Merge branch 'x86-platform-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[cascardo/linux.git] / kernel / sched / sched.h
1
2 #include <linux/sched.h>
3 #include <linux/sched/sysctl.h>
4 #include <linux/sched/rt.h>
5 #include <linux/mutex.h>
6 #include <linux/spinlock.h>
7 #include <linux/stop_machine.h>
8
9 #include "cpupri.h"
10 #include "cpuacct.h"
11
12 extern __read_mostly int scheduler_running;
13
14 /*
15  * Convert user-nice values [ -20 ... 0 ... 19 ]
16  * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
17  * and back.
18  */
19 #define NICE_TO_PRIO(nice)      (MAX_RT_PRIO + (nice) + 20)
20 #define PRIO_TO_NICE(prio)      ((prio) - MAX_RT_PRIO - 20)
21 #define TASK_NICE(p)            PRIO_TO_NICE((p)->static_prio)
22
23 /*
24  * 'User priority' is the nice value converted to something we
25  * can work with better when scaling various scheduler parameters,
26  * it's a [ 0 ... 39 ] range.
27  */
28 #define USER_PRIO(p)            ((p)-MAX_RT_PRIO)
29 #define TASK_USER_PRIO(p)       USER_PRIO((p)->static_prio)
30 #define MAX_USER_PRIO           (USER_PRIO(MAX_PRIO))
31
32 /*
33  * Helpers for converting nanosecond timing to jiffy resolution
34  */
35 #define NS_TO_JIFFIES(TIME)     ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
36
37 /*
38  * Increase resolution of nice-level calculations for 64-bit architectures.
39  * The extra resolution improves shares distribution and load balancing of
40  * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
41  * hierarchies, especially on larger systems. This is not a user-visible change
42  * and does not change the user-interface for setting shares/weights.
43  *
44  * We increase resolution only if we have enough bits to allow this increased
45  * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
46  * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
47  * increased costs.
48  */
49 #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load  */
50 # define SCHED_LOAD_RESOLUTION  10
51 # define scale_load(w)          ((w) << SCHED_LOAD_RESOLUTION)
52 # define scale_load_down(w)     ((w) >> SCHED_LOAD_RESOLUTION)
53 #else
54 # define SCHED_LOAD_RESOLUTION  0
55 # define scale_load(w)          (w)
56 # define scale_load_down(w)     (w)
57 #endif
58
59 #define SCHED_LOAD_SHIFT        (10 + SCHED_LOAD_RESOLUTION)
60 #define SCHED_LOAD_SCALE        (1L << SCHED_LOAD_SHIFT)
61
62 #define NICE_0_LOAD             SCHED_LOAD_SCALE
63 #define NICE_0_SHIFT            SCHED_LOAD_SHIFT
64
65 /*
66  * These are the 'tuning knobs' of the scheduler:
67  */
68
69 /*
70  * single value that denotes runtime == period, ie unlimited time.
71  */
72 #define RUNTIME_INF     ((u64)~0ULL)
73
74 static inline int rt_policy(int policy)
75 {
76         if (policy == SCHED_FIFO || policy == SCHED_RR)
77                 return 1;
78         return 0;
79 }
80
81 static inline int task_has_rt_policy(struct task_struct *p)
82 {
83         return rt_policy(p->policy);
84 }
85
86 /*
87  * This is the priority-queue data structure of the RT scheduling class:
88  */
89 struct rt_prio_array {
90         DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
91         struct list_head queue[MAX_RT_PRIO];
92 };
93
94 struct rt_bandwidth {
95         /* nests inside the rq lock: */
96         raw_spinlock_t          rt_runtime_lock;
97         ktime_t                 rt_period;
98         u64                     rt_runtime;
99         struct hrtimer          rt_period_timer;
100 };
101
102 extern struct mutex sched_domains_mutex;
103
104 #ifdef CONFIG_CGROUP_SCHED
105
106 #include <linux/cgroup.h>
107
108 struct cfs_rq;
109 struct rt_rq;
110
111 extern struct list_head task_groups;
112
113 struct cfs_bandwidth {
114 #ifdef CONFIG_CFS_BANDWIDTH
115         raw_spinlock_t lock;
116         ktime_t period;
117         u64 quota, runtime;
118         s64 hierarchal_quota;
119         u64 runtime_expires;
120
121         int idle, timer_active;
122         struct hrtimer period_timer, slack_timer;
123         struct list_head throttled_cfs_rq;
124
125         /* statistics */
126         int nr_periods, nr_throttled;
127         u64 throttled_time;
128 #endif
129 };
130
131 /* task group related information */
132 struct task_group {
133         struct cgroup_subsys_state css;
134
135 #ifdef CONFIG_FAIR_GROUP_SCHED
136         /* schedulable entities of this group on each cpu */
137         struct sched_entity **se;
138         /* runqueue "owned" by this group on each cpu */
139         struct cfs_rq **cfs_rq;
140         unsigned long shares;
141
142         atomic_t load_weight;
143         atomic64_t load_avg;
144         atomic_t runnable_avg;
145 #endif
146
147 #ifdef CONFIG_RT_GROUP_SCHED
148         struct sched_rt_entity **rt_se;
149         struct rt_rq **rt_rq;
150
151         struct rt_bandwidth rt_bandwidth;
152 #endif
153
154         struct rcu_head rcu;
155         struct list_head list;
156
157         struct task_group *parent;
158         struct list_head siblings;
159         struct list_head children;
160
161 #ifdef CONFIG_SCHED_AUTOGROUP
162         struct autogroup *autogroup;
163 #endif
164
165         struct cfs_bandwidth cfs_bandwidth;
166 };
167
168 #ifdef CONFIG_FAIR_GROUP_SCHED
169 #define ROOT_TASK_GROUP_LOAD    NICE_0_LOAD
170
171 /*
172  * A weight of 0 or 1 can cause arithmetics problems.
173  * A weight of a cfs_rq is the sum of weights of which entities
174  * are queued on this cfs_rq, so a weight of a entity should not be
175  * too large, so as the shares value of a task group.
176  * (The default weight is 1024 - so there's no practical
177  *  limitation from this.)
178  */
179 #define MIN_SHARES      (1UL <<  1)
180 #define MAX_SHARES      (1UL << 18)
181 #endif
182
183 typedef int (*tg_visitor)(struct task_group *, void *);
184
185 extern int walk_tg_tree_from(struct task_group *from,
186                              tg_visitor down, tg_visitor up, void *data);
187
188 /*
189  * Iterate the full tree, calling @down when first entering a node and @up when
190  * leaving it for the final time.
191  *
192  * Caller must hold rcu_lock or sufficient equivalent.
193  */
194 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
195 {
196         return walk_tg_tree_from(&root_task_group, down, up, data);
197 }
198
199 extern int tg_nop(struct task_group *tg, void *data);
200
201 extern void free_fair_sched_group(struct task_group *tg);
202 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
203 extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
204 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
205                         struct sched_entity *se, int cpu,
206                         struct sched_entity *parent);
207 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
208 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
209
210 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
211 extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
212 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
213
214 extern void free_rt_sched_group(struct task_group *tg);
215 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
216 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
217                 struct sched_rt_entity *rt_se, int cpu,
218                 struct sched_rt_entity *parent);
219
220 extern struct task_group *sched_create_group(struct task_group *parent);
221 extern void sched_online_group(struct task_group *tg,
222                                struct task_group *parent);
223 extern void sched_destroy_group(struct task_group *tg);
224 extern void sched_offline_group(struct task_group *tg);
225
226 extern void sched_move_task(struct task_struct *tsk);
227
228 #ifdef CONFIG_FAIR_GROUP_SCHED
229 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
230 #endif
231
232 #else /* CONFIG_CGROUP_SCHED */
233
234 struct cfs_bandwidth { };
235
236 #endif  /* CONFIG_CGROUP_SCHED */
237
238 /* CFS-related fields in a runqueue */
239 struct cfs_rq {
240         struct load_weight load;
241         unsigned int nr_running, h_nr_running;
242
243         u64 exec_clock;
244         u64 min_vruntime;
245 #ifndef CONFIG_64BIT
246         u64 min_vruntime_copy;
247 #endif
248
249         struct rb_root tasks_timeline;
250         struct rb_node *rb_leftmost;
251
252         /*
253          * 'curr' points to currently running entity on this cfs_rq.
254          * It is set to NULL otherwise (i.e when none are currently running).
255          */
256         struct sched_entity *curr, *next, *last, *skip;
257
258 #ifdef  CONFIG_SCHED_DEBUG
259         unsigned int nr_spread_over;
260 #endif
261
262 #ifdef CONFIG_SMP
263 /*
264  * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
265  * removed when useful for applications beyond shares distribution (e.g.
266  * load-balance).
267  */
268 #ifdef CONFIG_FAIR_GROUP_SCHED
269         /*
270          * CFS Load tracking
271          * Under CFS, load is tracked on a per-entity basis and aggregated up.
272          * This allows for the description of both thread and group usage (in
273          * the FAIR_GROUP_SCHED case).
274          */
275         u64 runnable_load_avg, blocked_load_avg;
276         atomic64_t decay_counter, removed_load;
277         u64 last_decay;
278 #endif /* CONFIG_FAIR_GROUP_SCHED */
279 /* These always depend on CONFIG_FAIR_GROUP_SCHED */
280 #ifdef CONFIG_FAIR_GROUP_SCHED
281         u32 tg_runnable_contrib;
282         u64 tg_load_contrib;
283 #endif /* CONFIG_FAIR_GROUP_SCHED */
284
285         /*
286          *   h_load = weight * f(tg)
287          *
288          * Where f(tg) is the recursive weight fraction assigned to
289          * this group.
290          */
291         unsigned long h_load;
292 #endif /* CONFIG_SMP */
293
294 #ifdef CONFIG_FAIR_GROUP_SCHED
295         struct rq *rq;  /* cpu runqueue to which this cfs_rq is attached */
296
297         /*
298          * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
299          * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
300          * (like users, containers etc.)
301          *
302          * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
303          * list is used during load balance.
304          */
305         int on_list;
306         struct list_head leaf_cfs_rq_list;
307         struct task_group *tg;  /* group that "owns" this runqueue */
308
309 #ifdef CONFIG_CFS_BANDWIDTH
310         int runtime_enabled;
311         u64 runtime_expires;
312         s64 runtime_remaining;
313
314         u64 throttled_clock, throttled_clock_task;
315         u64 throttled_clock_task_time;
316         int throttled, throttle_count;
317         struct list_head throttled_list;
318 #endif /* CONFIG_CFS_BANDWIDTH */
319 #endif /* CONFIG_FAIR_GROUP_SCHED */
320 };
321
322 static inline int rt_bandwidth_enabled(void)
323 {
324         return sysctl_sched_rt_runtime >= 0;
325 }
326
327 /* Real-Time classes' related field in a runqueue: */
328 struct rt_rq {
329         struct rt_prio_array active;
330         unsigned int rt_nr_running;
331 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
332         struct {
333                 int curr; /* highest queued rt task prio */
334 #ifdef CONFIG_SMP
335                 int next; /* next highest */
336 #endif
337         } highest_prio;
338 #endif
339 #ifdef CONFIG_SMP
340         unsigned long rt_nr_migratory;
341         unsigned long rt_nr_total;
342         int overloaded;
343         struct plist_head pushable_tasks;
344 #endif
345         int rt_throttled;
346         u64 rt_time;
347         u64 rt_runtime;
348         /* Nests inside the rq lock: */
349         raw_spinlock_t rt_runtime_lock;
350
351 #ifdef CONFIG_RT_GROUP_SCHED
352         unsigned long rt_nr_boosted;
353
354         struct rq *rq;
355         struct list_head leaf_rt_rq_list;
356         struct task_group *tg;
357 #endif
358 };
359
360 #ifdef CONFIG_SMP
361
362 /*
363  * We add the notion of a root-domain which will be used to define per-domain
364  * variables. Each exclusive cpuset essentially defines an island domain by
365  * fully partitioning the member cpus from any other cpuset. Whenever a new
366  * exclusive cpuset is created, we also create and attach a new root-domain
367  * object.
368  *
369  */
370 struct root_domain {
371         atomic_t refcount;
372         atomic_t rto_count;
373         struct rcu_head rcu;
374         cpumask_var_t span;
375         cpumask_var_t online;
376
377         /*
378          * The "RT overload" flag: it gets set if a CPU has more than
379          * one runnable RT task.
380          */
381         cpumask_var_t rto_mask;
382         struct cpupri cpupri;
383 };
384
385 extern struct root_domain def_root_domain;
386
387 #endif /* CONFIG_SMP */
388
389 /*
390  * This is the main, per-CPU runqueue data structure.
391  *
392  * Locking rule: those places that want to lock multiple runqueues
393  * (such as the load balancing or the thread migration code), lock
394  * acquire operations must be ordered by ascending &runqueue.
395  */
396 struct rq {
397         /* runqueue lock: */
398         raw_spinlock_t lock;
399
400         /*
401          * nr_running and cpu_load should be in the same cacheline because
402          * remote CPUs use both these fields when doing load calculation.
403          */
404         unsigned int nr_running;
405         #define CPU_LOAD_IDX_MAX 5
406         unsigned long cpu_load[CPU_LOAD_IDX_MAX];
407         unsigned long last_load_update_tick;
408 #ifdef CONFIG_NO_HZ
409         u64 nohz_stamp;
410         unsigned long nohz_flags;
411 #endif
412         int skip_clock_update;
413
414         /* capture load from *all* tasks on this cpu: */
415         struct load_weight load;
416         unsigned long nr_load_updates;
417         u64 nr_switches;
418
419         struct cfs_rq cfs;
420         struct rt_rq rt;
421
422 #ifdef CONFIG_FAIR_GROUP_SCHED
423         /* list of leaf cfs_rq on this cpu: */
424         struct list_head leaf_cfs_rq_list;
425 #ifdef CONFIG_SMP
426         unsigned long h_load_throttle;
427 #endif /* CONFIG_SMP */
428 #endif /* CONFIG_FAIR_GROUP_SCHED */
429
430 #ifdef CONFIG_RT_GROUP_SCHED
431         struct list_head leaf_rt_rq_list;
432 #endif
433
434         /*
435          * This is part of a global counter where only the total sum
436          * over all CPUs matters. A task can increase this counter on
437          * one CPU and if it got migrated afterwards it may decrease
438          * it on another CPU. Always updated under the runqueue lock:
439          */
440         unsigned long nr_uninterruptible;
441
442         struct task_struct *curr, *idle, *stop;
443         unsigned long next_balance;
444         struct mm_struct *prev_mm;
445
446         u64 clock;
447         u64 clock_task;
448
449         atomic_t nr_iowait;
450
451 #ifdef CONFIG_SMP
452         struct root_domain *rd;
453         struct sched_domain *sd;
454
455         unsigned long cpu_power;
456
457         unsigned char idle_balance;
458         /* For active balancing */
459         int post_schedule;
460         int active_balance;
461         int push_cpu;
462         struct cpu_stop_work active_balance_work;
463         /* cpu of this runqueue: */
464         int cpu;
465         int online;
466
467         struct list_head cfs_tasks;
468
469         u64 rt_avg;
470         u64 age_stamp;
471         u64 idle_stamp;
472         u64 avg_idle;
473 #endif
474
475 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
476         u64 prev_irq_time;
477 #endif
478 #ifdef CONFIG_PARAVIRT
479         u64 prev_steal_time;
480 #endif
481 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
482         u64 prev_steal_time_rq;
483 #endif
484
485         /* calc_load related fields */
486         unsigned long calc_load_update;
487         long calc_load_active;
488
489 #ifdef CONFIG_SCHED_HRTICK
490 #ifdef CONFIG_SMP
491         int hrtick_csd_pending;
492         struct call_single_data hrtick_csd;
493 #endif
494         struct hrtimer hrtick_timer;
495 #endif
496
497 #ifdef CONFIG_SCHEDSTATS
498         /* latency stats */
499         struct sched_info rq_sched_info;
500         unsigned long long rq_cpu_time;
501         /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
502
503         /* sys_sched_yield() stats */
504         unsigned int yld_count;
505
506         /* schedule() stats */
507         unsigned int sched_count;
508         unsigned int sched_goidle;
509
510         /* try_to_wake_up() stats */
511         unsigned int ttwu_count;
512         unsigned int ttwu_local;
513 #endif
514
515 #ifdef CONFIG_SMP
516         struct llist_head wake_list;
517 #endif
518
519         struct sched_avg avg;
520 };
521
522 static inline int cpu_of(struct rq *rq)
523 {
524 #ifdef CONFIG_SMP
525         return rq->cpu;
526 #else
527         return 0;
528 #endif
529 }
530
531 DECLARE_PER_CPU(struct rq, runqueues);
532
533 #define cpu_rq(cpu)             (&per_cpu(runqueues, (cpu)))
534 #define this_rq()               (&__get_cpu_var(runqueues))
535 #define task_rq(p)              cpu_rq(task_cpu(p))
536 #define cpu_curr(cpu)           (cpu_rq(cpu)->curr)
537 #define raw_rq()                (&__raw_get_cpu_var(runqueues))
538
539 #ifdef CONFIG_SMP
540
541 #define rcu_dereference_check_sched_domain(p) \
542         rcu_dereference_check((p), \
543                               lockdep_is_held(&sched_domains_mutex))
544
545 /*
546  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
547  * See detach_destroy_domains: synchronize_sched for details.
548  *
549  * The domain tree of any CPU may only be accessed from within
550  * preempt-disabled sections.
551  */
552 #define for_each_domain(cpu, __sd) \
553         for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
554                         __sd; __sd = __sd->parent)
555
556 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
557
558 /**
559  * highest_flag_domain - Return highest sched_domain containing flag.
560  * @cpu:        The cpu whose highest level of sched domain is to
561  *              be returned.
562  * @flag:       The flag to check for the highest sched_domain
563  *              for the given cpu.
564  *
565  * Returns the highest sched_domain of a cpu which contains the given flag.
566  */
567 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
568 {
569         struct sched_domain *sd, *hsd = NULL;
570
571         for_each_domain(cpu, sd) {
572                 if (!(sd->flags & flag))
573                         break;
574                 hsd = sd;
575         }
576
577         return hsd;
578 }
579
580 DECLARE_PER_CPU(struct sched_domain *, sd_llc);
581 DECLARE_PER_CPU(int, sd_llc_id);
582
583 struct sched_group_power {
584         atomic_t ref;
585         /*
586          * CPU power of this group, SCHED_LOAD_SCALE being max power for a
587          * single CPU.
588          */
589         unsigned int power, power_orig;
590         unsigned long next_update;
591         /*
592          * Number of busy cpus in this group.
593          */
594         atomic_t nr_busy_cpus;
595
596         unsigned long cpumask[0]; /* iteration mask */
597 };
598
599 struct sched_group {
600         struct sched_group *next;       /* Must be a circular list */
601         atomic_t ref;
602
603         unsigned int group_weight;
604         struct sched_group_power *sgp;
605
606         /*
607          * The CPUs this group covers.
608          *
609          * NOTE: this field is variable length. (Allocated dynamically
610          * by attaching extra space to the end of the structure,
611          * depending on how many CPUs the kernel has booted up with)
612          */
613         unsigned long cpumask[0];
614 };
615
616 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
617 {
618         return to_cpumask(sg->cpumask);
619 }
620
621 /*
622  * cpumask masking which cpus in the group are allowed to iterate up the domain
623  * tree.
624  */
625 static inline struct cpumask *sched_group_mask(struct sched_group *sg)
626 {
627         return to_cpumask(sg->sgp->cpumask);
628 }
629
630 /**
631  * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
632  * @group: The group whose first cpu is to be returned.
633  */
634 static inline unsigned int group_first_cpu(struct sched_group *group)
635 {
636         return cpumask_first(sched_group_cpus(group));
637 }
638
639 extern int group_balance_cpu(struct sched_group *sg);
640
641 #endif /* CONFIG_SMP */
642
643 #include "stats.h"
644 #include "auto_group.h"
645
646 #ifdef CONFIG_CGROUP_SCHED
647
648 /*
649  * Return the group to which this tasks belongs.
650  *
651  * We cannot use task_subsys_state() and friends because the cgroup
652  * subsystem changes that value before the cgroup_subsys::attach() method
653  * is called, therefore we cannot pin it and might observe the wrong value.
654  *
655  * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
656  * core changes this before calling sched_move_task().
657  *
658  * Instead we use a 'copy' which is updated from sched_move_task() while
659  * holding both task_struct::pi_lock and rq::lock.
660  */
661 static inline struct task_group *task_group(struct task_struct *p)
662 {
663         return p->sched_task_group;
664 }
665
666 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
667 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
668 {
669 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
670         struct task_group *tg = task_group(p);
671 #endif
672
673 #ifdef CONFIG_FAIR_GROUP_SCHED
674         p->se.cfs_rq = tg->cfs_rq[cpu];
675         p->se.parent = tg->se[cpu];
676 #endif
677
678 #ifdef CONFIG_RT_GROUP_SCHED
679         p->rt.rt_rq  = tg->rt_rq[cpu];
680         p->rt.parent = tg->rt_se[cpu];
681 #endif
682 }
683
684 #else /* CONFIG_CGROUP_SCHED */
685
686 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
687 static inline struct task_group *task_group(struct task_struct *p)
688 {
689         return NULL;
690 }
691
692 #endif /* CONFIG_CGROUP_SCHED */
693
694 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
695 {
696         set_task_rq(p, cpu);
697 #ifdef CONFIG_SMP
698         /*
699          * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
700          * successfuly executed on another CPU. We must ensure that updates of
701          * per-task data have been completed by this moment.
702          */
703         smp_wmb();
704         task_thread_info(p)->cpu = cpu;
705 #endif
706 }
707
708 /*
709  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
710  */
711 #ifdef CONFIG_SCHED_DEBUG
712 # include <linux/static_key.h>
713 # define const_debug __read_mostly
714 #else
715 # define const_debug const
716 #endif
717
718 extern const_debug unsigned int sysctl_sched_features;
719
720 #define SCHED_FEAT(name, enabled)       \
721         __SCHED_FEAT_##name ,
722
723 enum {
724 #include "features.h"
725         __SCHED_FEAT_NR,
726 };
727
728 #undef SCHED_FEAT
729
730 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
731 static __always_inline bool static_branch__true(struct static_key *key)
732 {
733         return static_key_true(key); /* Not out of line branch. */
734 }
735
736 static __always_inline bool static_branch__false(struct static_key *key)
737 {
738         return static_key_false(key); /* Out of line branch. */
739 }
740
741 #define SCHED_FEAT(name, enabled)                                       \
742 static __always_inline bool static_branch_##name(struct static_key *key) \
743 {                                                                       \
744         return static_branch__##enabled(key);                           \
745 }
746
747 #include "features.h"
748
749 #undef SCHED_FEAT
750
751 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
752 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
753 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
754 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
755 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
756
757 #ifdef CONFIG_NUMA_BALANCING
758 #define sched_feat_numa(x) sched_feat(x)
759 #ifdef CONFIG_SCHED_DEBUG
760 #define numabalancing_enabled sched_feat_numa(NUMA)
761 #else
762 extern bool numabalancing_enabled;
763 #endif /* CONFIG_SCHED_DEBUG */
764 #else
765 #define sched_feat_numa(x) (0)
766 #define numabalancing_enabled (0)
767 #endif /* CONFIG_NUMA_BALANCING */
768
769 static inline u64 global_rt_period(void)
770 {
771         return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
772 }
773
774 static inline u64 global_rt_runtime(void)
775 {
776         if (sysctl_sched_rt_runtime < 0)
777                 return RUNTIME_INF;
778
779         return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
780 }
781
782
783
784 static inline int task_current(struct rq *rq, struct task_struct *p)
785 {
786         return rq->curr == p;
787 }
788
789 static inline int task_running(struct rq *rq, struct task_struct *p)
790 {
791 #ifdef CONFIG_SMP
792         return p->on_cpu;
793 #else
794         return task_current(rq, p);
795 #endif
796 }
797
798
799 #ifndef prepare_arch_switch
800 # define prepare_arch_switch(next)      do { } while (0)
801 #endif
802 #ifndef finish_arch_switch
803 # define finish_arch_switch(prev)       do { } while (0)
804 #endif
805 #ifndef finish_arch_post_lock_switch
806 # define finish_arch_post_lock_switch() do { } while (0)
807 #endif
808
809 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
810 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
811 {
812 #ifdef CONFIG_SMP
813         /*
814          * We can optimise this out completely for !SMP, because the
815          * SMP rebalancing from interrupt is the only thing that cares
816          * here.
817          */
818         next->on_cpu = 1;
819 #endif
820 }
821
822 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
823 {
824 #ifdef CONFIG_SMP
825         /*
826          * After ->on_cpu is cleared, the task can be moved to a different CPU.
827          * We must ensure this doesn't happen until the switch is completely
828          * finished.
829          */
830         smp_wmb();
831         prev->on_cpu = 0;
832 #endif
833 #ifdef CONFIG_DEBUG_SPINLOCK
834         /* this is a valid case when another task releases the spinlock */
835         rq->lock.owner = current;
836 #endif
837         /*
838          * If we are tracking spinlock dependencies then we have to
839          * fix up the runqueue lock - which gets 'carried over' from
840          * prev into current:
841          */
842         spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
843
844         raw_spin_unlock_irq(&rq->lock);
845 }
846
847 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
848 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
849 {
850 #ifdef CONFIG_SMP
851         /*
852          * We can optimise this out completely for !SMP, because the
853          * SMP rebalancing from interrupt is the only thing that cares
854          * here.
855          */
856         next->on_cpu = 1;
857 #endif
858         raw_spin_unlock(&rq->lock);
859 }
860
861 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
862 {
863 #ifdef CONFIG_SMP
864         /*
865          * After ->on_cpu is cleared, the task can be moved to a different CPU.
866          * We must ensure this doesn't happen until the switch is completely
867          * finished.
868          */
869         smp_wmb();
870         prev->on_cpu = 0;
871 #endif
872         local_irq_enable();
873 }
874 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
875
876 /*
877  * wake flags
878  */
879 #define WF_SYNC         0x01            /* waker goes to sleep after wakeup */
880 #define WF_FORK         0x02            /* child wakeup after fork */
881 #define WF_MIGRATED     0x4             /* internal use, task got migrated */
882
883 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
884 {
885         lw->weight += inc;
886         lw->inv_weight = 0;
887 }
888
889 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
890 {
891         lw->weight -= dec;
892         lw->inv_weight = 0;
893 }
894
895 static inline void update_load_set(struct load_weight *lw, unsigned long w)
896 {
897         lw->weight = w;
898         lw->inv_weight = 0;
899 }
900
901 /*
902  * To aid in avoiding the subversion of "niceness" due to uneven distribution
903  * of tasks with abnormal "nice" values across CPUs the contribution that
904  * each task makes to its run queue's load is weighted according to its
905  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
906  * scaled version of the new time slice allocation that they receive on time
907  * slice expiry etc.
908  */
909
910 #define WEIGHT_IDLEPRIO                3
911 #define WMULT_IDLEPRIO         1431655765
912
913 /*
914  * Nice levels are multiplicative, with a gentle 10% change for every
915  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
916  * nice 1, it will get ~10% less CPU time than another CPU-bound task
917  * that remained on nice 0.
918  *
919  * The "10% effect" is relative and cumulative: from _any_ nice level,
920  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
921  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
922  * If a task goes up by ~10% and another task goes down by ~10% then
923  * the relative distance between them is ~25%.)
924  */
925 static const int prio_to_weight[40] = {
926  /* -20 */     88761,     71755,     56483,     46273,     36291,
927  /* -15 */     29154,     23254,     18705,     14949,     11916,
928  /* -10 */      9548,      7620,      6100,      4904,      3906,
929  /*  -5 */      3121,      2501,      1991,      1586,      1277,
930  /*   0 */      1024,       820,       655,       526,       423,
931  /*   5 */       335,       272,       215,       172,       137,
932  /*  10 */       110,        87,        70,        56,        45,
933  /*  15 */        36,        29,        23,        18,        15,
934 };
935
936 /*
937  * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
938  *
939  * In cases where the weight does not change often, we can use the
940  * precalculated inverse to speed up arithmetics by turning divisions
941  * into multiplications:
942  */
943 static const u32 prio_to_wmult[40] = {
944  /* -20 */     48388,     59856,     76040,     92818,    118348,
945  /* -15 */    147320,    184698,    229616,    287308,    360437,
946  /* -10 */    449829,    563644,    704093,    875809,   1099582,
947  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
948  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
949  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
950  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
951  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
952 };
953
954 #define ENQUEUE_WAKEUP          1
955 #define ENQUEUE_HEAD            2
956 #ifdef CONFIG_SMP
957 #define ENQUEUE_WAKING          4       /* sched_class::task_waking was called */
958 #else
959 #define ENQUEUE_WAKING          0
960 #endif
961
962 #define DEQUEUE_SLEEP           1
963
964 struct sched_class {
965         const struct sched_class *next;
966
967         void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
968         void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
969         void (*yield_task) (struct rq *rq);
970         bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
971
972         void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
973
974         struct task_struct * (*pick_next_task) (struct rq *rq);
975         void (*put_prev_task) (struct rq *rq, struct task_struct *p);
976
977 #ifdef CONFIG_SMP
978         int  (*select_task_rq)(struct task_struct *p, int sd_flag, int flags);
979         void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
980
981         void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
982         void (*post_schedule) (struct rq *this_rq);
983         void (*task_waking) (struct task_struct *task);
984         void (*task_woken) (struct rq *this_rq, struct task_struct *task);
985
986         void (*set_cpus_allowed)(struct task_struct *p,
987                                  const struct cpumask *newmask);
988
989         void (*rq_online)(struct rq *rq);
990         void (*rq_offline)(struct rq *rq);
991 #endif
992
993         void (*set_curr_task) (struct rq *rq);
994         void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
995         void (*task_fork) (struct task_struct *p);
996
997         void (*switched_from) (struct rq *this_rq, struct task_struct *task);
998         void (*switched_to) (struct rq *this_rq, struct task_struct *task);
999         void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1000                              int oldprio);
1001
1002         unsigned int (*get_rr_interval) (struct rq *rq,
1003                                          struct task_struct *task);
1004
1005 #ifdef CONFIG_FAIR_GROUP_SCHED
1006         void (*task_move_group) (struct task_struct *p, int on_rq);
1007 #endif
1008 };
1009
1010 #define sched_class_highest (&stop_sched_class)
1011 #define for_each_class(class) \
1012    for (class = sched_class_highest; class; class = class->next)
1013
1014 extern const struct sched_class stop_sched_class;
1015 extern const struct sched_class rt_sched_class;
1016 extern const struct sched_class fair_sched_class;
1017 extern const struct sched_class idle_sched_class;
1018
1019
1020 #ifdef CONFIG_SMP
1021
1022 extern void update_group_power(struct sched_domain *sd, int cpu);
1023
1024 extern void trigger_load_balance(struct rq *rq, int cpu);
1025 extern void idle_balance(int this_cpu, struct rq *this_rq);
1026
1027 /*
1028  * Only depends on SMP, FAIR_GROUP_SCHED may be removed when runnable_avg
1029  * becomes useful in lb
1030  */
1031 #if defined(CONFIG_FAIR_GROUP_SCHED)
1032 extern void idle_enter_fair(struct rq *this_rq);
1033 extern void idle_exit_fair(struct rq *this_rq);
1034 #else
1035 static inline void idle_enter_fair(struct rq *this_rq) {}
1036 static inline void idle_exit_fair(struct rq *this_rq) {}
1037 #endif
1038
1039 #else   /* CONFIG_SMP */
1040
1041 static inline void idle_balance(int cpu, struct rq *rq)
1042 {
1043 }
1044
1045 #endif
1046
1047 extern void sysrq_sched_debug_show(void);
1048 extern void sched_init_granularity(void);
1049 extern void update_max_interval(void);
1050 extern int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu);
1051 extern void init_sched_rt_class(void);
1052 extern void init_sched_fair_class(void);
1053
1054 extern void resched_task(struct task_struct *p);
1055 extern void resched_cpu(int cpu);
1056
1057 extern struct rt_bandwidth def_rt_bandwidth;
1058 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1059
1060 extern void update_idle_cpu_load(struct rq *this_rq);
1061
1062 #ifdef CONFIG_PARAVIRT
1063 static inline u64 steal_ticks(u64 steal)
1064 {
1065         if (unlikely(steal > NSEC_PER_SEC))
1066                 return div_u64(steal, TICK_NSEC);
1067
1068         return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
1069 }
1070 #endif
1071
1072 static inline void inc_nr_running(struct rq *rq)
1073 {
1074         rq->nr_running++;
1075 }
1076
1077 static inline void dec_nr_running(struct rq *rq)
1078 {
1079         rq->nr_running--;
1080 }
1081
1082 extern void update_rq_clock(struct rq *rq);
1083
1084 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1085 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1086
1087 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1088
1089 extern const_debug unsigned int sysctl_sched_time_avg;
1090 extern const_debug unsigned int sysctl_sched_nr_migrate;
1091 extern const_debug unsigned int sysctl_sched_migration_cost;
1092
1093 static inline u64 sched_avg_period(void)
1094 {
1095         return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1096 }
1097
1098 #ifdef CONFIG_SCHED_HRTICK
1099
1100 /*
1101  * Use hrtick when:
1102  *  - enabled by features
1103  *  - hrtimer is actually high res
1104  */
1105 static inline int hrtick_enabled(struct rq *rq)
1106 {
1107         if (!sched_feat(HRTICK))
1108                 return 0;
1109         if (!cpu_active(cpu_of(rq)))
1110                 return 0;
1111         return hrtimer_is_hres_active(&rq->hrtick_timer);
1112 }
1113
1114 void hrtick_start(struct rq *rq, u64 delay);
1115
1116 #else
1117
1118 static inline int hrtick_enabled(struct rq *rq)
1119 {
1120         return 0;
1121 }
1122
1123 #endif /* CONFIG_SCHED_HRTICK */
1124
1125 #ifdef CONFIG_SMP
1126 extern void sched_avg_update(struct rq *rq);
1127 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1128 {
1129         rq->rt_avg += rt_delta;
1130         sched_avg_update(rq);
1131 }
1132 #else
1133 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1134 static inline void sched_avg_update(struct rq *rq) { }
1135 #endif
1136
1137 extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
1138
1139 #ifdef CONFIG_SMP
1140 #ifdef CONFIG_PREEMPT
1141
1142 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1143
1144 /*
1145  * fair double_lock_balance: Safely acquires both rq->locks in a fair
1146  * way at the expense of forcing extra atomic operations in all
1147  * invocations.  This assures that the double_lock is acquired using the
1148  * same underlying policy as the spinlock_t on this architecture, which
1149  * reduces latency compared to the unfair variant below.  However, it
1150  * also adds more overhead and therefore may reduce throughput.
1151  */
1152 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1153         __releases(this_rq->lock)
1154         __acquires(busiest->lock)
1155         __acquires(this_rq->lock)
1156 {
1157         raw_spin_unlock(&this_rq->lock);
1158         double_rq_lock(this_rq, busiest);
1159
1160         return 1;
1161 }
1162
1163 #else
1164 /*
1165  * Unfair double_lock_balance: Optimizes throughput at the expense of
1166  * latency by eliminating extra atomic operations when the locks are
1167  * already in proper order on entry.  This favors lower cpu-ids and will
1168  * grant the double lock to lower cpus over higher ids under contention,
1169  * regardless of entry order into the function.
1170  */
1171 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1172         __releases(this_rq->lock)
1173         __acquires(busiest->lock)
1174         __acquires(this_rq->lock)
1175 {
1176         int ret = 0;
1177
1178         if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1179                 if (busiest < this_rq) {
1180                         raw_spin_unlock(&this_rq->lock);
1181                         raw_spin_lock(&busiest->lock);
1182                         raw_spin_lock_nested(&this_rq->lock,
1183                                               SINGLE_DEPTH_NESTING);
1184                         ret = 1;
1185                 } else
1186                         raw_spin_lock_nested(&busiest->lock,
1187                                               SINGLE_DEPTH_NESTING);
1188         }
1189         return ret;
1190 }
1191
1192 #endif /* CONFIG_PREEMPT */
1193
1194 /*
1195  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1196  */
1197 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1198 {
1199         if (unlikely(!irqs_disabled())) {
1200                 /* printk() doesn't work good under rq->lock */
1201                 raw_spin_unlock(&this_rq->lock);
1202                 BUG_ON(1);
1203         }
1204
1205         return _double_lock_balance(this_rq, busiest);
1206 }
1207
1208 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1209         __releases(busiest->lock)
1210 {
1211         raw_spin_unlock(&busiest->lock);
1212         lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1213 }
1214
1215 /*
1216  * double_rq_lock - safely lock two runqueues
1217  *
1218  * Note this does not disable interrupts like task_rq_lock,
1219  * you need to do so manually before calling.
1220  */
1221 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1222         __acquires(rq1->lock)
1223         __acquires(rq2->lock)
1224 {
1225         BUG_ON(!irqs_disabled());
1226         if (rq1 == rq2) {
1227                 raw_spin_lock(&rq1->lock);
1228                 __acquire(rq2->lock);   /* Fake it out ;) */
1229         } else {
1230                 if (rq1 < rq2) {
1231                         raw_spin_lock(&rq1->lock);
1232                         raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1233                 } else {
1234                         raw_spin_lock(&rq2->lock);
1235                         raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1236                 }
1237         }
1238 }
1239
1240 /*
1241  * double_rq_unlock - safely unlock two runqueues
1242  *
1243  * Note this does not restore interrupts like task_rq_unlock,
1244  * you need to do so manually after calling.
1245  */
1246 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1247         __releases(rq1->lock)
1248         __releases(rq2->lock)
1249 {
1250         raw_spin_unlock(&rq1->lock);
1251         if (rq1 != rq2)
1252                 raw_spin_unlock(&rq2->lock);
1253         else
1254                 __release(rq2->lock);
1255 }
1256
1257 #else /* CONFIG_SMP */
1258
1259 /*
1260  * double_rq_lock - safely lock two runqueues
1261  *
1262  * Note this does not disable interrupts like task_rq_lock,
1263  * you need to do so manually before calling.
1264  */
1265 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1266         __acquires(rq1->lock)
1267         __acquires(rq2->lock)
1268 {
1269         BUG_ON(!irqs_disabled());
1270         BUG_ON(rq1 != rq2);
1271         raw_spin_lock(&rq1->lock);
1272         __acquire(rq2->lock);   /* Fake it out ;) */
1273 }
1274
1275 /*
1276  * double_rq_unlock - safely unlock two runqueues
1277  *
1278  * Note this does not restore interrupts like task_rq_unlock,
1279  * you need to do so manually after calling.
1280  */
1281 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1282         __releases(rq1->lock)
1283         __releases(rq2->lock)
1284 {
1285         BUG_ON(rq1 != rq2);
1286         raw_spin_unlock(&rq1->lock);
1287         __release(rq2->lock);
1288 }
1289
1290 #endif
1291
1292 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1293 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1294 extern void print_cfs_stats(struct seq_file *m, int cpu);
1295 extern void print_rt_stats(struct seq_file *m, int cpu);
1296
1297 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1298 extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
1299
1300 extern void account_cfs_bandwidth_used(int enabled, int was_enabled);
1301
1302 #ifdef CONFIG_NO_HZ
1303 enum rq_nohz_flag_bits {
1304         NOHZ_TICK_STOPPED,
1305         NOHZ_BALANCE_KICK,
1306 };
1307
1308 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1309 #endif
1310
1311 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1312
1313 DECLARE_PER_CPU(u64, cpu_hardirq_time);
1314 DECLARE_PER_CPU(u64, cpu_softirq_time);
1315
1316 #ifndef CONFIG_64BIT
1317 DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1318
1319 static inline void irq_time_write_begin(void)
1320 {
1321         __this_cpu_inc(irq_time_seq.sequence);
1322         smp_wmb();
1323 }
1324
1325 static inline void irq_time_write_end(void)
1326 {
1327         smp_wmb();
1328         __this_cpu_inc(irq_time_seq.sequence);
1329 }
1330
1331 static inline u64 irq_time_read(int cpu)
1332 {
1333         u64 irq_time;
1334         unsigned seq;
1335
1336         do {
1337                 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1338                 irq_time = per_cpu(cpu_softirq_time, cpu) +
1339                            per_cpu(cpu_hardirq_time, cpu);
1340         } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1341
1342         return irq_time;
1343 }
1344 #else /* CONFIG_64BIT */
1345 static inline void irq_time_write_begin(void)
1346 {
1347 }
1348
1349 static inline void irq_time_write_end(void)
1350 {
1351 }
1352
1353 static inline u64 irq_time_read(int cpu)
1354 {
1355         return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1356 }
1357 #endif /* CONFIG_64BIT */
1358 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */