rq->active;
1289                 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1290
1291                 if (head)
1292                         list_move(&rt_se->run_list, queue);
1293                 else
1294                         list_move_tail(&rt_se->run_list, queue);
1295         }
1296 }
1297
1298 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1299 {
1300         struct sched_rt_entity *rt_se = &p->rt;
1301         struct rt_rq *rt_rq;
1302
1303         for_each_sched_rt_entity(rt_se) {
1304                 rt_rq = rt_rq_of_se(rt_se);
1305                 requeue_rt_entity(rt_rq, rt_se, head);
1306         }
1307 }
1308
1309 static void yield_task_rt(struct rq *rq)
1310 {
1311         requeue_task_rt(rq, rq->curr, 0);
1312 }
1313
1314 #ifdef CONFIG_SMP
1315 static int find_lowest_rq(struct task_struct *task);
1316
1317 static int
1318 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1319 {
1320         struct task_struct *curr;
1321         struct rq *rq;
1322
1323         /* For anything but wake ups, just return the task_cpu */
1324         if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1325                 goto out;
1326
1327         rq = cpu_rq(cpu);
1328
1329         rcu_read_lock();
1330         curr = READ_ONCE(rq->curr); /* unlocked access */
1331
1332         /*
1333          * If the current task on @p's runqueue is an RT task, then
1334          * try to see if we can wake this RT task up on another
1335          * runqueue. Otherwise simply start this RT task
1336          * on its current runqueue.
1337          *
1338          * We want to avoid overloading runqueues. If the woken
1339          * task is a higher priority, then it will stay on this CPU
1340          * and the lower prio task should be moved to another CPU.
1341          * Even though this will probably make the lower prio task
1342          * lose its cache, we do not want to bounce a higher task
1343          * around just because it gave up its CPU, perhaps for a
1344          * lock?
1345          *
1346          * For equal prio tasks, we just let the scheduler sort it out.
1347          *
1348          * Otherwise, just let it ride on the affined RQ and the
1349          * post-schedule router will push the preempted task away
1350          *
1351          * This test is optimistic, if we get it wrong the load-balancer
1352          * will have to sort it out.
1353          */
1354         if (curr && unlikely(rt_task(curr)) &&
1355             (curr->nr_cpus_allowed < 2 ||
1356              curr->prio <= p->prio)) {
1357                 int target = find_lowest_rq(p);
1358
1359                 /*
1360                  * Don't bother moving it if the destination CPU is
1361                  * not running a lower priority task.
1362                  */
1363                 if (target != -1 &&
1364                     p->prio < cpu_rq(target)->rt.highest_prio.curr)
1365                         cpu = target;
1366         }
1367         rcu_read_unlock();
1368
1369 out:
1370         return cpu;
1371 }
1372
1373 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1374 {
1375         /*
1376          * Current can't be migrated, useless to reschedule,
1377          * let's hope p can move out.
1378          */
1379         if (rq->curr->nr_cpus_allowed == 1 ||
1380             !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1381                 return;
1382
1383         /*
1384          * p is migratable, so let's not schedule it and
1385          * see if it is pushed or pulled somewhere else.
1386          */
1387         if (p->nr_cpus_allowed != 1
1388             && cpupri_find(&rq->rd->cpupri, p, NULL))
1389                 return;
1390
1391         /*
1392          * There appears to be other cpus that can accept
1393          * current and none to run 'p', so lets reschedule
1394          * to try and push current away:
1395          */
1396         requeue_task_rt(rq, p, 1);
1397         resched_curr(rq);
1398 }
1399
1400 #endif /* CONFIG_SMP */
1401
1402 /*
1403  * Preempt the current task with a newly woken task if needed:
1404  */
1405 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1406 {
1407         if (p->prio < rq->curr->prio) {
1408                 resched_curr(rq);
1409                 return;
1410         }
1411
1412 #ifdef CONFIG_SMP
1413         /*
1414          * If:
1415          *
1416          * - the newly woken task is of equal priority to the current task
1417          * - the newly woken task is non-migratable while current is migratable
1418          * - current will be preempted on the next reschedule
1419          *
1420          * we should check to see if current can readily move to a different
1421          * cpu.  If so, we will reschedule to allow the push logic to try
1422          * to move current somewhere else, making room for our non-migratable
1423          * task.
1424          */
1425         if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1426                 check_preempt_equal_prio(rq, p);
1427 #endif
1428 }
1429
1430 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1431                                                    struct rt_rq *rt_rq)
1432 {
1433         struct rt_prio_array *array = &rt_rq->active;
1434         struct sched_rt_entity *next = NULL;
1435         struct list_head *queue;
1436         int idx;
1437
1438         idx = sched_find_first_bit(array->bitmap);
1439         BUG_ON(idx >= MAX_RT_PRIO);
1440
1441         queue = array->queue + idx;
1442         next = list_entry(queue->next, struct sched_rt_entity, run_list);
1443
1444         return next;
1445 }
1446
1447 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1448 {
1449         struct sched_rt_entity *rt_se;
1450         struct task_struct *p;
1451         struct rt_rq *rt_rq  = &rq->rt;
1452
1453         do {
1454                 rt_se = pick_next_rt_entity(rq, rt_rq);
1455                 BUG_ON(!rt_se);
1456                 rt_rq = group_rt_rq(rt_se);
1457         } while (rt_rq);
1458
1459         p = rt_task_of(rt_se);
1460         p->se.exec_start = rq_clock_task(rq);
1461
1462         return p;
1463 }
1464
1465 static struct task_struct *
1466 pick_next_task_rt(struct rq *rq, struct task_struct *prev)
1467 {
1468         struct task_struct *p;
1469         struct rt_rq *rt_rq = &rq->rt;
1470
1471         if (need_pull_rt_task(rq, prev)) {
1472                 pull_rt_task(rq);
1473                 /*
1474                  * pull_rt_task() can drop (and re-acquire) rq->lock; this
1475                  * means a dl or stop task can slip in, in which case we need
1476                  * to re-start task selection.
1477                  */
1478                 if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) ||
1479                              rq->dl.dl_nr_running))
1480                         return RETRY_TASK;
1481         }
1482
1483         /*
1484          * We may dequeue prev's rt_rq in put_prev_task().
1485          * So, we update time before rt_nr_running check.
1486          */
1487         if (prev->sched_class == &rt_sched_class)
1488                 update_curr_rt(rq);
1489
1490         if (!rt_rq->rt_queued)
1491                 return NULL;
1492
1493         put_prev_task(rq, prev);
1494
1495         p = _pick_next_task_rt(rq);
1496
1497         /* The running task is never eligible for pushing */
1498         dequeue_pushable_task(rq, p);
1499
1500         set_post_schedule(rq);
1501
1502         return p;
1503 }
1504
1505 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1506 {
1507         update_curr_rt(rq);
1508
1509         /*
1510          * The previous task needs to be made eligible for pushing
1511          * if it is still active
1512          */
1513         if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1514                 enqueue_pushable_task(rq, p);
1515 }
1516
1517 #ifdef CONFIG_SMP
1518
1519 /* Only try algorithms three times */
1520 #define RT_MAX_TRIES 3
1521
1522 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1523 {
1524         if (!task_running(rq, p) &&
1525             cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1526                 return 1;
1527         return 0;
1528 }
1529
1530 /*
1531  * Return the highest pushable rq's task, which is suitable to be executed
1532  * on the cpu, NULL otherwise
1533  */
1534 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1535 {
1536         struct plist_head *head = &rq->rt.pushable_tasks;
1537         struct task_struct *p;
1538
1539         if (!has_pushable_tasks(rq))
1540                 return NULL;
1541
1542         plist_for_each_entry(p, head, pushable_tasks) {
1543                 if (pick_rt_task(rq, p, cpu))
1544                         return p;
1545         }
1546
1547         return NULL;
1548 }
1549
1550 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1551
1552 static int find_lowest_rq(struct task_struct *task)
1553 {
1554         struct sched_domain *sd;
1555         struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1556         int this_cpu = smp_processor_id();
1557         int cpu      = task_cpu(task);
1558
1559         /* Make sure the mask is initialized first */
1560         if (unlikely(!lowest_mask))
1561                 return -1;
1562
1563         if (task->nr_cpus_allowed == 1)
1564                 return -1; /* No other targets possible */
1565
1566         if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1567                 return -1; /* No targets found */
1568
1569         /*
1570          * At this point we have built a mask of cpus representing the
1571          * lowest priority tasks in the system.  Now we want to elect
1572          * the best one based on our affinity and topology.
1573          *
1574          * We prioritize the last cpu that the task executed on since
1575          * it is most likely cache-hot in that location.
1576          */
1577         if (cpumask_test_cpu(cpu, lowest_mask))
1578                 return cpu;
1579
1580         /*
1581          * Otherwise, we consult the sched_domains span maps to figure
1582          * out which cpu is logically closest to our hot cache data.
1583          */
1584         if (!cpumask_test_cpu(this_cpu, lowest_mask))
1585                 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1586
1587         rcu_read_lock();
1588         for_each_domain(cpu, sd) {
1589                 if (sd->flags & SD_WAKE_AFFINE) {
1590                         int best_cpu;
1591
1592                         /*
1593                          * "this_cpu" is cheaper to preempt than a
1594                          * remote processor.
1595                          */
1596                         if (this_cpu != -1 &&
1597                             cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1598                                 rcu_read_unlock();
1599                                 return this_cpu;
1600                         }
1601
1602                         best_cpu = cpumask_first_and(lowest_mask,
1603                                                      sched_domain_span(sd));
1604                         if (best_cpu < nr_cpu_ids) {
1605                                 rcu_read_unlock();
1606                                 return best_cpu;
1607                         }
1608                 }
1609         }
1610         rcu_read_unlock();
1611
1612         /*
1613          * And finally, if there were no matches within the domains
1614          * just give the caller *something* to work with from the compatible
1615          * locations.
1616          */
1617         if (this_cpu != -1)
1618                 return this_cpu;
1619
1620         cpu = cpumask_any(lowest_mask);
1621         if (cpu < nr_cpu_ids)
1622                 return cpu;
1623         return -1;
1624 }
1625
1626 /* Will lock the rq it finds */
1627 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1628 {
1629         struct rq *lowest_rq = NULL;
1630         int tries;
1631         int cpu;
1632
1633         for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1634                 cpu = find_lowest_rq(task);
1635
1636                 if ((cpu == -1) || (cpu == rq->cpu))
1637                         break;
1638
1639                 lowest_rq = cpu_rq(cpu);
1640
1641                 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1642                         /*
1643                          * Target rq has tasks of equal or higher priority,
1644                          * retrying does not release any lock and is unlikely
1645                          * to yield a different result.
1646                          */
1647                         lowest_rq = NULL;
1648                         break;
1649                 }
1650
1651                 /* if the prio of this runqueue changed, try again */
1652                 if (double_lock_balance(rq, lowest_rq)) {
1653                         /*
1654                          * We had to unlock the run queue. In
1655                          * the mean time, task could have
1656                          * migrated already or had its affinity changed.
1657                          * Also make sure that it wasn't scheduled on its rq.
1658                          */
1659                         if (unlikely(task_rq(task) != rq ||
1660                                      !cpumask_test_cpu(lowest_rq->cpu,
1661                                                        tsk_cpus_allowed(task)) ||
1662                                      task_running(rq, task) ||
1663                                      !task_on_rq_queued(task))) {
1664
1665                                 double_unlock_balance(rq, lowest_rq);
1666                                 lowest_rq = NULL;
1667                                 break;
1668                         }
1669                 }
1670
1671                 /* If this rq is still suitable use it. */
1672                 if (lowest_rq->rt.highest_prio.curr > task->prio)
1673                         break;
1674
1675                 /* try again */
1676                 double_unlock_balance(rq, lowest_rq);
1677                 lowest_rq = NULL;
1678         }
1679
1680         return lowest_rq;
1681 }
1682
1683 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1684 {
1685         struct task_struct *p;
1686
1687         if (!has_pushable_tasks(rq))
1688                 return NULL;
1689
1690         p = plist_first_entry(&rq->rt.pushable_tasks,
1691                               struct task_struct, pushable_tasks);
1692
1693         BUG_ON(rq->cpu != task_cpu(p));
1694         BUG_ON(task_current(rq, p));
1695         BUG_ON(p->nr_cpus_allowed <= 1);
1696
1697         BUG_ON(!task_on_rq_queued(p));
1698         BUG_ON(!rt_task(p));
1699
1700         return p;
1701 }
1702
1703 /*
1704  * If the current CPU has more than one RT task, see if the non
1705  * running task can migrate over to a CPU that is running a task
1706  * of lesser priority.
1707  */
1708 static int push_rt_task(struct rq *rq)
1709 {
1710         struct task_struct *next_task;
1711         struct rq *lowest_rq;
1712         int ret = 0;
1713
1714         if (!rq->rt.overloaded)
1715                 return 0;
1716
1717         next_task = pick_next_pushable_task(rq);
1718         if (!next_task)
1719                 return 0;
1720
1721 retry:
1722         if (unlikely(next_task == rq->curr)) {
1723                 WARN_ON(1);
1724                 return 0;
1725         }
1726
1727         /*
1728          * It's possible that the next_task slipped in of
1729          * higher priority than current. If that's the case
1730          * just reschedule current.
1731          */
1732         if (unlikely(next_task->prio < rq->curr->prio)) {
1733                 resched_curr(rq);
1734                 return 0;
1735         }
1736
1737         /* We might release rq lock */
1738         get_task_struct(next_task);
1739
1740         /* find_lock_lowest_rq locks the rq if found */
1741         lowest_rq = find_lock_lowest_rq(next_task, rq);
1742         if (!lowest_rq) {
1743                 struct task_struct *task;
1744                 /*
1745                  * find_lock_lowest_rq releases rq->lock
1746                  * so it is possible that next_task has migrated.
1747                  *
1748                  * We need to make sure that the task is still on the same
1749                  * run-queue and is also still the next task eligible for
1750                  * pushing.
1751                  */
1752                 task = pick_next_pushable_task(rq);
1753                 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1754                         /*
1755                          * The task hasn't migrated, and is still the next
1756                          * eligible task, but we failed to find a run-queue
1757                          * to push it to.  Do not retry in this case, since
1758                          * other cpus will pull from us when ready.
1759                          */
1760                         goto out;
1761                 }
1762
1763                 if (!task)
1764                         /* No more tasks, just exit */
1765                         goto out;
1766
1767                 /*
1768                  * Something has shifted, try again.
1769                  */
1770                 put_task_struct(next_task);
1771                 next_task = task;
1772                 goto retry;
1773         }
1774
1775         deactivate_task(rq, next_task, 0);
1776         set_task_cpu(next_task, lowest_rq->cpu);
1777         activate_task(lowest_rq, next_task, 0);
1778         ret = 1;
1779
1780         resched_curr(lowest_rq);
1781
1782         double_unlock_balance(rq, lowest_rq);
1783
1784 out:
1785         put_task_struct(next_task);
1786
1787         return ret;
1788 }
1789
1790 static void push_rt_tasks(struct rq *rq)
1791 {
1792         /* push_rt_task will return true if it moved an RT */
1793         while (push_rt_task(rq))
1794                 ;
1795 }
1796
1797 #ifdef HAVE_RT_PUSH_IPI
1798 /*
1799  * The search for the next cpu always starts at rq->cpu and ends
1800  * when we reach rq->cpu again. It will never return rq->cpu.
1801  * This returns the next cpu to check, or nr_cpu_ids if the loop
1802  * is complete.
1803  *
1804  * rq->rt.push_cpu holds the last cpu returned by this function,
1805  * or if this is the first instance, it must hold rq->cpu.
1806  */
1807 static int rto_next_cpu(struct rq *rq)
1808 {
1809         int prev_cpu = rq->rt.push_cpu;
1810         int cpu;
1811
1812         cpu = cpumask_next(prev_cpu, rq->rd->rto_mask);
1813
1814         /*
1815          * If the previous cpu is less than the rq's CPU, then it already
1816          * passed the end of the mask, and has started from the beginning.
1817          * We end if the next CPU is greater or equal to rq's CPU.
1818          */
1819         if (prev_cpu < rq->cpu) {
1820                 if (cpu >= rq->cpu)
1821                         return nr_cpu_ids;
1822
1823         } else if (cpu >= nr_cpu_ids) {
1824                 /*
1825                  * We passed the end of the mask, start at the beginning.
1826                  * If the result is greater or equal to the rq's CPU, then
1827                  * the loop is finished.
1828                  */
1829                 cpu = cpumask_first(rq->rd->rto_mask);
1830                 if (cpu >= rq->cpu)
1831                         return nr_cpu_ids;
1832         }
1833         rq->rt.push_cpu = cpu;
1834
1835         /* Return cpu to let the caller know if the loop is finished or not */
1836         return cpu;
1837 }
1838
1839 static int find_next_push_cpu(struct rq *rq)
1840 {
1841         struct rq *next_rq;
1842         int cpu;
1843
1844         while (1) {
1845                 cpu = rto_next_cpu(rq);
1846                 if (cpu >= nr_cpu_ids)
1847                         break;
1848                 next_rq = cpu_rq(cpu);
1849
1850                 /* Make sure the next rq can push to this rq */
1851                 if (next_rq->rt.highest_prio.next < rq->rt.highest_prio.curr)
1852                         break;
1853         }
1854
1855         return cpu;
1856 }
1857
1858 #define RT_PUSH_IPI_EXECUTING           1
1859 #define RT_PUSH_IPI_RESTART             2
1860
1861 static void tell_cpu_to_push(struct rq *rq)
1862 {
1863         int cpu;
1864
1865         if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
1866                 raw_spin_lock(&rq->rt.push_lock);
1867                 /* Make sure it's still executing */
1868                 if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
1869                         /*
1870                          * Tell the IPI to restart the loop as things have
1871                          * changed since it started.
1872                          */
1873                         rq->rt.push_flags |= RT_PUSH_IPI_RESTART;
1874                         raw_spin_unlock(&rq->rt.push_lock);
1875                         return;
1876                 }
1877                 raw_spin_unlock(&rq->rt.push_lock);
1878         }
1879
1880         /* When here, there's no IPI going around */
1881
1882         rq->rt.push_cpu = rq->cpu;
1883         cpu = find_next_push_cpu(rq);
1884         if (cpu >= nr_cpu_ids)
1885                 return;
1886
1887         rq->rt.push_flags = RT_PUSH_IPI_EXECUTING;
1888
1889         irq_work_queue_on(&rq->rt.push_work, cpu);
1890 }
1891
1892 /* Called from hardirq context */
1893 static void try_to_push_tasks(void *arg)
1894 {
1895         struct rt_rq *rt_rq = arg;
1896         struct rq *rq, *src_rq;
1897         int this_cpu;
1898         int cpu;
1899
1900         this_cpu = rt_rq->push_cpu;
1901
1902         /* Paranoid check */
1903         BUG_ON(this_cpu != smp_processor_id());
1904
1905         rq = cpu_rq(this_cpu);
1906         src_rq = rq_of_rt_rq(rt_rq);
1907
1908 again:
1909         if (has_pushable_tasks(rq)) {
1910                 raw_spin_lock(&rq->lock);
1911                 push_rt_task(rq);
1912                 raw_spin_unlock(&rq->lock);
1913         }
1914
1915         /* Pass the IPI to the next rt overloaded queue */
1916         raw_spin_lock(&rt_rq->push_lock);
1917         /*
1918          * If the source queue changed since the IPI went out,
1919          * we need to restart the search from that CPU again.
1920          */
1921         if (rt_rq->push_flags & RT_PUSH_IPI_RESTART) {
1922                 rt_rq->push_flags &= ~RT_PUSH_IPI_RESTART;
1923                 rt_rq->push_cpu = src_rq->cpu;
1924         }
1925
1926         cpu = find_next_push_cpu(src_rq);
1927
1928         if (cpu >= nr_cpu_ids)
1929                 rt_rq->push_flags &= ~RT_PUSH_IPI_EXECUTING;
1930         raw_spin_unlock(&rt_rq->push_lock);
1931
1932         if (cpu >= nr_cpu_ids)
1933                 return;
1934
1935         /*
1936          * It is possible that a restart caused this CPU to be
1937          * chosen again. Don't bother with an IPI, just see if we
1938          * have more to push.
1939          */
1940         if (unlikely(cpu == rq->cpu))
1941                 goto again;
1942
1943         /* Try the next RT overloaded CPU */
1944         irq_work_queue_on(&rt_rq->push_work, cpu);
1945 }
1946
1947 static void push_irq_work_func(struct irq_work *work)
1948 {
1949         struct rt_rq *rt_rq = container_of(work, struct rt_rq, push_work);
1950
1951         try_to_push_tasks(rt_rq);
1952 }
1953 #endif /* HAVE_RT_PUSH_IPI */
1954
1955 static int pull_rt_task(struct rq *this_rq)
1956 {
1957         int this_cpu = this_rq->cpu, ret = 0, cpu;
1958         struct task_struct *p;
1959         struct rq *src_rq;
1960
1961         if (likely(!rt_overloaded(this_rq)))
1962                 return 0;
1963
1964         /*
1965          * Match the barrier from rt_set_overloaded; this guarantees that if we
1966          * see overloaded we must also see the rto_mask bit.
1967          */
1968         smp_rmb();
1969
1970 #ifdef HAVE_RT_PUSH_IPI
1971         if (sched_feat(RT_PUSH_IPI)) {
1972                 tell_cpu_to_push(this_rq);
1973                 return 0;
1974         }
1975 #endif
1976
1977         for_each_cpu(cpu, this_rq->rd->rto_mask) {
1978                 if (this_cpu == cpu)
1979                         continue;
1980
1981                 src_rq = cpu_rq(cpu);
1982
1983                 /*
1984                  * Don't bother taking the src_rq->lock if the next highest
1985                  * task is known to be lower-priority than our current task.
1986                  * This may look racy, but if this value is about to go
1987                  * logically higher, the src_rq will push this task away.
1988                  * And if its going logically lower, we do not care
1989                  */
1990                 if (src_rq->rt.highest_prio.next >=
1991                     this_rq->rt.highest_prio.curr)
1992                         continue;
1993
1994                 /*
1995                  * We can potentially drop this_rq's lock in
1996                  * double_lock_balance, and another CPU could
1997                  * alter this_rq
1998                  */
1999                 double_lock_balance(this_rq, src_rq);
2000
2001                 /*
2002                  * We can pull only a task, which is pushable
2003                  * on its rq, and no others.
2004                  */
2005                 p = pick_highest_pushable_task(src_rq, this_cpu);
2006
2007                 /*
2008                  * Do we have an RT task that preempts
2009                  * the to-be-scheduled task?
2010                  */
2011                 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2012                         WARN_ON(p == src_rq->curr);
2013                         WARN_ON(!task_on_rq_queued(p));
2014
2015                         /*
2016                          * There's a chance that p is higher in priority
2017                          * than what's currently running on its cpu.
2018                          * This is just that p is wakeing up and hasn't
2019                          * had a chance to schedule. We only pull
2020                          * p if it is lower in priority than the
2021                          * current task on the run queue
2022                          */
2023                         if (p->prio < src_rq->curr->prio)
2024                                 goto skip;
2025
2026                         ret = 1;
2027
2028                         deactivate_task(src_rq, p, 0);
2029                         set_task_cpu(p, this_cpu);
2030                         activate_task(this_rq, p, 0);
2031                         /*
2032                          * We continue with the search, just in
2033                          * case there's an even higher prio task
2034                          * in another runqueue. (low likelihood
2035                          * but possible)
2036                          */
2037                 }
2038 skip:
2039                 double_unlock_balance(this_rq, src_rq);
2040         }
2041
2042         return ret;
2043 }
2044
2045 static void post_schedule_rt(struct rq *rq)
2046 {
2047         push_rt_tasks(rq);
2048 }
2049
2050 /*
2051  * If we are not running and we are not going to reschedule soon, we should
2052  * try to push tasks away now
2053  */
2054 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2055 {
2056         if (!task_running(rq, p) &&
2057             !test_tsk_need_resched(rq->curr) &&
2058             has_pushable_tasks(rq) &&
2059             p->nr_cpus_allowed > 1 &&
2060             (dl_task(rq->curr) || rt_task(rq->curr)) &&
2061             (rq->curr->nr_cpus_allowed < 2 ||
2062              rq->curr->prio <= p->prio))
2063                 push_rt_tasks(rq);
2064 }
2065
2066 static void set_cpus_allowed_rt(struct task_struct *p,
2067                                 const struct cpumask *new_mask)
2068 {
2069         struct rq *rq;
2070         int weight;
2071
2072         BUG_ON(!rt_task(p));
2073
2074         if (!task_on_rq_queued(p))
2075                 return;
2076
2077         weight = cpumask_weight(new_mask);
2078
2079         /*
2080          * Only update if the process changes its state from whether it
2081          * can migrate or not.
2082          */
2083         if ((p->nr_cpus_allowed > 1) == (weight > 1))
2084                 return;
2085
2086         rq = task_rq(p);
2087
2088         /*
2089          * The process used to be able to migrate OR it can now migrate
2090          */
2091         if (weight <= 1) {
2092                 if (!task_current(rq, p))
2093                         dequeue_pushable_task(rq, p);
2094                 BUG_ON(!rq->rt.rt_nr_migratory);
2095                 rq->rt.rt_nr_migratory--;
2096         } else {
2097                 if (!task_current(rq, p))
2098                         enqueue_pushable_task(rq, p);
2099                 rq->rt.rt_nr_migratory++;
2100         }
2101
2102         update_rt_migration(&rq->rt);
2103 }
2104
2105 /* Assumes rq->lock is held */
2106 static void rq_online_rt(struct rq *rq)
2107 {
2108         if (rq->rt.overloaded)
2109                 rt_set_overload(rq);
2110
2111         __enable_runtime(rq);
2112
2113         cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2114 }
2115
2116 /* Assumes rq->lock is held */
2117 static void rq_offline_rt(struct rq *rq)
2118 {
2119         if (rq->rt.overloaded)
2120                 rt_clear_overload(rq);
2121
2122         __disable_runtime(rq);
2123
2124         cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2125 }
2126
2127 /*
2128  * When switch from the rt queue, we bring ourselves to a position
2129  * that we might want to pull RT tasks from other runqueues.
2130  */
2131 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2132 {
2133         /*
2134          * If there are other RT tasks then we will reschedule
2135          * and the scheduling of the other RT tasks will handle
2136          * the balancing. But if we are the last RT task
2137          * we may need to handle the pulling of RT tasks
2138          * now.
2139          */
2140         if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2141                 return;
2142
2143         if (pull_rt_task(rq))
2144                 resched_curr(rq);
2145 }
2146
2147 void __init init_sched_rt_class(void)
2148 {
2149         unsigned int i;
2150
2151         for_each_possible_cpu(i) {
2152                 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2153                                         GFP_KERNEL, cpu_to_node(i));
2154         }
2155 }
2156 #endif /* CONFIG_SMP */
2157
2158 /*
2159  * When switching a task to RT, we may overload the runqueue
2160  * with RT tasks. In this case we try to push them off to
2161  * other runqueues.
2162  */
2163 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2164 {
2165         int check_resched = 1;
2166
2167         /*
2168          * If we are already running, then there's nothing
2169          * that needs to be done. But if we are not running
2170          * we may need to preempt the current running task.
2171          * If that current running task is also an RT task
2172          * then see if we can move to another run queue.
2173          */
2174         if (task_on_rq_queued(p) && rq->curr != p) {
2175 #ifdef CONFIG_SMP
2176                 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded &&
2177                     /* Don't resched if we changed runqueues */
2178                     push_rt_task(rq) && rq != task_rq(p))
2179                         check_resched = 0;
2180 #endif /* CONFIG_SMP */
2181                 if (check_resched && p->prio < rq->curr->prio)
2182                         resched_curr(rq);
2183         }
2184 }
2185
2186 /*
2187  * Priority of the task has changed. This may cause
2188  * us to initiate a push or pull.
2189  */
2190 static void
2191 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2192 {
2193         if (!task_on_rq_queued(p))
2194                 return;
2195
2196         if (rq->curr == p) {
2197 #ifdef CONFIG_SMP
2198                 /*
2199                  * If our priority decreases while running, we
2200                  * may need to pull tasks to this runqueue.
2201                  */
2202                 if (oldprio < p->prio)
2203                         pull_rt_task(rq);
2204                 /*
2205                  * If there's a higher priority task waiting to run
2206                  * then reschedule. Note, the above pull_rt_task
2207                  * can release the rq lock and p could migrate.
2208                  * Only reschedule if p is still on the same runqueue.
2209                  */
2210                 if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
2211                         resched_curr(rq);
2212 #else
2213                 /* For UP simply resched on drop of prio */
2214                 if (oldprio < p->prio)
2215                         resched_curr(rq);
2216 #endif /* CONFIG_SMP */
2217         } else {
2218                 /*
2219                  * This task is not running, but if it is
2220                  * greater than the current running task
2221                  * then reschedule.
2222                  */
2223                 if (p->prio < rq->curr->prio)
2224                         resched_curr(rq);
2225         }
2226 }
2227
2228 static void watchdog(struct rq *rq, struct task_struct *p)
2229 {
2230         unsigned long soft, hard;
2231
2232         /* max may change after cur was read, this will be fixed next tick */
2233         soft = task_rlimit(p, RLIMIT_RTTIME);
2234         hard = task_rlimit_max(p, RLIMIT_RTTIME);
2235
2236         if (soft != RLIM_INFINITY) {
2237                 unsigned long next;
2238
2239                 if (p->rt.watchdog_stamp != jiffies) {
2240                         p->rt.timeout++;
2241                         p->rt.watchdog_stamp = jiffies;
2242                 }
2243
2244                 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2245                 if (p->rt.timeout > next)
2246                         p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
2247         }
2248 }
2249
2250 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2251 {
2252         struct sched_rt_entity *rt_se = &p->rt;
2253
2254         update_curr_rt(rq);
2255
2256         watchdog(rq, p);
2257
2258         /*
2259          * RR tasks need a special form of timeslice management.
2260          * FIFO tasks have no timeslices.
2261          */
2262         if (p->policy != SCHED_RR)
2263                 return;
2264
2265         if (--p->rt.time_slice)
2266                 return;
2267
2268         p->rt.time_slice = sched_rr_timeslice;
2269
2270         /*
2271          * Requeue to the end of queue if we (and all of our ancestors) are not
2272          * the only element on the queue
2273          */
2274         for_each_sched_rt_entity(rt_se) {
2275                 if (rt_se->run_list.prev != rt_se->run_list.next) {
2276                         requeue_task_rt(rq, p, 0);
2277                         resched_curr(rq);
2278                         return;
2279                 }
2280         }
2281 }
2282
2283 static void set_curr_task_rt(struct rq *rq)
2284 {
2285         struct task_struct *p = rq->curr;
2286
2287         p->se.exec_start = rq_clock_task(rq);
2288
2289         /* The running task is never eligible for pushing */
2290         dequeue_pushable_task(rq, p);
2291 }
2292
2293 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2294 {
2295         /*
2296          * Time slice is 0 for SCHED_FIFO tasks
2297          */
2298         if (task->policy == SCHED_RR)
2299                 return sched_rr_timeslice;
2300         else
2301                 return 0;
2302 }
2303
2304 const struct sched_class rt_sched_class = {
2305         .next                   = &fair_sched_class,
2306         .enqueue_task           = enqueue_task_rt,
2307         .dequeue_task           = dequeue_task_rt,
2308         .yield_task             = yield_task_rt,
2309
2310         .check_preempt_curr     = check_preempt_curr_rt,
2311
2312         .pick_next_task         = pick_next_task_rt,
2313         .put_prev_task          = put_prev_task_rt,
2314
2315 #ifdef CONFIG_SMP
2316         .select_task_rq         = select_task_rq_rt,
2317
2318         .set_cpus_allowed       = set_cpus_allowed_rt,
2319         .rq_online              = rq_online_rt,
2320         .rq_offline             = rq_offline_rt,
2321         .post_schedule          = post_schedule_rt,
2322         .task_woken             = task_woken_rt,
2323         .switched_from          = switched_from_rt,
2324 #endif
2325
2326         .set_curr_task          = set_curr_task_rt,
2327         .task_tick              = task_tick_rt,
2328
2329         .get_rr_interval        = get_rr_interval_rt,
2330
2331         .prio_changed           = prio_changed_rt,
2332         .switched_to            = switched_to_rt,
2333
2334         .update_curr            = update_curr_rt,
2335 };
2336
2337 #ifdef CONFIG_SCHED_DEBUG
2338 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2339
2340 void print_rt_stats(struct seq_file *m, int cpu)
2341 {
2342         rt_rq_iter_t iter;
2343         struct rt_rq *rt_rq;
2344
2345         rcu_read_lock();
2346         for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2347                 print_rt_rq(m, cpu, rt_rq);
2348         rcu_read_unlock();
2349 }
2350 #endif /* CONFIG_SCHED_DEBUG */