mm/compaction: fix invalid free_pfn and compact_cached_free_pfn
[cascardo/linux.git] / mm / compaction.c
1 /*
2  * linux/mm/compaction.c
3  *
4  * Memory compaction for the reduction of external fragmentation. Note that
5  * this heavily depends upon page migration to do all the real heavy
6  * lifting
7  *
8  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9  */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include <linux/balloon_compaction.h>
18 #include <linux/page-isolation.h>
19 #include <linux/kasan.h>
20 #include "internal.h"
21
22 #ifdef CONFIG_COMPACTION
23 static inline void count_compact_event(enum vm_event_item item)
24 {
25         count_vm_event(item);
26 }
27
28 static inline void count_compact_events(enum vm_event_item item, long delta)
29 {
30         count_vm_events(item, delta);
31 }
32 #else
33 #define count_compact_event(item) do { } while (0)
34 #define count_compact_events(item, delta) do { } while (0)
35 #endif
36
37 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
38
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/compaction.h>
41
42 static unsigned long release_freepages(struct list_head *freelist)
43 {
44         struct page *page, *next;
45         unsigned long high_pfn = 0;
46
47         list_for_each_entry_safe(page, next, freelist, lru) {
48                 unsigned long pfn = page_to_pfn(page);
49                 list_del(&page->lru);
50                 __free_page(page);
51                 if (pfn > high_pfn)
52                         high_pfn = pfn;
53         }
54
55         return high_pfn;
56 }
57
58 static void map_pages(struct list_head *list)
59 {
60         struct page *page;
61
62         list_for_each_entry(page, list, lru) {
63                 arch_alloc_page(page, 0);
64                 kernel_map_pages(page, 1, 1);
65                 kasan_alloc_pages(page, 0);
66         }
67 }
68
69 static inline bool migrate_async_suitable(int migratetype)
70 {
71         return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
72 }
73
74 /*
75  * Check that the whole (or subset of) a pageblock given by the interval of
76  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
77  * with the migration of free compaction scanner. The scanners then need to
78  * use only pfn_valid_within() check for arches that allow holes within
79  * pageblocks.
80  *
81  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
82  *
83  * It's possible on some configurations to have a setup like node0 node1 node0
84  * i.e. it's possible that all pages within a zones range of pages do not
85  * belong to a single zone. We assume that a border between node0 and node1
86  * can occur within a single pageblock, but not a node0 node1 node0
87  * interleaving within a single pageblock. It is therefore sufficient to check
88  * the first and last page of a pageblock and avoid checking each individual
89  * page in a pageblock.
90  */
91 static struct page *pageblock_pfn_to_page(unsigned long start_pfn,
92                                 unsigned long end_pfn, struct zone *zone)
93 {
94         struct page *start_page;
95         struct page *end_page;
96
97         /* end_pfn is one past the range we are checking */
98         end_pfn--;
99
100         if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
101                 return NULL;
102
103         start_page = pfn_to_page(start_pfn);
104
105         if (page_zone(start_page) != zone)
106                 return NULL;
107
108         end_page = pfn_to_page(end_pfn);
109
110         /* This gives a shorter code than deriving page_zone(end_page) */
111         if (page_zone_id(start_page) != page_zone_id(end_page))
112                 return NULL;
113
114         return start_page;
115 }
116
117 #ifdef CONFIG_COMPACTION
118
119 /* Do not skip compaction more than 64 times */
120 #define COMPACT_MAX_DEFER_SHIFT 6
121
122 /*
123  * Compaction is deferred when compaction fails to result in a page
124  * allocation success. 1 << compact_defer_limit compactions are skipped up
125  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
126  */
127 void defer_compaction(struct zone *zone, int order)
128 {
129         zone->compact_considered = 0;
130         zone->compact_defer_shift++;
131
132         if (order < zone->compact_order_failed)
133                 zone->compact_order_failed = order;
134
135         if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
136                 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
137
138         trace_mm_compaction_defer_compaction(zone, order);
139 }
140
141 /* Returns true if compaction should be skipped this time */
142 bool compaction_deferred(struct zone *zone, int order)
143 {
144         unsigned long defer_limit = 1UL << zone->compact_defer_shift;
145
146         if (order < zone->compact_order_failed)
147                 return false;
148
149         /* Avoid possible overflow */
150         if (++zone->compact_considered > defer_limit)
151                 zone->compact_considered = defer_limit;
152
153         if (zone->compact_considered >= defer_limit)
154                 return false;
155
156         trace_mm_compaction_deferred(zone, order);
157
158         return true;
159 }
160
161 /*
162  * Update defer tracking counters after successful compaction of given order,
163  * which means an allocation either succeeded (alloc_success == true) or is
164  * expected to succeed.
165  */
166 void compaction_defer_reset(struct zone *zone, int order,
167                 bool alloc_success)
168 {
169         if (alloc_success) {
170                 zone->compact_considered = 0;
171                 zone->compact_defer_shift = 0;
172         }
173         if (order >= zone->compact_order_failed)
174                 zone->compact_order_failed = order + 1;
175
176         trace_mm_compaction_defer_reset(zone, order);
177 }
178
179 /* Returns true if restarting compaction after many failures */
180 bool compaction_restarting(struct zone *zone, int order)
181 {
182         if (order < zone->compact_order_failed)
183                 return false;
184
185         return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
186                 zone->compact_considered >= 1UL << zone->compact_defer_shift;
187 }
188
189 /* Returns true if the pageblock should be scanned for pages to isolate. */
190 static inline bool isolation_suitable(struct compact_control *cc,
191                                         struct page *page)
192 {
193         if (cc->ignore_skip_hint)
194                 return true;
195
196         return !get_pageblock_skip(page);
197 }
198
199 static void reset_cached_positions(struct zone *zone)
200 {
201         zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
202         zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
203         zone->compact_cached_free_pfn =
204                         round_down(zone_end_pfn(zone) - 1, pageblock_nr_pages);
205 }
206
207 /*
208  * This function is called to clear all cached information on pageblocks that
209  * should be skipped for page isolation when the migrate and free page scanner
210  * meet.
211  */
212 static void __reset_isolation_suitable(struct zone *zone)
213 {
214         unsigned long start_pfn = zone->zone_start_pfn;
215         unsigned long end_pfn = zone_end_pfn(zone);
216         unsigned long pfn;
217
218         zone->compact_blockskip_flush = false;
219
220         /* Walk the zone and mark every pageblock as suitable for isolation */
221         for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
222                 struct page *page;
223
224                 cond_resched();
225
226                 if (!pfn_valid(pfn))
227                         continue;
228
229                 page = pfn_to_page(pfn);
230                 if (zone != page_zone(page))
231                         continue;
232
233                 clear_pageblock_skip(page);
234         }
235
236         reset_cached_positions(zone);
237 }
238
239 void reset_isolation_suitable(pg_data_t *pgdat)
240 {
241         int zoneid;
242
243         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
244                 struct zone *zone = &pgdat->node_zones[zoneid];
245                 if (!populated_zone(zone))
246                         continue;
247
248                 /* Only flush if a full compaction finished recently */
249                 if (zone->compact_blockskip_flush)
250                         __reset_isolation_suitable(zone);
251         }
252 }
253
254 /*
255  * If no pages were isolated then mark this pageblock to be skipped in the
256  * future. The information is later cleared by __reset_isolation_suitable().
257  */
258 static void update_pageblock_skip(struct compact_control *cc,
259                         struct page *page, unsigned long nr_isolated,
260                         bool migrate_scanner)
261 {
262         struct zone *zone = cc->zone;
263         unsigned long pfn;
264
265         if (cc->ignore_skip_hint)
266                 return;
267
268         if (!page)
269                 return;
270
271         if (nr_isolated)
272                 return;
273
274         set_pageblock_skip(page);
275
276         pfn = page_to_pfn(page);
277
278         /* Update where async and sync compaction should restart */
279         if (migrate_scanner) {
280                 if (pfn > zone->compact_cached_migrate_pfn[0])
281                         zone->compact_cached_migrate_pfn[0] = pfn;
282                 if (cc->mode != MIGRATE_ASYNC &&
283                     pfn > zone->compact_cached_migrate_pfn[1])
284                         zone->compact_cached_migrate_pfn[1] = pfn;
285         } else {
286                 if (pfn < zone->compact_cached_free_pfn)
287                         zone->compact_cached_free_pfn = pfn;
288         }
289 }
290 #else
291 static inline bool isolation_suitable(struct compact_control *cc,
292                                         struct page *page)
293 {
294         return true;
295 }
296
297 static void update_pageblock_skip(struct compact_control *cc,
298                         struct page *page, unsigned long nr_isolated,
299                         bool migrate_scanner)
300 {
301 }
302 #endif /* CONFIG_COMPACTION */
303
304 /*
305  * Compaction requires the taking of some coarse locks that are potentially
306  * very heavily contended. For async compaction, back out if the lock cannot
307  * be taken immediately. For sync compaction, spin on the lock if needed.
308  *
309  * Returns true if the lock is held
310  * Returns false if the lock is not held and compaction should abort
311  */
312 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
313                                                 struct compact_control *cc)
314 {
315         if (cc->mode == MIGRATE_ASYNC) {
316                 if (!spin_trylock_irqsave(lock, *flags)) {
317                         cc->contended = COMPACT_CONTENDED_LOCK;
318                         return false;
319                 }
320         } else {
321                 spin_lock_irqsave(lock, *flags);
322         }
323
324         return true;
325 }
326
327 /*
328  * Compaction requires the taking of some coarse locks that are potentially
329  * very heavily contended. The lock should be periodically unlocked to avoid
330  * having disabled IRQs for a long time, even when there is nobody waiting on
331  * the lock. It might also be that allowing the IRQs will result in
332  * need_resched() becoming true. If scheduling is needed, async compaction
333  * aborts. Sync compaction schedules.
334  * Either compaction type will also abort if a fatal signal is pending.
335  * In either case if the lock was locked, it is dropped and not regained.
336  *
337  * Returns true if compaction should abort due to fatal signal pending, or
338  *              async compaction due to need_resched()
339  * Returns false when compaction can continue (sync compaction might have
340  *              scheduled)
341  */
342 static bool compact_unlock_should_abort(spinlock_t *lock,
343                 unsigned long flags, bool *locked, struct compact_control *cc)
344 {
345         if (*locked) {
346                 spin_unlock_irqrestore(lock, flags);
347                 *locked = false;
348         }
349
350         if (fatal_signal_pending(current)) {
351                 cc->contended = COMPACT_CONTENDED_SCHED;
352                 return true;
353         }
354
355         if (need_resched()) {
356                 if (cc->mode == MIGRATE_ASYNC) {
357                         cc->contended = COMPACT_CONTENDED_SCHED;
358                         return true;
359                 }
360                 cond_resched();
361         }
362
363         return false;
364 }
365
366 /*
367  * Aside from avoiding lock contention, compaction also periodically checks
368  * need_resched() and either schedules in sync compaction or aborts async
369  * compaction. This is similar to what compact_unlock_should_abort() does, but
370  * is used where no lock is concerned.
371  *
372  * Returns false when no scheduling was needed, or sync compaction scheduled.
373  * Returns true when async compaction should abort.
374  */
375 static inline bool compact_should_abort(struct compact_control *cc)
376 {
377         /* async compaction aborts if contended */
378         if (need_resched()) {
379                 if (cc->mode == MIGRATE_ASYNC) {
380                         cc->contended = COMPACT_CONTENDED_SCHED;
381                         return true;
382                 }
383
384                 cond_resched();
385         }
386
387         return false;
388 }
389
390 /*
391  * Isolate free pages onto a private freelist. If @strict is true, will abort
392  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
393  * (even though it may still end up isolating some pages).
394  */
395 static unsigned long isolate_freepages_block(struct compact_control *cc,
396                                 unsigned long *start_pfn,
397                                 unsigned long end_pfn,
398                                 struct list_head *freelist,
399                                 bool strict)
400 {
401         int nr_scanned = 0, total_isolated = 0;
402         struct page *cursor, *valid_page = NULL;
403         unsigned long flags = 0;
404         bool locked = false;
405         unsigned long blockpfn = *start_pfn;
406
407         cursor = pfn_to_page(blockpfn);
408
409         /* Isolate free pages. */
410         for (; blockpfn < end_pfn; blockpfn++, cursor++) {
411                 int isolated, i;
412                 struct page *page = cursor;
413
414                 /*
415                  * Periodically drop the lock (if held) regardless of its
416                  * contention, to give chance to IRQs. Abort if fatal signal
417                  * pending or async compaction detects need_resched()
418                  */
419                 if (!(blockpfn % SWAP_CLUSTER_MAX)
420                     && compact_unlock_should_abort(&cc->zone->lock, flags,
421                                                                 &locked, cc))
422                         break;
423
424                 nr_scanned++;
425                 if (!pfn_valid_within(blockpfn))
426                         goto isolate_fail;
427
428                 if (!valid_page)
429                         valid_page = page;
430
431                 /*
432                  * For compound pages such as THP and hugetlbfs, we can save
433                  * potentially a lot of iterations if we skip them at once.
434                  * The check is racy, but we can consider only valid values
435                  * and the only danger is skipping too much.
436                  */
437                 if (PageCompound(page)) {
438                         unsigned int comp_order = compound_order(page);
439
440                         if (likely(comp_order < MAX_ORDER)) {
441                                 blockpfn += (1UL << comp_order) - 1;
442                                 cursor += (1UL << comp_order) - 1;
443                         }
444
445                         goto isolate_fail;
446                 }
447
448                 if (!PageBuddy(page))
449                         goto isolate_fail;
450
451                 /*
452                  * If we already hold the lock, we can skip some rechecking.
453                  * Note that if we hold the lock now, checked_pageblock was
454                  * already set in some previous iteration (or strict is true),
455                  * so it is correct to skip the suitable migration target
456                  * recheck as well.
457                  */
458                 if (!locked) {
459                         /*
460                          * The zone lock must be held to isolate freepages.
461                          * Unfortunately this is a very coarse lock and can be
462                          * heavily contended if there are parallel allocations
463                          * or parallel compactions. For async compaction do not
464                          * spin on the lock and we acquire the lock as late as
465                          * possible.
466                          */
467                         locked = compact_trylock_irqsave(&cc->zone->lock,
468                                                                 &flags, cc);
469                         if (!locked)
470                                 break;
471
472                         /* Recheck this is a buddy page under lock */
473                         if (!PageBuddy(page))
474                                 goto isolate_fail;
475                 }
476
477                 /* Found a free page, break it into order-0 pages */
478                 isolated = split_free_page(page);
479                 total_isolated += isolated;
480                 for (i = 0; i < isolated; i++) {
481                         list_add(&page->lru, freelist);
482                         page++;
483                 }
484
485                 /* If a page was split, advance to the end of it */
486                 if (isolated) {
487                         cc->nr_freepages += isolated;
488                         if (!strict &&
489                                 cc->nr_migratepages <= cc->nr_freepages) {
490                                 blockpfn += isolated;
491                                 break;
492                         }
493
494                         blockpfn += isolated - 1;
495                         cursor += isolated - 1;
496                         continue;
497                 }
498
499 isolate_fail:
500                 if (strict)
501                         break;
502                 else
503                         continue;
504
505         }
506
507         /*
508          * There is a tiny chance that we have read bogus compound_order(),
509          * so be careful to not go outside of the pageblock.
510          */
511         if (unlikely(blockpfn > end_pfn))
512                 blockpfn = end_pfn;
513
514         trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
515                                         nr_scanned, total_isolated);
516
517         /* Record how far we have got within the block */
518         *start_pfn = blockpfn;
519
520         /*
521          * If strict isolation is requested by CMA then check that all the
522          * pages requested were isolated. If there were any failures, 0 is
523          * returned and CMA will fail.
524          */
525         if (strict && blockpfn < end_pfn)
526                 total_isolated = 0;
527
528         if (locked)
529                 spin_unlock_irqrestore(&cc->zone->lock, flags);
530
531         /* Update the pageblock-skip if the whole pageblock was scanned */
532         if (blockpfn == end_pfn)
533                 update_pageblock_skip(cc, valid_page, total_isolated, false);
534
535         count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
536         if (total_isolated)
537                 count_compact_events(COMPACTISOLATED, total_isolated);
538         return total_isolated;
539 }
540
541 /**
542  * isolate_freepages_range() - isolate free pages.
543  * @start_pfn: The first PFN to start isolating.
544  * @end_pfn:   The one-past-last PFN.
545  *
546  * Non-free pages, invalid PFNs, or zone boundaries within the
547  * [start_pfn, end_pfn) range are considered errors, cause function to
548  * undo its actions and return zero.
549  *
550  * Otherwise, function returns one-past-the-last PFN of isolated page
551  * (which may be greater then end_pfn if end fell in a middle of
552  * a free page).
553  */
554 unsigned long
555 isolate_freepages_range(struct compact_control *cc,
556                         unsigned long start_pfn, unsigned long end_pfn)
557 {
558         unsigned long isolated, pfn, block_end_pfn;
559         LIST_HEAD(freelist);
560
561         pfn = start_pfn;
562         block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
563
564         for (; pfn < end_pfn; pfn += isolated,
565                                 block_end_pfn += pageblock_nr_pages) {
566                 /* Protect pfn from changing by isolate_freepages_block */
567                 unsigned long isolate_start_pfn = pfn;
568
569                 block_end_pfn = min(block_end_pfn, end_pfn);
570
571                 /*
572                  * pfn could pass the block_end_pfn if isolated freepage
573                  * is more than pageblock order. In this case, we adjust
574                  * scanning range to right one.
575                  */
576                 if (pfn >= block_end_pfn) {
577                         block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
578                         block_end_pfn = min(block_end_pfn, end_pfn);
579                 }
580
581                 if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
582                         break;
583
584                 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
585                                                 block_end_pfn, &freelist, true);
586
587                 /*
588                  * In strict mode, isolate_freepages_block() returns 0 if
589                  * there are any holes in the block (ie. invalid PFNs or
590                  * non-free pages).
591                  */
592                 if (!isolated)
593                         break;
594
595                 /*
596                  * If we managed to isolate pages, it is always (1 << n) *
597                  * pageblock_nr_pages for some non-negative n.  (Max order
598                  * page may span two pageblocks).
599                  */
600         }
601
602         /* split_free_page does not map the pages */
603         map_pages(&freelist);
604
605         if (pfn < end_pfn) {
606                 /* Loop terminated early, cleanup. */
607                 release_freepages(&freelist);
608                 return 0;
609         }
610
611         /* We don't use freelists for anything. */
612         return pfn;
613 }
614
615 /* Update the number of anon and file isolated pages in the zone */
616 static void acct_isolated(struct zone *zone, struct compact_control *cc)
617 {
618         struct page *page;
619         unsigned int count[2] = { 0, };
620
621         if (list_empty(&cc->migratepages))
622                 return;
623
624         list_for_each_entry(page, &cc->migratepages, lru)
625                 count[!!page_is_file_cache(page)]++;
626
627         mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
628         mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
629 }
630
631 /* Similar to reclaim, but different enough that they don't share logic */
632 static bool too_many_isolated(struct zone *zone)
633 {
634         unsigned long active, inactive, isolated;
635
636         inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
637                                         zone_page_state(zone, NR_INACTIVE_ANON);
638         active = zone_page_state(zone, NR_ACTIVE_FILE) +
639                                         zone_page_state(zone, NR_ACTIVE_ANON);
640         isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
641                                         zone_page_state(zone, NR_ISOLATED_ANON);
642
643         return isolated > (inactive + active) / 2;
644 }
645
646 /**
647  * isolate_migratepages_block() - isolate all migrate-able pages within
648  *                                a single pageblock
649  * @cc:         Compaction control structure.
650  * @low_pfn:    The first PFN to isolate
651  * @end_pfn:    The one-past-the-last PFN to isolate, within same pageblock
652  * @isolate_mode: Isolation mode to be used.
653  *
654  * Isolate all pages that can be migrated from the range specified by
655  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
656  * Returns zero if there is a fatal signal pending, otherwise PFN of the
657  * first page that was not scanned (which may be both less, equal to or more
658  * than end_pfn).
659  *
660  * The pages are isolated on cc->migratepages list (not required to be empty),
661  * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
662  * is neither read nor updated.
663  */
664 static unsigned long
665 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
666                         unsigned long end_pfn, isolate_mode_t isolate_mode)
667 {
668         struct zone *zone = cc->zone;
669         unsigned long nr_scanned = 0, nr_isolated = 0;
670         struct list_head *migratelist = &cc->migratepages;
671         struct lruvec *lruvec;
672         unsigned long flags = 0;
673         bool locked = false;
674         struct page *page = NULL, *valid_page = NULL;
675         unsigned long start_pfn = low_pfn;
676
677         /*
678          * Ensure that there are not too many pages isolated from the LRU
679          * list by either parallel reclaimers or compaction. If there are,
680          * delay for some time until fewer pages are isolated
681          */
682         while (unlikely(too_many_isolated(zone))) {
683                 /* async migration should just abort */
684                 if (cc->mode == MIGRATE_ASYNC)
685                         return 0;
686
687                 congestion_wait(BLK_RW_ASYNC, HZ/10);
688
689                 if (fatal_signal_pending(current))
690                         return 0;
691         }
692
693         if (compact_should_abort(cc))
694                 return 0;
695
696         /* Time to isolate some pages for migration */
697         for (; low_pfn < end_pfn; low_pfn++) {
698                 bool is_lru;
699
700                 /*
701                  * Periodically drop the lock (if held) regardless of its
702                  * contention, to give chance to IRQs. Abort async compaction
703                  * if contended.
704                  */
705                 if (!(low_pfn % SWAP_CLUSTER_MAX)
706                     && compact_unlock_should_abort(&zone->lru_lock, flags,
707                                                                 &locked, cc))
708                         break;
709
710                 if (!pfn_valid_within(low_pfn))
711                         continue;
712                 nr_scanned++;
713
714                 page = pfn_to_page(low_pfn);
715
716                 if (!valid_page)
717                         valid_page = page;
718
719                 /*
720                  * Skip if free. We read page order here without zone lock
721                  * which is generally unsafe, but the race window is small and
722                  * the worst thing that can happen is that we skip some
723                  * potential isolation targets.
724                  */
725                 if (PageBuddy(page)) {
726                         unsigned long freepage_order = page_order_unsafe(page);
727
728                         /*
729                          * Without lock, we cannot be sure that what we got is
730                          * a valid page order. Consider only values in the
731                          * valid order range to prevent low_pfn overflow.
732                          */
733                         if (freepage_order > 0 && freepage_order < MAX_ORDER)
734                                 low_pfn += (1UL << freepage_order) - 1;
735                         continue;
736                 }
737
738                 /*
739                  * Check may be lockless but that's ok as we recheck later.
740                  * It's possible to migrate LRU pages and balloon pages
741                  * Skip any other type of page
742                  */
743                 is_lru = PageLRU(page);
744                 if (!is_lru) {
745                         if (unlikely(balloon_page_movable(page))) {
746                                 if (balloon_page_isolate(page)) {
747                                         /* Successfully isolated */
748                                         goto isolate_success;
749                                 }
750                         }
751                 }
752
753                 /*
754                  * Regardless of being on LRU, compound pages such as THP and
755                  * hugetlbfs are not to be compacted. We can potentially save
756                  * a lot of iterations if we skip them at once. The check is
757                  * racy, but we can consider only valid values and the only
758                  * danger is skipping too much.
759                  */
760                 if (PageCompound(page)) {
761                         unsigned int comp_order = compound_order(page);
762
763                         if (likely(comp_order < MAX_ORDER))
764                                 low_pfn += (1UL << comp_order) - 1;
765
766                         continue;
767                 }
768
769                 if (!is_lru)
770                         continue;
771
772                 /*
773                  * Migration will fail if an anonymous page is pinned in memory,
774                  * so avoid taking lru_lock and isolating it unnecessarily in an
775                  * admittedly racy check.
776                  */
777                 if (!page_mapping(page) &&
778                     page_count(page) > page_mapcount(page))
779                         continue;
780
781                 /* If we already hold the lock, we can skip some rechecking */
782                 if (!locked) {
783                         locked = compact_trylock_irqsave(&zone->lru_lock,
784                                                                 &flags, cc);
785                         if (!locked)
786                                 break;
787
788                         /* Recheck PageLRU and PageCompound under lock */
789                         if (!PageLRU(page))
790                                 continue;
791
792                         /*
793                          * Page become compound since the non-locked check,
794                          * and it's on LRU. It can only be a THP so the order
795                          * is safe to read and it's 0 for tail pages.
796                          */
797                         if (unlikely(PageCompound(page))) {
798                                 low_pfn += (1UL << compound_order(page)) - 1;
799                                 continue;
800                         }
801                 }
802
803                 lruvec = mem_cgroup_page_lruvec(page, zone);
804
805                 /* Try isolate the page */
806                 if (__isolate_lru_page(page, isolate_mode) != 0)
807                         continue;
808
809                 VM_BUG_ON_PAGE(PageCompound(page), page);
810
811                 /* Successfully isolated */
812                 del_page_from_lru_list(page, lruvec, page_lru(page));
813
814 isolate_success:
815                 list_add(&page->lru, migratelist);
816                 cc->nr_migratepages++;
817                 nr_isolated++;
818
819                 /* Avoid isolating too much */
820                 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
821                         ++low_pfn;
822                         break;
823                 }
824         }
825
826         /*
827          * The PageBuddy() check could have potentially brought us outside
828          * the range to be scanned.
829          */
830         if (unlikely(low_pfn > end_pfn))
831                 low_pfn = end_pfn;
832
833         if (locked)
834                 spin_unlock_irqrestore(&zone->lru_lock, flags);
835
836         /*
837          * Update the pageblock-skip information and cached scanner pfn,
838          * if the whole pageblock was scanned without isolating any page.
839          */
840         if (low_pfn == end_pfn)
841                 update_pageblock_skip(cc, valid_page, nr_isolated, true);
842
843         trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
844                                                 nr_scanned, nr_isolated);
845
846         count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
847         if (nr_isolated)
848                 count_compact_events(COMPACTISOLATED, nr_isolated);
849
850         return low_pfn;
851 }
852
853 /**
854  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
855  * @cc:        Compaction control structure.
856  * @start_pfn: The first PFN to start isolating.
857  * @end_pfn:   The one-past-last PFN.
858  *
859  * Returns zero if isolation fails fatally due to e.g. pending signal.
860  * Otherwise, function returns one-past-the-last PFN of isolated page
861  * (which may be greater than end_pfn if end fell in a middle of a THP page).
862  */
863 unsigned long
864 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
865                                                         unsigned long end_pfn)
866 {
867         unsigned long pfn, block_end_pfn;
868
869         /* Scan block by block. First and last block may be incomplete */
870         pfn = start_pfn;
871         block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
872
873         for (; pfn < end_pfn; pfn = block_end_pfn,
874                                 block_end_pfn += pageblock_nr_pages) {
875
876                 block_end_pfn = min(block_end_pfn, end_pfn);
877
878                 if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
879                         continue;
880
881                 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
882                                                         ISOLATE_UNEVICTABLE);
883
884                 /*
885                  * In case of fatal failure, release everything that might
886                  * have been isolated in the previous iteration, and signal
887                  * the failure back to caller.
888                  */
889                 if (!pfn) {
890                         putback_movable_pages(&cc->migratepages);
891                         cc->nr_migratepages = 0;
892                         break;
893                 }
894
895                 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
896                         break;
897         }
898         acct_isolated(cc->zone, cc);
899
900         return pfn;
901 }
902
903 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
904 #ifdef CONFIG_COMPACTION
905
906 /* Returns true if the page is within a block suitable for migration to */
907 static bool suitable_migration_target(struct page *page)
908 {
909         /* If the page is a large free page, then disallow migration */
910         if (PageBuddy(page)) {
911                 /*
912                  * We are checking page_order without zone->lock taken. But
913                  * the only small danger is that we skip a potentially suitable
914                  * pageblock, so it's not worth to check order for valid range.
915                  */
916                 if (page_order_unsafe(page) >= pageblock_order)
917                         return false;
918         }
919
920         /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
921         if (migrate_async_suitable(get_pageblock_migratetype(page)))
922                 return true;
923
924         /* Otherwise skip the block */
925         return false;
926 }
927
928 /*
929  * Test whether the free scanner has reached the same or lower pageblock than
930  * the migration scanner, and compaction should thus terminate.
931  */
932 static inline bool compact_scanners_met(struct compact_control *cc)
933 {
934         return (cc->free_pfn >> pageblock_order)
935                 <= (cc->migrate_pfn >> pageblock_order);
936 }
937
938 /*
939  * Based on information in the current compact_control, find blocks
940  * suitable for isolating free pages from and then isolate them.
941  */
942 static void isolate_freepages(struct compact_control *cc)
943 {
944         struct zone *zone = cc->zone;
945         struct page *page;
946         unsigned long block_start_pfn;  /* start of current pageblock */
947         unsigned long isolate_start_pfn; /* exact pfn we start at */
948         unsigned long block_end_pfn;    /* end of current pageblock */
949         unsigned long low_pfn;       /* lowest pfn scanner is able to scan */
950         struct list_head *freelist = &cc->freepages;
951
952         /*
953          * Initialise the free scanner. The starting point is where we last
954          * successfully isolated from, zone-cached value, or the end of the
955          * zone when isolating for the first time. For looping we also need
956          * this pfn aligned down to the pageblock boundary, because we do
957          * block_start_pfn -= pageblock_nr_pages in the for loop.
958          * For ending point, take care when isolating in last pageblock of a
959          * a zone which ends in the middle of a pageblock.
960          * The low boundary is the end of the pageblock the migration scanner
961          * is using.
962          */
963         isolate_start_pfn = cc->free_pfn;
964         block_start_pfn = cc->free_pfn & ~(pageblock_nr_pages-1);
965         block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
966                                                 zone_end_pfn(zone));
967         low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
968
969         /*
970          * Isolate free pages until enough are available to migrate the
971          * pages on cc->migratepages. We stop searching if the migrate
972          * and free page scanners meet or enough free pages are isolated.
973          */
974         for (; block_start_pfn >= low_pfn;
975                                 block_end_pfn = block_start_pfn,
976                                 block_start_pfn -= pageblock_nr_pages,
977                                 isolate_start_pfn = block_start_pfn) {
978
979                 /*
980                  * This can iterate a massively long zone without finding any
981                  * suitable migration targets, so periodically check if we need
982                  * to schedule, or even abort async compaction.
983                  */
984                 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
985                                                 && compact_should_abort(cc))
986                         break;
987
988                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
989                                                                         zone);
990                 if (!page)
991                         continue;
992
993                 /* Check the block is suitable for migration */
994                 if (!suitable_migration_target(page))
995                         continue;
996
997                 /* If isolation recently failed, do not retry */
998                 if (!isolation_suitable(cc, page))
999                         continue;
1000
1001                 /* Found a block suitable for isolating free pages from. */
1002                 isolate_freepages_block(cc, &isolate_start_pfn,
1003                                         block_end_pfn, freelist, false);
1004
1005                 /*
1006                  * If we isolated enough freepages, or aborted due to async
1007                  * compaction being contended, terminate the loop.
1008                  * Remember where the free scanner should restart next time,
1009                  * which is where isolate_freepages_block() left off.
1010                  * But if it scanned the whole pageblock, isolate_start_pfn
1011                  * now points at block_end_pfn, which is the start of the next
1012                  * pageblock.
1013                  * In that case we will however want to restart at the start
1014                  * of the previous pageblock.
1015                  */
1016                 if ((cc->nr_freepages >= cc->nr_migratepages)
1017                                                         || cc->contended) {
1018                         if (isolate_start_pfn >= block_end_pfn)
1019                                 isolate_start_pfn =
1020                                         block_start_pfn - pageblock_nr_pages;
1021                         break;
1022                 } else {
1023                         /*
1024                          * isolate_freepages_block() should not terminate
1025                          * prematurely unless contended, or isolated enough
1026                          */
1027                         VM_BUG_ON(isolate_start_pfn < block_end_pfn);
1028                 }
1029         }
1030
1031         /* split_free_page does not map the pages */
1032         map_pages(freelist);
1033
1034         /*
1035          * Record where the free scanner will restart next time. Either we
1036          * broke from the loop and set isolate_start_pfn based on the last
1037          * call to isolate_freepages_block(), or we met the migration scanner
1038          * and the loop terminated due to isolate_start_pfn < low_pfn
1039          */
1040         cc->free_pfn = isolate_start_pfn;
1041 }
1042
1043 /*
1044  * This is a migrate-callback that "allocates" freepages by taking pages
1045  * from the isolated freelists in the block we are migrating to.
1046  */
1047 static struct page *compaction_alloc(struct page *migratepage,
1048                                         unsigned long data,
1049                                         int **result)
1050 {
1051         struct compact_control *cc = (struct compact_control *)data;
1052         struct page *freepage;
1053
1054         /*
1055          * Isolate free pages if necessary, and if we are not aborting due to
1056          * contention.
1057          */
1058         if (list_empty(&cc->freepages)) {
1059                 if (!cc->contended)
1060                         isolate_freepages(cc);
1061
1062                 if (list_empty(&cc->freepages))
1063                         return NULL;
1064         }
1065
1066         freepage = list_entry(cc->freepages.next, struct page, lru);
1067         list_del(&freepage->lru);
1068         cc->nr_freepages--;
1069
1070         return freepage;
1071 }
1072
1073 /*
1074  * This is a migrate-callback that "frees" freepages back to the isolated
1075  * freelist.  All pages on the freelist are from the same zone, so there is no
1076  * special handling needed for NUMA.
1077  */
1078 static void compaction_free(struct page *page, unsigned long data)
1079 {
1080         struct compact_control *cc = (struct compact_control *)data;
1081
1082         list_add(&page->lru, &cc->freepages);
1083         cc->nr_freepages++;
1084 }
1085
1086 /* possible outcome of isolate_migratepages */
1087 typedef enum {
1088         ISOLATE_ABORT,          /* Abort compaction now */
1089         ISOLATE_NONE,           /* No pages isolated, continue scanning */
1090         ISOLATE_SUCCESS,        /* Pages isolated, migrate */
1091 } isolate_migrate_t;
1092
1093 /*
1094  * Allow userspace to control policy on scanning the unevictable LRU for
1095  * compactable pages.
1096  */
1097 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1098
1099 /*
1100  * Isolate all pages that can be migrated from the first suitable block,
1101  * starting at the block pointed to by the migrate scanner pfn within
1102  * compact_control.
1103  */
1104 static isolate_migrate_t isolate_migratepages(struct zone *zone,
1105                                         struct compact_control *cc)
1106 {
1107         unsigned long low_pfn, end_pfn;
1108         unsigned long isolate_start_pfn;
1109         struct page *page;
1110         const isolate_mode_t isolate_mode =
1111                 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1112                 (cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1113
1114         /*
1115          * Start at where we last stopped, or beginning of the zone as
1116          * initialized by compact_zone()
1117          */
1118         low_pfn = cc->migrate_pfn;
1119
1120         /* Only scan within a pageblock boundary */
1121         end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
1122
1123         /*
1124          * Iterate over whole pageblocks until we find the first suitable.
1125          * Do not cross the free scanner.
1126          */
1127         for (; end_pfn <= cc->free_pfn;
1128                         low_pfn = end_pfn, end_pfn += pageblock_nr_pages) {
1129
1130                 /*
1131                  * This can potentially iterate a massively long zone with
1132                  * many pageblocks unsuitable, so periodically check if we
1133                  * need to schedule, or even abort async compaction.
1134                  */
1135                 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1136                                                 && compact_should_abort(cc))
1137                         break;
1138
1139                 page = pageblock_pfn_to_page(low_pfn, end_pfn, zone);
1140                 if (!page)
1141                         continue;
1142
1143                 /* If isolation recently failed, do not retry */
1144                 if (!isolation_suitable(cc, page))
1145                         continue;
1146
1147                 /*
1148                  * For async compaction, also only scan in MOVABLE blocks.
1149                  * Async compaction is optimistic to see if the minimum amount
1150                  * of work satisfies the allocation.
1151                  */
1152                 if (cc->mode == MIGRATE_ASYNC &&
1153                     !migrate_async_suitable(get_pageblock_migratetype(page)))
1154                         continue;
1155
1156                 /* Perform the isolation */
1157                 isolate_start_pfn = low_pfn;
1158                 low_pfn = isolate_migratepages_block(cc, low_pfn, end_pfn,
1159                                                                 isolate_mode);
1160
1161                 if (!low_pfn || cc->contended) {
1162                         acct_isolated(zone, cc);
1163                         return ISOLATE_ABORT;
1164                 }
1165
1166                 /*
1167                  * Record where we could have freed pages by migration and not
1168                  * yet flushed them to buddy allocator.
1169                  * - this is the lowest page that could have been isolated and
1170                  * then freed by migration.
1171                  */
1172                 if (cc->nr_migratepages && !cc->last_migrated_pfn)
1173                         cc->last_migrated_pfn = isolate_start_pfn;
1174
1175                 /*
1176                  * Either we isolated something and proceed with migration. Or
1177                  * we failed and compact_zone should decide if we should
1178                  * continue or not.
1179                  */
1180                 break;
1181         }
1182
1183         acct_isolated(zone, cc);
1184         /* Record where migration scanner will be restarted. */
1185         cc->migrate_pfn = low_pfn;
1186
1187         return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1188 }
1189
1190 /*
1191  * order == -1 is expected when compacting via
1192  * /proc/sys/vm/compact_memory
1193  */
1194 static inline bool is_via_compact_memory(int order)
1195 {
1196         return order == -1;
1197 }
1198
1199 static int __compact_finished(struct zone *zone, struct compact_control *cc,
1200                             const int migratetype)
1201 {
1202         unsigned int order;
1203         unsigned long watermark;
1204
1205         if (cc->contended || fatal_signal_pending(current))
1206                 return COMPACT_CONTENDED;
1207
1208         /* Compaction run completes if the migrate and free scanner meet */
1209         if (compact_scanners_met(cc)) {
1210                 /* Let the next compaction start anew. */
1211                 reset_cached_positions(zone);
1212
1213                 /*
1214                  * Mark that the PG_migrate_skip information should be cleared
1215                  * by kswapd when it goes to sleep. kswapd does not set the
1216                  * flag itself as the decision to be clear should be directly
1217                  * based on an allocation request.
1218                  */
1219                 if (!current_is_kswapd())
1220                         zone->compact_blockskip_flush = true;
1221
1222                 return COMPACT_COMPLETE;
1223         }
1224
1225         if (is_via_compact_memory(cc->order))
1226                 return COMPACT_CONTINUE;
1227
1228         /* Compaction run is not finished if the watermark is not met */
1229         watermark = low_wmark_pages(zone);
1230
1231         if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
1232                                                         cc->alloc_flags))
1233                 return COMPACT_CONTINUE;
1234
1235         /* Direct compactor: Is a suitable page free? */
1236         for (order = cc->order; order < MAX_ORDER; order++) {
1237                 struct free_area *area = &zone->free_area[order];
1238                 bool can_steal;
1239
1240                 /* Job done if page is free of the right migratetype */
1241                 if (!list_empty(&area->free_list[migratetype]))
1242                         return COMPACT_PARTIAL;
1243
1244 #ifdef CONFIG_CMA
1245                 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1246                 if (migratetype == MIGRATE_MOVABLE &&
1247                         !list_empty(&area->free_list[MIGRATE_CMA]))
1248                         return COMPACT_PARTIAL;
1249 #endif
1250                 /*
1251                  * Job done if allocation would steal freepages from
1252                  * other migratetype buddy lists.
1253                  */
1254                 if (find_suitable_fallback(area, order, migratetype,
1255                                                 true, &can_steal) != -1)
1256                         return COMPACT_PARTIAL;
1257         }
1258
1259         return COMPACT_NO_SUITABLE_PAGE;
1260 }
1261
1262 static int compact_finished(struct zone *zone, struct compact_control *cc,
1263                             const int migratetype)
1264 {
1265         int ret;
1266
1267         ret = __compact_finished(zone, cc, migratetype);
1268         trace_mm_compaction_finished(zone, cc->order, ret);
1269         if (ret == COMPACT_NO_SUITABLE_PAGE)
1270                 ret = COMPACT_CONTINUE;
1271
1272         return ret;
1273 }
1274
1275 /*
1276  * compaction_suitable: Is this suitable to run compaction on this zone now?
1277  * Returns
1278  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1279  *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
1280  *   COMPACT_CONTINUE - If compaction should run now
1281  */
1282 static unsigned long __compaction_suitable(struct zone *zone, int order,
1283                                         int alloc_flags, int classzone_idx)
1284 {
1285         int fragindex;
1286         unsigned long watermark;
1287
1288         if (is_via_compact_memory(order))
1289                 return COMPACT_CONTINUE;
1290
1291         watermark = low_wmark_pages(zone);
1292         /*
1293          * If watermarks for high-order allocation are already met, there
1294          * should be no need for compaction at all.
1295          */
1296         if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1297                                                                 alloc_flags))
1298                 return COMPACT_PARTIAL;
1299
1300         /*
1301          * Watermarks for order-0 must be met for compaction. Note the 2UL.
1302          * This is because during migration, copies of pages need to be
1303          * allocated and for a short time, the footprint is higher
1304          */
1305         watermark += (2UL << order);
1306         if (!zone_watermark_ok(zone, 0, watermark, classzone_idx, alloc_flags))
1307                 return COMPACT_SKIPPED;
1308
1309         /*
1310          * fragmentation index determines if allocation failures are due to
1311          * low memory or external fragmentation
1312          *
1313          * index of -1000 would imply allocations might succeed depending on
1314          * watermarks, but we already failed the high-order watermark check
1315          * index towards 0 implies failure is due to lack of memory
1316          * index towards 1000 implies failure is due to fragmentation
1317          *
1318          * Only compact if a failure would be due to fragmentation.
1319          */
1320         fragindex = fragmentation_index(zone, order);
1321         if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1322                 return COMPACT_NOT_SUITABLE_ZONE;
1323
1324         return COMPACT_CONTINUE;
1325 }
1326
1327 unsigned long compaction_suitable(struct zone *zone, int order,
1328                                         int alloc_flags, int classzone_idx)
1329 {
1330         unsigned long ret;
1331
1332         ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx);
1333         trace_mm_compaction_suitable(zone, order, ret);
1334         if (ret == COMPACT_NOT_SUITABLE_ZONE)
1335                 ret = COMPACT_SKIPPED;
1336
1337         return ret;
1338 }
1339
1340 static int compact_zone(struct zone *zone, struct compact_control *cc)
1341 {
1342         int ret;
1343         unsigned long start_pfn = zone->zone_start_pfn;
1344         unsigned long end_pfn = zone_end_pfn(zone);
1345         const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1346         const bool sync = cc->mode != MIGRATE_ASYNC;
1347
1348         ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1349                                                         cc->classzone_idx);
1350         switch (ret) {
1351         case COMPACT_PARTIAL:
1352         case COMPACT_SKIPPED:
1353                 /* Compaction is likely to fail */
1354                 return ret;
1355         case COMPACT_CONTINUE:
1356                 /* Fall through to compaction */
1357                 ;
1358         }
1359
1360         /*
1361          * Clear pageblock skip if there were failures recently and compaction
1362          * is about to be retried after being deferred. kswapd does not do
1363          * this reset as it'll reset the cached information when going to sleep.
1364          */
1365         if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
1366                 __reset_isolation_suitable(zone);
1367
1368         /*
1369          * Setup to move all movable pages to the end of the zone. Used cached
1370          * information on where the scanners should start but check that it
1371          * is initialised by ensuring the values are within zone boundaries.
1372          */
1373         cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1374         cc->free_pfn = zone->compact_cached_free_pfn;
1375         if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
1376                 cc->free_pfn = round_down(end_pfn - 1, pageblock_nr_pages);
1377                 zone->compact_cached_free_pfn = cc->free_pfn;
1378         }
1379         if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
1380                 cc->migrate_pfn = start_pfn;
1381                 zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1382                 zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1383         }
1384         cc->last_migrated_pfn = 0;
1385
1386         trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1387                                 cc->free_pfn, end_pfn, sync);
1388
1389         migrate_prep_local();
1390
1391         while ((ret = compact_finished(zone, cc, migratetype)) ==
1392                                                 COMPACT_CONTINUE) {
1393                 int err;
1394
1395                 switch (isolate_migratepages(zone, cc)) {
1396                 case ISOLATE_ABORT:
1397                         ret = COMPACT_CONTENDED;
1398                         putback_movable_pages(&cc->migratepages);
1399                         cc->nr_migratepages = 0;
1400                         goto out;
1401                 case ISOLATE_NONE:
1402                         /*
1403                          * We haven't isolated and migrated anything, but
1404                          * there might still be unflushed migrations from
1405                          * previous cc->order aligned block.
1406                          */
1407                         goto check_drain;
1408                 case ISOLATE_SUCCESS:
1409                         ;
1410                 }
1411
1412                 err = migrate_pages(&cc->migratepages, compaction_alloc,
1413                                 compaction_free, (unsigned long)cc, cc->mode,
1414                                 MR_COMPACTION);
1415
1416                 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1417                                                         &cc->migratepages);
1418
1419                 /* All pages were either migrated or will be released */
1420                 cc->nr_migratepages = 0;
1421                 if (err) {
1422                         putback_movable_pages(&cc->migratepages);
1423                         /*
1424                          * migrate_pages() may return -ENOMEM when scanners meet
1425                          * and we want compact_finished() to detect it
1426                          */
1427                         if (err == -ENOMEM && !compact_scanners_met(cc)) {
1428                                 ret = COMPACT_CONTENDED;
1429                                 goto out;
1430                         }
1431                 }
1432
1433 check_drain:
1434                 /*
1435                  * Has the migration scanner moved away from the previous
1436                  * cc->order aligned block where we migrated from? If yes,
1437                  * flush the pages that were freed, so that they can merge and
1438                  * compact_finished() can detect immediately if allocation
1439                  * would succeed.
1440                  */
1441                 if (cc->order > 0 && cc->last_migrated_pfn) {
1442                         int cpu;
1443                         unsigned long current_block_start =
1444                                 cc->migrate_pfn & ~((1UL << cc->order) - 1);
1445
1446                         if (cc->last_migrated_pfn < current_block_start) {
1447                                 cpu = get_cpu();
1448                                 lru_add_drain_cpu(cpu);
1449                                 drain_local_pages(zone);
1450                                 put_cpu();
1451                                 /* No more flushing until we migrate again */
1452                                 cc->last_migrated_pfn = 0;
1453                         }
1454                 }
1455
1456         }
1457
1458 out:
1459         /*
1460          * Release free pages and update where the free scanner should restart,
1461          * so we don't leave any returned pages behind in the next attempt.
1462          */
1463         if (cc->nr_freepages > 0) {
1464                 unsigned long free_pfn = release_freepages(&cc->freepages);
1465
1466                 cc->nr_freepages = 0;
1467                 VM_BUG_ON(free_pfn == 0);
1468                 /* The cached pfn is always the first in a pageblock */
1469                 free_pfn &= ~(pageblock_nr_pages-1);
1470                 /*
1471                  * Only go back, not forward. The cached pfn might have been
1472                  * already reset to zone end in compact_finished()
1473                  */
1474                 if (free_pfn > zone->compact_cached_free_pfn)
1475                         zone->compact_cached_free_pfn = free_pfn;
1476         }
1477
1478         trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1479                                 cc->free_pfn, end_pfn, sync, ret);
1480
1481         if (ret == COMPACT_CONTENDED)
1482                 ret = COMPACT_PARTIAL;
1483
1484         return ret;
1485 }
1486
1487 static unsigned long compact_zone_order(struct zone *zone, int order,
1488                 gfp_t gfp_mask, enum migrate_mode mode, int *contended,
1489                 int alloc_flags, int classzone_idx)
1490 {
1491         unsigned long ret;
1492         struct compact_control cc = {
1493                 .nr_freepages = 0,
1494                 .nr_migratepages = 0,
1495                 .order = order,
1496                 .gfp_mask = gfp_mask,
1497                 .zone = zone,
1498                 .mode = mode,
1499                 .alloc_flags = alloc_flags,
1500                 .classzone_idx = classzone_idx,
1501         };
1502         INIT_LIST_HEAD(&cc.freepages);
1503         INIT_LIST_HEAD(&cc.migratepages);
1504
1505         ret = compact_zone(zone, &cc);
1506
1507         VM_BUG_ON(!list_empty(&cc.freepages));
1508         VM_BUG_ON(!list_empty(&cc.migratepages));
1509
1510         *contended = cc.contended;
1511         return ret;
1512 }
1513
1514 int sysctl_extfrag_threshold = 500;
1515
1516 /**
1517  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1518  * @gfp_mask: The GFP mask of the current allocation
1519  * @order: The order of the current allocation
1520  * @alloc_flags: The allocation flags of the current allocation
1521  * @ac: The context of current allocation
1522  * @mode: The migration mode for async, sync light, or sync migration
1523  * @contended: Return value that determines if compaction was aborted due to
1524  *             need_resched() or lock contention
1525  *
1526  * This is the main entry point for direct page compaction.
1527  */
1528 unsigned long try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1529                         int alloc_flags, const struct alloc_context *ac,
1530                         enum migrate_mode mode, int *contended)
1531 {
1532         int may_enter_fs = gfp_mask & __GFP_FS;
1533         int may_perform_io = gfp_mask & __GFP_IO;
1534         struct zoneref *z;
1535         struct zone *zone;
1536         int rc = COMPACT_DEFERRED;
1537         int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */
1538
1539         *contended = COMPACT_CONTENDED_NONE;
1540
1541         /* Check if the GFP flags allow compaction */
1542         if (!order || !may_enter_fs || !may_perform_io)
1543                 return COMPACT_SKIPPED;
1544
1545         trace_mm_compaction_try_to_compact_pages(order, gfp_mask, mode);
1546
1547         /* Compact each zone in the list */
1548         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1549                                                                 ac->nodemask) {
1550                 int status;
1551                 int zone_contended;
1552
1553                 if (compaction_deferred(zone, order))
1554                         continue;
1555
1556                 status = compact_zone_order(zone, order, gfp_mask, mode,
1557                                 &zone_contended, alloc_flags,
1558                                 ac->classzone_idx);
1559                 rc = max(status, rc);
1560                 /*
1561                  * It takes at least one zone that wasn't lock contended
1562                  * to clear all_zones_contended.
1563                  */
1564                 all_zones_contended &= zone_contended;
1565
1566                 /* If a normal allocation would succeed, stop compacting */
1567                 if (zone_watermark_ok(zone, order, low_wmark_pages(zone),
1568                                         ac->classzone_idx, alloc_flags)) {
1569                         /*
1570                          * We think the allocation will succeed in this zone,
1571                          * but it is not certain, hence the false. The caller
1572                          * will repeat this with true if allocation indeed
1573                          * succeeds in this zone.
1574                          */
1575                         compaction_defer_reset(zone, order, false);
1576                         /*
1577                          * It is possible that async compaction aborted due to
1578                          * need_resched() and the watermarks were ok thanks to
1579                          * somebody else freeing memory. The allocation can
1580                          * however still fail so we better signal the
1581                          * need_resched() contention anyway (this will not
1582                          * prevent the allocation attempt).
1583                          */
1584                         if (zone_contended == COMPACT_CONTENDED_SCHED)
1585                                 *contended = COMPACT_CONTENDED_SCHED;
1586
1587                         goto break_loop;
1588                 }
1589
1590                 if (mode != MIGRATE_ASYNC && status == COMPACT_COMPLETE) {
1591                         /*
1592                          * We think that allocation won't succeed in this zone
1593                          * so we defer compaction there. If it ends up
1594                          * succeeding after all, it will be reset.
1595                          */
1596                         defer_compaction(zone, order);
1597                 }
1598
1599                 /*
1600                  * We might have stopped compacting due to need_resched() in
1601                  * async compaction, or due to a fatal signal detected. In that
1602                  * case do not try further zones and signal need_resched()
1603                  * contention.
1604                  */
1605                 if ((zone_contended == COMPACT_CONTENDED_SCHED)
1606                                         || fatal_signal_pending(current)) {
1607                         *contended = COMPACT_CONTENDED_SCHED;
1608                         goto break_loop;
1609                 }
1610
1611                 continue;
1612 break_loop:
1613                 /*
1614                  * We might not have tried all the zones, so  be conservative
1615                  * and assume they are not all lock contended.
1616                  */
1617                 all_zones_contended = 0;
1618                 break;
1619         }
1620
1621         /*
1622          * If at least one zone wasn't deferred or skipped, we report if all
1623          * zones that were tried were lock contended.
1624          */
1625         if (rc > COMPACT_SKIPPED && all_zones_contended)
1626                 *contended = COMPACT_CONTENDED_LOCK;
1627
1628         return rc;
1629 }
1630
1631
1632 /* Compact all zones within a node */
1633 static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1634 {
1635         int zoneid;
1636         struct zone *zone;
1637
1638         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1639
1640                 zone = &pgdat->node_zones[zoneid];
1641                 if (!populated_zone(zone))
1642                         continue;
1643
1644                 cc->nr_freepages = 0;
1645                 cc->nr_migratepages = 0;
1646                 cc->zone = zone;
1647                 INIT_LIST_HEAD(&cc->freepages);
1648                 INIT_LIST_HEAD(&cc->migratepages);
1649
1650                 /*
1651                  * When called via /proc/sys/vm/compact_memory
1652                  * this makes sure we compact the whole zone regardless of
1653                  * cached scanner positions.
1654                  */
1655                 if (is_via_compact_memory(cc->order))
1656                         __reset_isolation_suitable(zone);
1657
1658                 if (is_via_compact_memory(cc->order) ||
1659                                 !compaction_deferred(zone, cc->order))
1660                         compact_zone(zone, cc);
1661
1662                 VM_BUG_ON(!list_empty(&cc->freepages));
1663                 VM_BUG_ON(!list_empty(&cc->migratepages));
1664
1665                 if (is_via_compact_memory(cc->order))
1666                         continue;
1667
1668                 if (zone_watermark_ok(zone, cc->order,
1669                                 low_wmark_pages(zone), 0, 0))
1670                         compaction_defer_reset(zone, cc->order, false);
1671         }
1672 }
1673
1674 void compact_pgdat(pg_data_t *pgdat, int order)
1675 {
1676         struct compact_control cc = {
1677                 .order = order,
1678                 .mode = MIGRATE_ASYNC,
1679         };
1680
1681         if (!order)
1682                 return;
1683
1684         __compact_pgdat(pgdat, &cc);
1685 }
1686
1687 static void compact_node(int nid)
1688 {
1689         struct compact_control cc = {
1690                 .order = -1,
1691                 .mode = MIGRATE_SYNC,
1692                 .ignore_skip_hint = true,
1693         };
1694
1695         __compact_pgdat(NODE_DATA(nid), &cc);
1696 }
1697
1698 /* Compact all nodes in the system */
1699 static void compact_nodes(void)
1700 {
1701         int nid;
1702
1703         /* Flush pending updates to the LRU lists */
1704         lru_add_drain_all();
1705
1706         for_each_online_node(nid)
1707                 compact_node(nid);
1708 }
1709
1710 /* The written value is actually unused, all memory is compacted */
1711 int sysctl_compact_memory;
1712
1713 /*
1714  * This is the entry point for compacting all nodes via
1715  * /proc/sys/vm/compact_memory
1716  */
1717 int sysctl_compaction_handler(struct ctl_table *table, int write,
1718                         void __user *buffer, size_t *length, loff_t *ppos)
1719 {
1720         if (write)
1721                 compact_nodes();
1722
1723         return 0;
1724 }
1725
1726 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1727                         void __user *buffer, size_t *length, loff_t *ppos)
1728 {
1729         proc_dointvec_minmax(table, write, buffer, length, ppos);
1730
1731         return 0;
1732 }
1733
1734 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1735 static ssize_t sysfs_compact_node(struct device *dev,
1736                         struct device_attribute *attr,
1737                         const char *buf, size_t count)
1738 {
1739         int nid = dev->id;
1740
1741         if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1742                 /* Flush pending updates to the LRU lists */
1743                 lru_add_drain_all();
1744
1745                 compact_node(nid);
1746         }
1747
1748         return count;
1749 }
1750 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1751
1752 int compaction_register_node(struct node *node)
1753 {
1754         return device_create_file(&node->dev, &dev_attr_compact);
1755 }
1756
1757 void compaction_unregister_node(struct node *node)
1758 {
1759         return device_remove_file(&node->dev, &dev_attr_compact);
1760 }
1761 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1762
1763 #endif /* CONFIG_COMPACTION */