zsmalloc: introduce zspage structure
[cascardo/linux.git] / mm / compaction.c
1 /*
2  * linux/mm/compaction.c
3  *
4  * Memory compaction for the reduction of external fragmentation. Note that
5  * this heavily depends upon page migration to do all the real heavy
6  * lifting
7  *
8  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9  */
10 #include <linux/cpu.h>
11 #include <linux/swap.h>
12 #include <linux/migrate.h>
13 #include <linux/compaction.h>
14 #include <linux/mm_inline.h>
15 #include <linux/backing-dev.h>
16 #include <linux/sysctl.h>
17 #include <linux/sysfs.h>
18 #include <linux/page-isolation.h>
19 #include <linux/kasan.h>
20 #include <linux/kthread.h>
21 #include <linux/freezer.h>
22 #include "internal.h"
23
24 #ifdef CONFIG_COMPACTION
25 static inline void count_compact_event(enum vm_event_item item)
26 {
27         count_vm_event(item);
28 }
29
30 static inline void count_compact_events(enum vm_event_item item, long delta)
31 {
32         count_vm_events(item, delta);
33 }
34 #else
35 #define count_compact_event(item) do { } while (0)
36 #define count_compact_events(item, delta) do { } while (0)
37 #endif
38
39 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
40
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/compaction.h>
43
44 #define block_start_pfn(pfn, order)     round_down(pfn, 1UL << (order))
45 #define block_end_pfn(pfn, order)       ALIGN((pfn) + 1, 1UL << (order))
46 #define pageblock_start_pfn(pfn)        block_start_pfn(pfn, pageblock_order)
47 #define pageblock_end_pfn(pfn)          block_end_pfn(pfn, pageblock_order)
48
49 static unsigned long release_freepages(struct list_head *freelist)
50 {
51         struct page *page, *next;
52         unsigned long high_pfn = 0;
53
54         list_for_each_entry_safe(page, next, freelist, lru) {
55                 unsigned long pfn = page_to_pfn(page);
56                 list_del(&page->lru);
57                 __free_page(page);
58                 if (pfn > high_pfn)
59                         high_pfn = pfn;
60         }
61
62         return high_pfn;
63 }
64
65 static void map_pages(struct list_head *list)
66 {
67         struct page *page;
68
69         list_for_each_entry(page, list, lru) {
70                 arch_alloc_page(page, 0);
71                 kernel_map_pages(page, 1, 1);
72                 kasan_alloc_pages(page, 0);
73         }
74 }
75
76 static inline bool migrate_async_suitable(int migratetype)
77 {
78         return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
79 }
80
81 #ifdef CONFIG_COMPACTION
82
83 int PageMovable(struct page *page)
84 {
85         struct address_space *mapping;
86
87         VM_BUG_ON_PAGE(!PageLocked(page), page);
88         if (!__PageMovable(page))
89                 return 0;
90
91         mapping = page_mapping(page);
92         if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
93                 return 1;
94
95         return 0;
96 }
97 EXPORT_SYMBOL(PageMovable);
98
99 void __SetPageMovable(struct page *page, struct address_space *mapping)
100 {
101         VM_BUG_ON_PAGE(!PageLocked(page), page);
102         VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
103         page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
104 }
105 EXPORT_SYMBOL(__SetPageMovable);
106
107 void __ClearPageMovable(struct page *page)
108 {
109         VM_BUG_ON_PAGE(!PageLocked(page), page);
110         VM_BUG_ON_PAGE(!PageMovable(page), page);
111         /*
112          * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
113          * flag so that VM can catch up released page by driver after isolation.
114          * With it, VM migration doesn't try to put it back.
115          */
116         page->mapping = (void *)((unsigned long)page->mapping &
117                                 PAGE_MAPPING_MOVABLE);
118 }
119 EXPORT_SYMBOL(__ClearPageMovable);
120
121 /* Do not skip compaction more than 64 times */
122 #define COMPACT_MAX_DEFER_SHIFT 6
123
124 /*
125  * Compaction is deferred when compaction fails to result in a page
126  * allocation success. 1 << compact_defer_limit compactions are skipped up
127  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
128  */
129 void defer_compaction(struct zone *zone, int order)
130 {
131         zone->compact_considered = 0;
132         zone->compact_defer_shift++;
133
134         if (order < zone->compact_order_failed)
135                 zone->compact_order_failed = order;
136
137         if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
138                 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
139
140         trace_mm_compaction_defer_compaction(zone, order);
141 }
142
143 /* Returns true if compaction should be skipped this time */
144 bool compaction_deferred(struct zone *zone, int order)
145 {
146         unsigned long defer_limit = 1UL << zone->compact_defer_shift;
147
148         if (order < zone->compact_order_failed)
149                 return false;
150
151         /* Avoid possible overflow */
152         if (++zone->compact_considered > defer_limit)
153                 zone->compact_considered = defer_limit;
154
155         if (zone->compact_considered >= defer_limit)
156                 return false;
157
158         trace_mm_compaction_deferred(zone, order);
159
160         return true;
161 }
162
163 /*
164  * Update defer tracking counters after successful compaction of given order,
165  * which means an allocation either succeeded (alloc_success == true) or is
166  * expected to succeed.
167  */
168 void compaction_defer_reset(struct zone *zone, int order,
169                 bool alloc_success)
170 {
171         if (alloc_success) {
172                 zone->compact_considered = 0;
173                 zone->compact_defer_shift = 0;
174         }
175         if (order >= zone->compact_order_failed)
176                 zone->compact_order_failed = order + 1;
177
178         trace_mm_compaction_defer_reset(zone, order);
179 }
180
181 /* Returns true if restarting compaction after many failures */
182 bool compaction_restarting(struct zone *zone, int order)
183 {
184         if (order < zone->compact_order_failed)
185                 return false;
186
187         return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
188                 zone->compact_considered >= 1UL << zone->compact_defer_shift;
189 }
190
191 /* Returns true if the pageblock should be scanned for pages to isolate. */
192 static inline bool isolation_suitable(struct compact_control *cc,
193                                         struct page *page)
194 {
195         if (cc->ignore_skip_hint)
196                 return true;
197
198         return !get_pageblock_skip(page);
199 }
200
201 static void reset_cached_positions(struct zone *zone)
202 {
203         zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
204         zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
205         zone->compact_cached_free_pfn =
206                                 pageblock_start_pfn(zone_end_pfn(zone) - 1);
207 }
208
209 /*
210  * This function is called to clear all cached information on pageblocks that
211  * should be skipped for page isolation when the migrate and free page scanner
212  * meet.
213  */
214 static void __reset_isolation_suitable(struct zone *zone)
215 {
216         unsigned long start_pfn = zone->zone_start_pfn;
217         unsigned long end_pfn = zone_end_pfn(zone);
218         unsigned long pfn;
219
220         zone->compact_blockskip_flush = false;
221
222         /* Walk the zone and mark every pageblock as suitable for isolation */
223         for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
224                 struct page *page;
225
226                 cond_resched();
227
228                 if (!pfn_valid(pfn))
229                         continue;
230
231                 page = pfn_to_page(pfn);
232                 if (zone != page_zone(page))
233                         continue;
234
235                 clear_pageblock_skip(page);
236         }
237
238         reset_cached_positions(zone);
239 }
240
241 void reset_isolation_suitable(pg_data_t *pgdat)
242 {
243         int zoneid;
244
245         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
246                 struct zone *zone = &pgdat->node_zones[zoneid];
247                 if (!populated_zone(zone))
248                         continue;
249
250                 /* Only flush if a full compaction finished recently */
251                 if (zone->compact_blockskip_flush)
252                         __reset_isolation_suitable(zone);
253         }
254 }
255
256 /*
257  * If no pages were isolated then mark this pageblock to be skipped in the
258  * future. The information is later cleared by __reset_isolation_suitable().
259  */
260 static void update_pageblock_skip(struct compact_control *cc,
261                         struct page *page, unsigned long nr_isolated,
262                         bool migrate_scanner)
263 {
264         struct zone *zone = cc->zone;
265         unsigned long pfn;
266
267         if (cc->ignore_skip_hint)
268                 return;
269
270         if (!page)
271                 return;
272
273         if (nr_isolated)
274                 return;
275
276         set_pageblock_skip(page);
277
278         pfn = page_to_pfn(page);
279
280         /* Update where async and sync compaction should restart */
281         if (migrate_scanner) {
282                 if (pfn > zone->compact_cached_migrate_pfn[0])
283                         zone->compact_cached_migrate_pfn[0] = pfn;
284                 if (cc->mode != MIGRATE_ASYNC &&
285                     pfn > zone->compact_cached_migrate_pfn[1])
286                         zone->compact_cached_migrate_pfn[1] = pfn;
287         } else {
288                 if (pfn < zone->compact_cached_free_pfn)
289                         zone->compact_cached_free_pfn = pfn;
290         }
291 }
292 #else
293 static inline bool isolation_suitable(struct compact_control *cc,
294                                         struct page *page)
295 {
296         return true;
297 }
298
299 static void update_pageblock_skip(struct compact_control *cc,
300                         struct page *page, unsigned long nr_isolated,
301                         bool migrate_scanner)
302 {
303 }
304 #endif /* CONFIG_COMPACTION */
305
306 /*
307  * Compaction requires the taking of some coarse locks that are potentially
308  * very heavily contended. For async compaction, back out if the lock cannot
309  * be taken immediately. For sync compaction, spin on the lock if needed.
310  *
311  * Returns true if the lock is held
312  * Returns false if the lock is not held and compaction should abort
313  */
314 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
315                                                 struct compact_control *cc)
316 {
317         if (cc->mode == MIGRATE_ASYNC) {
318                 if (!spin_trylock_irqsave(lock, *flags)) {
319                         cc->contended = COMPACT_CONTENDED_LOCK;
320                         return false;
321                 }
322         } else {
323                 spin_lock_irqsave(lock, *flags);
324         }
325
326         return true;
327 }
328
329 /*
330  * Compaction requires the taking of some coarse locks that are potentially
331  * very heavily contended. The lock should be periodically unlocked to avoid
332  * having disabled IRQs for a long time, even when there is nobody waiting on
333  * the lock. It might also be that allowing the IRQs will result in
334  * need_resched() becoming true. If scheduling is needed, async compaction
335  * aborts. Sync compaction schedules.
336  * Either compaction type will also abort if a fatal signal is pending.
337  * In either case if the lock was locked, it is dropped and not regained.
338  *
339  * Returns true if compaction should abort due to fatal signal pending, or
340  *              async compaction due to need_resched()
341  * Returns false when compaction can continue (sync compaction might have
342  *              scheduled)
343  */
344 static bool compact_unlock_should_abort(spinlock_t *lock,
345                 unsigned long flags, bool *locked, struct compact_control *cc)
346 {
347         if (*locked) {
348                 spin_unlock_irqrestore(lock, flags);
349                 *locked = false;
350         }
351
352         if (fatal_signal_pending(current)) {
353                 cc->contended = COMPACT_CONTENDED_SCHED;
354                 return true;
355         }
356
357         if (need_resched()) {
358                 if (cc->mode == MIGRATE_ASYNC) {
359                         cc->contended = COMPACT_CONTENDED_SCHED;
360                         return true;
361                 }
362                 cond_resched();
363         }
364
365         return false;
366 }
367
368 /*
369  * Aside from avoiding lock contention, compaction also periodically checks
370  * need_resched() and either schedules in sync compaction or aborts async
371  * compaction. This is similar to what compact_unlock_should_abort() does, but
372  * is used where no lock is concerned.
373  *
374  * Returns false when no scheduling was needed, or sync compaction scheduled.
375  * Returns true when async compaction should abort.
376  */
377 static inline bool compact_should_abort(struct compact_control *cc)
378 {
379         /* async compaction aborts if contended */
380         if (need_resched()) {
381                 if (cc->mode == MIGRATE_ASYNC) {
382                         cc->contended = COMPACT_CONTENDED_SCHED;
383                         return true;
384                 }
385
386                 cond_resched();
387         }
388
389         return false;
390 }
391
392 /*
393  * Isolate free pages onto a private freelist. If @strict is true, will abort
394  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
395  * (even though it may still end up isolating some pages).
396  */
397 static unsigned long isolate_freepages_block(struct compact_control *cc,
398                                 unsigned long *start_pfn,
399                                 unsigned long end_pfn,
400                                 struct list_head *freelist,
401                                 bool strict)
402 {
403         int nr_scanned = 0, total_isolated = 0;
404         struct page *cursor, *valid_page = NULL;
405         unsigned long flags = 0;
406         bool locked = false;
407         unsigned long blockpfn = *start_pfn;
408
409         cursor = pfn_to_page(blockpfn);
410
411         /* Isolate free pages. */
412         for (; blockpfn < end_pfn; blockpfn++, cursor++) {
413                 int isolated, i;
414                 struct page *page = cursor;
415
416                 /*
417                  * Periodically drop the lock (if held) regardless of its
418                  * contention, to give chance to IRQs. Abort if fatal signal
419                  * pending or async compaction detects need_resched()
420                  */
421                 if (!(blockpfn % SWAP_CLUSTER_MAX)
422                     && compact_unlock_should_abort(&cc->zone->lock, flags,
423                                                                 &locked, cc))
424                         break;
425
426                 nr_scanned++;
427                 if (!pfn_valid_within(blockpfn))
428                         goto isolate_fail;
429
430                 if (!valid_page)
431                         valid_page = page;
432
433                 /*
434                  * For compound pages such as THP and hugetlbfs, we can save
435                  * potentially a lot of iterations if we skip them at once.
436                  * The check is racy, but we can consider only valid values
437                  * and the only danger is skipping too much.
438                  */
439                 if (PageCompound(page)) {
440                         unsigned int comp_order = compound_order(page);
441
442                         if (likely(comp_order < MAX_ORDER)) {
443                                 blockpfn += (1UL << comp_order) - 1;
444                                 cursor += (1UL << comp_order) - 1;
445                         }
446
447                         goto isolate_fail;
448                 }
449
450                 if (!PageBuddy(page))
451                         goto isolate_fail;
452
453                 /*
454                  * If we already hold the lock, we can skip some rechecking.
455                  * Note that if we hold the lock now, checked_pageblock was
456                  * already set in some previous iteration (or strict is true),
457                  * so it is correct to skip the suitable migration target
458                  * recheck as well.
459                  */
460                 if (!locked) {
461                         /*
462                          * The zone lock must be held to isolate freepages.
463                          * Unfortunately this is a very coarse lock and can be
464                          * heavily contended if there are parallel allocations
465                          * or parallel compactions. For async compaction do not
466                          * spin on the lock and we acquire the lock as late as
467                          * possible.
468                          */
469                         locked = compact_trylock_irqsave(&cc->zone->lock,
470                                                                 &flags, cc);
471                         if (!locked)
472                                 break;
473
474                         /* Recheck this is a buddy page under lock */
475                         if (!PageBuddy(page))
476                                 goto isolate_fail;
477                 }
478
479                 /* Found a free page, break it into order-0 pages */
480                 isolated = split_free_page(page);
481                 if (!isolated)
482                         break;
483
484                 total_isolated += isolated;
485                 cc->nr_freepages += isolated;
486                 for (i = 0; i < isolated; i++) {
487                         list_add(&page->lru, freelist);
488                         page++;
489                 }
490                 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
491                         blockpfn += isolated;
492                         break;
493                 }
494                 /* Advance to the end of split page */
495                 blockpfn += isolated - 1;
496                 cursor += isolated - 1;
497                 continue;
498
499 isolate_fail:
500                 if (strict)
501                         break;
502                 else
503                         continue;
504
505         }
506
507         if (locked)
508                 spin_unlock_irqrestore(&cc->zone->lock, flags);
509
510         /*
511          * There is a tiny chance that we have read bogus compound_order(),
512          * so be careful to not go outside of the pageblock.
513          */
514         if (unlikely(blockpfn > end_pfn))
515                 blockpfn = end_pfn;
516
517         trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
518                                         nr_scanned, total_isolated);
519
520         /* Record how far we have got within the block */
521         *start_pfn = blockpfn;
522
523         /*
524          * If strict isolation is requested by CMA then check that all the
525          * pages requested were isolated. If there were any failures, 0 is
526          * returned and CMA will fail.
527          */
528         if (strict && blockpfn < end_pfn)
529                 total_isolated = 0;
530
531         /* Update the pageblock-skip if the whole pageblock was scanned */
532         if (blockpfn == end_pfn)
533                 update_pageblock_skip(cc, valid_page, total_isolated, false);
534
535         count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
536         if (total_isolated)
537                 count_compact_events(COMPACTISOLATED, total_isolated);
538         return total_isolated;
539 }
540
541 /**
542  * isolate_freepages_range() - isolate free pages.
543  * @start_pfn: The first PFN to start isolating.
544  * @end_pfn:   The one-past-last PFN.
545  *
546  * Non-free pages, invalid PFNs, or zone boundaries within the
547  * [start_pfn, end_pfn) range are considered errors, cause function to
548  * undo its actions and return zero.
549  *
550  * Otherwise, function returns one-past-the-last PFN of isolated page
551  * (which may be greater then end_pfn if end fell in a middle of
552  * a free page).
553  */
554 unsigned long
555 isolate_freepages_range(struct compact_control *cc,
556                         unsigned long start_pfn, unsigned long end_pfn)
557 {
558         unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
559         LIST_HEAD(freelist);
560
561         pfn = start_pfn;
562         block_start_pfn = pageblock_start_pfn(pfn);
563         if (block_start_pfn < cc->zone->zone_start_pfn)
564                 block_start_pfn = cc->zone->zone_start_pfn;
565         block_end_pfn = pageblock_end_pfn(pfn);
566
567         for (; pfn < end_pfn; pfn += isolated,
568                                 block_start_pfn = block_end_pfn,
569                                 block_end_pfn += pageblock_nr_pages) {
570                 /* Protect pfn from changing by isolate_freepages_block */
571                 unsigned long isolate_start_pfn = pfn;
572
573                 block_end_pfn = min(block_end_pfn, end_pfn);
574
575                 /*
576                  * pfn could pass the block_end_pfn if isolated freepage
577                  * is more than pageblock order. In this case, we adjust
578                  * scanning range to right one.
579                  */
580                 if (pfn >= block_end_pfn) {
581                         block_start_pfn = pageblock_start_pfn(pfn);
582                         block_end_pfn = pageblock_end_pfn(pfn);
583                         block_end_pfn = min(block_end_pfn, end_pfn);
584                 }
585
586                 if (!pageblock_pfn_to_page(block_start_pfn,
587                                         block_end_pfn, cc->zone))
588                         break;
589
590                 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
591                                                 block_end_pfn, &freelist, true);
592
593                 /*
594                  * In strict mode, isolate_freepages_block() returns 0 if
595                  * there are any holes in the block (ie. invalid PFNs or
596                  * non-free pages).
597                  */
598                 if (!isolated)
599                         break;
600
601                 /*
602                  * If we managed to isolate pages, it is always (1 << n) *
603                  * pageblock_nr_pages for some non-negative n.  (Max order
604                  * page may span two pageblocks).
605                  */
606         }
607
608         /* split_free_page does not map the pages */
609         map_pages(&freelist);
610
611         if (pfn < end_pfn) {
612                 /* Loop terminated early, cleanup. */
613                 release_freepages(&freelist);
614                 return 0;
615         }
616
617         /* We don't use freelists for anything. */
618         return pfn;
619 }
620
621 /* Update the number of anon and file isolated pages in the zone */
622 static void acct_isolated(struct zone *zone, struct compact_control *cc)
623 {
624         struct page *page;
625         unsigned int count[2] = { 0, };
626
627         if (list_empty(&cc->migratepages))
628                 return;
629
630         list_for_each_entry(page, &cc->migratepages, lru)
631                 count[!!page_is_file_cache(page)]++;
632
633         mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
634         mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
635 }
636
637 /* Similar to reclaim, but different enough that they don't share logic */
638 static bool too_many_isolated(struct zone *zone)
639 {
640         unsigned long active, inactive, isolated;
641
642         inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
643                                         zone_page_state(zone, NR_INACTIVE_ANON);
644         active = zone_page_state(zone, NR_ACTIVE_FILE) +
645                                         zone_page_state(zone, NR_ACTIVE_ANON);
646         isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
647                                         zone_page_state(zone, NR_ISOLATED_ANON);
648
649         return isolated > (inactive + active) / 2;
650 }
651
652 /**
653  * isolate_migratepages_block() - isolate all migrate-able pages within
654  *                                a single pageblock
655  * @cc:         Compaction control structure.
656  * @low_pfn:    The first PFN to isolate
657  * @end_pfn:    The one-past-the-last PFN to isolate, within same pageblock
658  * @isolate_mode: Isolation mode to be used.
659  *
660  * Isolate all pages that can be migrated from the range specified by
661  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
662  * Returns zero if there is a fatal signal pending, otherwise PFN of the
663  * first page that was not scanned (which may be both less, equal to or more
664  * than end_pfn).
665  *
666  * The pages are isolated on cc->migratepages list (not required to be empty),
667  * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
668  * is neither read nor updated.
669  */
670 static unsigned long
671 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
672                         unsigned long end_pfn, isolate_mode_t isolate_mode)
673 {
674         struct zone *zone = cc->zone;
675         unsigned long nr_scanned = 0, nr_isolated = 0;
676         struct lruvec *lruvec;
677         unsigned long flags = 0;
678         bool locked = false;
679         struct page *page = NULL, *valid_page = NULL;
680         unsigned long start_pfn = low_pfn;
681         bool skip_on_failure = false;
682         unsigned long next_skip_pfn = 0;
683
684         /*
685          * Ensure that there are not too many pages isolated from the LRU
686          * list by either parallel reclaimers or compaction. If there are,
687          * delay for some time until fewer pages are isolated
688          */
689         while (unlikely(too_many_isolated(zone))) {
690                 /* async migration should just abort */
691                 if (cc->mode == MIGRATE_ASYNC)
692                         return 0;
693
694                 congestion_wait(BLK_RW_ASYNC, HZ/10);
695
696                 if (fatal_signal_pending(current))
697                         return 0;
698         }
699
700         if (compact_should_abort(cc))
701                 return 0;
702
703         if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
704                 skip_on_failure = true;
705                 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
706         }
707
708         /* Time to isolate some pages for migration */
709         for (; low_pfn < end_pfn; low_pfn++) {
710
711                 if (skip_on_failure && low_pfn >= next_skip_pfn) {
712                         /*
713                          * We have isolated all migration candidates in the
714                          * previous order-aligned block, and did not skip it due
715                          * to failure. We should migrate the pages now and
716                          * hopefully succeed compaction.
717                          */
718                         if (nr_isolated)
719                                 break;
720
721                         /*
722                          * We failed to isolate in the previous order-aligned
723                          * block. Set the new boundary to the end of the
724                          * current block. Note we can't simply increase
725                          * next_skip_pfn by 1 << order, as low_pfn might have
726                          * been incremented by a higher number due to skipping
727                          * a compound or a high-order buddy page in the
728                          * previous loop iteration.
729                          */
730                         next_skip_pfn = block_end_pfn(low_pfn, cc->order);
731                 }
732
733                 /*
734                  * Periodically drop the lock (if held) regardless of its
735                  * contention, to give chance to IRQs. Abort async compaction
736                  * if contended.
737                  */
738                 if (!(low_pfn % SWAP_CLUSTER_MAX)
739                     && compact_unlock_should_abort(&zone->lru_lock, flags,
740                                                                 &locked, cc))
741                         break;
742
743                 if (!pfn_valid_within(low_pfn))
744                         goto isolate_fail;
745                 nr_scanned++;
746
747                 page = pfn_to_page(low_pfn);
748
749                 if (!valid_page)
750                         valid_page = page;
751
752                 /*
753                  * Skip if free. We read page order here without zone lock
754                  * which is generally unsafe, but the race window is small and
755                  * the worst thing that can happen is that we skip some
756                  * potential isolation targets.
757                  */
758                 if (PageBuddy(page)) {
759                         unsigned long freepage_order = page_order_unsafe(page);
760
761                         /*
762                          * Without lock, we cannot be sure that what we got is
763                          * a valid page order. Consider only values in the
764                          * valid order range to prevent low_pfn overflow.
765                          */
766                         if (freepage_order > 0 && freepage_order < MAX_ORDER)
767                                 low_pfn += (1UL << freepage_order) - 1;
768                         continue;
769                 }
770
771                 /*
772                  * Regardless of being on LRU, compound pages such as THP and
773                  * hugetlbfs are not to be compacted. We can potentially save
774                  * a lot of iterations if we skip them at once. The check is
775                  * racy, but we can consider only valid values and the only
776                  * danger is skipping too much.
777                  */
778                 if (PageCompound(page)) {
779                         unsigned int comp_order = compound_order(page);
780
781                         if (likely(comp_order < MAX_ORDER))
782                                 low_pfn += (1UL << comp_order) - 1;
783
784                         goto isolate_fail;
785                 }
786
787                 /*
788                  * Check may be lockless but that's ok as we recheck later.
789                  * It's possible to migrate LRU and non-lru movable pages.
790                  * Skip any other type of page
791                  */
792                 if (!PageLRU(page)) {
793                         /*
794                          * __PageMovable can return false positive so we need
795                          * to verify it under page_lock.
796                          */
797                         if (unlikely(__PageMovable(page)) &&
798                                         !PageIsolated(page)) {
799                                 if (locked) {
800                                         spin_unlock_irqrestore(&zone->lru_lock,
801                                                                         flags);
802                                         locked = false;
803                                 }
804
805                                 if (isolate_movable_page(page, isolate_mode))
806                                         goto isolate_success;
807                         }
808
809                         goto isolate_fail;
810                 }
811
812                 /*
813                  * Migration will fail if an anonymous page is pinned in memory,
814                  * so avoid taking lru_lock and isolating it unnecessarily in an
815                  * admittedly racy check.
816                  */
817                 if (!page_mapping(page) &&
818                     page_count(page) > page_mapcount(page))
819                         goto isolate_fail;
820
821                 /* If we already hold the lock, we can skip some rechecking */
822                 if (!locked) {
823                         locked = compact_trylock_irqsave(&zone->lru_lock,
824                                                                 &flags, cc);
825                         if (!locked)
826                                 break;
827
828                         /* Recheck PageLRU and PageCompound under lock */
829                         if (!PageLRU(page))
830                                 goto isolate_fail;
831
832                         /*
833                          * Page become compound since the non-locked check,
834                          * and it's on LRU. It can only be a THP so the order
835                          * is safe to read and it's 0 for tail pages.
836                          */
837                         if (unlikely(PageCompound(page))) {
838                                 low_pfn += (1UL << compound_order(page)) - 1;
839                                 goto isolate_fail;
840                         }
841                 }
842
843                 lruvec = mem_cgroup_page_lruvec(page, zone);
844
845                 /* Try isolate the page */
846                 if (__isolate_lru_page(page, isolate_mode) != 0)
847                         goto isolate_fail;
848
849                 VM_BUG_ON_PAGE(PageCompound(page), page);
850
851                 /* Successfully isolated */
852                 del_page_from_lru_list(page, lruvec, page_lru(page));
853
854 isolate_success:
855                 list_add(&page->lru, &cc->migratepages);
856                 cc->nr_migratepages++;
857                 nr_isolated++;
858
859                 /*
860                  * Record where we could have freed pages by migration and not
861                  * yet flushed them to buddy allocator.
862                  * - this is the lowest page that was isolated and likely be
863                  * then freed by migration.
864                  */
865                 if (!cc->last_migrated_pfn)
866                         cc->last_migrated_pfn = low_pfn;
867
868                 /* Avoid isolating too much */
869                 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
870                         ++low_pfn;
871                         break;
872                 }
873
874                 continue;
875 isolate_fail:
876                 if (!skip_on_failure)
877                         continue;
878
879                 /*
880                  * We have isolated some pages, but then failed. Release them
881                  * instead of migrating, as we cannot form the cc->order buddy
882                  * page anyway.
883                  */
884                 if (nr_isolated) {
885                         if (locked) {
886                                 spin_unlock_irqrestore(&zone->lru_lock, flags);
887                                 locked = false;
888                         }
889                         acct_isolated(zone, cc);
890                         putback_movable_pages(&cc->migratepages);
891                         cc->nr_migratepages = 0;
892                         cc->last_migrated_pfn = 0;
893                         nr_isolated = 0;
894                 }
895
896                 if (low_pfn < next_skip_pfn) {
897                         low_pfn = next_skip_pfn - 1;
898                         /*
899                          * The check near the loop beginning would have updated
900                          * next_skip_pfn too, but this is a bit simpler.
901                          */
902                         next_skip_pfn += 1UL << cc->order;
903                 }
904         }
905
906         /*
907          * The PageBuddy() check could have potentially brought us outside
908          * the range to be scanned.
909          */
910         if (unlikely(low_pfn > end_pfn))
911                 low_pfn = end_pfn;
912
913         if (locked)
914                 spin_unlock_irqrestore(&zone->lru_lock, flags);
915
916         /*
917          * Update the pageblock-skip information and cached scanner pfn,
918          * if the whole pageblock was scanned without isolating any page.
919          */
920         if (low_pfn == end_pfn)
921                 update_pageblock_skip(cc, valid_page, nr_isolated, true);
922
923         trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
924                                                 nr_scanned, nr_isolated);
925
926         count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
927         if (nr_isolated)
928                 count_compact_events(COMPACTISOLATED, nr_isolated);
929
930         return low_pfn;
931 }
932
933 /**
934  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
935  * @cc:        Compaction control structure.
936  * @start_pfn: The first PFN to start isolating.
937  * @end_pfn:   The one-past-last PFN.
938  *
939  * Returns zero if isolation fails fatally due to e.g. pending signal.
940  * Otherwise, function returns one-past-the-last PFN of isolated page
941  * (which may be greater than end_pfn if end fell in a middle of a THP page).
942  */
943 unsigned long
944 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
945                                                         unsigned long end_pfn)
946 {
947         unsigned long pfn, block_start_pfn, block_end_pfn;
948
949         /* Scan block by block. First and last block may be incomplete */
950         pfn = start_pfn;
951         block_start_pfn = pageblock_start_pfn(pfn);
952         if (block_start_pfn < cc->zone->zone_start_pfn)
953                 block_start_pfn = cc->zone->zone_start_pfn;
954         block_end_pfn = pageblock_end_pfn(pfn);
955
956         for (; pfn < end_pfn; pfn = block_end_pfn,
957                                 block_start_pfn = block_end_pfn,
958                                 block_end_pfn += pageblock_nr_pages) {
959
960                 block_end_pfn = min(block_end_pfn, end_pfn);
961
962                 if (!pageblock_pfn_to_page(block_start_pfn,
963                                         block_end_pfn, cc->zone))
964                         continue;
965
966                 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
967                                                         ISOLATE_UNEVICTABLE);
968
969                 if (!pfn)
970                         break;
971
972                 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
973                         break;
974         }
975         acct_isolated(cc->zone, cc);
976
977         return pfn;
978 }
979
980 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
981 #ifdef CONFIG_COMPACTION
982
983 /* Returns true if the page is within a block suitable for migration to */
984 static bool suitable_migration_target(struct page *page)
985 {
986         /* If the page is a large free page, then disallow migration */
987         if (PageBuddy(page)) {
988                 /*
989                  * We are checking page_order without zone->lock taken. But
990                  * the only small danger is that we skip a potentially suitable
991                  * pageblock, so it's not worth to check order for valid range.
992                  */
993                 if (page_order_unsafe(page) >= pageblock_order)
994                         return false;
995         }
996
997         /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
998         if (migrate_async_suitable(get_pageblock_migratetype(page)))
999                 return true;
1000
1001         /* Otherwise skip the block */
1002         return false;
1003 }
1004
1005 /*
1006  * Test whether the free scanner has reached the same or lower pageblock than
1007  * the migration scanner, and compaction should thus terminate.
1008  */
1009 static inline bool compact_scanners_met(struct compact_control *cc)
1010 {
1011         return (cc->free_pfn >> pageblock_order)
1012                 <= (cc->migrate_pfn >> pageblock_order);
1013 }
1014
1015 /*
1016  * Based on information in the current compact_control, find blocks
1017  * suitable for isolating free pages from and then isolate them.
1018  */
1019 static void isolate_freepages(struct compact_control *cc)
1020 {
1021         struct zone *zone = cc->zone;
1022         struct page *page;
1023         unsigned long block_start_pfn;  /* start of current pageblock */
1024         unsigned long isolate_start_pfn; /* exact pfn we start at */
1025         unsigned long block_end_pfn;    /* end of current pageblock */
1026         unsigned long low_pfn;       /* lowest pfn scanner is able to scan */
1027         struct list_head *freelist = &cc->freepages;
1028
1029         /*
1030          * Initialise the free scanner. The starting point is where we last
1031          * successfully isolated from, zone-cached value, or the end of the
1032          * zone when isolating for the first time. For looping we also need
1033          * this pfn aligned down to the pageblock boundary, because we do
1034          * block_start_pfn -= pageblock_nr_pages in the for loop.
1035          * For ending point, take care when isolating in last pageblock of a
1036          * a zone which ends in the middle of a pageblock.
1037          * The low boundary is the end of the pageblock the migration scanner
1038          * is using.
1039          */
1040         isolate_start_pfn = cc->free_pfn;
1041         block_start_pfn = pageblock_start_pfn(cc->free_pfn);
1042         block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1043                                                 zone_end_pfn(zone));
1044         low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1045
1046         /*
1047          * Isolate free pages until enough are available to migrate the
1048          * pages on cc->migratepages. We stop searching if the migrate
1049          * and free page scanners meet or enough free pages are isolated.
1050          */
1051         for (; block_start_pfn >= low_pfn;
1052                                 block_end_pfn = block_start_pfn,
1053                                 block_start_pfn -= pageblock_nr_pages,
1054                                 isolate_start_pfn = block_start_pfn) {
1055                 /*
1056                  * This can iterate a massively long zone without finding any
1057                  * suitable migration targets, so periodically check if we need
1058                  * to schedule, or even abort async compaction.
1059                  */
1060                 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1061                                                 && compact_should_abort(cc))
1062                         break;
1063
1064                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1065                                                                         zone);
1066                 if (!page)
1067                         continue;
1068
1069                 /* Check the block is suitable for migration */
1070                 if (!suitable_migration_target(page))
1071                         continue;
1072
1073                 /* If isolation recently failed, do not retry */
1074                 if (!isolation_suitable(cc, page))
1075                         continue;
1076
1077                 /* Found a block suitable for isolating free pages from. */
1078                 isolate_freepages_block(cc, &isolate_start_pfn, block_end_pfn,
1079                                         freelist, false);
1080
1081                 /*
1082                  * If we isolated enough freepages, or aborted due to lock
1083                  * contention, terminate.
1084                  */
1085                 if ((cc->nr_freepages >= cc->nr_migratepages)
1086                                                         || cc->contended) {
1087                         if (isolate_start_pfn >= block_end_pfn) {
1088                                 /*
1089                                  * Restart at previous pageblock if more
1090                                  * freepages can be isolated next time.
1091                                  */
1092                                 isolate_start_pfn =
1093                                         block_start_pfn - pageblock_nr_pages;
1094                         }
1095                         break;
1096                 } else if (isolate_start_pfn < block_end_pfn) {
1097                         /*
1098                          * If isolation failed early, do not continue
1099                          * needlessly.
1100                          */
1101                         break;
1102                 }
1103         }
1104
1105         /* split_free_page does not map the pages */
1106         map_pages(freelist);
1107
1108         /*
1109          * Record where the free scanner will restart next time. Either we
1110          * broke from the loop and set isolate_start_pfn based on the last
1111          * call to isolate_freepages_block(), or we met the migration scanner
1112          * and the loop terminated due to isolate_start_pfn < low_pfn
1113          */
1114         cc->free_pfn = isolate_start_pfn;
1115 }
1116
1117 /*
1118  * This is a migrate-callback that "allocates" freepages by taking pages
1119  * from the isolated freelists in the block we are migrating to.
1120  */
1121 static struct page *compaction_alloc(struct page *migratepage,
1122                                         unsigned long data,
1123                                         int **result)
1124 {
1125         struct compact_control *cc = (struct compact_control *)data;
1126         struct page *freepage;
1127
1128         /*
1129          * Isolate free pages if necessary, and if we are not aborting due to
1130          * contention.
1131          */
1132         if (list_empty(&cc->freepages)) {
1133                 if (!cc->contended)
1134                         isolate_freepages(cc);
1135
1136                 if (list_empty(&cc->freepages))
1137                         return NULL;
1138         }
1139
1140         freepage = list_entry(cc->freepages.next, struct page, lru);
1141         list_del(&freepage->lru);
1142         cc->nr_freepages--;
1143
1144         return freepage;
1145 }
1146
1147 /*
1148  * This is a migrate-callback that "frees" freepages back to the isolated
1149  * freelist.  All pages on the freelist are from the same zone, so there is no
1150  * special handling needed for NUMA.
1151  */
1152 static void compaction_free(struct page *page, unsigned long data)
1153 {
1154         struct compact_control *cc = (struct compact_control *)data;
1155
1156         list_add(&page->lru, &cc->freepages);
1157         cc->nr_freepages++;
1158 }
1159
1160 /* possible outcome of isolate_migratepages */
1161 typedef enum {
1162         ISOLATE_ABORT,          /* Abort compaction now */
1163         ISOLATE_NONE,           /* No pages isolated, continue scanning */
1164         ISOLATE_SUCCESS,        /* Pages isolated, migrate */
1165 } isolate_migrate_t;
1166
1167 /*
1168  * Allow userspace to control policy on scanning the unevictable LRU for
1169  * compactable pages.
1170  */
1171 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1172
1173 /*
1174  * Isolate all pages that can be migrated from the first suitable block,
1175  * starting at the block pointed to by the migrate scanner pfn within
1176  * compact_control.
1177  */
1178 static isolate_migrate_t isolate_migratepages(struct zone *zone,
1179                                         struct compact_control *cc)
1180 {
1181         unsigned long block_start_pfn;
1182         unsigned long block_end_pfn;
1183         unsigned long low_pfn;
1184         struct page *page;
1185         const isolate_mode_t isolate_mode =
1186                 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1187                 (cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1188
1189         /*
1190          * Start at where we last stopped, or beginning of the zone as
1191          * initialized by compact_zone()
1192          */
1193         low_pfn = cc->migrate_pfn;
1194         block_start_pfn = pageblock_start_pfn(low_pfn);
1195         if (block_start_pfn < zone->zone_start_pfn)
1196                 block_start_pfn = zone->zone_start_pfn;
1197
1198         /* Only scan within a pageblock boundary */
1199         block_end_pfn = pageblock_end_pfn(low_pfn);
1200
1201         /*
1202          * Iterate over whole pageblocks until we find the first suitable.
1203          * Do not cross the free scanner.
1204          */
1205         for (; block_end_pfn <= cc->free_pfn;
1206                         low_pfn = block_end_pfn,
1207                         block_start_pfn = block_end_pfn,
1208                         block_end_pfn += pageblock_nr_pages) {
1209
1210                 /*
1211                  * This can potentially iterate a massively long zone with
1212                  * many pageblocks unsuitable, so periodically check if we
1213                  * need to schedule, or even abort async compaction.
1214                  */
1215                 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1216                                                 && compact_should_abort(cc))
1217                         break;
1218
1219                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1220                                                                         zone);
1221                 if (!page)
1222                         continue;
1223
1224                 /* If isolation recently failed, do not retry */
1225                 if (!isolation_suitable(cc, page))
1226                         continue;
1227
1228                 /*
1229                  * For async compaction, also only scan in MOVABLE blocks.
1230                  * Async compaction is optimistic to see if the minimum amount
1231                  * of work satisfies the allocation.
1232                  */
1233                 if (cc->mode == MIGRATE_ASYNC &&
1234                     !migrate_async_suitable(get_pageblock_migratetype(page)))
1235                         continue;
1236
1237                 /* Perform the isolation */
1238                 low_pfn = isolate_migratepages_block(cc, low_pfn,
1239                                                 block_end_pfn, isolate_mode);
1240
1241                 if (!low_pfn || cc->contended) {
1242                         acct_isolated(zone, cc);
1243                         return ISOLATE_ABORT;
1244                 }
1245
1246                 /*
1247                  * Either we isolated something and proceed with migration. Or
1248                  * we failed and compact_zone should decide if we should
1249                  * continue or not.
1250                  */
1251                 break;
1252         }
1253
1254         acct_isolated(zone, cc);
1255         /* Record where migration scanner will be restarted. */
1256         cc->migrate_pfn = low_pfn;
1257
1258         return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1259 }
1260
1261 /*
1262  * order == -1 is expected when compacting via
1263  * /proc/sys/vm/compact_memory
1264  */
1265 static inline bool is_via_compact_memory(int order)
1266 {
1267         return order == -1;
1268 }
1269
1270 static enum compact_result __compact_finished(struct zone *zone, struct compact_control *cc,
1271                             const int migratetype)
1272 {
1273         unsigned int order;
1274         unsigned long watermark;
1275
1276         if (cc->contended || fatal_signal_pending(current))
1277                 return COMPACT_CONTENDED;
1278
1279         /* Compaction run completes if the migrate and free scanner meet */
1280         if (compact_scanners_met(cc)) {
1281                 /* Let the next compaction start anew. */
1282                 reset_cached_positions(zone);
1283
1284                 /*
1285                  * Mark that the PG_migrate_skip information should be cleared
1286                  * by kswapd when it goes to sleep. kcompactd does not set the
1287                  * flag itself as the decision to be clear should be directly
1288                  * based on an allocation request.
1289                  */
1290                 if (cc->direct_compaction)
1291                         zone->compact_blockskip_flush = true;
1292
1293                 if (cc->whole_zone)
1294                         return COMPACT_COMPLETE;
1295                 else
1296                         return COMPACT_PARTIAL_SKIPPED;
1297         }
1298
1299         if (is_via_compact_memory(cc->order))
1300                 return COMPACT_CONTINUE;
1301
1302         /* Compaction run is not finished if the watermark is not met */
1303         watermark = low_wmark_pages(zone);
1304
1305         if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
1306                                                         cc->alloc_flags))
1307                 return COMPACT_CONTINUE;
1308
1309         /* Direct compactor: Is a suitable page free? */
1310         for (order = cc->order; order < MAX_ORDER; order++) {
1311                 struct free_area *area = &zone->free_area[order];
1312                 bool can_steal;
1313
1314                 /* Job done if page is free of the right migratetype */
1315                 if (!list_empty(&area->free_list[migratetype]))
1316                         return COMPACT_PARTIAL;
1317
1318 #ifdef CONFIG_CMA
1319                 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1320                 if (migratetype == MIGRATE_MOVABLE &&
1321                         !list_empty(&area->free_list[MIGRATE_CMA]))
1322                         return COMPACT_PARTIAL;
1323 #endif
1324                 /*
1325                  * Job done if allocation would steal freepages from
1326                  * other migratetype buddy lists.
1327                  */
1328                 if (find_suitable_fallback(area, order, migratetype,
1329                                                 true, &can_steal) != -1)
1330                         return COMPACT_PARTIAL;
1331         }
1332
1333         return COMPACT_NO_SUITABLE_PAGE;
1334 }
1335
1336 static enum compact_result compact_finished(struct zone *zone,
1337                         struct compact_control *cc,
1338                         const int migratetype)
1339 {
1340         int ret;
1341
1342         ret = __compact_finished(zone, cc, migratetype);
1343         trace_mm_compaction_finished(zone, cc->order, ret);
1344         if (ret == COMPACT_NO_SUITABLE_PAGE)
1345                 ret = COMPACT_CONTINUE;
1346
1347         return ret;
1348 }
1349
1350 /*
1351  * compaction_suitable: Is this suitable to run compaction on this zone now?
1352  * Returns
1353  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1354  *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
1355  *   COMPACT_CONTINUE - If compaction should run now
1356  */
1357 static enum compact_result __compaction_suitable(struct zone *zone, int order,
1358                                         unsigned int alloc_flags,
1359                                         int classzone_idx,
1360                                         unsigned long wmark_target)
1361 {
1362         int fragindex;
1363         unsigned long watermark;
1364
1365         if (is_via_compact_memory(order))
1366                 return COMPACT_CONTINUE;
1367
1368         watermark = low_wmark_pages(zone);
1369         /*
1370          * If watermarks for high-order allocation are already met, there
1371          * should be no need for compaction at all.
1372          */
1373         if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1374                                                                 alloc_flags))
1375                 return COMPACT_PARTIAL;
1376
1377         /*
1378          * Watermarks for order-0 must be met for compaction. Note the 2UL.
1379          * This is because during migration, copies of pages need to be
1380          * allocated and for a short time, the footprint is higher
1381          */
1382         watermark += (2UL << order);
1383         if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
1384                                  alloc_flags, wmark_target))
1385                 return COMPACT_SKIPPED;
1386
1387         /*
1388          * fragmentation index determines if allocation failures are due to
1389          * low memory or external fragmentation
1390          *
1391          * index of -1000 would imply allocations might succeed depending on
1392          * watermarks, but we already failed the high-order watermark check
1393          * index towards 0 implies failure is due to lack of memory
1394          * index towards 1000 implies failure is due to fragmentation
1395          *
1396          * Only compact if a failure would be due to fragmentation.
1397          */
1398         fragindex = fragmentation_index(zone, order);
1399         if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1400                 return COMPACT_NOT_SUITABLE_ZONE;
1401
1402         return COMPACT_CONTINUE;
1403 }
1404
1405 enum compact_result compaction_suitable(struct zone *zone, int order,
1406                                         unsigned int alloc_flags,
1407                                         int classzone_idx)
1408 {
1409         enum compact_result ret;
1410
1411         ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
1412                                     zone_page_state(zone, NR_FREE_PAGES));
1413         trace_mm_compaction_suitable(zone, order, ret);
1414         if (ret == COMPACT_NOT_SUITABLE_ZONE)
1415                 ret = COMPACT_SKIPPED;
1416
1417         return ret;
1418 }
1419
1420 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
1421                 int alloc_flags)
1422 {
1423         struct zone *zone;
1424         struct zoneref *z;
1425
1426         /*
1427          * Make sure at least one zone would pass __compaction_suitable if we continue
1428          * retrying the reclaim.
1429          */
1430         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1431                                         ac->nodemask) {
1432                 unsigned long available;
1433                 enum compact_result compact_result;
1434
1435                 /*
1436                  * Do not consider all the reclaimable memory because we do not
1437                  * want to trash just for a single high order allocation which
1438                  * is even not guaranteed to appear even if __compaction_suitable
1439                  * is happy about the watermark check.
1440                  */
1441                 available = zone_reclaimable_pages(zone) / order;
1442                 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
1443                 compact_result = __compaction_suitable(zone, order, alloc_flags,
1444                                 ac_classzone_idx(ac), available);
1445                 if (compact_result != COMPACT_SKIPPED &&
1446                                 compact_result != COMPACT_NOT_SUITABLE_ZONE)
1447                         return true;
1448         }
1449
1450         return false;
1451 }
1452
1453 static enum compact_result compact_zone(struct zone *zone, struct compact_control *cc)
1454 {
1455         enum compact_result ret;
1456         unsigned long start_pfn = zone->zone_start_pfn;
1457         unsigned long end_pfn = zone_end_pfn(zone);
1458         const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1459         const bool sync = cc->mode != MIGRATE_ASYNC;
1460
1461         ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1462                                                         cc->classzone_idx);
1463         /* Compaction is likely to fail */
1464         if (ret == COMPACT_PARTIAL || ret == COMPACT_SKIPPED)
1465                 return ret;
1466
1467         /* huh, compaction_suitable is returning something unexpected */
1468         VM_BUG_ON(ret != COMPACT_CONTINUE);
1469
1470         /*
1471          * Clear pageblock skip if there were failures recently and compaction
1472          * is about to be retried after being deferred.
1473          */
1474         if (compaction_restarting(zone, cc->order))
1475                 __reset_isolation_suitable(zone);
1476
1477         /*
1478          * Setup to move all movable pages to the end of the zone. Used cached
1479          * information on where the scanners should start but check that it
1480          * is initialised by ensuring the values are within zone boundaries.
1481          */
1482         cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1483         cc->free_pfn = zone->compact_cached_free_pfn;
1484         if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
1485                 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1486                 zone->compact_cached_free_pfn = cc->free_pfn;
1487         }
1488         if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
1489                 cc->migrate_pfn = start_pfn;
1490                 zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1491                 zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1492         }
1493
1494         if (cc->migrate_pfn == start_pfn)
1495                 cc->whole_zone = true;
1496
1497         cc->last_migrated_pfn = 0;
1498
1499         trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1500                                 cc->free_pfn, end_pfn, sync);
1501
1502         migrate_prep_local();
1503
1504         while ((ret = compact_finished(zone, cc, migratetype)) ==
1505                                                 COMPACT_CONTINUE) {
1506                 int err;
1507
1508                 switch (isolate_migratepages(zone, cc)) {
1509                 case ISOLATE_ABORT:
1510                         ret = COMPACT_CONTENDED;
1511                         putback_movable_pages(&cc->migratepages);
1512                         cc->nr_migratepages = 0;
1513                         goto out;
1514                 case ISOLATE_NONE:
1515                         /*
1516                          * We haven't isolated and migrated anything, but
1517                          * there might still be unflushed migrations from
1518                          * previous cc->order aligned block.
1519                          */
1520                         goto check_drain;
1521                 case ISOLATE_SUCCESS:
1522                         ;
1523                 }
1524
1525                 err = migrate_pages(&cc->migratepages, compaction_alloc,
1526                                 compaction_free, (unsigned long)cc, cc->mode,
1527                                 MR_COMPACTION);
1528
1529                 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1530                                                         &cc->migratepages);
1531
1532                 /* All pages were either migrated or will be released */
1533                 cc->nr_migratepages = 0;
1534                 if (err) {
1535                         putback_movable_pages(&cc->migratepages);
1536                         /*
1537                          * migrate_pages() may return -ENOMEM when scanners meet
1538                          * and we want compact_finished() to detect it
1539                          */
1540                         if (err == -ENOMEM && !compact_scanners_met(cc)) {
1541                                 ret = COMPACT_CONTENDED;
1542                                 goto out;
1543                         }
1544                         /*
1545                          * We failed to migrate at least one page in the current
1546                          * order-aligned block, so skip the rest of it.
1547                          */
1548                         if (cc->direct_compaction &&
1549                                                 (cc->mode == MIGRATE_ASYNC)) {
1550                                 cc->migrate_pfn = block_end_pfn(
1551                                                 cc->migrate_pfn - 1, cc->order);
1552                                 /* Draining pcplists is useless in this case */
1553                                 cc->last_migrated_pfn = 0;
1554
1555                         }
1556                 }
1557
1558 check_drain:
1559                 /*
1560                  * Has the migration scanner moved away from the previous
1561                  * cc->order aligned block where we migrated from? If yes,
1562                  * flush the pages that were freed, so that they can merge and
1563                  * compact_finished() can detect immediately if allocation
1564                  * would succeed.
1565                  */
1566                 if (cc->order > 0 && cc->last_migrated_pfn) {
1567                         int cpu;
1568                         unsigned long current_block_start =
1569                                 block_start_pfn(cc->migrate_pfn, cc->order);
1570
1571                         if (cc->last_migrated_pfn < current_block_start) {
1572                                 cpu = get_cpu();
1573                                 lru_add_drain_cpu(cpu);
1574                                 drain_local_pages(zone);
1575                                 put_cpu();
1576                                 /* No more flushing until we migrate again */
1577                                 cc->last_migrated_pfn = 0;
1578                         }
1579                 }
1580
1581         }
1582
1583 out:
1584         /*
1585          * Release free pages and update where the free scanner should restart,
1586          * so we don't leave any returned pages behind in the next attempt.
1587          */
1588         if (cc->nr_freepages > 0) {
1589                 unsigned long free_pfn = release_freepages(&cc->freepages);
1590
1591                 cc->nr_freepages = 0;
1592                 VM_BUG_ON(free_pfn == 0);
1593                 /* The cached pfn is always the first in a pageblock */
1594                 free_pfn = pageblock_start_pfn(free_pfn);
1595                 /*
1596                  * Only go back, not forward. The cached pfn might have been
1597                  * already reset to zone end in compact_finished()
1598                  */
1599                 if (free_pfn > zone->compact_cached_free_pfn)
1600                         zone->compact_cached_free_pfn = free_pfn;
1601         }
1602
1603         trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1604                                 cc->free_pfn, end_pfn, sync, ret);
1605
1606         if (ret == COMPACT_CONTENDED)
1607                 ret = COMPACT_PARTIAL;
1608
1609         return ret;
1610 }
1611
1612 static enum compact_result compact_zone_order(struct zone *zone, int order,
1613                 gfp_t gfp_mask, enum migrate_mode mode, int *contended,
1614                 unsigned int alloc_flags, int classzone_idx)
1615 {
1616         enum compact_result ret;
1617         struct compact_control cc = {
1618                 .nr_freepages = 0,
1619                 .nr_migratepages = 0,
1620                 .order = order,
1621                 .gfp_mask = gfp_mask,
1622                 .zone = zone,
1623                 .mode = mode,
1624                 .alloc_flags = alloc_flags,
1625                 .classzone_idx = classzone_idx,
1626                 .direct_compaction = true,
1627         };
1628         INIT_LIST_HEAD(&cc.freepages);
1629         INIT_LIST_HEAD(&cc.migratepages);
1630
1631         ret = compact_zone(zone, &cc);
1632
1633         VM_BUG_ON(!list_empty(&cc.freepages));
1634         VM_BUG_ON(!list_empty(&cc.migratepages));
1635
1636         *contended = cc.contended;
1637         return ret;
1638 }
1639
1640 int sysctl_extfrag_threshold = 500;
1641
1642 /**
1643  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1644  * @gfp_mask: The GFP mask of the current allocation
1645  * @order: The order of the current allocation
1646  * @alloc_flags: The allocation flags of the current allocation
1647  * @ac: The context of current allocation
1648  * @mode: The migration mode for async, sync light, or sync migration
1649  * @contended: Return value that determines if compaction was aborted due to
1650  *             need_resched() or lock contention
1651  *
1652  * This is the main entry point for direct page compaction.
1653  */
1654 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1655                 unsigned int alloc_flags, const struct alloc_context *ac,
1656                 enum migrate_mode mode, int *contended)
1657 {
1658         int may_enter_fs = gfp_mask & __GFP_FS;
1659         int may_perform_io = gfp_mask & __GFP_IO;
1660         struct zoneref *z;
1661         struct zone *zone;
1662         enum compact_result rc = COMPACT_SKIPPED;
1663         int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */
1664
1665         *contended = COMPACT_CONTENDED_NONE;
1666
1667         /* Check if the GFP flags allow compaction */
1668         if (!order || !may_enter_fs || !may_perform_io)
1669                 return COMPACT_SKIPPED;
1670
1671         trace_mm_compaction_try_to_compact_pages(order, gfp_mask, mode);
1672
1673         /* Compact each zone in the list */
1674         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1675                                                                 ac->nodemask) {
1676                 enum compact_result status;
1677                 int zone_contended;
1678
1679                 if (compaction_deferred(zone, order)) {
1680                         rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
1681                         continue;
1682                 }
1683
1684                 status = compact_zone_order(zone, order, gfp_mask, mode,
1685                                 &zone_contended, alloc_flags,
1686                                 ac_classzone_idx(ac));
1687                 rc = max(status, rc);
1688                 /*
1689                  * It takes at least one zone that wasn't lock contended
1690                  * to clear all_zones_contended.
1691                  */
1692                 all_zones_contended &= zone_contended;
1693
1694                 /* If a normal allocation would succeed, stop compacting */
1695                 if (zone_watermark_ok(zone, order, low_wmark_pages(zone),
1696                                         ac_classzone_idx(ac), alloc_flags)) {
1697                         /*
1698                          * We think the allocation will succeed in this zone,
1699                          * but it is not certain, hence the false. The caller
1700                          * will repeat this with true if allocation indeed
1701                          * succeeds in this zone.
1702                          */
1703                         compaction_defer_reset(zone, order, false);
1704                         /*
1705                          * It is possible that async compaction aborted due to
1706                          * need_resched() and the watermarks were ok thanks to
1707                          * somebody else freeing memory. The allocation can
1708                          * however still fail so we better signal the
1709                          * need_resched() contention anyway (this will not
1710                          * prevent the allocation attempt).
1711                          */
1712                         if (zone_contended == COMPACT_CONTENDED_SCHED)
1713                                 *contended = COMPACT_CONTENDED_SCHED;
1714
1715                         goto break_loop;
1716                 }
1717
1718                 if (mode != MIGRATE_ASYNC && (status == COMPACT_COMPLETE ||
1719                                         status == COMPACT_PARTIAL_SKIPPED)) {
1720                         /*
1721                          * We think that allocation won't succeed in this zone
1722                          * so we defer compaction there. If it ends up
1723                          * succeeding after all, it will be reset.
1724                          */
1725                         defer_compaction(zone, order);
1726                 }
1727
1728                 /*
1729                  * We might have stopped compacting due to need_resched() in
1730                  * async compaction, or due to a fatal signal detected. In that
1731                  * case do not try further zones and signal need_resched()
1732                  * contention.
1733                  */
1734                 if ((zone_contended == COMPACT_CONTENDED_SCHED)
1735                                         || fatal_signal_pending(current)) {
1736                         *contended = COMPACT_CONTENDED_SCHED;
1737                         goto break_loop;
1738                 }
1739
1740                 continue;
1741 break_loop:
1742                 /*
1743                  * We might not have tried all the zones, so  be conservative
1744                  * and assume they are not all lock contended.
1745                  */
1746                 all_zones_contended = 0;
1747                 break;
1748         }
1749
1750         /*
1751          * If at least one zone wasn't deferred or skipped, we report if all
1752          * zones that were tried were lock contended.
1753          */
1754         if (rc > COMPACT_INACTIVE && all_zones_contended)
1755                 *contended = COMPACT_CONTENDED_LOCK;
1756
1757         return rc;
1758 }
1759
1760
1761 /* Compact all zones within a node */
1762 static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1763 {
1764         int zoneid;
1765         struct zone *zone;
1766
1767         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1768
1769                 zone = &pgdat->node_zones[zoneid];
1770                 if (!populated_zone(zone))
1771                         continue;
1772
1773                 cc->nr_freepages = 0;
1774                 cc->nr_migratepages = 0;
1775                 cc->zone = zone;
1776                 INIT_LIST_HEAD(&cc->freepages);
1777                 INIT_LIST_HEAD(&cc->migratepages);
1778
1779                 /*
1780                  * When called via /proc/sys/vm/compact_memory
1781                  * this makes sure we compact the whole zone regardless of
1782                  * cached scanner positions.
1783                  */
1784                 if (is_via_compact_memory(cc->order))
1785                         __reset_isolation_suitable(zone);
1786
1787                 if (is_via_compact_memory(cc->order) ||
1788                                 !compaction_deferred(zone, cc->order))
1789                         compact_zone(zone, cc);
1790
1791                 VM_BUG_ON(!list_empty(&cc->freepages));
1792                 VM_BUG_ON(!list_empty(&cc->migratepages));
1793
1794                 if (is_via_compact_memory(cc->order))
1795                         continue;
1796
1797                 if (zone_watermark_ok(zone, cc->order,
1798                                 low_wmark_pages(zone), 0, 0))
1799                         compaction_defer_reset(zone, cc->order, false);
1800         }
1801 }
1802
1803 void compact_pgdat(pg_data_t *pgdat, int order)
1804 {
1805         struct compact_control cc = {
1806                 .order = order,
1807                 .mode = MIGRATE_ASYNC,
1808         };
1809
1810         if (!order)
1811                 return;
1812
1813         __compact_pgdat(pgdat, &cc);
1814 }
1815
1816 static void compact_node(int nid)
1817 {
1818         struct compact_control cc = {
1819                 .order = -1,
1820                 .mode = MIGRATE_SYNC,
1821                 .ignore_skip_hint = true,
1822         };
1823
1824         __compact_pgdat(NODE_DATA(nid), &cc);
1825 }
1826
1827 /* Compact all nodes in the system */
1828 static void compact_nodes(void)
1829 {
1830         int nid;
1831
1832         /* Flush pending updates to the LRU lists */
1833         lru_add_drain_all();
1834
1835         for_each_online_node(nid)
1836                 compact_node(nid);
1837 }
1838
1839 /* The written value is actually unused, all memory is compacted */
1840 int sysctl_compact_memory;
1841
1842 /*
1843  * This is the entry point for compacting all nodes via
1844  * /proc/sys/vm/compact_memory
1845  */
1846 int sysctl_compaction_handler(struct ctl_table *table, int write,
1847                         void __user *buffer, size_t *length, loff_t *ppos)
1848 {
1849         if (write)
1850                 compact_nodes();
1851
1852         return 0;
1853 }
1854
1855 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1856                         void __user *buffer, size_t *length, loff_t *ppos)
1857 {
1858         proc_dointvec_minmax(table, write, buffer, length, ppos);
1859
1860         return 0;
1861 }
1862
1863 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1864 static ssize_t sysfs_compact_node(struct device *dev,
1865                         struct device_attribute *attr,
1866                         const char *buf, size_t count)
1867 {
1868         int nid = dev->id;
1869
1870         if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1871                 /* Flush pending updates to the LRU lists */
1872                 lru_add_drain_all();
1873
1874                 compact_node(nid);
1875         }
1876
1877         return count;
1878 }
1879 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1880
1881 int compaction_register_node(struct node *node)
1882 {
1883         return device_create_file(&node->dev, &dev_attr_compact);
1884 }
1885
1886 void compaction_unregister_node(struct node *node)
1887 {
1888         return device_remove_file(&node->dev, &dev_attr_compact);
1889 }
1890 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1891
1892 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
1893 {
1894         return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
1895 }
1896
1897 static bool kcompactd_node_suitable(pg_data_t *pgdat)
1898 {
1899         int zoneid;
1900         struct zone *zone;
1901         enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;
1902
1903         for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
1904                 zone = &pgdat->node_zones[zoneid];
1905
1906                 if (!populated_zone(zone))
1907                         continue;
1908
1909                 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
1910                                         classzone_idx) == COMPACT_CONTINUE)
1911                         return true;
1912         }
1913
1914         return false;
1915 }
1916
1917 static void kcompactd_do_work(pg_data_t *pgdat)
1918 {
1919         /*
1920          * With no special task, compact all zones so that a page of requested
1921          * order is allocatable.
1922          */
1923         int zoneid;
1924         struct zone *zone;
1925         struct compact_control cc = {
1926                 .order = pgdat->kcompactd_max_order,
1927                 .classzone_idx = pgdat->kcompactd_classzone_idx,
1928                 .mode = MIGRATE_SYNC_LIGHT,
1929                 .ignore_skip_hint = true,
1930
1931         };
1932         bool success = false;
1933
1934         trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
1935                                                         cc.classzone_idx);
1936         count_vm_event(KCOMPACTD_WAKE);
1937
1938         for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
1939                 int status;
1940
1941                 zone = &pgdat->node_zones[zoneid];
1942                 if (!populated_zone(zone))
1943                         continue;
1944
1945                 if (compaction_deferred(zone, cc.order))
1946                         continue;
1947
1948                 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
1949                                                         COMPACT_CONTINUE)
1950                         continue;
1951
1952                 cc.nr_freepages = 0;
1953                 cc.nr_migratepages = 0;
1954                 cc.zone = zone;
1955                 INIT_LIST_HEAD(&cc.freepages);
1956                 INIT_LIST_HEAD(&cc.migratepages);
1957
1958                 if (kthread_should_stop())
1959                         return;
1960                 status = compact_zone(zone, &cc);
1961
1962                 if (zone_watermark_ok(zone, cc.order, low_wmark_pages(zone),
1963                                                 cc.classzone_idx, 0)) {
1964                         success = true;
1965                         compaction_defer_reset(zone, cc.order, false);
1966                 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
1967                         /*
1968                          * We use sync migration mode here, so we defer like
1969                          * sync direct compaction does.
1970                          */
1971                         defer_compaction(zone, cc.order);
1972                 }
1973
1974                 VM_BUG_ON(!list_empty(&cc.freepages));
1975                 VM_BUG_ON(!list_empty(&cc.migratepages));
1976         }
1977
1978         /*
1979          * Regardless of success, we are done until woken up next. But remember
1980          * the requested order/classzone_idx in case it was higher/tighter than
1981          * our current ones
1982          */
1983         if (pgdat->kcompactd_max_order <= cc.order)
1984                 pgdat->kcompactd_max_order = 0;
1985         if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
1986                 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
1987 }
1988
1989 void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
1990 {
1991         if (!order)
1992                 return;
1993
1994         if (pgdat->kcompactd_max_order < order)
1995                 pgdat->kcompactd_max_order = order;
1996
1997         if (pgdat->kcompactd_classzone_idx > classzone_idx)
1998                 pgdat->kcompactd_classzone_idx = classzone_idx;
1999
2000         if (!waitqueue_active(&pgdat->kcompactd_wait))
2001                 return;
2002
2003         if (!kcompactd_node_suitable(pgdat))
2004                 return;
2005
2006         trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2007                                                         classzone_idx);
2008         wake_up_interruptible(&pgdat->kcompactd_wait);
2009 }
2010
2011 /*
2012  * The background compaction daemon, started as a kernel thread
2013  * from the init process.
2014  */
2015 static int kcompactd(void *p)
2016 {
2017         pg_data_t *pgdat = (pg_data_t*)p;
2018         struct task_struct *tsk = current;
2019
2020         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2021
2022         if (!cpumask_empty(cpumask))
2023                 set_cpus_allowed_ptr(tsk, cpumask);
2024
2025         set_freezable();
2026
2027         pgdat->kcompactd_max_order = 0;
2028         pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2029
2030         while (!kthread_should_stop()) {
2031                 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2032                 wait_event_freezable(pgdat->kcompactd_wait,
2033                                 kcompactd_work_requested(pgdat));
2034
2035                 kcompactd_do_work(pgdat);
2036         }
2037
2038         return 0;
2039 }
2040
2041 /*
2042  * This kcompactd start function will be called by init and node-hot-add.
2043  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2044  */
2045 int kcompactd_run(int nid)
2046 {
2047         pg_data_t *pgdat = NODE_DATA(nid);
2048         int ret = 0;
2049
2050         if (pgdat->kcompactd)
2051                 return 0;
2052
2053         pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2054         if (IS_ERR(pgdat->kcompactd)) {
2055                 pr_err("Failed to start kcompactd on node %d\n", nid);
2056                 ret = PTR_ERR(pgdat->kcompactd);
2057                 pgdat->kcompactd = NULL;
2058         }
2059         return ret;
2060 }
2061
2062 /*
2063  * Called by memory hotplug when all memory in a node is offlined. Caller must
2064  * hold mem_hotplug_begin/end().
2065  */
2066 void kcompactd_stop(int nid)
2067 {
2068         struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2069
2070         if (kcompactd) {
2071                 kthread_stop(kcompactd);
2072                 NODE_DATA(nid)->kcompactd = NULL;
2073         }
2074 }
2075
2076 /*
2077  * It's optimal to keep kcompactd on the same CPUs as their memory, but
2078  * not required for correctness. So if the last cpu in a node goes
2079  * away, we get changed to run anywhere: as the first one comes back,
2080  * restore their cpu bindings.
2081  */
2082 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
2083                         void *hcpu)
2084 {
2085         int nid;
2086
2087         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2088                 for_each_node_state(nid, N_MEMORY) {
2089                         pg_data_t *pgdat = NODE_DATA(nid);
2090                         const struct cpumask *mask;
2091
2092                         mask = cpumask_of_node(pgdat->node_id);
2093
2094                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2095                                 /* One of our CPUs online: restore mask */
2096                                 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2097                 }
2098         }
2099         return NOTIFY_OK;
2100 }
2101
2102 static int __init kcompactd_init(void)
2103 {
2104         int nid;
2105
2106         for_each_node_state(nid, N_MEMORY)
2107                 kcompactd_run(nid);
2108         hotcpu_notifier(cpu_callback, 0);
2109         return 0;
2110 }
2111 subsys_initcall(kcompactd_init)
2112
2113 #endif /* CONFIG_COMPACTION */