Merge tag 'mfd-for-linus-3.16-1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[cascardo/linux.git] / kernel / sched / rt.c
1 /*
2  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3  * policies)
4  */
5
6 #include "sched.h"
7
8 #include <linux/slab.h>
9
10 int sched_rr_timeslice = RR_TIMESLICE;
11
12 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
13
14 struct rt_bandwidth def_rt_bandwidth;
15
16 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
17 {
18         struct rt_bandwidth *rt_b =
19                 container_of(timer, struct rt_bandwidth, rt_period_timer);
20         ktime_t now;
21         int overrun;
22         int idle = 0;
23
24         for (;;) {
25                 now = hrtimer_cb_get_time(timer);
26                 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
27
28                 if (!overrun)
29                         break;
30
31                 idle = do_sched_rt_period_timer(rt_b, overrun);
32         }
33
34         return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
35 }
36
37 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
38 {
39         rt_b->rt_period = ns_to_ktime(period);
40         rt_b->rt_runtime = runtime;
41
42         raw_spin_lock_init(&rt_b->rt_runtime_lock);
43
44         hrtimer_init(&rt_b->rt_period_timer,
45                         CLOCK_MONOTONIC, HRTIMER_MODE_REL);
46         rt_b->rt_period_timer.function = sched_rt_period_timer;
47 }
48
49 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
50 {
51         if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
52                 return;
53
54         if (hrtimer_active(&rt_b->rt_period_timer))
55                 return;
56
57         raw_spin_lock(&rt_b->rt_runtime_lock);
58         start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
59         raw_spin_unlock(&rt_b->rt_runtime_lock);
60 }
61
62 void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
63 {
64         struct rt_prio_array *array;
65         int i;
66
67         array = &rt_rq->active;
68         for (i = 0; i < MAX_RT_PRIO; i++) {
69                 INIT_LIST_HEAD(array->queue + i);
70                 __clear_bit(i, array->bitmap);
71         }
72         /* delimiter for bitsearch: */
73         __set_bit(MAX_RT_PRIO, array->bitmap);
74
75 #if defined CONFIG_SMP
76         rt_rq->highest_prio.curr = MAX_RT_PRIO;
77         rt_rq->highest_prio.next = MAX_RT_PRIO;
78         rt_rq->rt_nr_migratory = 0;
79         rt_rq->overloaded = 0;
80         plist_head_init(&rt_rq->pushable_tasks);
81 #endif
82         /* We start is dequeued state, because no RT tasks are queued */
83         rt_rq->rt_queued = 0;
84
85         rt_rq->rt_time = 0;
86         rt_rq->rt_throttled = 0;
87         rt_rq->rt_runtime = 0;
88         raw_spin_lock_init(&rt_rq->rt_runtime_lock);
89 }
90
91 #ifdef CONFIG_RT_GROUP_SCHED
92 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
93 {
94         hrtimer_cancel(&rt_b->rt_period_timer);
95 }
96
97 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
98
99 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
100 {
101 #ifdef CONFIG_SCHED_DEBUG
102         WARN_ON_ONCE(!rt_entity_is_task(rt_se));
103 #endif
104         return container_of(rt_se, struct task_struct, rt);
105 }
106
107 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
108 {
109         return rt_rq->rq;
110 }
111
112 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
113 {
114         return rt_se->rt_rq;
115 }
116
117 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
118 {
119         struct rt_rq *rt_rq = rt_se->rt_rq;
120
121         return rt_rq->rq;
122 }
123
124 void free_rt_sched_group(struct task_group *tg)
125 {
126         int i;
127
128         if (tg->rt_se)
129                 destroy_rt_bandwidth(&tg->rt_bandwidth);
130
131         for_each_possible_cpu(i) {
132                 if (tg->rt_rq)
133                         kfree(tg->rt_rq[i]);
134                 if (tg->rt_se)
135                         kfree(tg->rt_se[i]);
136         }
137
138         kfree(tg->rt_rq);
139         kfree(tg->rt_se);
140 }
141
142 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
143                 struct sched_rt_entity *rt_se, int cpu,
144                 struct sched_rt_entity *parent)
145 {
146         struct rq *rq = cpu_rq(cpu);
147
148         rt_rq->highest_prio.curr = MAX_RT_PRIO;
149         rt_rq->rt_nr_boosted = 0;
150         rt_rq->rq = rq;
151         rt_rq->tg = tg;
152
153         tg->rt_rq[cpu] = rt_rq;
154         tg->rt_se[cpu] = rt_se;
155
156         if (!rt_se)
157                 return;
158
159         if (!parent)
160                 rt_se->rt_rq = &rq->rt;
161         else
162                 rt_se->rt_rq = parent->my_q;
163
164         rt_se->my_q = rt_rq;
165         rt_se->parent = parent;
166         INIT_LIST_HEAD(&rt_se->run_list);
167 }
168
169 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
170 {
171         struct rt_rq *rt_rq;
172         struct sched_rt_entity *rt_se;
173         int i;
174
175         tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
176         if (!tg->rt_rq)
177                 goto err;
178         tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
179         if (!tg->rt_se)
180                 goto err;
181
182         init_rt_bandwidth(&tg->rt_bandwidth,
183                         ktime_to_ns(def_rt_bandwidth.rt_period), 0);
184
185         for_each_possible_cpu(i) {
186                 rt_rq = kzalloc_node(sizeof(struct rt_rq),
187                                      GFP_KERNEL, cpu_to_node(i));
188                 if (!rt_rq)
189                         goto err;
190
191                 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
192                                      GFP_KERNEL, cpu_to_node(i));
193                 if (!rt_se)
194                         goto err_free_rq;
195
196                 init_rt_rq(rt_rq, cpu_rq(i));
197                 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
198                 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
199         }
200
201         return 1;
202
203 err_free_rq:
204         kfree(rt_rq);
205 err:
206         return 0;
207 }
208
209 #else /* CONFIG_RT_GROUP_SCHED */
210
211 #define rt_entity_is_task(rt_se) (1)
212
213 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
214 {
215         return container_of(rt_se, struct task_struct, rt);
216 }
217
218 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
219 {
220         return container_of(rt_rq, struct rq, rt);
221 }
222
223 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
224 {
225         struct task_struct *p = rt_task_of(rt_se);
226
227         return task_rq(p);
228 }
229
230 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
231 {
232         struct rq *rq = rq_of_rt_se(rt_se);
233
234         return &rq->rt;
235 }
236
237 void free_rt_sched_group(struct task_group *tg) { }
238
239 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
240 {
241         return 1;
242 }
243 #endif /* CONFIG_RT_GROUP_SCHED */
244
245 #ifdef CONFIG_SMP
246
247 static int pull_rt_task(struct rq *this_rq);
248
249 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
250 {
251         /* Try to pull RT tasks here if we lower this rq's prio */
252         return rq->rt.highest_prio.curr > prev->prio;
253 }
254
255 static inline int rt_overloaded(struct rq *rq)
256 {
257         return atomic_read(&rq->rd->rto_count);
258 }
259
260 static inline void rt_set_overload(struct rq *rq)
261 {
262         if (!rq->online)
263                 return;
264
265         cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
266         /*
267          * Make sure the mask is visible before we set
268          * the overload count. That is checked to determine
269          * if we should look at the mask. It would be a shame
270          * if we looked at the mask, but the mask was not
271          * updated yet.
272          *
273          * Matched by the barrier in pull_rt_task().
274          */
275         smp_wmb();
276         atomic_inc(&rq->rd->rto_count);
277 }
278
279 static inline void rt_clear_overload(struct rq *rq)
280 {
281         if (!rq->online)
282                 return;
283
284         /* the order here really doesn't matter */
285         atomic_dec(&rq->rd->rto_count);
286         cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
287 }
288
289 static void update_rt_migration(struct rt_rq *rt_rq)
290 {
291         if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
292                 if (!rt_rq->overloaded) {
293                         rt_set_overload(rq_of_rt_rq(rt_rq));
294                         rt_rq->overloaded = 1;
295                 }
296         } else if (rt_rq->overloaded) {
297                 rt_clear_overload(rq_of_rt_rq(rt_rq));
298                 rt_rq->overloaded = 0;
299         }
300 }
301
302 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
303 {
304         struct task_struct *p;
305
306         if (!rt_entity_is_task(rt_se))
307                 return;
308
309         p = rt_task_of(rt_se);
310         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
311
312         rt_rq->rt_nr_total++;
313         if (p->nr_cpus_allowed > 1)
314                 rt_rq->rt_nr_migratory++;
315
316         update_rt_migration(rt_rq);
317 }
318
319 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
320 {
321         struct task_struct *p;
322
323         if (!rt_entity_is_task(rt_se))
324                 return;
325
326         p = rt_task_of(rt_se);
327         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
328
329         rt_rq->rt_nr_total--;
330         if (p->nr_cpus_allowed > 1)
331                 rt_rq->rt_nr_migratory--;
332
333         update_rt_migration(rt_rq);
334 }
335
336 static inline int has_pushable_tasks(struct rq *rq)
337 {
338         return !plist_head_empty(&rq->rt.pushable_tasks);
339 }
340
341 static inline void set_post_schedule(struct rq *rq)
342 {
343         /*
344          * We detect this state here so that we can avoid taking the RQ
345          * lock again later if there is no need to push
346          */
347         rq->post_schedule = has_pushable_tasks(rq);
348 }
349
350 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
351 {
352         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
353         plist_node_init(&p->pushable_tasks, p->prio);
354         plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
355
356         /* Update the highest prio pushable task */
357         if (p->prio < rq->rt.highest_prio.next)
358                 rq->rt.highest_prio.next = p->prio;
359 }
360
361 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
362 {
363         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
364
365         /* Update the new highest prio pushable task */
366         if (has_pushable_tasks(rq)) {
367                 p = plist_first_entry(&rq->rt.pushable_tasks,
368                                       struct task_struct, pushable_tasks);
369                 rq->rt.highest_prio.next = p->prio;
370         } else
371                 rq->rt.highest_prio.next = MAX_RT_PRIO;
372 }
373
374 #else
375
376 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
377 {
378 }
379
380 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
381 {
382 }
383
384 static inline
385 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
386 {
387 }
388
389 static inline
390 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
391 {
392 }
393
394 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
395 {
396         return false;
397 }
398
399 static inline int pull_rt_task(struct rq *this_rq)
400 {
401         return 0;
402 }
403
404 static inline void set_post_schedule(struct rq *rq)
405 {
406 }
407 #endif /* CONFIG_SMP */
408
409 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
410 static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
411
412 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
413 {
414         return !list_empty(&rt_se->run_list);
415 }
416
417 #ifdef CONFIG_RT_GROUP_SCHED
418
419 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
420 {
421         if (!rt_rq->tg)
422                 return RUNTIME_INF;
423
424         return rt_rq->rt_runtime;
425 }
426
427 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
428 {
429         return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
430 }
431
432 typedef struct task_group *rt_rq_iter_t;
433
434 static inline struct task_group *next_task_group(struct task_group *tg)
435 {
436         do {
437                 tg = list_entry_rcu(tg->list.next,
438                         typeof(struct task_group), list);
439         } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
440
441         if (&tg->list == &task_groups)
442                 tg = NULL;
443
444         return tg;
445 }
446
447 #define for_each_rt_rq(rt_rq, iter, rq)                                 \
448         for (iter = container_of(&task_groups, typeof(*iter), list);    \
449                 (iter = next_task_group(iter)) &&                       \
450                 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
451
452 #define for_each_sched_rt_entity(rt_se) \
453         for (; rt_se; rt_se = rt_se->parent)
454
455 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
456 {
457         return rt_se->my_q;
458 }
459
460 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
461 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
462
463 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
464 {
465         struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
466         struct sched_rt_entity *rt_se;
467
468         int cpu = cpu_of(rq_of_rt_rq(rt_rq));
469
470         rt_se = rt_rq->tg->rt_se[cpu];
471
472         if (rt_rq->rt_nr_running) {
473                 if (!rt_se)
474                         enqueue_top_rt_rq(rt_rq);
475                 else if (!on_rt_rq(rt_se))
476                         enqueue_rt_entity(rt_se, false);
477
478                 if (rt_rq->highest_prio.curr < curr->prio)
479                         resched_task(curr);
480         }
481 }
482
483 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
484 {
485         struct sched_rt_entity *rt_se;
486         int cpu = cpu_of(rq_of_rt_rq(rt_rq));
487
488         rt_se = rt_rq->tg->rt_se[cpu];
489
490         if (!rt_se)
491                 dequeue_top_rt_rq(rt_rq);
492         else if (on_rt_rq(rt_se))
493                 dequeue_rt_entity(rt_se);
494 }
495
496 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
497 {
498         return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
499 }
500
501 static int rt_se_boosted(struct sched_rt_entity *rt_se)
502 {
503         struct rt_rq *rt_rq = group_rt_rq(rt_se);
504         struct task_struct *p;
505
506         if (rt_rq)
507                 return !!rt_rq->rt_nr_boosted;
508
509         p = rt_task_of(rt_se);
510         return p->prio != p->normal_prio;
511 }
512
513 #ifdef CONFIG_SMP
514 static inline const struct cpumask *sched_rt_period_mask(void)
515 {
516         return this_rq()->rd->span;
517 }
518 #else
519 static inline const struct cpumask *sched_rt_period_mask(void)
520 {
521         return cpu_online_mask;
522 }
523 #endif
524
525 static inline
526 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
527 {
528         return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
529 }
530
531 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
532 {
533         return &rt_rq->tg->rt_bandwidth;
534 }
535
536 #else /* !CONFIG_RT_GROUP_SCHED */
537
538 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
539 {
540         return rt_rq->rt_runtime;
541 }
542
543 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
544 {
545         return ktime_to_ns(def_rt_bandwidth.rt_period);
546 }
547
548 typedef struct rt_rq *rt_rq_iter_t;
549
550 #define for_each_rt_rq(rt_rq, iter, rq) \
551         for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
552
553 #define for_each_sched_rt_entity(rt_se) \
554         for (; rt_se; rt_se = NULL)
555
556 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
557 {
558         return NULL;
559 }
560
561 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
562 {
563         struct rq *rq = rq_of_rt_rq(rt_rq);
564
565         if (!rt_rq->rt_nr_running)
566                 return;
567
568         enqueue_top_rt_rq(rt_rq);
569         resched_task(rq->curr);
570 }
571
572 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
573 {
574         dequeue_top_rt_rq(rt_rq);
575 }
576
577 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
578 {
579         return rt_rq->rt_throttled;
580 }
581
582 static inline const struct cpumask *sched_rt_period_mask(void)
583 {
584         return cpu_online_mask;
585 }
586
587 static inline
588 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
589 {
590         return &cpu_rq(cpu)->rt;
591 }
592
593 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
594 {
595         return &def_rt_bandwidth;
596 }
597
598 #endif /* CONFIG_RT_GROUP_SCHED */
599
600 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
601 {
602         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
603
604         return (hrtimer_active(&rt_b->rt_period_timer) ||
605                 rt_rq->rt_time < rt_b->rt_runtime);
606 }
607
608 #ifdef CONFIG_SMP
609 /*
610  * We ran out of runtime, see if we can borrow some from our neighbours.
611  */
612 static int do_balance_runtime(struct rt_rq *rt_rq)
613 {
614         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
615         struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
616         int i, weight, more = 0;
617         u64 rt_period;
618
619         weight = cpumask_weight(rd->span);
620
621         raw_spin_lock(&rt_b->rt_runtime_lock);
622         rt_period = ktime_to_ns(rt_b->rt_period);
623         for_each_cpu(i, rd->span) {
624                 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
625                 s64 diff;
626
627                 if (iter == rt_rq)
628                         continue;
629
630                 raw_spin_lock(&iter->rt_runtime_lock);
631                 /*
632                  * Either all rqs have inf runtime and there's nothing to steal
633                  * or __disable_runtime() below sets a specific rq to inf to
634                  * indicate its been disabled and disalow stealing.
635                  */
636                 if (iter->rt_runtime == RUNTIME_INF)
637                         goto next;
638
639                 /*
640                  * From runqueues with spare time, take 1/n part of their
641                  * spare time, but no more than our period.
642                  */
643                 diff = iter->rt_runtime - iter->rt_time;
644                 if (diff > 0) {
645                         diff = div_u64((u64)diff, weight);
646                         if (rt_rq->rt_runtime + diff > rt_period)
647                                 diff = rt_period - rt_rq->rt_runtime;
648                         iter->rt_runtime -= diff;
649                         rt_rq->rt_runtime += diff;
650                         more = 1;
651                         if (rt_rq->rt_runtime == rt_period) {
652                                 raw_spin_unlock(&iter->rt_runtime_lock);
653                                 break;
654                         }
655                 }
656 next:
657                 raw_spin_unlock(&iter->rt_runtime_lock);
658         }
659         raw_spin_unlock(&rt_b->rt_runtime_lock);
660
661         return more;
662 }
663
664 /*
665  * Ensure this RQ takes back all the runtime it lend to its neighbours.
666  */
667 static void __disable_runtime(struct rq *rq)
668 {
669         struct root_domain *rd = rq->rd;
670         rt_rq_iter_t iter;
671         struct rt_rq *rt_rq;
672
673         if (unlikely(!scheduler_running))
674                 return;
675
676         for_each_rt_rq(rt_rq, iter, rq) {
677                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
678                 s64 want;
679                 int i;
680
681                 raw_spin_lock(&rt_b->rt_runtime_lock);
682                 raw_spin_lock(&rt_rq->rt_runtime_lock);
683                 /*
684                  * Either we're all inf and nobody needs to borrow, or we're
685                  * already disabled and thus have nothing to do, or we have
686                  * exactly the right amount of runtime to take out.
687                  */
688                 if (rt_rq->rt_runtime == RUNTIME_INF ||
689                                 rt_rq->rt_runtime == rt_b->rt_runtime)
690                         goto balanced;
691                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
692
693                 /*
694                  * Calculate the difference between what we started out with
695                  * and what we current have, that's the amount of runtime
696                  * we lend and now have to reclaim.
697                  */
698                 want = rt_b->rt_runtime - rt_rq->rt_runtime;
699
700                 /*
701                  * Greedy reclaim, take back as much as we can.
702                  */
703                 for_each_cpu(i, rd->span) {
704                         struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
705                         s64 diff;
706
707                         /*
708                          * Can't reclaim from ourselves or disabled runqueues.
709                          */
710                         if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
711                                 continue;
712
713                         raw_spin_lock(&iter->rt_runtime_lock);
714                         if (want > 0) {
715                                 diff = min_t(s64, iter->rt_runtime, want);
716                                 iter->rt_runtime -= diff;
717                                 want -= diff;
718                         } else {
719                                 iter->rt_runtime -= want;
720                                 want -= want;
721                         }
722                         raw_spin_unlock(&iter->rt_runtime_lock);
723
724                         if (!want)
725                                 break;
726                 }
727
728                 raw_spin_lock(&rt_rq->rt_runtime_lock);
729                 /*
730                  * We cannot be left wanting - that would mean some runtime
731                  * leaked out of the system.
732                  */
733                 BUG_ON(want);
734 balanced:
735                 /*
736                  * Disable all the borrow logic by pretending we have inf
737                  * runtime - in which case borrowing doesn't make sense.
738                  */
739                 rt_rq->rt_runtime = RUNTIME_INF;
740                 rt_rq->rt_throttled = 0;
741                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
742                 raw_spin_unlock(&rt_b->rt_runtime_lock);
743         }
744 }
745
746 static void __enable_runtime(struct rq *rq)
747 {
748         rt_rq_iter_t iter;
749         struct rt_rq *rt_rq;
750
751         if (unlikely(!scheduler_running))
752                 return;
753
754         /*
755          * Reset each runqueue's bandwidth settings
756          */
757         for_each_rt_rq(rt_rq, iter, rq) {
758                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
759
760                 raw_spin_lock(&rt_b->rt_runtime_lock);
761                 raw_spin_lock(&rt_rq->rt_runtime_lock);
762                 rt_rq->rt_runtime = rt_b->rt_runtime;
763                 rt_rq->rt_time = 0;
764                 rt_rq->rt_throttled = 0;
765                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
766                 raw_spin_unlock(&rt_b->rt_runtime_lock);
767         }
768 }
769
770 static int balance_runtime(struct rt_rq *rt_rq)
771 {
772         int more = 0;
773
774         if (!sched_feat(RT_RUNTIME_SHARE))
775                 return more;
776
777         if (rt_rq->rt_time > rt_rq->rt_runtime) {
778                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
779                 more = do_balance_runtime(rt_rq);
780                 raw_spin_lock(&rt_rq->rt_runtime_lock);
781         }
782
783         return more;
784 }
785 #else /* !CONFIG_SMP */
786 static inline int balance_runtime(struct rt_rq *rt_rq)
787 {
788         return 0;
789 }
790 #endif /* CONFIG_SMP */
791
792 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
793 {
794         int i, idle = 1, throttled = 0;
795         const struct cpumask *span;
796
797         span = sched_rt_period_mask();
798 #ifdef CONFIG_RT_GROUP_SCHED
799         /*
800          * FIXME: isolated CPUs should really leave the root task group,
801          * whether they are isolcpus or were isolated via cpusets, lest
802          * the timer run on a CPU which does not service all runqueues,
803          * potentially leaving other CPUs indefinitely throttled.  If
804          * isolation is really required, the user will turn the throttle
805          * off to kill the perturbations it causes anyway.  Meanwhile,
806          * this maintains functionality for boot and/or troubleshooting.
807          */
808         if (rt_b == &root_task_group.rt_bandwidth)
809                 span = cpu_online_mask;
810 #endif
811         for_each_cpu(i, span) {
812                 int enqueue = 0;
813                 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
814                 struct rq *rq = rq_of_rt_rq(rt_rq);
815
816                 raw_spin_lock(&rq->lock);
817                 if (rt_rq->rt_time) {
818                         u64 runtime;
819
820                         raw_spin_lock(&rt_rq->rt_runtime_lock);
821                         if (rt_rq->rt_throttled)
822                                 balance_runtime(rt_rq);
823                         runtime = rt_rq->rt_runtime;
824                         rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
825                         if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
826                                 rt_rq->rt_throttled = 0;
827                                 enqueue = 1;
828
829                                 /*
830                                  * Force a clock update if the CPU was idle,
831                                  * lest wakeup -> unthrottle time accumulate.
832                                  */
833                                 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
834                                         rq->skip_clock_update = -1;
835                         }
836                         if (rt_rq->rt_time || rt_rq->rt_nr_running)
837                                 idle = 0;
838                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
839                 } else if (rt_rq->rt_nr_running) {
840                         idle = 0;
841                         if (!rt_rq_throttled(rt_rq))
842                                 enqueue = 1;
843                 }
844                 if (rt_rq->rt_throttled)
845                         throttled = 1;
846
847                 if (enqueue)
848                         sched_rt_rq_enqueue(rt_rq);
849                 raw_spin_unlock(&rq->lock);
850         }
851
852         if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
853                 return 1;
854
855         return idle;
856 }
857
858 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
859 {
860 #ifdef CONFIG_RT_GROUP_SCHED
861         struct rt_rq *rt_rq = group_rt_rq(rt_se);
862
863         if (rt_rq)
864                 return rt_rq->highest_prio.curr;
865 #endif
866
867         return rt_task_of(rt_se)->prio;
868 }
869
870 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
871 {
872         u64 runtime = sched_rt_runtime(rt_rq);
873
874         if (rt_rq->rt_throttled)
875                 return rt_rq_throttled(rt_rq);
876
877         if (runtime >= sched_rt_period(rt_rq))
878                 return 0;
879
880         balance_runtime(rt_rq);
881         runtime = sched_rt_runtime(rt_rq);
882         if (runtime == RUNTIME_INF)
883                 return 0;
884
885         if (rt_rq->rt_time > runtime) {
886                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
887
888                 /*
889                  * Don't actually throttle groups that have no runtime assigned
890                  * but accrue some time due to boosting.
891                  */
892                 if (likely(rt_b->rt_runtime)) {
893                         rt_rq->rt_throttled = 1;
894                         printk_deferred_once("sched: RT throttling activated\n");
895                 } else {
896                         /*
897                          * In case we did anyway, make it go away,
898                          * replenishment is a joke, since it will replenish us
899                          * with exactly 0 ns.
900                          */
901                         rt_rq->rt_time = 0;
902                 }
903
904                 if (rt_rq_throttled(rt_rq)) {
905                         sched_rt_rq_dequeue(rt_rq);
906                         return 1;
907                 }
908         }
909
910         return 0;
911 }
912
913 /*
914  * Update the current task's runtime statistics. Skip current tasks that
915  * are not in our scheduling class.
916  */
917 static void update_curr_rt(struct rq *rq)
918 {
919         struct task_struct *curr = rq->curr;
920         struct sched_rt_entity *rt_se = &curr->rt;
921         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
922         u64 delta_exec;
923
924         if (curr->sched_class != &rt_sched_class)
925                 return;
926
927         delta_exec = rq_clock_task(rq) - curr->se.exec_start;
928         if (unlikely((s64)delta_exec <= 0))
929                 return;
930
931         schedstat_set(curr->se.statistics.exec_max,
932                       max(curr->se.statistics.exec_max, delta_exec));
933
934         curr->se.sum_exec_runtime += delta_exec;
935         account_group_exec_runtime(curr, delta_exec);
936
937         curr->se.exec_start = rq_clock_task(rq);
938         cpuacct_charge(curr, delta_exec);
939
940         sched_rt_avg_update(rq, delta_exec);
941
942         if (!rt_bandwidth_enabled())
943                 return;
944
945         for_each_sched_rt_entity(rt_se) {
946                 rt_rq = rt_rq_of_se(rt_se);
947
948                 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
949                         raw_spin_lock(&rt_rq->rt_runtime_lock);
950                         rt_rq->rt_time += delta_exec;
951                         if (sched_rt_runtime_exceeded(rt_rq))
952                                 resched_task(curr);
953                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
954                 }
955         }
956 }
957
958 static void
959 dequeue_top_rt_rq(struct rt_rq *rt_rq)
960 {
961         struct rq *rq = rq_of_rt_rq(rt_rq);
962
963         BUG_ON(&rq->rt != rt_rq);
964
965         if (!rt_rq->rt_queued)
966                 return;
967
968         BUG_ON(!rq->nr_running);
969
970         sub_nr_running(rq, rt_rq->rt_nr_running);
971         rt_rq->rt_queued = 0;
972 }
973
974 static void
975 enqueue_top_rt_rq(struct rt_rq *rt_rq)
976 {
977         struct rq *rq = rq_of_rt_rq(rt_rq);
978
979         BUG_ON(&rq->rt != rt_rq);
980
981         if (rt_rq->rt_queued)
982                 return;
983         if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running)
984                 return;
985
986         add_nr_running(rq, rt_rq->rt_nr_running);
987         rt_rq->rt_queued = 1;
988 }
989
990 #if defined CONFIG_SMP
991
992 static void
993 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
994 {
995         struct rq *rq = rq_of_rt_rq(rt_rq);
996
997 #ifdef CONFIG_RT_GROUP_SCHED
998         /*
999          * Change rq's cpupri only if rt_rq is the top queue.
1000          */
1001         if (&rq->rt != rt_rq)
1002                 return;
1003 #endif
1004         if (rq->online && prio < prev_prio)
1005                 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1006 }
1007
1008 static void
1009 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1010 {
1011         struct rq *rq = rq_of_rt_rq(rt_rq);
1012
1013 #ifdef CONFIG_RT_GROUP_SCHED
1014         /*
1015          * Change rq's cpupri only if rt_rq is the top queue.
1016          */
1017         if (&rq->rt != rt_rq)
1018                 return;
1019 #endif
1020         if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1021                 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1022 }
1023
1024 #else /* CONFIG_SMP */
1025
1026 static inline
1027 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1028 static inline
1029 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1030
1031 #endif /* CONFIG_SMP */
1032
1033 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1034 static void
1035 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1036 {
1037         int prev_prio = rt_rq->highest_prio.curr;
1038
1039         if (prio < prev_prio)
1040                 rt_rq->highest_prio.curr = prio;
1041
1042         inc_rt_prio_smp(rt_rq, prio, prev_prio);
1043 }
1044
1045 static void
1046 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1047 {
1048         int prev_prio = rt_rq->highest_prio.curr;
1049
1050         if (rt_rq->rt_nr_running) {
1051
1052                 WARN_ON(prio < prev_prio);
1053
1054                 /*
1055                  * This may have been our highest task, and therefore
1056                  * we may have some recomputation to do
1057                  */
1058                 if (prio == prev_prio) {
1059                         struct rt_prio_array *array = &rt_rq->active;
1060
1061                         rt_rq->highest_prio.curr =
1062                                 sched_find_first_bit(array->bitmap);
1063                 }
1064
1065         } else
1066                 rt_rq->highest_prio.curr = MAX_RT_PRIO;
1067
1068         dec_rt_prio_smp(rt_rq, prio, prev_prio);
1069 }
1070
1071 #else
1072
1073 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1074 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1075
1076 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1077
1078 #ifdef CONFIG_RT_GROUP_SCHED
1079
1080 static void
1081 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1082 {
1083         if (rt_se_boosted(rt_se))
1084                 rt_rq->rt_nr_boosted++;
1085
1086         if (rt_rq->tg)
1087                 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1088 }
1089
1090 static void
1091 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1092 {
1093         if (rt_se_boosted(rt_se))
1094                 rt_rq->rt_nr_boosted--;
1095
1096         WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1097 }
1098
1099 #else /* CONFIG_RT_GROUP_SCHED */
1100
1101 static void
1102 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1103 {
1104         start_rt_bandwidth(&def_rt_bandwidth);
1105 }
1106
1107 static inline
1108 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1109
1110 #endif /* CONFIG_RT_GROUP_SCHED */
1111
1112 static inline
1113 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1114 {
1115         struct rt_rq *group_rq = group_rt_rq(rt_se);
1116
1117         if (group_rq)
1118                 return group_rq->rt_nr_running;
1119         else
1120                 return 1;
1121 }
1122
1123 static inline
1124 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1125 {
1126         int prio = rt_se_prio(rt_se);
1127
1128         WARN_ON(!rt_prio(prio));
1129         rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1130
1131         inc_rt_prio(rt_rq, prio);
1132         inc_rt_migration(rt_se, rt_rq);
1133         inc_rt_group(rt_se, rt_rq);
1134 }
1135
1136 static inline
1137 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1138 {
1139         WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1140         WARN_ON(!rt_rq->rt_nr_running);
1141         rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1142
1143         dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1144         dec_rt_migration(rt_se, rt_rq);
1145         dec_rt_group(rt_se, rt_rq);
1146 }
1147
1148 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1149 {
1150         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1151         struct rt_prio_array *array = &rt_rq->active;
1152         struct rt_rq *group_rq = group_rt_rq(rt_se);
1153         struct list_head *queue = array->queue + rt_se_prio(rt_se);
1154
1155         /*
1156          * Don't enqueue the group if its throttled, or when empty.
1157          * The latter is a consequence of the former when a child group
1158          * get throttled and the current group doesn't have any other
1159          * active members.
1160          */
1161         if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
1162                 return;
1163
1164         if (head)
1165                 list_add(&rt_se->run_list, queue);
1166         else
1167                 list_add_tail(&rt_se->run_list, queue);
1168         __set_bit(rt_se_prio(rt_se), array->bitmap);
1169
1170         inc_rt_tasks(rt_se, rt_rq);
1171 }
1172
1173 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
1174 {
1175         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1176         struct rt_prio_array *array = &rt_rq->active;
1177
1178         list_del_init(&rt_se->run_list);
1179         if (list_empty(array->queue + rt_se_prio(rt_se)))
1180                 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1181
1182         dec_rt_tasks(rt_se, rt_rq);
1183 }
1184
1185 /*
1186  * Because the prio of an upper entry depends on the lower
1187  * entries, we must remove entries top - down.
1188  */
1189 static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
1190 {
1191         struct sched_rt_entity *back = NULL;
1192
1193         for_each_sched_rt_entity(rt_se) {
1194                 rt_se->back = back;
1195                 back = rt_se;
1196         }
1197
1198         dequeue_top_rt_rq(rt_rq_of_se(back));
1199
1200         for (rt_se = back; rt_se; rt_se = rt_se->back) {
1201                 if (on_rt_rq(rt_se))
1202                         __dequeue_rt_entity(rt_se);
1203         }
1204 }
1205
1206 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1207 {
1208         struct rq *rq = rq_of_rt_se(rt_se);
1209
1210         dequeue_rt_stack(rt_se);
1211         for_each_sched_rt_entity(rt_se)
1212                 __enqueue_rt_entity(rt_se, head);
1213         enqueue_top_rt_rq(&rq->rt);
1214 }
1215
1216 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
1217 {
1218         struct rq *rq = rq_of_rt_se(rt_se);
1219
1220         dequeue_rt_stack(rt_se);
1221
1222         for_each_sched_rt_entity(rt_se) {
1223                 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1224
1225                 if (rt_rq && rt_rq->rt_nr_running)
1226                         __enqueue_rt_entity(rt_se, false);
1227         }
1228         enqueue_top_rt_rq(&rq->rt);
1229 }
1230
1231 /*
1232  * Adding/removing a task to/from a priority array:
1233  */
1234 static void
1235 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1236 {
1237         struct sched_rt_entity *rt_se = &p->rt;
1238
1239         if (flags & ENQUEUE_WAKEUP)
1240                 rt_se->timeout = 0;
1241
1242         enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
1243
1244         if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1245                 enqueue_pushable_task(rq, p);
1246 }
1247
1248 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1249 {
1250         struct sched_rt_entity *rt_se = &p->rt;
1251
1252         update_curr_rt(rq);
1253         dequeue_rt_entity(rt_se);
1254
1255         dequeue_pushable_task(rq, p);
1256 }
1257
1258 /*
1259  * Put task to the head or the end of the run list without the overhead of
1260  * dequeue followed by enqueue.
1261  */
1262 static void
1263 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1264 {
1265         if (on_rt_rq(rt_se)) {
1266                 struct rt_prio_array *array = &rt_rq->active;
1267                 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1268
1269                 if (head)
1270                         list_move(&rt_se->run_list, queue);
1271                 else
1272                         list_move_tail(&rt_se->run_list, queue);
1273         }
1274 }
1275
1276 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1277 {
1278         struct sched_rt_entity *rt_se = &p->rt;
1279         struct rt_rq *rt_rq;
1280
1281         for_each_sched_rt_entity(rt_se) {
1282                 rt_rq = rt_rq_of_se(rt_se);
1283                 requeue_rt_entity(rt_rq, rt_se, head);
1284         }
1285 }
1286
1287 static void yield_task_rt(struct rq *rq)
1288 {
1289         requeue_task_rt(rq, rq->curr, 0);
1290 }
1291
1292 #ifdef CONFIG_SMP
1293 static int find_lowest_rq(struct task_struct *task);
1294
1295 static int
1296 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1297 {
1298         struct task_struct *curr;
1299         struct rq *rq;
1300
1301         if (p->nr_cpus_allowed == 1)
1302                 goto out;
1303
1304         /* For anything but wake ups, just return the task_cpu */
1305         if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1306                 goto out;
1307
1308         rq = cpu_rq(cpu);
1309
1310         rcu_read_lock();
1311         curr = ACCESS_ONCE(rq->curr); /* unlocked access */
1312
1313         /*
1314          * If the current task on @p's runqueue is an RT task, then
1315          * try to see if we can wake this RT task up on another
1316          * runqueue. Otherwise simply start this RT task
1317          * on its current runqueue.
1318          *
1319          * We want to avoid overloading runqueues. If the woken
1320          * task is a higher priority, then it will stay on this CPU
1321          * and the lower prio task should be moved to another CPU.
1322          * Even though this will probably make the lower prio task
1323          * lose its cache, we do not want to bounce a higher task
1324          * around just because it gave up its CPU, perhaps for a
1325          * lock?
1326          *
1327          * For equal prio tasks, we just let the scheduler sort it out.
1328          *
1329          * Otherwise, just let it ride on the affined RQ and the
1330          * post-schedule router will push the preempted task away
1331          *
1332          * This test is optimistic, if we get it wrong the load-balancer
1333          * will have to sort it out.
1334          */
1335         if (curr && unlikely(rt_task(curr)) &&
1336             (curr->nr_cpus_allowed < 2 ||
1337              curr->prio <= p->prio)) {
1338                 int target = find_lowest_rq(p);
1339
1340                 if (target != -1)
1341                         cpu = target;
1342         }
1343         rcu_read_unlock();
1344
1345 out:
1346         return cpu;
1347 }
1348
1349 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1350 {
1351         if (rq->curr->nr_cpus_allowed == 1)
1352                 return;
1353
1354         if (p->nr_cpus_allowed != 1
1355             && cpupri_find(&rq->rd->cpupri, p, NULL))
1356                 return;
1357
1358         if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1359                 return;
1360
1361         /*
1362          * There appears to be other cpus that can accept
1363          * current and none to run 'p', so lets reschedule
1364          * to try and push current away:
1365          */
1366         requeue_task_rt(rq, p, 1);
1367         resched_task(rq->curr);
1368 }
1369
1370 #endif /* CONFIG_SMP */
1371
1372 /*
1373  * Preempt the current task with a newly woken task if needed:
1374  */
1375 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1376 {
1377         if (p->prio < rq->curr->prio) {
1378                 resched_task(rq->curr);
1379                 return;
1380         }
1381
1382 #ifdef CONFIG_SMP
1383         /*
1384          * If:
1385          *
1386          * - the newly woken task is of equal priority to the current task
1387          * - the newly woken task is non-migratable while current is migratable
1388          * - current will be preempted on the next reschedule
1389          *
1390          * we should check to see if current can readily move to a different
1391          * cpu.  If so, we will reschedule to allow the push logic to try
1392          * to move current somewhere else, making room for our non-migratable
1393          * task.
1394          */
1395         if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1396                 check_preempt_equal_prio(rq, p);
1397 #endif
1398 }
1399
1400 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1401                                                    struct rt_rq *rt_rq)
1402 {
1403         struct rt_prio_array *array = &rt_rq->active;
1404         struct sched_rt_entity *next = NULL;
1405         struct list_head *queue;
1406         int idx;
1407
1408         idx = sched_find_first_bit(array->bitmap);
1409         BUG_ON(idx >= MAX_RT_PRIO);
1410
1411         queue = array->queue + idx;
1412         next = list_entry(queue->next, struct sched_rt_entity, run_list);
1413
1414         return next;
1415 }
1416
1417 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1418 {
1419         struct sched_rt_entity *rt_se;
1420         struct task_struct *p;
1421         struct rt_rq *rt_rq  = &rq->rt;
1422
1423         do {
1424                 rt_se = pick_next_rt_entity(rq, rt_rq);
1425                 BUG_ON(!rt_se);
1426                 rt_rq = group_rt_rq(rt_se);
1427         } while (rt_rq);
1428
1429         p = rt_task_of(rt_se);
1430         p->se.exec_start = rq_clock_task(rq);
1431
1432         return p;
1433 }
1434
1435 static struct task_struct *
1436 pick_next_task_rt(struct rq *rq, struct task_struct *prev)
1437 {
1438         struct task_struct *p;
1439         struct rt_rq *rt_rq = &rq->rt;
1440
1441         if (need_pull_rt_task(rq, prev)) {
1442                 pull_rt_task(rq);
1443                 /*
1444                  * pull_rt_task() can drop (and re-acquire) rq->lock; this
1445                  * means a dl or stop task can slip in, in which case we need
1446                  * to re-start task selection.
1447                  */
1448                 if (unlikely((rq->stop && rq->stop->on_rq) ||
1449                              rq->dl.dl_nr_running))
1450                         return RETRY_TASK;
1451         }
1452
1453         /*
1454          * We may dequeue prev's rt_rq in put_prev_task().
1455          * So, we update time before rt_nr_running check.
1456          */
1457         if (prev->sched_class == &rt_sched_class)
1458                 update_curr_rt(rq);
1459
1460         if (!rt_rq->rt_queued)
1461                 return NULL;
1462
1463         put_prev_task(rq, prev);
1464
1465         p = _pick_next_task_rt(rq);
1466
1467         /* The running task is never eligible for pushing */
1468         if (p)
1469                 dequeue_pushable_task(rq, p);
1470
1471         set_post_schedule(rq);
1472
1473         return p;
1474 }
1475
1476 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1477 {
1478         update_curr_rt(rq);
1479
1480         /*
1481          * The previous task needs to be made eligible for pushing
1482          * if it is still active
1483          */
1484         if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1485                 enqueue_pushable_task(rq, p);
1486 }
1487
1488 #ifdef CONFIG_SMP
1489
1490 /* Only try algorithms three times */
1491 #define RT_MAX_TRIES 3
1492
1493 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1494 {
1495         if (!task_running(rq, p) &&
1496             cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1497                 return 1;
1498         return 0;
1499 }
1500
1501 /*
1502  * Return the highest pushable rq's task, which is suitable to be executed
1503  * on the cpu, NULL otherwise
1504  */
1505 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1506 {
1507         struct plist_head *head = &rq->rt.pushable_tasks;
1508         struct task_struct *p;
1509
1510         if (!has_pushable_tasks(rq))
1511                 return NULL;
1512
1513         plist_for_each_entry(p, head, pushable_tasks) {
1514                 if (pick_rt_task(rq, p, cpu))
1515                         return p;
1516         }
1517
1518         return NULL;
1519 }
1520
1521 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1522
1523 static int find_lowest_rq(struct task_struct *task)
1524 {
1525         struct sched_domain *sd;
1526         struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
1527         int this_cpu = smp_processor_id();
1528         int cpu      = task_cpu(task);
1529
1530         /* Make sure the mask is initialized first */
1531         if (unlikely(!lowest_mask))
1532                 return -1;
1533
1534         if (task->nr_cpus_allowed == 1)
1535                 return -1; /* No other targets possible */
1536
1537         if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1538                 return -1; /* No targets found */
1539
1540         /*
1541          * At this point we have built a mask of cpus representing the
1542          * lowest priority tasks in the system.  Now we want to elect
1543          * the best one based on our affinity and topology.
1544          *
1545          * We prioritize the last cpu that the task executed on since
1546          * it is most likely cache-hot in that location.
1547          */
1548         if (cpumask_test_cpu(cpu, lowest_mask))
1549                 return cpu;
1550
1551         /*
1552          * Otherwise, we consult the sched_domains span maps to figure
1553          * out which cpu is logically closest to our hot cache data.
1554          */
1555         if (!cpumask_test_cpu(this_cpu, lowest_mask))
1556                 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1557
1558         rcu_read_lock();
1559         for_each_domain(cpu, sd) {
1560                 if (sd->flags & SD_WAKE_AFFINE) {
1561                         int best_cpu;
1562
1563                         /*
1564                          * "this_cpu" is cheaper to preempt than a
1565                          * remote processor.
1566                          */
1567                         if (this_cpu != -1 &&
1568                             cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1569                                 rcu_read_unlock();
1570                                 return this_cpu;
1571                         }
1572
1573                         best_cpu = cpumask_first_and(lowest_mask,
1574                                                      sched_domain_span(sd));
1575                         if (best_cpu < nr_cpu_ids) {
1576                                 rcu_read_unlock();
1577                                 return best_cpu;
1578                         }
1579                 }
1580         }
1581         rcu_read_unlock();
1582
1583         /*
1584          * And finally, if there were no matches within the domains
1585          * just give the caller *something* to work with from the compatible
1586          * locations.
1587          */
1588         if (this_cpu != -1)
1589                 return this_cpu;
1590
1591         cpu = cpumask_any(lowest_mask);
1592         if (cpu < nr_cpu_ids)
1593                 return cpu;
1594         return -1;
1595 }
1596
1597 /* Will lock the rq it finds */
1598 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1599 {
1600         struct rq *lowest_rq = NULL;
1601         int tries;
1602         int cpu;
1603
1604         for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1605                 cpu = find_lowest_rq(task);
1606
1607                 if ((cpu == -1) || (cpu == rq->cpu))
1608                         break;
1609
1610                 lowest_rq = cpu_rq(cpu);
1611
1612                 /* if the prio of this runqueue changed, try again */
1613                 if (double_lock_balance(rq, lowest_rq)) {
1614                         /*
1615                          * We had to unlock the run queue. In
1616                          * the mean time, task could have
1617                          * migrated already or had its affinity changed.
1618                          * Also make sure that it wasn't scheduled on its rq.
1619                          */
1620                         if (unlikely(task_rq(task) != rq ||
1621                                      !cpumask_test_cpu(lowest_rq->cpu,
1622                                                        tsk_cpus_allowed(task)) ||
1623                                      task_running(rq, task) ||
1624                                      !task->on_rq)) {
1625
1626                                 double_unlock_balance(rq, lowest_rq);
1627                                 lowest_rq = NULL;
1628                                 break;
1629                         }
1630                 }
1631
1632                 /* If this rq is still suitable use it. */
1633                 if (lowest_rq->rt.highest_prio.curr > task->prio)
1634                         break;
1635
1636                 /* try again */
1637                 double_unlock_balance(rq, lowest_rq);
1638                 lowest_rq = NULL;
1639         }
1640
1641         return lowest_rq;
1642 }
1643
1644 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1645 {
1646         struct task_struct *p;
1647
1648         if (!has_pushable_tasks(rq))
1649                 return NULL;
1650
1651         p = plist_first_entry(&rq->rt.pushable_tasks,
1652                               struct task_struct, pushable_tasks);
1653
1654         BUG_ON(rq->cpu != task_cpu(p));
1655         BUG_ON(task_current(rq, p));
1656         BUG_ON(p->nr_cpus_allowed <= 1);
1657
1658         BUG_ON(!p->on_rq);
1659         BUG_ON(!rt_task(p));
1660
1661         return p;
1662 }
1663
1664 /*
1665  * If the current CPU has more than one RT task, see if the non
1666  * running task can migrate over to a CPU that is running a task
1667  * of lesser priority.
1668  */
1669 static int push_rt_task(struct rq *rq)
1670 {
1671         struct task_struct *next_task;
1672         struct rq *lowest_rq;
1673         int ret = 0;
1674
1675         if (!rq->rt.overloaded)
1676                 return 0;
1677
1678         next_task = pick_next_pushable_task(rq);
1679         if (!next_task)
1680                 return 0;
1681
1682 retry:
1683         if (unlikely(next_task == rq->curr)) {
1684                 WARN_ON(1);
1685                 return 0;
1686         }
1687
1688         /*
1689          * It's possible that the next_task slipped in of
1690          * higher priority than current. If that's the case
1691          * just reschedule current.
1692          */
1693         if (unlikely(next_task->prio < rq->curr->prio)) {
1694                 resched_task(rq->curr);
1695                 return 0;
1696         }
1697
1698         /* We might release rq lock */
1699         get_task_struct(next_task);
1700
1701         /* find_lock_lowest_rq locks the rq if found */
1702         lowest_rq = find_lock_lowest_rq(next_task, rq);
1703         if (!lowest_rq) {
1704                 struct task_struct *task;
1705                 /*
1706                  * find_lock_lowest_rq releases rq->lock
1707                  * so it is possible that next_task has migrated.
1708                  *
1709                  * We need to make sure that the task is still on the same
1710                  * run-queue and is also still the next task eligible for
1711                  * pushing.
1712                  */
1713                 task = pick_next_pushable_task(rq);
1714                 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1715                         /*
1716                          * The task hasn't migrated, and is still the next
1717                          * eligible task, but we failed to find a run-queue
1718                          * to push it to.  Do not retry in this case, since
1719                          * other cpus will pull from us when ready.
1720                          */
1721                         goto out;
1722                 }
1723
1724                 if (!task)
1725                         /* No more tasks, just exit */
1726                         goto out;
1727
1728                 /*
1729                  * Something has shifted, try again.
1730                  */
1731                 put_task_struct(next_task);
1732                 next_task = task;
1733                 goto retry;
1734         }
1735
1736         deactivate_task(rq, next_task, 0);
1737         set_task_cpu(next_task, lowest_rq->cpu);
1738         activate_task(lowest_rq, next_task, 0);
1739         ret = 1;
1740
1741         resched_task(lowest_rq->curr);
1742
1743         double_unlock_balance(rq, lowest_rq);
1744
1745 out:
1746         put_task_struct(next_task);
1747
1748         return ret;
1749 }
1750
1751 static void push_rt_tasks(struct rq *rq)
1752 {
1753         /* push_rt_task will return true if it moved an RT */
1754         while (push_rt_task(rq))
1755                 ;
1756 }
1757
1758 static int pull_rt_task(struct rq *this_rq)
1759 {
1760         int this_cpu = this_rq->cpu, ret = 0, cpu;
1761         struct task_struct *p;
1762         struct rq *src_rq;
1763
1764         if (likely(!rt_overloaded(this_rq)))
1765                 return 0;
1766
1767         /*
1768          * Match the barrier from rt_set_overloaded; this guarantees that if we
1769          * see overloaded we must also see the rto_mask bit.
1770          */
1771         smp_rmb();
1772
1773         for_each_cpu(cpu, this_rq->rd->rto_mask) {
1774                 if (this_cpu == cpu)
1775                         continue;
1776
1777                 src_rq = cpu_rq(cpu);
1778
1779                 /*
1780                  * Don't bother taking the src_rq->lock if the next highest
1781                  * task is known to be lower-priority than our current task.
1782                  * This may look racy, but if this value is about to go
1783                  * logically higher, the src_rq will push this task away.
1784                  * And if its going logically lower, we do not care
1785                  */
1786                 if (src_rq->rt.highest_prio.next >=
1787                     this_rq->rt.highest_prio.curr)
1788                         continue;
1789
1790                 /*
1791                  * We can potentially drop this_rq's lock in
1792                  * double_lock_balance, and another CPU could
1793                  * alter this_rq
1794                  */
1795                 double_lock_balance(this_rq, src_rq);
1796
1797                 /*
1798                  * We can pull only a task, which is pushable
1799                  * on its rq, and no others.
1800                  */
1801                 p = pick_highest_pushable_task(src_rq, this_cpu);
1802
1803                 /*
1804                  * Do we have an RT task that preempts
1805                  * the to-be-scheduled task?
1806                  */
1807                 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1808                         WARN_ON(p == src_rq->curr);
1809                         WARN_ON(!p->on_rq);
1810
1811                         /*
1812                          * There's a chance that p is higher in priority
1813                          * than what's currently running on its cpu.
1814                          * This is just that p is wakeing up and hasn't
1815                          * had a chance to schedule. We only pull
1816                          * p if it is lower in priority than the
1817                          * current task on the run queue
1818                          */
1819                         if (p->prio < src_rq->curr->prio)
1820                                 goto skip;
1821
1822                         ret = 1;
1823
1824                         deactivate_task(src_rq, p, 0);
1825                         set_task_cpu(p, this_cpu);
1826                         activate_task(this_rq, p, 0);
1827                         /*
1828                          * We continue with the search, just in
1829                          * case there's an even higher prio task
1830                          * in another runqueue. (low likelihood
1831                          * but possible)
1832                          */
1833                 }
1834 skip:
1835                 double_unlock_balance(this_rq, src_rq);
1836         }
1837
1838         return ret;
1839 }
1840
1841 static void post_schedule_rt(struct rq *rq)
1842 {
1843         push_rt_tasks(rq);
1844 }
1845
1846 /*
1847  * If we are not running and we are not going to reschedule soon, we should
1848  * try to push tasks away now
1849  */
1850 static void task_woken_rt(struct rq *rq, struct task_struct *p)
1851 {
1852         if (!task_running(rq, p) &&
1853             !test_tsk_need_resched(rq->curr) &&
1854             has_pushable_tasks(rq) &&
1855             p->nr_cpus_allowed > 1 &&
1856             (dl_task(rq->curr) || rt_task(rq->curr)) &&
1857             (rq->curr->nr_cpus_allowed < 2 ||
1858              rq->curr->prio <= p->prio))
1859                 push_rt_tasks(rq);
1860 }
1861
1862 static void set_cpus_allowed_rt(struct task_struct *p,
1863                                 const struct cpumask *new_mask)
1864 {
1865         struct rq *rq;
1866         int weight;
1867
1868         BUG_ON(!rt_task(p));
1869
1870         if (!p->on_rq)
1871                 return;
1872
1873         weight = cpumask_weight(new_mask);
1874
1875         /*
1876          * Only update if the process changes its state from whether it
1877          * can migrate or not.
1878          */
1879         if ((p->nr_cpus_allowed > 1) == (weight > 1))
1880                 return;
1881
1882         rq = task_rq(p);
1883
1884         /*
1885          * The process used to be able to migrate OR it can now migrate
1886          */
1887         if (weight <= 1) {
1888                 if (!task_current(rq, p))
1889                         dequeue_pushable_task(rq, p);
1890                 BUG_ON(!rq->rt.rt_nr_migratory);
1891                 rq->rt.rt_nr_migratory--;
1892         } else {
1893                 if (!task_current(rq, p))
1894                         enqueue_pushable_task(rq, p);
1895                 rq->rt.rt_nr_migratory++;
1896         }
1897
1898         update_rt_migration(&rq->rt);
1899 }
1900
1901 /* Assumes rq->lock is held */
1902 static void rq_online_rt(struct rq *rq)
1903 {
1904         if (rq->rt.overloaded)
1905                 rt_set_overload(rq);
1906
1907         __enable_runtime(rq);
1908
1909         cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1910 }
1911
1912 /* Assumes rq->lock is held */
1913 static void rq_offline_rt(struct rq *rq)
1914 {
1915         if (rq->rt.overloaded)
1916                 rt_clear_overload(rq);
1917
1918         __disable_runtime(rq);
1919
1920         cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1921 }
1922
1923 /*
1924  * When switch from the rt queue, we bring ourselves to a position
1925  * that we might want to pull RT tasks from other runqueues.
1926  */
1927 static void switched_from_rt(struct rq *rq, struct task_struct *p)
1928 {
1929         /*
1930          * If there are other RT tasks then we will reschedule
1931          * and the scheduling of the other RT tasks will handle
1932          * the balancing. But if we are the last RT task
1933          * we may need to handle the pulling of RT tasks
1934          * now.
1935          */
1936         if (!p->on_rq || rq->rt.rt_nr_running)
1937                 return;
1938
1939         if (pull_rt_task(rq))
1940                 resched_task(rq->curr);
1941 }
1942
1943 void __init init_sched_rt_class(void)
1944 {
1945         unsigned int i;
1946
1947         for_each_possible_cpu(i) {
1948                 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1949                                         GFP_KERNEL, cpu_to_node(i));
1950         }
1951 }
1952 #endif /* CONFIG_SMP */
1953
1954 /*
1955  * When switching a task to RT, we may overload the runqueue
1956  * with RT tasks. In this case we try to push them off to
1957  * other runqueues.
1958  */
1959 static void switched_to_rt(struct rq *rq, struct task_struct *p)
1960 {
1961         int check_resched = 1;
1962
1963         /*
1964          * If we are already running, then there's nothing
1965          * that needs to be done. But if we are not running
1966          * we may need to preempt the current running task.
1967          * If that current running task is also an RT task
1968          * then see if we can move to another run queue.
1969          */
1970         if (p->on_rq && rq->curr != p) {
1971 #ifdef CONFIG_SMP
1972                 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded &&
1973                     /* Don't resched if we changed runqueues */
1974                     push_rt_task(rq) && rq != task_rq(p))
1975                         check_resched = 0;
1976 #endif /* CONFIG_SMP */
1977                 if (check_resched && p->prio < rq->curr->prio)
1978                         resched_task(rq->curr);
1979         }
1980 }
1981
1982 /*
1983  * Priority of the task has changed. This may cause
1984  * us to initiate a push or pull.
1985  */
1986 static void
1987 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
1988 {
1989         if (!p->on_rq)
1990                 return;
1991
1992         if (rq->curr == p) {
1993 #ifdef CONFIG_SMP
1994                 /*
1995                  * If our priority decreases while running, we
1996                  * may need to pull tasks to this runqueue.
1997                  */
1998                 if (oldprio < p->prio)
1999                         pull_rt_task(rq);
2000                 /*
2001                  * If there's a higher priority task waiting to run
2002                  * then reschedule. Note, the above pull_rt_task
2003                  * can release the rq lock and p could migrate.
2004                  * Only reschedule if p is still on the same runqueue.
2005                  */
2006                 if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
2007                         resched_task(p);
2008 #else
2009                 /* For UP simply resched on drop of prio */
2010                 if (oldprio < p->prio)
2011                         resched_task(p);
2012 #endif /* CONFIG_SMP */
2013         } else {
2014                 /*
2015                  * This task is not running, but if it is
2016                  * greater than the current running task
2017                  * then reschedule.
2018                  */
2019                 if (p->prio < rq->curr->prio)
2020                         resched_task(rq->curr);
2021         }
2022 }
2023
2024 static void watchdog(struct rq *rq, struct task_struct *p)
2025 {
2026         unsigned long soft, hard;
2027
2028         /* max may change after cur was read, this will be fixed next tick */
2029         soft = task_rlimit(p, RLIMIT_RTTIME);
2030         hard = task_rlimit_max(p, RLIMIT_RTTIME);
2031
2032         if (soft != RLIM_INFINITY) {
2033                 unsigned long next;
2034
2035                 if (p->rt.watchdog_stamp != jiffies) {
2036                         p->rt.timeout++;
2037                         p->rt.watchdog_stamp = jiffies;
2038                 }
2039
2040                 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2041                 if (p->rt.timeout > next)
2042                         p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
2043         }
2044 }
2045
2046 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2047 {
2048         struct sched_rt_entity *rt_se = &p->rt;
2049
2050         update_curr_rt(rq);
2051
2052         watchdog(rq, p);
2053
2054         /*
2055          * RR tasks need a special form of timeslice management.
2056          * FIFO tasks have no timeslices.
2057          */
2058         if (p->policy != SCHED_RR)
2059                 return;
2060
2061         if (--p->rt.time_slice)
2062                 return;
2063
2064         p->rt.time_slice = sched_rr_timeslice;
2065
2066         /*
2067          * Requeue to the end of queue if we (and all of our ancestors) are not
2068          * the only element on the queue
2069          */
2070         for_each_sched_rt_entity(rt_se) {
2071                 if (rt_se->run_list.prev != rt_se->run_list.next) {
2072                         requeue_task_rt(rq, p, 0);
2073                         set_tsk_need_resched(p);
2074                         return;
2075                 }
2076         }
2077 }
2078
2079 static void set_curr_task_rt(struct rq *rq)
2080 {
2081         struct task_struct *p = rq->curr;
2082
2083         p->se.exec_start = rq_clock_task(rq);
2084
2085         /* The running task is never eligible for pushing */
2086         dequeue_pushable_task(rq, p);
2087 }
2088
2089 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2090 {
2091         /*
2092          * Time slice is 0 for SCHED_FIFO tasks
2093          */
2094         if (task->policy == SCHED_RR)
2095                 return sched_rr_timeslice;
2096         else
2097                 return 0;
2098 }
2099
2100 const struct sched_class rt_sched_class = {
2101         .next                   = &fair_sched_class,
2102         .enqueue_task           = enqueue_task_rt,
2103         .dequeue_task           = dequeue_task_rt,
2104         .yield_task             = yield_task_rt,
2105
2106         .check_preempt_curr     = check_preempt_curr_rt,
2107
2108         .pick_next_task         = pick_next_task_rt,
2109         .put_prev_task          = put_prev_task_rt,
2110
2111 #ifdef CONFIG_SMP
2112         .select_task_rq         = select_task_rq_rt,
2113
2114         .set_cpus_allowed       = set_cpus_allowed_rt,
2115         .rq_online              = rq_online_rt,
2116         .rq_offline             = rq_offline_rt,
2117         .post_schedule          = post_schedule_rt,
2118         .task_woken             = task_woken_rt,
2119         .switched_from          = switched_from_rt,
2120 #endif
2121
2122         .set_curr_task          = set_curr_task_rt,
2123         .task_tick              = task_tick_rt,
2124
2125         .get_rr_interval        = get_rr_interval_rt,
2126
2127         .prio_changed           = prio_changed_rt,
2128         .switched_to            = switched_to_rt,
2129 };
2130
2131 #ifdef CONFIG_SCHED_DEBUG
2132 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2133
2134 void print_rt_stats(struct seq_file *m, int cpu)
2135 {
2136         rt_rq_iter_t iter;
2137         struct rt_rq *rt_rq;
2138
2139         rcu_read_lock();
2140         for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2141                 print_rt_rq(m, cpu, rt_rq);
2142         rcu_read_unlock();
2143 }
2144 #endif /* CONFIG_SCHED_DEBUG */