mm, compaction: simplify handling restart position in free pages scanner
[cascardo/linux.git] / mm / compaction.c
1 /*
2  * linux/mm/compaction.c
3  *
4  * Memory compaction for the reduction of external fragmentation. Note that
5  * this heavily depends upon page migration to do all the real heavy
6  * lifting
7  *
8  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9  */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include <linux/balloon_compaction.h>
18 #include <linux/page-isolation.h>
19 #include <linux/kasan.h>
20 #include "internal.h"
21
22 #ifdef CONFIG_COMPACTION
23 static inline void count_compact_event(enum vm_event_item item)
24 {
25         count_vm_event(item);
26 }
27
28 static inline void count_compact_events(enum vm_event_item item, long delta)
29 {
30         count_vm_events(item, delta);
31 }
32 #else
33 #define count_compact_event(item) do { } while (0)
34 #define count_compact_events(item, delta) do { } while (0)
35 #endif
36
37 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
38 #ifdef CONFIG_TRACEPOINTS
39 static const char *const compaction_status_string[] = {
40         "deferred",
41         "skipped",
42         "continue",
43         "partial",
44         "complete",
45         "no_suitable_page",
46         "not_suitable_zone",
47 };
48 #endif
49
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/compaction.h>
52
53 static unsigned long release_freepages(struct list_head *freelist)
54 {
55         struct page *page, *next;
56         unsigned long high_pfn = 0;
57
58         list_for_each_entry_safe(page, next, freelist, lru) {
59                 unsigned long pfn = page_to_pfn(page);
60                 list_del(&page->lru);
61                 __free_page(page);
62                 if (pfn > high_pfn)
63                         high_pfn = pfn;
64         }
65
66         return high_pfn;
67 }
68
69 static void map_pages(struct list_head *list)
70 {
71         struct page *page;
72
73         list_for_each_entry(page, list, lru) {
74                 arch_alloc_page(page, 0);
75                 kernel_map_pages(page, 1, 1);
76                 kasan_alloc_pages(page, 0);
77         }
78 }
79
80 static inline bool migrate_async_suitable(int migratetype)
81 {
82         return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
83 }
84
85 /*
86  * Check that the whole (or subset of) a pageblock given by the interval of
87  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
88  * with the migration of free compaction scanner. The scanners then need to
89  * use only pfn_valid_within() check for arches that allow holes within
90  * pageblocks.
91  *
92  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
93  *
94  * It's possible on some configurations to have a setup like node0 node1 node0
95  * i.e. it's possible that all pages within a zones range of pages do not
96  * belong to a single zone. We assume that a border between node0 and node1
97  * can occur within a single pageblock, but not a node0 node1 node0
98  * interleaving within a single pageblock. It is therefore sufficient to check
99  * the first and last page of a pageblock and avoid checking each individual
100  * page in a pageblock.
101  */
102 static struct page *pageblock_pfn_to_page(unsigned long start_pfn,
103                                 unsigned long end_pfn, struct zone *zone)
104 {
105         struct page *start_page;
106         struct page *end_page;
107
108         /* end_pfn is one past the range we are checking */
109         end_pfn--;
110
111         if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
112                 return NULL;
113
114         start_page = pfn_to_page(start_pfn);
115
116         if (page_zone(start_page) != zone)
117                 return NULL;
118
119         end_page = pfn_to_page(end_pfn);
120
121         /* This gives a shorter code than deriving page_zone(end_page) */
122         if (page_zone_id(start_page) != page_zone_id(end_page))
123                 return NULL;
124
125         return start_page;
126 }
127
128 #ifdef CONFIG_COMPACTION
129
130 /* Do not skip compaction more than 64 times */
131 #define COMPACT_MAX_DEFER_SHIFT 6
132
133 /*
134  * Compaction is deferred when compaction fails to result in a page
135  * allocation success. 1 << compact_defer_limit compactions are skipped up
136  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
137  */
138 void defer_compaction(struct zone *zone, int order)
139 {
140         zone->compact_considered = 0;
141         zone->compact_defer_shift++;
142
143         if (order < zone->compact_order_failed)
144                 zone->compact_order_failed = order;
145
146         if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
147                 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
148
149         trace_mm_compaction_defer_compaction(zone, order);
150 }
151
152 /* Returns true if compaction should be skipped this time */
153 bool compaction_deferred(struct zone *zone, int order)
154 {
155         unsigned long defer_limit = 1UL << zone->compact_defer_shift;
156
157         if (order < zone->compact_order_failed)
158                 return false;
159
160         /* Avoid possible overflow */
161         if (++zone->compact_considered > defer_limit)
162                 zone->compact_considered = defer_limit;
163
164         if (zone->compact_considered >= defer_limit)
165                 return false;
166
167         trace_mm_compaction_deferred(zone, order);
168
169         return true;
170 }
171
172 /*
173  * Update defer tracking counters after successful compaction of given order,
174  * which means an allocation either succeeded (alloc_success == true) or is
175  * expected to succeed.
176  */
177 void compaction_defer_reset(struct zone *zone, int order,
178                 bool alloc_success)
179 {
180         if (alloc_success) {
181                 zone->compact_considered = 0;
182                 zone->compact_defer_shift = 0;
183         }
184         if (order >= zone->compact_order_failed)
185                 zone->compact_order_failed = order + 1;
186
187         trace_mm_compaction_defer_reset(zone, order);
188 }
189
190 /* Returns true if restarting compaction after many failures */
191 bool compaction_restarting(struct zone *zone, int order)
192 {
193         if (order < zone->compact_order_failed)
194                 return false;
195
196         return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
197                 zone->compact_considered >= 1UL << zone->compact_defer_shift;
198 }
199
200 /* Returns true if the pageblock should be scanned for pages to isolate. */
201 static inline bool isolation_suitable(struct compact_control *cc,
202                                         struct page *page)
203 {
204         if (cc->ignore_skip_hint)
205                 return true;
206
207         return !get_pageblock_skip(page);
208 }
209
210 /*
211  * This function is called to clear all cached information on pageblocks that
212  * should be skipped for page isolation when the migrate and free page scanner
213  * meet.
214  */
215 static void __reset_isolation_suitable(struct zone *zone)
216 {
217         unsigned long start_pfn = zone->zone_start_pfn;
218         unsigned long end_pfn = zone_end_pfn(zone);
219         unsigned long pfn;
220
221         zone->compact_cached_migrate_pfn[0] = start_pfn;
222         zone->compact_cached_migrate_pfn[1] = start_pfn;
223         zone->compact_cached_free_pfn = end_pfn;
224         zone->compact_blockskip_flush = false;
225
226         /* Walk the zone and mark every pageblock as suitable for isolation */
227         for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
228                 struct page *page;
229
230                 cond_resched();
231
232                 if (!pfn_valid(pfn))
233                         continue;
234
235                 page = pfn_to_page(pfn);
236                 if (zone != page_zone(page))
237                         continue;
238
239                 clear_pageblock_skip(page);
240         }
241 }
242
243 void reset_isolation_suitable(pg_data_t *pgdat)
244 {
245         int zoneid;
246
247         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
248                 struct zone *zone = &pgdat->node_zones[zoneid];
249                 if (!populated_zone(zone))
250                         continue;
251
252                 /* Only flush if a full compaction finished recently */
253                 if (zone->compact_blockskip_flush)
254                         __reset_isolation_suitable(zone);
255         }
256 }
257
258 /*
259  * If no pages were isolated then mark this pageblock to be skipped in the
260  * future. The information is later cleared by __reset_isolation_suitable().
261  */
262 static void update_pageblock_skip(struct compact_control *cc,
263                         struct page *page, unsigned long nr_isolated,
264                         bool migrate_scanner)
265 {
266         struct zone *zone = cc->zone;
267         unsigned long pfn;
268
269         if (cc->ignore_skip_hint)
270                 return;
271
272         if (!page)
273                 return;
274
275         if (nr_isolated)
276                 return;
277
278         set_pageblock_skip(page);
279
280         pfn = page_to_pfn(page);
281
282         /* Update where async and sync compaction should restart */
283         if (migrate_scanner) {
284                 if (pfn > zone->compact_cached_migrate_pfn[0])
285                         zone->compact_cached_migrate_pfn[0] = pfn;
286                 if (cc->mode != MIGRATE_ASYNC &&
287                     pfn > zone->compact_cached_migrate_pfn[1])
288                         zone->compact_cached_migrate_pfn[1] = pfn;
289         } else {
290                 if (pfn < zone->compact_cached_free_pfn)
291                         zone->compact_cached_free_pfn = pfn;
292         }
293 }
294 #else
295 static inline bool isolation_suitable(struct compact_control *cc,
296                                         struct page *page)
297 {
298         return true;
299 }
300
301 static void update_pageblock_skip(struct compact_control *cc,
302                         struct page *page, unsigned long nr_isolated,
303                         bool migrate_scanner)
304 {
305 }
306 #endif /* CONFIG_COMPACTION */
307
308 /*
309  * Compaction requires the taking of some coarse locks that are potentially
310  * very heavily contended. For async compaction, back out if the lock cannot
311  * be taken immediately. For sync compaction, spin on the lock if needed.
312  *
313  * Returns true if the lock is held
314  * Returns false if the lock is not held and compaction should abort
315  */
316 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
317                                                 struct compact_control *cc)
318 {
319         if (cc->mode == MIGRATE_ASYNC) {
320                 if (!spin_trylock_irqsave(lock, *flags)) {
321                         cc->contended = COMPACT_CONTENDED_LOCK;
322                         return false;
323                 }
324         } else {
325                 spin_lock_irqsave(lock, *flags);
326         }
327
328         return true;
329 }
330
331 /*
332  * Compaction requires the taking of some coarse locks that are potentially
333  * very heavily contended. The lock should be periodically unlocked to avoid
334  * having disabled IRQs for a long time, even when there is nobody waiting on
335  * the lock. It might also be that allowing the IRQs will result in
336  * need_resched() becoming true. If scheduling is needed, async compaction
337  * aborts. Sync compaction schedules.
338  * Either compaction type will also abort if a fatal signal is pending.
339  * In either case if the lock was locked, it is dropped and not regained.
340  *
341  * Returns true if compaction should abort due to fatal signal pending, or
342  *              async compaction due to need_resched()
343  * Returns false when compaction can continue (sync compaction might have
344  *              scheduled)
345  */
346 static bool compact_unlock_should_abort(spinlock_t *lock,
347                 unsigned long flags, bool *locked, struct compact_control *cc)
348 {
349         if (*locked) {
350                 spin_unlock_irqrestore(lock, flags);
351                 *locked = false;
352         }
353
354         if (fatal_signal_pending(current)) {
355                 cc->contended = COMPACT_CONTENDED_SCHED;
356                 return true;
357         }
358
359         if (need_resched()) {
360                 if (cc->mode == MIGRATE_ASYNC) {
361                         cc->contended = COMPACT_CONTENDED_SCHED;
362                         return true;
363                 }
364                 cond_resched();
365         }
366
367         return false;
368 }
369
370 /*
371  * Aside from avoiding lock contention, compaction also periodically checks
372  * need_resched() and either schedules in sync compaction or aborts async
373  * compaction. This is similar to what compact_unlock_should_abort() does, but
374  * is used where no lock is concerned.
375  *
376  * Returns false when no scheduling was needed, or sync compaction scheduled.
377  * Returns true when async compaction should abort.
378  */
379 static inline bool compact_should_abort(struct compact_control *cc)
380 {
381         /* async compaction aborts if contended */
382         if (need_resched()) {
383                 if (cc->mode == MIGRATE_ASYNC) {
384                         cc->contended = COMPACT_CONTENDED_SCHED;
385                         return true;
386                 }
387
388                 cond_resched();
389         }
390
391         return false;
392 }
393
394 /*
395  * Isolate free pages onto a private freelist. If @strict is true, will abort
396  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
397  * (even though it may still end up isolating some pages).
398  */
399 static unsigned long isolate_freepages_block(struct compact_control *cc,
400                                 unsigned long *start_pfn,
401                                 unsigned long end_pfn,
402                                 struct list_head *freelist,
403                                 bool strict)
404 {
405         int nr_scanned = 0, total_isolated = 0;
406         struct page *cursor, *valid_page = NULL;
407         unsigned long flags = 0;
408         bool locked = false;
409         unsigned long blockpfn = *start_pfn;
410
411         cursor = pfn_to_page(blockpfn);
412
413         /* Isolate free pages. */
414         for (; blockpfn < end_pfn; blockpfn++, cursor++) {
415                 int isolated, i;
416                 struct page *page = cursor;
417
418                 /*
419                  * Periodically drop the lock (if held) regardless of its
420                  * contention, to give chance to IRQs. Abort if fatal signal
421                  * pending or async compaction detects need_resched()
422                  */
423                 if (!(blockpfn % SWAP_CLUSTER_MAX)
424                     && compact_unlock_should_abort(&cc->zone->lock, flags,
425                                                                 &locked, cc))
426                         break;
427
428                 nr_scanned++;
429                 if (!pfn_valid_within(blockpfn))
430                         goto isolate_fail;
431
432                 if (!valid_page)
433                         valid_page = page;
434                 if (!PageBuddy(page))
435                         goto isolate_fail;
436
437                 /*
438                  * If we already hold the lock, we can skip some rechecking.
439                  * Note that if we hold the lock now, checked_pageblock was
440                  * already set in some previous iteration (or strict is true),
441                  * so it is correct to skip the suitable migration target
442                  * recheck as well.
443                  */
444                 if (!locked) {
445                         /*
446                          * The zone lock must be held to isolate freepages.
447                          * Unfortunately this is a very coarse lock and can be
448                          * heavily contended if there are parallel allocations
449                          * or parallel compactions. For async compaction do not
450                          * spin on the lock and we acquire the lock as late as
451                          * possible.
452                          */
453                         locked = compact_trylock_irqsave(&cc->zone->lock,
454                                                                 &flags, cc);
455                         if (!locked)
456                                 break;
457
458                         /* Recheck this is a buddy page under lock */
459                         if (!PageBuddy(page))
460                                 goto isolate_fail;
461                 }
462
463                 /* Found a free page, break it into order-0 pages */
464                 isolated = split_free_page(page);
465                 total_isolated += isolated;
466                 for (i = 0; i < isolated; i++) {
467                         list_add(&page->lru, freelist);
468                         page++;
469                 }
470
471                 /* If a page was split, advance to the end of it */
472                 if (isolated) {
473                         cc->nr_freepages += isolated;
474                         if (!strict &&
475                                 cc->nr_migratepages <= cc->nr_freepages) {
476                                 blockpfn += isolated;
477                                 break;
478                         }
479
480                         blockpfn += isolated - 1;
481                         cursor += isolated - 1;
482                         continue;
483                 }
484
485 isolate_fail:
486                 if (strict)
487                         break;
488                 else
489                         continue;
490
491         }
492
493         trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
494                                         nr_scanned, total_isolated);
495
496         /* Record how far we have got within the block */
497         *start_pfn = blockpfn;
498
499         /*
500          * If strict isolation is requested by CMA then check that all the
501          * pages requested were isolated. If there were any failures, 0 is
502          * returned and CMA will fail.
503          */
504         if (strict && blockpfn < end_pfn)
505                 total_isolated = 0;
506
507         if (locked)
508                 spin_unlock_irqrestore(&cc->zone->lock, flags);
509
510         /* Update the pageblock-skip if the whole pageblock was scanned */
511         if (blockpfn == end_pfn)
512                 update_pageblock_skip(cc, valid_page, total_isolated, false);
513
514         count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
515         if (total_isolated)
516                 count_compact_events(COMPACTISOLATED, total_isolated);
517         return total_isolated;
518 }
519
520 /**
521  * isolate_freepages_range() - isolate free pages.
522  * @start_pfn: The first PFN to start isolating.
523  * @end_pfn:   The one-past-last PFN.
524  *
525  * Non-free pages, invalid PFNs, or zone boundaries within the
526  * [start_pfn, end_pfn) range are considered errors, cause function to
527  * undo its actions and return zero.
528  *
529  * Otherwise, function returns one-past-the-last PFN of isolated page
530  * (which may be greater then end_pfn if end fell in a middle of
531  * a free page).
532  */
533 unsigned long
534 isolate_freepages_range(struct compact_control *cc,
535                         unsigned long start_pfn, unsigned long end_pfn)
536 {
537         unsigned long isolated, pfn, block_end_pfn;
538         LIST_HEAD(freelist);
539
540         pfn = start_pfn;
541         block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
542
543         for (; pfn < end_pfn; pfn += isolated,
544                                 block_end_pfn += pageblock_nr_pages) {
545                 /* Protect pfn from changing by isolate_freepages_block */
546                 unsigned long isolate_start_pfn = pfn;
547
548                 block_end_pfn = min(block_end_pfn, end_pfn);
549
550                 /*
551                  * pfn could pass the block_end_pfn if isolated freepage
552                  * is more than pageblock order. In this case, we adjust
553                  * scanning range to right one.
554                  */
555                 if (pfn >= block_end_pfn) {
556                         block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
557                         block_end_pfn = min(block_end_pfn, end_pfn);
558                 }
559
560                 if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
561                         break;
562
563                 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
564                                                 block_end_pfn, &freelist, true);
565
566                 /*
567                  * In strict mode, isolate_freepages_block() returns 0 if
568                  * there are any holes in the block (ie. invalid PFNs or
569                  * non-free pages).
570                  */
571                 if (!isolated)
572                         break;
573
574                 /*
575                  * If we managed to isolate pages, it is always (1 << n) *
576                  * pageblock_nr_pages for some non-negative n.  (Max order
577                  * page may span two pageblocks).
578                  */
579         }
580
581         /* split_free_page does not map the pages */
582         map_pages(&freelist);
583
584         if (pfn < end_pfn) {
585                 /* Loop terminated early, cleanup. */
586                 release_freepages(&freelist);
587                 return 0;
588         }
589
590         /* We don't use freelists for anything. */
591         return pfn;
592 }
593
594 /* Update the number of anon and file isolated pages in the zone */
595 static void acct_isolated(struct zone *zone, struct compact_control *cc)
596 {
597         struct page *page;
598         unsigned int count[2] = { 0, };
599
600         if (list_empty(&cc->migratepages))
601                 return;
602
603         list_for_each_entry(page, &cc->migratepages, lru)
604                 count[!!page_is_file_cache(page)]++;
605
606         mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
607         mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
608 }
609
610 /* Similar to reclaim, but different enough that they don't share logic */
611 static bool too_many_isolated(struct zone *zone)
612 {
613         unsigned long active, inactive, isolated;
614
615         inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
616                                         zone_page_state(zone, NR_INACTIVE_ANON);
617         active = zone_page_state(zone, NR_ACTIVE_FILE) +
618                                         zone_page_state(zone, NR_ACTIVE_ANON);
619         isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
620                                         zone_page_state(zone, NR_ISOLATED_ANON);
621
622         return isolated > (inactive + active) / 2;
623 }
624
625 /**
626  * isolate_migratepages_block() - isolate all migrate-able pages within
627  *                                a single pageblock
628  * @cc:         Compaction control structure.
629  * @low_pfn:    The first PFN to isolate
630  * @end_pfn:    The one-past-the-last PFN to isolate, within same pageblock
631  * @isolate_mode: Isolation mode to be used.
632  *
633  * Isolate all pages that can be migrated from the range specified by
634  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
635  * Returns zero if there is a fatal signal pending, otherwise PFN of the
636  * first page that was not scanned (which may be both less, equal to or more
637  * than end_pfn).
638  *
639  * The pages are isolated on cc->migratepages list (not required to be empty),
640  * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
641  * is neither read nor updated.
642  */
643 static unsigned long
644 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
645                         unsigned long end_pfn, isolate_mode_t isolate_mode)
646 {
647         struct zone *zone = cc->zone;
648         unsigned long nr_scanned = 0, nr_isolated = 0;
649         struct list_head *migratelist = &cc->migratepages;
650         struct lruvec *lruvec;
651         unsigned long flags = 0;
652         bool locked = false;
653         struct page *page = NULL, *valid_page = NULL;
654         unsigned long start_pfn = low_pfn;
655
656         /*
657          * Ensure that there are not too many pages isolated from the LRU
658          * list by either parallel reclaimers or compaction. If there are,
659          * delay for some time until fewer pages are isolated
660          */
661         while (unlikely(too_many_isolated(zone))) {
662                 /* async migration should just abort */
663                 if (cc->mode == MIGRATE_ASYNC)
664                         return 0;
665
666                 congestion_wait(BLK_RW_ASYNC, HZ/10);
667
668                 if (fatal_signal_pending(current))
669                         return 0;
670         }
671
672         if (compact_should_abort(cc))
673                 return 0;
674
675         /* Time to isolate some pages for migration */
676         for (; low_pfn < end_pfn; low_pfn++) {
677                 /*
678                  * Periodically drop the lock (if held) regardless of its
679                  * contention, to give chance to IRQs. Abort async compaction
680                  * if contended.
681                  */
682                 if (!(low_pfn % SWAP_CLUSTER_MAX)
683                     && compact_unlock_should_abort(&zone->lru_lock, flags,
684                                                                 &locked, cc))
685                         break;
686
687                 if (!pfn_valid_within(low_pfn))
688                         continue;
689                 nr_scanned++;
690
691                 page = pfn_to_page(low_pfn);
692
693                 if (!valid_page)
694                         valid_page = page;
695
696                 /*
697                  * Skip if free. We read page order here without zone lock
698                  * which is generally unsafe, but the race window is small and
699                  * the worst thing that can happen is that we skip some
700                  * potential isolation targets.
701                  */
702                 if (PageBuddy(page)) {
703                         unsigned long freepage_order = page_order_unsafe(page);
704
705                         /*
706                          * Without lock, we cannot be sure that what we got is
707                          * a valid page order. Consider only values in the
708                          * valid order range to prevent low_pfn overflow.
709                          */
710                         if (freepage_order > 0 && freepage_order < MAX_ORDER)
711                                 low_pfn += (1UL << freepage_order) - 1;
712                         continue;
713                 }
714
715                 /*
716                  * Check may be lockless but that's ok as we recheck later.
717                  * It's possible to migrate LRU pages and balloon pages
718                  * Skip any other type of page
719                  */
720                 if (!PageLRU(page)) {
721                         if (unlikely(balloon_page_movable(page))) {
722                                 if (balloon_page_isolate(page)) {
723                                         /* Successfully isolated */
724                                         goto isolate_success;
725                                 }
726                         }
727                         continue;
728                 }
729
730                 /*
731                  * PageLRU is set. lru_lock normally excludes isolation
732                  * splitting and collapsing (collapsing has already happened
733                  * if PageLRU is set) but the lock is not necessarily taken
734                  * here and it is wasteful to take it just to check transhuge.
735                  * Check TransHuge without lock and skip the whole pageblock if
736                  * it's either a transhuge or hugetlbfs page, as calling
737                  * compound_order() without preventing THP from splitting the
738                  * page underneath us may return surprising results.
739                  */
740                 if (PageTransHuge(page)) {
741                         if (!locked)
742                                 low_pfn = ALIGN(low_pfn + 1,
743                                                 pageblock_nr_pages) - 1;
744                         else
745                                 low_pfn += (1 << compound_order(page)) - 1;
746
747                         continue;
748                 }
749
750                 /*
751                  * Migration will fail if an anonymous page is pinned in memory,
752                  * so avoid taking lru_lock and isolating it unnecessarily in an
753                  * admittedly racy check.
754                  */
755                 if (!page_mapping(page) &&
756                     page_count(page) > page_mapcount(page))
757                         continue;
758
759                 /* If we already hold the lock, we can skip some rechecking */
760                 if (!locked) {
761                         locked = compact_trylock_irqsave(&zone->lru_lock,
762                                                                 &flags, cc);
763                         if (!locked)
764                                 break;
765
766                         /* Recheck PageLRU and PageTransHuge under lock */
767                         if (!PageLRU(page))
768                                 continue;
769                         if (PageTransHuge(page)) {
770                                 low_pfn += (1 << compound_order(page)) - 1;
771                                 continue;
772                         }
773                 }
774
775                 lruvec = mem_cgroup_page_lruvec(page, zone);
776
777                 /* Try isolate the page */
778                 if (__isolate_lru_page(page, isolate_mode) != 0)
779                         continue;
780
781                 VM_BUG_ON_PAGE(PageTransCompound(page), page);
782
783                 /* Successfully isolated */
784                 del_page_from_lru_list(page, lruvec, page_lru(page));
785
786 isolate_success:
787                 list_add(&page->lru, migratelist);
788                 cc->nr_migratepages++;
789                 nr_isolated++;
790
791                 /* Avoid isolating too much */
792                 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
793                         ++low_pfn;
794                         break;
795                 }
796         }
797
798         /*
799          * The PageBuddy() check could have potentially brought us outside
800          * the range to be scanned.
801          */
802         if (unlikely(low_pfn > end_pfn))
803                 low_pfn = end_pfn;
804
805         if (locked)
806                 spin_unlock_irqrestore(&zone->lru_lock, flags);
807
808         /*
809          * Update the pageblock-skip information and cached scanner pfn,
810          * if the whole pageblock was scanned without isolating any page.
811          */
812         if (low_pfn == end_pfn)
813                 update_pageblock_skip(cc, valid_page, nr_isolated, true);
814
815         trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
816                                                 nr_scanned, nr_isolated);
817
818         count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
819         if (nr_isolated)
820                 count_compact_events(COMPACTISOLATED, nr_isolated);
821
822         return low_pfn;
823 }
824
825 /**
826  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
827  * @cc:        Compaction control structure.
828  * @start_pfn: The first PFN to start isolating.
829  * @end_pfn:   The one-past-last PFN.
830  *
831  * Returns zero if isolation fails fatally due to e.g. pending signal.
832  * Otherwise, function returns one-past-the-last PFN of isolated page
833  * (which may be greater than end_pfn if end fell in a middle of a THP page).
834  */
835 unsigned long
836 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
837                                                         unsigned long end_pfn)
838 {
839         unsigned long pfn, block_end_pfn;
840
841         /* Scan block by block. First and last block may be incomplete */
842         pfn = start_pfn;
843         block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
844
845         for (; pfn < end_pfn; pfn = block_end_pfn,
846                                 block_end_pfn += pageblock_nr_pages) {
847
848                 block_end_pfn = min(block_end_pfn, end_pfn);
849
850                 if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
851                         continue;
852
853                 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
854                                                         ISOLATE_UNEVICTABLE);
855
856                 /*
857                  * In case of fatal failure, release everything that might
858                  * have been isolated in the previous iteration, and signal
859                  * the failure back to caller.
860                  */
861                 if (!pfn) {
862                         putback_movable_pages(&cc->migratepages);
863                         cc->nr_migratepages = 0;
864                         break;
865                 }
866
867                 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
868                         break;
869         }
870         acct_isolated(cc->zone, cc);
871
872         return pfn;
873 }
874
875 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
876 #ifdef CONFIG_COMPACTION
877
878 /* Returns true if the page is within a block suitable for migration to */
879 static bool suitable_migration_target(struct page *page)
880 {
881         /* If the page is a large free page, then disallow migration */
882         if (PageBuddy(page)) {
883                 /*
884                  * We are checking page_order without zone->lock taken. But
885                  * the only small danger is that we skip a potentially suitable
886                  * pageblock, so it's not worth to check order for valid range.
887                  */
888                 if (page_order_unsafe(page) >= pageblock_order)
889                         return false;
890         }
891
892         /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
893         if (migrate_async_suitable(get_pageblock_migratetype(page)))
894                 return true;
895
896         /* Otherwise skip the block */
897         return false;
898 }
899
900 /*
901  * Test whether the free scanner has reached the same or lower pageblock than
902  * the migration scanner, and compaction should thus terminate.
903  */
904 static inline bool compact_scanners_met(struct compact_control *cc)
905 {
906         return (cc->free_pfn >> pageblock_order)
907                 <= (cc->migrate_pfn >> pageblock_order);
908 }
909
910 /*
911  * Based on information in the current compact_control, find blocks
912  * suitable for isolating free pages from and then isolate them.
913  */
914 static void isolate_freepages(struct compact_control *cc)
915 {
916         struct zone *zone = cc->zone;
917         struct page *page;
918         unsigned long block_start_pfn;  /* start of current pageblock */
919         unsigned long isolate_start_pfn; /* exact pfn we start at */
920         unsigned long block_end_pfn;    /* end of current pageblock */
921         unsigned long low_pfn;       /* lowest pfn scanner is able to scan */
922         struct list_head *freelist = &cc->freepages;
923
924         /*
925          * Initialise the free scanner. The starting point is where we last
926          * successfully isolated from, zone-cached value, or the end of the
927          * zone when isolating for the first time. For looping we also need
928          * this pfn aligned down to the pageblock boundary, because we do
929          * block_start_pfn -= pageblock_nr_pages in the for loop.
930          * For ending point, take care when isolating in last pageblock of a
931          * a zone which ends in the middle of a pageblock.
932          * The low boundary is the end of the pageblock the migration scanner
933          * is using.
934          */
935         isolate_start_pfn = cc->free_pfn;
936         block_start_pfn = cc->free_pfn & ~(pageblock_nr_pages-1);
937         block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
938                                                 zone_end_pfn(zone));
939         low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
940
941         /*
942          * Isolate free pages until enough are available to migrate the
943          * pages on cc->migratepages. We stop searching if the migrate
944          * and free page scanners meet or enough free pages are isolated.
945          */
946         for (; block_start_pfn >= low_pfn;
947                                 block_end_pfn = block_start_pfn,
948                                 block_start_pfn -= pageblock_nr_pages,
949                                 isolate_start_pfn = block_start_pfn) {
950
951                 /*
952                  * This can iterate a massively long zone without finding any
953                  * suitable migration targets, so periodically check if we need
954                  * to schedule, or even abort async compaction.
955                  */
956                 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
957                                                 && compact_should_abort(cc))
958                         break;
959
960                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
961                                                                         zone);
962                 if (!page)
963                         continue;
964
965                 /* Check the block is suitable for migration */
966                 if (!suitable_migration_target(page))
967                         continue;
968
969                 /* If isolation recently failed, do not retry */
970                 if (!isolation_suitable(cc, page))
971                         continue;
972
973                 /* Found a block suitable for isolating free pages from. */
974                 isolate_freepages_block(cc, &isolate_start_pfn,
975                                         block_end_pfn, freelist, false);
976
977                 /*
978                  * If we isolated enough freepages, or aborted due to async
979                  * compaction being contended, terminate the loop.
980                  * Remember where the free scanner should restart next time,
981                  * which is where isolate_freepages_block() left off.
982                  * But if it scanned the whole pageblock, isolate_start_pfn
983                  * now points at block_end_pfn, which is the start of the next
984                  * pageblock.
985                  * In that case we will however want to restart at the start
986                  * of the previous pageblock.
987                  */
988                 if ((cc->nr_freepages >= cc->nr_migratepages)
989                                                         || cc->contended) {
990                         if (isolate_start_pfn >= block_end_pfn)
991                                 isolate_start_pfn =
992                                         block_start_pfn - pageblock_nr_pages;
993                         break;
994                 } else {
995                         /*
996                          * isolate_freepages_block() should not terminate
997                          * prematurely unless contended, or isolated enough
998                          */
999                         VM_BUG_ON(isolate_start_pfn < block_end_pfn);
1000                 }
1001         }
1002
1003         /* split_free_page does not map the pages */
1004         map_pages(freelist);
1005
1006         /*
1007          * Record where the free scanner will restart next time. Either we
1008          * broke from the loop and set isolate_start_pfn based on the last
1009          * call to isolate_freepages_block(), or we met the migration scanner
1010          * and the loop terminated due to isolate_start_pfn < low_pfn
1011          */
1012         cc->free_pfn = isolate_start_pfn;
1013 }
1014
1015 /*
1016  * This is a migrate-callback that "allocates" freepages by taking pages
1017  * from the isolated freelists in the block we are migrating to.
1018  */
1019 static struct page *compaction_alloc(struct page *migratepage,
1020                                         unsigned long data,
1021                                         int **result)
1022 {
1023         struct compact_control *cc = (struct compact_control *)data;
1024         struct page *freepage;
1025
1026         /*
1027          * Isolate free pages if necessary, and if we are not aborting due to
1028          * contention.
1029          */
1030         if (list_empty(&cc->freepages)) {
1031                 if (!cc->contended)
1032                         isolate_freepages(cc);
1033
1034                 if (list_empty(&cc->freepages))
1035                         return NULL;
1036         }
1037
1038         freepage = list_entry(cc->freepages.next, struct page, lru);
1039         list_del(&freepage->lru);
1040         cc->nr_freepages--;
1041
1042         return freepage;
1043 }
1044
1045 /*
1046  * This is a migrate-callback that "frees" freepages back to the isolated
1047  * freelist.  All pages on the freelist are from the same zone, so there is no
1048  * special handling needed for NUMA.
1049  */
1050 static void compaction_free(struct page *page, unsigned long data)
1051 {
1052         struct compact_control *cc = (struct compact_control *)data;
1053
1054         list_add(&page->lru, &cc->freepages);
1055         cc->nr_freepages++;
1056 }
1057
1058 /* possible outcome of isolate_migratepages */
1059 typedef enum {
1060         ISOLATE_ABORT,          /* Abort compaction now */
1061         ISOLATE_NONE,           /* No pages isolated, continue scanning */
1062         ISOLATE_SUCCESS,        /* Pages isolated, migrate */
1063 } isolate_migrate_t;
1064
1065 /*
1066  * Allow userspace to control policy on scanning the unevictable LRU for
1067  * compactable pages.
1068  */
1069 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1070
1071 /*
1072  * Isolate all pages that can be migrated from the first suitable block,
1073  * starting at the block pointed to by the migrate scanner pfn within
1074  * compact_control.
1075  */
1076 static isolate_migrate_t isolate_migratepages(struct zone *zone,
1077                                         struct compact_control *cc)
1078 {
1079         unsigned long low_pfn, end_pfn;
1080         struct page *page;
1081         const isolate_mode_t isolate_mode =
1082                 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1083                 (cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1084
1085         /*
1086          * Start at where we last stopped, or beginning of the zone as
1087          * initialized by compact_zone()
1088          */
1089         low_pfn = cc->migrate_pfn;
1090
1091         /* Only scan within a pageblock boundary */
1092         end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
1093
1094         /*
1095          * Iterate over whole pageblocks until we find the first suitable.
1096          * Do not cross the free scanner.
1097          */
1098         for (; end_pfn <= cc->free_pfn;
1099                         low_pfn = end_pfn, end_pfn += pageblock_nr_pages) {
1100
1101                 /*
1102                  * This can potentially iterate a massively long zone with
1103                  * many pageblocks unsuitable, so periodically check if we
1104                  * need to schedule, or even abort async compaction.
1105                  */
1106                 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1107                                                 && compact_should_abort(cc))
1108                         break;
1109
1110                 page = pageblock_pfn_to_page(low_pfn, end_pfn, zone);
1111                 if (!page)
1112                         continue;
1113
1114                 /* If isolation recently failed, do not retry */
1115                 if (!isolation_suitable(cc, page))
1116                         continue;
1117
1118                 /*
1119                  * For async compaction, also only scan in MOVABLE blocks.
1120                  * Async compaction is optimistic to see if the minimum amount
1121                  * of work satisfies the allocation.
1122                  */
1123                 if (cc->mode == MIGRATE_ASYNC &&
1124                     !migrate_async_suitable(get_pageblock_migratetype(page)))
1125                         continue;
1126
1127                 /* Perform the isolation */
1128                 low_pfn = isolate_migratepages_block(cc, low_pfn, end_pfn,
1129                                                                 isolate_mode);
1130
1131                 if (!low_pfn || cc->contended) {
1132                         acct_isolated(zone, cc);
1133                         return ISOLATE_ABORT;
1134                 }
1135
1136                 /*
1137                  * Either we isolated something and proceed with migration. Or
1138                  * we failed and compact_zone should decide if we should
1139                  * continue or not.
1140                  */
1141                 break;
1142         }
1143
1144         acct_isolated(zone, cc);
1145         /* Record where migration scanner will be restarted. */
1146         cc->migrate_pfn = low_pfn;
1147
1148         return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1149 }
1150
1151 static int __compact_finished(struct zone *zone, struct compact_control *cc,
1152                             const int migratetype)
1153 {
1154         unsigned int order;
1155         unsigned long watermark;
1156
1157         if (cc->contended || fatal_signal_pending(current))
1158                 return COMPACT_PARTIAL;
1159
1160         /* Compaction run completes if the migrate and free scanner meet */
1161         if (compact_scanners_met(cc)) {
1162                 /* Let the next compaction start anew. */
1163                 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
1164                 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
1165                 zone->compact_cached_free_pfn = zone_end_pfn(zone);
1166
1167                 /*
1168                  * Mark that the PG_migrate_skip information should be cleared
1169                  * by kswapd when it goes to sleep. kswapd does not set the
1170                  * flag itself as the decision to be clear should be directly
1171                  * based on an allocation request.
1172                  */
1173                 if (!current_is_kswapd())
1174                         zone->compact_blockskip_flush = true;
1175
1176                 return COMPACT_COMPLETE;
1177         }
1178
1179         /*
1180          * order == -1 is expected when compacting via
1181          * /proc/sys/vm/compact_memory
1182          */
1183         if (cc->order == -1)
1184                 return COMPACT_CONTINUE;
1185
1186         /* Compaction run is not finished if the watermark is not met */
1187         watermark = low_wmark_pages(zone);
1188
1189         if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
1190                                                         cc->alloc_flags))
1191                 return COMPACT_CONTINUE;
1192
1193         /* Direct compactor: Is a suitable page free? */
1194         for (order = cc->order; order < MAX_ORDER; order++) {
1195                 struct free_area *area = &zone->free_area[order];
1196                 bool can_steal;
1197
1198                 /* Job done if page is free of the right migratetype */
1199                 if (!list_empty(&area->free_list[migratetype]))
1200                         return COMPACT_PARTIAL;
1201
1202 #ifdef CONFIG_CMA
1203                 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1204                 if (migratetype == MIGRATE_MOVABLE &&
1205                         !list_empty(&area->free_list[MIGRATE_CMA]))
1206                         return COMPACT_PARTIAL;
1207 #endif
1208                 /*
1209                  * Job done if allocation would steal freepages from
1210                  * other migratetype buddy lists.
1211                  */
1212                 if (find_suitable_fallback(area, order, migratetype,
1213                                                 true, &can_steal) != -1)
1214                         return COMPACT_PARTIAL;
1215         }
1216
1217         return COMPACT_NO_SUITABLE_PAGE;
1218 }
1219
1220 static int compact_finished(struct zone *zone, struct compact_control *cc,
1221                             const int migratetype)
1222 {
1223         int ret;
1224
1225         ret = __compact_finished(zone, cc, migratetype);
1226         trace_mm_compaction_finished(zone, cc->order, ret);
1227         if (ret == COMPACT_NO_SUITABLE_PAGE)
1228                 ret = COMPACT_CONTINUE;
1229
1230         return ret;
1231 }
1232
1233 /*
1234  * compaction_suitable: Is this suitable to run compaction on this zone now?
1235  * Returns
1236  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1237  *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
1238  *   COMPACT_CONTINUE - If compaction should run now
1239  */
1240 static unsigned long __compaction_suitable(struct zone *zone, int order,
1241                                         int alloc_flags, int classzone_idx)
1242 {
1243         int fragindex;
1244         unsigned long watermark;
1245
1246         /*
1247          * order == -1 is expected when compacting via
1248          * /proc/sys/vm/compact_memory
1249          */
1250         if (order == -1)
1251                 return COMPACT_CONTINUE;
1252
1253         watermark = low_wmark_pages(zone);
1254         /*
1255          * If watermarks for high-order allocation are already met, there
1256          * should be no need for compaction at all.
1257          */
1258         if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1259                                                                 alloc_flags))
1260                 return COMPACT_PARTIAL;
1261
1262         /*
1263          * Watermarks for order-0 must be met for compaction. Note the 2UL.
1264          * This is because during migration, copies of pages need to be
1265          * allocated and for a short time, the footprint is higher
1266          */
1267         watermark += (2UL << order);
1268         if (!zone_watermark_ok(zone, 0, watermark, classzone_idx, alloc_flags))
1269                 return COMPACT_SKIPPED;
1270
1271         /*
1272          * fragmentation index determines if allocation failures are due to
1273          * low memory or external fragmentation
1274          *
1275          * index of -1000 would imply allocations might succeed depending on
1276          * watermarks, but we already failed the high-order watermark check
1277          * index towards 0 implies failure is due to lack of memory
1278          * index towards 1000 implies failure is due to fragmentation
1279          *
1280          * Only compact if a failure would be due to fragmentation.
1281          */
1282         fragindex = fragmentation_index(zone, order);
1283         if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1284                 return COMPACT_NOT_SUITABLE_ZONE;
1285
1286         return COMPACT_CONTINUE;
1287 }
1288
1289 unsigned long compaction_suitable(struct zone *zone, int order,
1290                                         int alloc_flags, int classzone_idx)
1291 {
1292         unsigned long ret;
1293
1294         ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx);
1295         trace_mm_compaction_suitable(zone, order, ret);
1296         if (ret == COMPACT_NOT_SUITABLE_ZONE)
1297                 ret = COMPACT_SKIPPED;
1298
1299         return ret;
1300 }
1301
1302 static int compact_zone(struct zone *zone, struct compact_control *cc)
1303 {
1304         int ret;
1305         unsigned long start_pfn = zone->zone_start_pfn;
1306         unsigned long end_pfn = zone_end_pfn(zone);
1307         const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1308         const bool sync = cc->mode != MIGRATE_ASYNC;
1309         unsigned long last_migrated_pfn = 0;
1310
1311         ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1312                                                         cc->classzone_idx);
1313         switch (ret) {
1314         case COMPACT_PARTIAL:
1315         case COMPACT_SKIPPED:
1316                 /* Compaction is likely to fail */
1317                 return ret;
1318         case COMPACT_CONTINUE:
1319                 /* Fall through to compaction */
1320                 ;
1321         }
1322
1323         /*
1324          * Clear pageblock skip if there were failures recently and compaction
1325          * is about to be retried after being deferred. kswapd does not do
1326          * this reset as it'll reset the cached information when going to sleep.
1327          */
1328         if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
1329                 __reset_isolation_suitable(zone);
1330
1331         /*
1332          * Setup to move all movable pages to the end of the zone. Used cached
1333          * information on where the scanners should start but check that it
1334          * is initialised by ensuring the values are within zone boundaries.
1335          */
1336         cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1337         cc->free_pfn = zone->compact_cached_free_pfn;
1338         if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
1339                 cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
1340                 zone->compact_cached_free_pfn = cc->free_pfn;
1341         }
1342         if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
1343                 cc->migrate_pfn = start_pfn;
1344                 zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1345                 zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1346         }
1347
1348         trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1349                                 cc->free_pfn, end_pfn, sync);
1350
1351         migrate_prep_local();
1352
1353         while ((ret = compact_finished(zone, cc, migratetype)) ==
1354                                                 COMPACT_CONTINUE) {
1355                 int err;
1356                 unsigned long isolate_start_pfn = cc->migrate_pfn;
1357
1358                 switch (isolate_migratepages(zone, cc)) {
1359                 case ISOLATE_ABORT:
1360                         ret = COMPACT_PARTIAL;
1361                         putback_movable_pages(&cc->migratepages);
1362                         cc->nr_migratepages = 0;
1363                         goto out;
1364                 case ISOLATE_NONE:
1365                         /*
1366                          * We haven't isolated and migrated anything, but
1367                          * there might still be unflushed migrations from
1368                          * previous cc->order aligned block.
1369                          */
1370                         goto check_drain;
1371                 case ISOLATE_SUCCESS:
1372                         ;
1373                 }
1374
1375                 err = migrate_pages(&cc->migratepages, compaction_alloc,
1376                                 compaction_free, (unsigned long)cc, cc->mode,
1377                                 MR_COMPACTION);
1378
1379                 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1380                                                         &cc->migratepages);
1381
1382                 /* All pages were either migrated or will be released */
1383                 cc->nr_migratepages = 0;
1384                 if (err) {
1385                         putback_movable_pages(&cc->migratepages);
1386                         /*
1387                          * migrate_pages() may return -ENOMEM when scanners meet
1388                          * and we want compact_finished() to detect it
1389                          */
1390                         if (err == -ENOMEM && !compact_scanners_met(cc)) {
1391                                 ret = COMPACT_PARTIAL;
1392                                 goto out;
1393                         }
1394                 }
1395
1396                 /*
1397                  * Record where we could have freed pages by migration and not
1398                  * yet flushed them to buddy allocator. We use the pfn that
1399                  * isolate_migratepages() started from in this loop iteration
1400                  * - this is the lowest page that could have been isolated and
1401                  * then freed by migration.
1402                  */
1403                 if (!last_migrated_pfn)
1404                         last_migrated_pfn = isolate_start_pfn;
1405
1406 check_drain:
1407                 /*
1408                  * Has the migration scanner moved away from the previous
1409                  * cc->order aligned block where we migrated from? If yes,
1410                  * flush the pages that were freed, so that they can merge and
1411                  * compact_finished() can detect immediately if allocation
1412                  * would succeed.
1413                  */
1414                 if (cc->order > 0 && last_migrated_pfn) {
1415                         int cpu;
1416                         unsigned long current_block_start =
1417                                 cc->migrate_pfn & ~((1UL << cc->order) - 1);
1418
1419                         if (last_migrated_pfn < current_block_start) {
1420                                 cpu = get_cpu();
1421                                 lru_add_drain_cpu(cpu);
1422                                 drain_local_pages(zone);
1423                                 put_cpu();
1424                                 /* No more flushing until we migrate again */
1425                                 last_migrated_pfn = 0;
1426                         }
1427                 }
1428
1429         }
1430
1431 out:
1432         /*
1433          * Release free pages and update where the free scanner should restart,
1434          * so we don't leave any returned pages behind in the next attempt.
1435          */
1436         if (cc->nr_freepages > 0) {
1437                 unsigned long free_pfn = release_freepages(&cc->freepages);
1438
1439                 cc->nr_freepages = 0;
1440                 VM_BUG_ON(free_pfn == 0);
1441                 /* The cached pfn is always the first in a pageblock */
1442                 free_pfn &= ~(pageblock_nr_pages-1);
1443                 /*
1444                  * Only go back, not forward. The cached pfn might have been
1445                  * already reset to zone end in compact_finished()
1446                  */
1447                 if (free_pfn > zone->compact_cached_free_pfn)
1448                         zone->compact_cached_free_pfn = free_pfn;
1449         }
1450
1451         trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1452                                 cc->free_pfn, end_pfn, sync, ret);
1453
1454         return ret;
1455 }
1456
1457 static unsigned long compact_zone_order(struct zone *zone, int order,
1458                 gfp_t gfp_mask, enum migrate_mode mode, int *contended,
1459                 int alloc_flags, int classzone_idx)
1460 {
1461         unsigned long ret;
1462         struct compact_control cc = {
1463                 .nr_freepages = 0,
1464                 .nr_migratepages = 0,
1465                 .order = order,
1466                 .gfp_mask = gfp_mask,
1467                 .zone = zone,
1468                 .mode = mode,
1469                 .alloc_flags = alloc_flags,
1470                 .classzone_idx = classzone_idx,
1471         };
1472         INIT_LIST_HEAD(&cc.freepages);
1473         INIT_LIST_HEAD(&cc.migratepages);
1474
1475         ret = compact_zone(zone, &cc);
1476
1477         VM_BUG_ON(!list_empty(&cc.freepages));
1478         VM_BUG_ON(!list_empty(&cc.migratepages));
1479
1480         *contended = cc.contended;
1481         return ret;
1482 }
1483
1484 int sysctl_extfrag_threshold = 500;
1485
1486 /**
1487  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1488  * @gfp_mask: The GFP mask of the current allocation
1489  * @order: The order of the current allocation
1490  * @alloc_flags: The allocation flags of the current allocation
1491  * @ac: The context of current allocation
1492  * @mode: The migration mode for async, sync light, or sync migration
1493  * @contended: Return value that determines if compaction was aborted due to
1494  *             need_resched() or lock contention
1495  *
1496  * This is the main entry point for direct page compaction.
1497  */
1498 unsigned long try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1499                         int alloc_flags, const struct alloc_context *ac,
1500                         enum migrate_mode mode, int *contended)
1501 {
1502         int may_enter_fs = gfp_mask & __GFP_FS;
1503         int may_perform_io = gfp_mask & __GFP_IO;
1504         struct zoneref *z;
1505         struct zone *zone;
1506         int rc = COMPACT_DEFERRED;
1507         int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */
1508
1509         *contended = COMPACT_CONTENDED_NONE;
1510
1511         /* Check if the GFP flags allow compaction */
1512         if (!order || !may_enter_fs || !may_perform_io)
1513                 return COMPACT_SKIPPED;
1514
1515         trace_mm_compaction_try_to_compact_pages(order, gfp_mask, mode);
1516
1517         /* Compact each zone in the list */
1518         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1519                                                                 ac->nodemask) {
1520                 int status;
1521                 int zone_contended;
1522
1523                 if (compaction_deferred(zone, order))
1524                         continue;
1525
1526                 status = compact_zone_order(zone, order, gfp_mask, mode,
1527                                 &zone_contended, alloc_flags,
1528                                 ac->classzone_idx);
1529                 rc = max(status, rc);
1530                 /*
1531                  * It takes at least one zone that wasn't lock contended
1532                  * to clear all_zones_contended.
1533                  */
1534                 all_zones_contended &= zone_contended;
1535
1536                 /* If a normal allocation would succeed, stop compacting */
1537                 if (zone_watermark_ok(zone, order, low_wmark_pages(zone),
1538                                         ac->classzone_idx, alloc_flags)) {
1539                         /*
1540                          * We think the allocation will succeed in this zone,
1541                          * but it is not certain, hence the false. The caller
1542                          * will repeat this with true if allocation indeed
1543                          * succeeds in this zone.
1544                          */
1545                         compaction_defer_reset(zone, order, false);
1546                         /*
1547                          * It is possible that async compaction aborted due to
1548                          * need_resched() and the watermarks were ok thanks to
1549                          * somebody else freeing memory. The allocation can
1550                          * however still fail so we better signal the
1551                          * need_resched() contention anyway (this will not
1552                          * prevent the allocation attempt).
1553                          */
1554                         if (zone_contended == COMPACT_CONTENDED_SCHED)
1555                                 *contended = COMPACT_CONTENDED_SCHED;
1556
1557                         goto break_loop;
1558                 }
1559
1560                 if (mode != MIGRATE_ASYNC && status == COMPACT_COMPLETE) {
1561                         /*
1562                          * We think that allocation won't succeed in this zone
1563                          * so we defer compaction there. If it ends up
1564                          * succeeding after all, it will be reset.
1565                          */
1566                         defer_compaction(zone, order);
1567                 }
1568
1569                 /*
1570                  * We might have stopped compacting due to need_resched() in
1571                  * async compaction, or due to a fatal signal detected. In that
1572                  * case do not try further zones and signal need_resched()
1573                  * contention.
1574                  */
1575                 if ((zone_contended == COMPACT_CONTENDED_SCHED)
1576                                         || fatal_signal_pending(current)) {
1577                         *contended = COMPACT_CONTENDED_SCHED;
1578                         goto break_loop;
1579                 }
1580
1581                 continue;
1582 break_loop:
1583                 /*
1584                  * We might not have tried all the zones, so  be conservative
1585                  * and assume they are not all lock contended.
1586                  */
1587                 all_zones_contended = 0;
1588                 break;
1589         }
1590
1591         /*
1592          * If at least one zone wasn't deferred or skipped, we report if all
1593          * zones that were tried were lock contended.
1594          */
1595         if (rc > COMPACT_SKIPPED && all_zones_contended)
1596                 *contended = COMPACT_CONTENDED_LOCK;
1597
1598         return rc;
1599 }
1600
1601
1602 /* Compact all zones within a node */
1603 static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1604 {
1605         int zoneid;
1606         struct zone *zone;
1607
1608         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1609
1610                 zone = &pgdat->node_zones[zoneid];
1611                 if (!populated_zone(zone))
1612                         continue;
1613
1614                 cc->nr_freepages = 0;
1615                 cc->nr_migratepages = 0;
1616                 cc->zone = zone;
1617                 INIT_LIST_HEAD(&cc->freepages);
1618                 INIT_LIST_HEAD(&cc->migratepages);
1619
1620                 /*
1621                  * When called via /proc/sys/vm/compact_memory
1622                  * this makes sure we compact the whole zone regardless of
1623                  * cached scanner positions.
1624                  */
1625                 if (cc->order == -1)
1626                         __reset_isolation_suitable(zone);
1627
1628                 if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1629                         compact_zone(zone, cc);
1630
1631                 if (cc->order > 0) {
1632                         if (zone_watermark_ok(zone, cc->order,
1633                                                 low_wmark_pages(zone), 0, 0))
1634                                 compaction_defer_reset(zone, cc->order, false);
1635                 }
1636
1637                 VM_BUG_ON(!list_empty(&cc->freepages));
1638                 VM_BUG_ON(!list_empty(&cc->migratepages));
1639         }
1640 }
1641
1642 void compact_pgdat(pg_data_t *pgdat, int order)
1643 {
1644         struct compact_control cc = {
1645                 .order = order,
1646                 .mode = MIGRATE_ASYNC,
1647         };
1648
1649         if (!order)
1650                 return;
1651
1652         __compact_pgdat(pgdat, &cc);
1653 }
1654
1655 static void compact_node(int nid)
1656 {
1657         struct compact_control cc = {
1658                 .order = -1,
1659                 .mode = MIGRATE_SYNC,
1660                 .ignore_skip_hint = true,
1661         };
1662
1663         __compact_pgdat(NODE_DATA(nid), &cc);
1664 }
1665
1666 /* Compact all nodes in the system */
1667 static void compact_nodes(void)
1668 {
1669         int nid;
1670
1671         /* Flush pending updates to the LRU lists */
1672         lru_add_drain_all();
1673
1674         for_each_online_node(nid)
1675                 compact_node(nid);
1676 }
1677
1678 /* The written value is actually unused, all memory is compacted */
1679 int sysctl_compact_memory;
1680
1681 /* This is the entry point for compacting all nodes via /proc/sys/vm */
1682 int sysctl_compaction_handler(struct ctl_table *table, int write,
1683                         void __user *buffer, size_t *length, loff_t *ppos)
1684 {
1685         if (write)
1686                 compact_nodes();
1687
1688         return 0;
1689 }
1690
1691 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1692                         void __user *buffer, size_t *length, loff_t *ppos)
1693 {
1694         proc_dointvec_minmax(table, write, buffer, length, ppos);
1695
1696         return 0;
1697 }
1698
1699 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1700 static ssize_t sysfs_compact_node(struct device *dev,
1701                         struct device_attribute *attr,
1702                         const char *buf, size_t count)
1703 {
1704         int nid = dev->id;
1705
1706         if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1707                 /* Flush pending updates to the LRU lists */
1708                 lru_add_drain_all();
1709
1710                 compact_node(nid);
1711         }
1712
1713         return count;
1714 }
1715 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1716
1717 int compaction_register_node(struct node *node)
1718 {
1719         return device_create_file(&node->dev, &dev_attr_compact);
1720 }
1721
1722 void compaction_unregister_node(struct node *node)
1723 {
1724         return device_remove_file(&node->dev, &dev_attr_compact);
1725 }
1726 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1727
1728 #endif /* CONFIG_COMPACTION */