mm/hugetlb: vma_has_reserves() needs to handle fallocate hole punch
[cascardo/linux.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/bootmem.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/rmap.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/page-isolation.h>
26 #include <linux/jhash.h>
27
28 #include <asm/page.h>
29 #include <asm/pgtable.h>
30 #include <asm/tlb.h>
31
32 #include <linux/io.h>
33 #include <linux/hugetlb.h>
34 #include <linux/hugetlb_cgroup.h>
35 #include <linux/node.h>
36 #include "internal.h"
37
38 int hugepages_treat_as_movable;
39
40 int hugetlb_max_hstate __read_mostly;
41 unsigned int default_hstate_idx;
42 struct hstate hstates[HUGE_MAX_HSTATE];
43 /*
44  * Minimum page order among possible hugepage sizes, set to a proper value
45  * at boot time.
46  */
47 static unsigned int minimum_order __read_mostly = UINT_MAX;
48
49 __initdata LIST_HEAD(huge_boot_pages);
50
51 /* for command line parsing */
52 static struct hstate * __initdata parsed_hstate;
53 static unsigned long __initdata default_hstate_max_huge_pages;
54 static unsigned long __initdata default_hstate_size;
55
56 /*
57  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
58  * free_huge_pages, and surplus_huge_pages.
59  */
60 DEFINE_SPINLOCK(hugetlb_lock);
61
62 /*
63  * Serializes faults on the same logical page.  This is used to
64  * prevent spurious OOMs when the hugepage pool is fully utilized.
65  */
66 static int num_fault_mutexes;
67 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
68
69 /* Forward declaration */
70 static int hugetlb_acct_memory(struct hstate *h, long delta);
71
72 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
73 {
74         bool free = (spool->count == 0) && (spool->used_hpages == 0);
75
76         spin_unlock(&spool->lock);
77
78         /* If no pages are used, and no other handles to the subpool
79          * remain, give up any reservations mased on minimum size and
80          * free the subpool */
81         if (free) {
82                 if (spool->min_hpages != -1)
83                         hugetlb_acct_memory(spool->hstate,
84                                                 -spool->min_hpages);
85                 kfree(spool);
86         }
87 }
88
89 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
90                                                 long min_hpages)
91 {
92         struct hugepage_subpool *spool;
93
94         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
95         if (!spool)
96                 return NULL;
97
98         spin_lock_init(&spool->lock);
99         spool->count = 1;
100         spool->max_hpages = max_hpages;
101         spool->hstate = h;
102         spool->min_hpages = min_hpages;
103
104         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
105                 kfree(spool);
106                 return NULL;
107         }
108         spool->rsv_hpages = min_hpages;
109
110         return spool;
111 }
112
113 void hugepage_put_subpool(struct hugepage_subpool *spool)
114 {
115         spin_lock(&spool->lock);
116         BUG_ON(!spool->count);
117         spool->count--;
118         unlock_or_release_subpool(spool);
119 }
120
121 /*
122  * Subpool accounting for allocating and reserving pages.
123  * Return -ENOMEM if there are not enough resources to satisfy the
124  * the request.  Otherwise, return the number of pages by which the
125  * global pools must be adjusted (upward).  The returned value may
126  * only be different than the passed value (delta) in the case where
127  * a subpool minimum size must be manitained.
128  */
129 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
130                                       long delta)
131 {
132         long ret = delta;
133
134         if (!spool)
135                 return ret;
136
137         spin_lock(&spool->lock);
138
139         if (spool->max_hpages != -1) {          /* maximum size accounting */
140                 if ((spool->used_hpages + delta) <= spool->max_hpages)
141                         spool->used_hpages += delta;
142                 else {
143                         ret = -ENOMEM;
144                         goto unlock_ret;
145                 }
146         }
147
148         if (spool->min_hpages != -1) {          /* minimum size accounting */
149                 if (delta > spool->rsv_hpages) {
150                         /*
151                          * Asking for more reserves than those already taken on
152                          * behalf of subpool.  Return difference.
153                          */
154                         ret = delta - spool->rsv_hpages;
155                         spool->rsv_hpages = 0;
156                 } else {
157                         ret = 0;        /* reserves already accounted for */
158                         spool->rsv_hpages -= delta;
159                 }
160         }
161
162 unlock_ret:
163         spin_unlock(&spool->lock);
164         return ret;
165 }
166
167 /*
168  * Subpool accounting for freeing and unreserving pages.
169  * Return the number of global page reservations that must be dropped.
170  * The return value may only be different than the passed value (delta)
171  * in the case where a subpool minimum size must be maintained.
172  */
173 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
174                                        long delta)
175 {
176         long ret = delta;
177
178         if (!spool)
179                 return delta;
180
181         spin_lock(&spool->lock);
182
183         if (spool->max_hpages != -1)            /* maximum size accounting */
184                 spool->used_hpages -= delta;
185
186         if (spool->min_hpages != -1) {          /* minimum size accounting */
187                 if (spool->rsv_hpages + delta <= spool->min_hpages)
188                         ret = 0;
189                 else
190                         ret = spool->rsv_hpages + delta - spool->min_hpages;
191
192                 spool->rsv_hpages += delta;
193                 if (spool->rsv_hpages > spool->min_hpages)
194                         spool->rsv_hpages = spool->min_hpages;
195         }
196
197         /*
198          * If hugetlbfs_put_super couldn't free spool due to an outstanding
199          * quota reference, free it now.
200          */
201         unlock_or_release_subpool(spool);
202
203         return ret;
204 }
205
206 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
207 {
208         return HUGETLBFS_SB(inode->i_sb)->spool;
209 }
210
211 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
212 {
213         return subpool_inode(file_inode(vma->vm_file));
214 }
215
216 /*
217  * Region tracking -- allows tracking of reservations and instantiated pages
218  *                    across the pages in a mapping.
219  *
220  * The region data structures are embedded into a resv_map and protected
221  * by a resv_map's lock.  The set of regions within the resv_map represent
222  * reservations for huge pages, or huge pages that have already been
223  * instantiated within the map.  The from and to elements are huge page
224  * indicies into the associated mapping.  from indicates the starting index
225  * of the region.  to represents the first index past the end of  the region.
226  *
227  * For example, a file region structure with from == 0 and to == 4 represents
228  * four huge pages in a mapping.  It is important to note that the to element
229  * represents the first element past the end of the region. This is used in
230  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
231  *
232  * Interval notation of the form [from, to) will be used to indicate that
233  * the endpoint from is inclusive and to is exclusive.
234  */
235 struct file_region {
236         struct list_head link;
237         long from;
238         long to;
239 };
240
241 /*
242  * Add the huge page range represented by [f, t) to the reserve
243  * map.  In the normal case, existing regions will be expanded
244  * to accommodate the specified range.  Sufficient regions should
245  * exist for expansion due to the previous call to region_chg
246  * with the same range.  However, it is possible that region_del
247  * could have been called after region_chg and modifed the map
248  * in such a way that no region exists to be expanded.  In this
249  * case, pull a region descriptor from the cache associated with
250  * the map and use that for the new range.
251  *
252  * Return the number of new huge pages added to the map.  This
253  * number is greater than or equal to zero.
254  */
255 static long region_add(struct resv_map *resv, long f, long t)
256 {
257         struct list_head *head = &resv->regions;
258         struct file_region *rg, *nrg, *trg;
259         long add = 0;
260
261         spin_lock(&resv->lock);
262         /* Locate the region we are either in or before. */
263         list_for_each_entry(rg, head, link)
264                 if (f <= rg->to)
265                         break;
266
267         /*
268          * If no region exists which can be expanded to include the
269          * specified range, the list must have been modified by an
270          * interleving call to region_del().  Pull a region descriptor
271          * from the cache and use it for this range.
272          */
273         if (&rg->link == head || t < rg->from) {
274                 VM_BUG_ON(resv->region_cache_count <= 0);
275
276                 resv->region_cache_count--;
277                 nrg = list_first_entry(&resv->region_cache, struct file_region,
278                                         link);
279                 list_del(&nrg->link);
280
281                 nrg->from = f;
282                 nrg->to = t;
283                 list_add(&nrg->link, rg->link.prev);
284
285                 add += t - f;
286                 goto out_locked;
287         }
288
289         /* Round our left edge to the current segment if it encloses us. */
290         if (f > rg->from)
291                 f = rg->from;
292
293         /* Check for and consume any regions we now overlap with. */
294         nrg = rg;
295         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
296                 if (&rg->link == head)
297                         break;
298                 if (rg->from > t)
299                         break;
300
301                 /* If this area reaches higher then extend our area to
302                  * include it completely.  If this is not the first area
303                  * which we intend to reuse, free it. */
304                 if (rg->to > t)
305                         t = rg->to;
306                 if (rg != nrg) {
307                         /* Decrement return value by the deleted range.
308                          * Another range will span this area so that by
309                          * end of routine add will be >= zero
310                          */
311                         add -= (rg->to - rg->from);
312                         list_del(&rg->link);
313                         kfree(rg);
314                 }
315         }
316
317         add += (nrg->from - f);         /* Added to beginning of region */
318         nrg->from = f;
319         add += t - nrg->to;             /* Added to end of region */
320         nrg->to = t;
321
322 out_locked:
323         resv->adds_in_progress--;
324         spin_unlock(&resv->lock);
325         VM_BUG_ON(add < 0);
326         return add;
327 }
328
329 /*
330  * Examine the existing reserve map and determine how many
331  * huge pages in the specified range [f, t) are NOT currently
332  * represented.  This routine is called before a subsequent
333  * call to region_add that will actually modify the reserve
334  * map to add the specified range [f, t).  region_chg does
335  * not change the number of huge pages represented by the
336  * map.  However, if the existing regions in the map can not
337  * be expanded to represent the new range, a new file_region
338  * structure is added to the map as a placeholder.  This is
339  * so that the subsequent region_add call will have all the
340  * regions it needs and will not fail.
341  *
342  * Upon entry, region_chg will also examine the cache of region descriptors
343  * associated with the map.  If there are not enough descriptors cached, one
344  * will be allocated for the in progress add operation.
345  *
346  * Returns the number of huge pages that need to be added to the existing
347  * reservation map for the range [f, t).  This number is greater or equal to
348  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
349  * is needed and can not be allocated.
350  */
351 static long region_chg(struct resv_map *resv, long f, long t)
352 {
353         struct list_head *head = &resv->regions;
354         struct file_region *rg, *nrg = NULL;
355         long chg = 0;
356
357 retry:
358         spin_lock(&resv->lock);
359 retry_locked:
360         resv->adds_in_progress++;
361
362         /*
363          * Check for sufficient descriptors in the cache to accommodate
364          * the number of in progress add operations.
365          */
366         if (resv->adds_in_progress > resv->region_cache_count) {
367                 struct file_region *trg;
368
369                 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
370                 /* Must drop lock to allocate a new descriptor. */
371                 resv->adds_in_progress--;
372                 spin_unlock(&resv->lock);
373
374                 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
375                 if (!trg)
376                         return -ENOMEM;
377
378                 spin_lock(&resv->lock);
379                 list_add(&trg->link, &resv->region_cache);
380                 resv->region_cache_count++;
381                 goto retry_locked;
382         }
383
384         /* Locate the region we are before or in. */
385         list_for_each_entry(rg, head, link)
386                 if (f <= rg->to)
387                         break;
388
389         /* If we are below the current region then a new region is required.
390          * Subtle, allocate a new region at the position but make it zero
391          * size such that we can guarantee to record the reservation. */
392         if (&rg->link == head || t < rg->from) {
393                 if (!nrg) {
394                         resv->adds_in_progress--;
395                         spin_unlock(&resv->lock);
396                         nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
397                         if (!nrg)
398                                 return -ENOMEM;
399
400                         nrg->from = f;
401                         nrg->to   = f;
402                         INIT_LIST_HEAD(&nrg->link);
403                         goto retry;
404                 }
405
406                 list_add(&nrg->link, rg->link.prev);
407                 chg = t - f;
408                 goto out_nrg;
409         }
410
411         /* Round our left edge to the current segment if it encloses us. */
412         if (f > rg->from)
413                 f = rg->from;
414         chg = t - f;
415
416         /* Check for and consume any regions we now overlap with. */
417         list_for_each_entry(rg, rg->link.prev, link) {
418                 if (&rg->link == head)
419                         break;
420                 if (rg->from > t)
421                         goto out;
422
423                 /* We overlap with this area, if it extends further than
424                  * us then we must extend ourselves.  Account for its
425                  * existing reservation. */
426                 if (rg->to > t) {
427                         chg += rg->to - t;
428                         t = rg->to;
429                 }
430                 chg -= rg->to - rg->from;
431         }
432
433 out:
434         spin_unlock(&resv->lock);
435         /*  We already know we raced and no longer need the new region */
436         kfree(nrg);
437         return chg;
438 out_nrg:
439         spin_unlock(&resv->lock);
440         return chg;
441 }
442
443 /*
444  * Abort the in progress add operation.  The adds_in_progress field
445  * of the resv_map keeps track of the operations in progress between
446  * calls to region_chg and region_add.  Operations are sometimes
447  * aborted after the call to region_chg.  In such cases, region_abort
448  * is called to decrement the adds_in_progress counter.
449  *
450  * NOTE: The range arguments [f, t) are not needed or used in this
451  * routine.  They are kept to make reading the calling code easier as
452  * arguments will match the associated region_chg call.
453  */
454 static void region_abort(struct resv_map *resv, long f, long t)
455 {
456         spin_lock(&resv->lock);
457         VM_BUG_ON(!resv->region_cache_count);
458         resv->adds_in_progress--;
459         spin_unlock(&resv->lock);
460 }
461
462 /*
463  * Delete the specified range [f, t) from the reserve map.  If the
464  * t parameter is LONG_MAX, this indicates that ALL regions after f
465  * should be deleted.  Locate the regions which intersect [f, t)
466  * and either trim, delete or split the existing regions.
467  *
468  * Returns the number of huge pages deleted from the reserve map.
469  * In the normal case, the return value is zero or more.  In the
470  * case where a region must be split, a new region descriptor must
471  * be allocated.  If the allocation fails, -ENOMEM will be returned.
472  * NOTE: If the parameter t == LONG_MAX, then we will never split
473  * a region and possibly return -ENOMEM.  Callers specifying
474  * t == LONG_MAX do not need to check for -ENOMEM error.
475  */
476 static long region_del(struct resv_map *resv, long f, long t)
477 {
478         struct list_head *head = &resv->regions;
479         struct file_region *rg, *trg;
480         struct file_region *nrg = NULL;
481         long del = 0;
482
483 retry:
484         spin_lock(&resv->lock);
485         list_for_each_entry_safe(rg, trg, head, link) {
486                 if (rg->to <= f)
487                         continue;
488                 if (rg->from >= t)
489                         break;
490
491                 if (f > rg->from && t < rg->to) { /* Must split region */
492                         /*
493                          * Check for an entry in the cache before dropping
494                          * lock and attempting allocation.
495                          */
496                         if (!nrg &&
497                             resv->region_cache_count > resv->adds_in_progress) {
498                                 nrg = list_first_entry(&resv->region_cache,
499                                                         struct file_region,
500                                                         link);
501                                 list_del(&nrg->link);
502                                 resv->region_cache_count--;
503                         }
504
505                         if (!nrg) {
506                                 spin_unlock(&resv->lock);
507                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
508                                 if (!nrg)
509                                         return -ENOMEM;
510                                 goto retry;
511                         }
512
513                         del += t - f;
514
515                         /* New entry for end of split region */
516                         nrg->from = t;
517                         nrg->to = rg->to;
518                         INIT_LIST_HEAD(&nrg->link);
519
520                         /* Original entry is trimmed */
521                         rg->to = f;
522
523                         list_add(&nrg->link, &rg->link);
524                         nrg = NULL;
525                         break;
526                 }
527
528                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
529                         del += rg->to - rg->from;
530                         list_del(&rg->link);
531                         kfree(rg);
532                         continue;
533                 }
534
535                 if (f <= rg->from) {    /* Trim beginning of region */
536                         del += t - rg->from;
537                         rg->from = t;
538                 } else {                /* Trim end of region */
539                         del += rg->to - f;
540                         rg->to = f;
541                 }
542         }
543
544         spin_unlock(&resv->lock);
545         kfree(nrg);
546         return del;
547 }
548
549 /*
550  * A rare out of memory error was encountered which prevented removal of
551  * the reserve map region for a page.  The huge page itself was free'ed
552  * and removed from the page cache.  This routine will adjust the subpool
553  * usage count, and the global reserve count if needed.  By incrementing
554  * these counts, the reserve map entry which could not be deleted will
555  * appear as a "reserved" entry instead of simply dangling with incorrect
556  * counts.
557  */
558 void hugetlb_fix_reserve_counts(struct inode *inode, bool restore_reserve)
559 {
560         struct hugepage_subpool *spool = subpool_inode(inode);
561         long rsv_adjust;
562
563         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
564         if (restore_reserve && rsv_adjust) {
565                 struct hstate *h = hstate_inode(inode);
566
567                 hugetlb_acct_memory(h, 1);
568         }
569 }
570
571 /*
572  * Count and return the number of huge pages in the reserve map
573  * that intersect with the range [f, t).
574  */
575 static long region_count(struct resv_map *resv, long f, long t)
576 {
577         struct list_head *head = &resv->regions;
578         struct file_region *rg;
579         long chg = 0;
580
581         spin_lock(&resv->lock);
582         /* Locate each segment we overlap with, and count that overlap. */
583         list_for_each_entry(rg, head, link) {
584                 long seg_from;
585                 long seg_to;
586
587                 if (rg->to <= f)
588                         continue;
589                 if (rg->from >= t)
590                         break;
591
592                 seg_from = max(rg->from, f);
593                 seg_to = min(rg->to, t);
594
595                 chg += seg_to - seg_from;
596         }
597         spin_unlock(&resv->lock);
598
599         return chg;
600 }
601
602 /*
603  * Convert the address within this vma to the page offset within
604  * the mapping, in pagecache page units; huge pages here.
605  */
606 static pgoff_t vma_hugecache_offset(struct hstate *h,
607                         struct vm_area_struct *vma, unsigned long address)
608 {
609         return ((address - vma->vm_start) >> huge_page_shift(h)) +
610                         (vma->vm_pgoff >> huge_page_order(h));
611 }
612
613 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
614                                      unsigned long address)
615 {
616         return vma_hugecache_offset(hstate_vma(vma), vma, address);
617 }
618
619 /*
620  * Return the size of the pages allocated when backing a VMA. In the majority
621  * cases this will be same size as used by the page table entries.
622  */
623 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
624 {
625         struct hstate *hstate;
626
627         if (!is_vm_hugetlb_page(vma))
628                 return PAGE_SIZE;
629
630         hstate = hstate_vma(vma);
631
632         return 1UL << huge_page_shift(hstate);
633 }
634 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
635
636 /*
637  * Return the page size being used by the MMU to back a VMA. In the majority
638  * of cases, the page size used by the kernel matches the MMU size. On
639  * architectures where it differs, an architecture-specific version of this
640  * function is required.
641  */
642 #ifndef vma_mmu_pagesize
643 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
644 {
645         return vma_kernel_pagesize(vma);
646 }
647 #endif
648
649 /*
650  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
651  * bits of the reservation map pointer, which are always clear due to
652  * alignment.
653  */
654 #define HPAGE_RESV_OWNER    (1UL << 0)
655 #define HPAGE_RESV_UNMAPPED (1UL << 1)
656 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
657
658 /*
659  * These helpers are used to track how many pages are reserved for
660  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
661  * is guaranteed to have their future faults succeed.
662  *
663  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
664  * the reserve counters are updated with the hugetlb_lock held. It is safe
665  * to reset the VMA at fork() time as it is not in use yet and there is no
666  * chance of the global counters getting corrupted as a result of the values.
667  *
668  * The private mapping reservation is represented in a subtly different
669  * manner to a shared mapping.  A shared mapping has a region map associated
670  * with the underlying file, this region map represents the backing file
671  * pages which have ever had a reservation assigned which this persists even
672  * after the page is instantiated.  A private mapping has a region map
673  * associated with the original mmap which is attached to all VMAs which
674  * reference it, this region map represents those offsets which have consumed
675  * reservation ie. where pages have been instantiated.
676  */
677 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
678 {
679         return (unsigned long)vma->vm_private_data;
680 }
681
682 static void set_vma_private_data(struct vm_area_struct *vma,
683                                                         unsigned long value)
684 {
685         vma->vm_private_data = (void *)value;
686 }
687
688 struct resv_map *resv_map_alloc(void)
689 {
690         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
691         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
692
693         if (!resv_map || !rg) {
694                 kfree(resv_map);
695                 kfree(rg);
696                 return NULL;
697         }
698
699         kref_init(&resv_map->refs);
700         spin_lock_init(&resv_map->lock);
701         INIT_LIST_HEAD(&resv_map->regions);
702
703         resv_map->adds_in_progress = 0;
704
705         INIT_LIST_HEAD(&resv_map->region_cache);
706         list_add(&rg->link, &resv_map->region_cache);
707         resv_map->region_cache_count = 1;
708
709         return resv_map;
710 }
711
712 void resv_map_release(struct kref *ref)
713 {
714         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
715         struct list_head *head = &resv_map->region_cache;
716         struct file_region *rg, *trg;
717
718         /* Clear out any active regions before we release the map. */
719         region_del(resv_map, 0, LONG_MAX);
720
721         /* ... and any entries left in the cache */
722         list_for_each_entry_safe(rg, trg, head, link) {
723                 list_del(&rg->link);
724                 kfree(rg);
725         }
726
727         VM_BUG_ON(resv_map->adds_in_progress);
728
729         kfree(resv_map);
730 }
731
732 static inline struct resv_map *inode_resv_map(struct inode *inode)
733 {
734         return inode->i_mapping->private_data;
735 }
736
737 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
738 {
739         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
740         if (vma->vm_flags & VM_MAYSHARE) {
741                 struct address_space *mapping = vma->vm_file->f_mapping;
742                 struct inode *inode = mapping->host;
743
744                 return inode_resv_map(inode);
745
746         } else {
747                 return (struct resv_map *)(get_vma_private_data(vma) &
748                                                         ~HPAGE_RESV_MASK);
749         }
750 }
751
752 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
753 {
754         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
755         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
756
757         set_vma_private_data(vma, (get_vma_private_data(vma) &
758                                 HPAGE_RESV_MASK) | (unsigned long)map);
759 }
760
761 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
762 {
763         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
764         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
765
766         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
767 }
768
769 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
770 {
771         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
772
773         return (get_vma_private_data(vma) & flag) != 0;
774 }
775
776 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
777 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
778 {
779         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
780         if (!(vma->vm_flags & VM_MAYSHARE))
781                 vma->vm_private_data = (void *)0;
782 }
783
784 /* Returns true if the VMA has associated reserve pages */
785 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
786 {
787         if (vma->vm_flags & VM_NORESERVE) {
788                 /*
789                  * This address is already reserved by other process(chg == 0),
790                  * so, we should decrement reserved count. Without decrementing,
791                  * reserve count remains after releasing inode, because this
792                  * allocated page will go into page cache and is regarded as
793                  * coming from reserved pool in releasing step.  Currently, we
794                  * don't have any other solution to deal with this situation
795                  * properly, so add work-around here.
796                  */
797                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
798                         return true;
799                 else
800                         return false;
801         }
802
803         /* Shared mappings always use reserves */
804         if (vma->vm_flags & VM_MAYSHARE) {
805                 /*
806                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
807                  * be a region map for all pages.  The only situation where
808                  * there is no region map is if a hole was punched via
809                  * fallocate.  In this case, there really are no reverves to
810                  * use.  This situation is indicated if chg != 0.
811                  */
812                 if (chg)
813                         return false;
814                 else
815                         return true;
816         }
817
818         /*
819          * Only the process that called mmap() has reserves for
820          * private mappings.
821          */
822         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
823                 return true;
824
825         return false;
826 }
827
828 static void enqueue_huge_page(struct hstate *h, struct page *page)
829 {
830         int nid = page_to_nid(page);
831         list_move(&page->lru, &h->hugepage_freelists[nid]);
832         h->free_huge_pages++;
833         h->free_huge_pages_node[nid]++;
834 }
835
836 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
837 {
838         struct page *page;
839
840         list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
841                 if (!is_migrate_isolate_page(page))
842                         break;
843         /*
844          * if 'non-isolated free hugepage' not found on the list,
845          * the allocation fails.
846          */
847         if (&h->hugepage_freelists[nid] == &page->lru)
848                 return NULL;
849         list_move(&page->lru, &h->hugepage_activelist);
850         set_page_refcounted(page);
851         h->free_huge_pages--;
852         h->free_huge_pages_node[nid]--;
853         return page;
854 }
855
856 /* Movability of hugepages depends on migration support. */
857 static inline gfp_t htlb_alloc_mask(struct hstate *h)
858 {
859         if (hugepages_treat_as_movable || hugepage_migration_supported(h))
860                 return GFP_HIGHUSER_MOVABLE;
861         else
862                 return GFP_HIGHUSER;
863 }
864
865 static struct page *dequeue_huge_page_vma(struct hstate *h,
866                                 struct vm_area_struct *vma,
867                                 unsigned long address, int avoid_reserve,
868                                 long chg)
869 {
870         struct page *page = NULL;
871         struct mempolicy *mpol;
872         nodemask_t *nodemask;
873         struct zonelist *zonelist;
874         struct zone *zone;
875         struct zoneref *z;
876         unsigned int cpuset_mems_cookie;
877
878         /*
879          * A child process with MAP_PRIVATE mappings created by their parent
880          * have no page reserves. This check ensures that reservations are
881          * not "stolen". The child may still get SIGKILLed
882          */
883         if (!vma_has_reserves(vma, chg) &&
884                         h->free_huge_pages - h->resv_huge_pages == 0)
885                 goto err;
886
887         /* If reserves cannot be used, ensure enough pages are in the pool */
888         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
889                 goto err;
890
891 retry_cpuset:
892         cpuset_mems_cookie = read_mems_allowed_begin();
893         zonelist = huge_zonelist(vma, address,
894                                         htlb_alloc_mask(h), &mpol, &nodemask);
895
896         for_each_zone_zonelist_nodemask(zone, z, zonelist,
897                                                 MAX_NR_ZONES - 1, nodemask) {
898                 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
899                         page = dequeue_huge_page_node(h, zone_to_nid(zone));
900                         if (page) {
901                                 if (avoid_reserve)
902                                         break;
903                                 if (!vma_has_reserves(vma, chg))
904                                         break;
905
906                                 SetPagePrivate(page);
907                                 h->resv_huge_pages--;
908                                 break;
909                         }
910                 }
911         }
912
913         mpol_cond_put(mpol);
914         if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
915                 goto retry_cpuset;
916         return page;
917
918 err:
919         return NULL;
920 }
921
922 /*
923  * common helper functions for hstate_next_node_to_{alloc|free}.
924  * We may have allocated or freed a huge page based on a different
925  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
926  * be outside of *nodes_allowed.  Ensure that we use an allowed
927  * node for alloc or free.
928  */
929 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
930 {
931         nid = next_node(nid, *nodes_allowed);
932         if (nid == MAX_NUMNODES)
933                 nid = first_node(*nodes_allowed);
934         VM_BUG_ON(nid >= MAX_NUMNODES);
935
936         return nid;
937 }
938
939 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
940 {
941         if (!node_isset(nid, *nodes_allowed))
942                 nid = next_node_allowed(nid, nodes_allowed);
943         return nid;
944 }
945
946 /*
947  * returns the previously saved node ["this node"] from which to
948  * allocate a persistent huge page for the pool and advance the
949  * next node from which to allocate, handling wrap at end of node
950  * mask.
951  */
952 static int hstate_next_node_to_alloc(struct hstate *h,
953                                         nodemask_t *nodes_allowed)
954 {
955         int nid;
956
957         VM_BUG_ON(!nodes_allowed);
958
959         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
960         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
961
962         return nid;
963 }
964
965 /*
966  * helper for free_pool_huge_page() - return the previously saved
967  * node ["this node"] from which to free a huge page.  Advance the
968  * next node id whether or not we find a free huge page to free so
969  * that the next attempt to free addresses the next node.
970  */
971 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
972 {
973         int nid;
974
975         VM_BUG_ON(!nodes_allowed);
976
977         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
978         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
979
980         return nid;
981 }
982
983 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
984         for (nr_nodes = nodes_weight(*mask);                            \
985                 nr_nodes > 0 &&                                         \
986                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
987                 nr_nodes--)
988
989 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
990         for (nr_nodes = nodes_weight(*mask);                            \
991                 nr_nodes > 0 &&                                         \
992                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
993                 nr_nodes--)
994
995 #if defined(CONFIG_CMA) && defined(CONFIG_X86_64)
996 static void destroy_compound_gigantic_page(struct page *page,
997                                         unsigned long order)
998 {
999         int i;
1000         int nr_pages = 1 << order;
1001         struct page *p = page + 1;
1002
1003         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1004                 __ClearPageTail(p);
1005                 set_page_refcounted(p);
1006                 p->first_page = NULL;
1007         }
1008
1009         set_compound_order(page, 0);
1010         __ClearPageHead(page);
1011 }
1012
1013 static void free_gigantic_page(struct page *page, unsigned order)
1014 {
1015         free_contig_range(page_to_pfn(page), 1 << order);
1016 }
1017
1018 static int __alloc_gigantic_page(unsigned long start_pfn,
1019                                 unsigned long nr_pages)
1020 {
1021         unsigned long end_pfn = start_pfn + nr_pages;
1022         return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1023 }
1024
1025 static bool pfn_range_valid_gigantic(unsigned long start_pfn,
1026                                 unsigned long nr_pages)
1027 {
1028         unsigned long i, end_pfn = start_pfn + nr_pages;
1029         struct page *page;
1030
1031         for (i = start_pfn; i < end_pfn; i++) {
1032                 if (!pfn_valid(i))
1033                         return false;
1034
1035                 page = pfn_to_page(i);
1036
1037                 if (PageReserved(page))
1038                         return false;
1039
1040                 if (page_count(page) > 0)
1041                         return false;
1042
1043                 if (PageHuge(page))
1044                         return false;
1045         }
1046
1047         return true;
1048 }
1049
1050 static bool zone_spans_last_pfn(const struct zone *zone,
1051                         unsigned long start_pfn, unsigned long nr_pages)
1052 {
1053         unsigned long last_pfn = start_pfn + nr_pages - 1;
1054         return zone_spans_pfn(zone, last_pfn);
1055 }
1056
1057 static struct page *alloc_gigantic_page(int nid, unsigned order)
1058 {
1059         unsigned long nr_pages = 1 << order;
1060         unsigned long ret, pfn, flags;
1061         struct zone *z;
1062
1063         z = NODE_DATA(nid)->node_zones;
1064         for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1065                 spin_lock_irqsave(&z->lock, flags);
1066
1067                 pfn = ALIGN(z->zone_start_pfn, nr_pages);
1068                 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1069                         if (pfn_range_valid_gigantic(pfn, nr_pages)) {
1070                                 /*
1071                                  * We release the zone lock here because
1072                                  * alloc_contig_range() will also lock the zone
1073                                  * at some point. If there's an allocation
1074                                  * spinning on this lock, it may win the race
1075                                  * and cause alloc_contig_range() to fail...
1076                                  */
1077                                 spin_unlock_irqrestore(&z->lock, flags);
1078                                 ret = __alloc_gigantic_page(pfn, nr_pages);
1079                                 if (!ret)
1080                                         return pfn_to_page(pfn);
1081                                 spin_lock_irqsave(&z->lock, flags);
1082                         }
1083                         pfn += nr_pages;
1084                 }
1085
1086                 spin_unlock_irqrestore(&z->lock, flags);
1087         }
1088
1089         return NULL;
1090 }
1091
1092 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1093 static void prep_compound_gigantic_page(struct page *page, unsigned long order);
1094
1095 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1096 {
1097         struct page *page;
1098
1099         page = alloc_gigantic_page(nid, huge_page_order(h));
1100         if (page) {
1101                 prep_compound_gigantic_page(page, huge_page_order(h));
1102                 prep_new_huge_page(h, page, nid);
1103         }
1104
1105         return page;
1106 }
1107
1108 static int alloc_fresh_gigantic_page(struct hstate *h,
1109                                 nodemask_t *nodes_allowed)
1110 {
1111         struct page *page = NULL;
1112         int nr_nodes, node;
1113
1114         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1115                 page = alloc_fresh_gigantic_page_node(h, node);
1116                 if (page)
1117                         return 1;
1118         }
1119
1120         return 0;
1121 }
1122
1123 static inline bool gigantic_page_supported(void) { return true; }
1124 #else
1125 static inline bool gigantic_page_supported(void) { return false; }
1126 static inline void free_gigantic_page(struct page *page, unsigned order) { }
1127 static inline void destroy_compound_gigantic_page(struct page *page,
1128                                                 unsigned long order) { }
1129 static inline int alloc_fresh_gigantic_page(struct hstate *h,
1130                                         nodemask_t *nodes_allowed) { return 0; }
1131 #endif
1132
1133 static void update_and_free_page(struct hstate *h, struct page *page)
1134 {
1135         int i;
1136
1137         if (hstate_is_gigantic(h) && !gigantic_page_supported())
1138                 return;
1139
1140         h->nr_huge_pages--;
1141         h->nr_huge_pages_node[page_to_nid(page)]--;
1142         for (i = 0; i < pages_per_huge_page(h); i++) {
1143                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1144                                 1 << PG_referenced | 1 << PG_dirty |
1145                                 1 << PG_active | 1 << PG_private |
1146                                 1 << PG_writeback);
1147         }
1148         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1149         set_compound_page_dtor(page, NULL);
1150         set_page_refcounted(page);
1151         if (hstate_is_gigantic(h)) {
1152                 destroy_compound_gigantic_page(page, huge_page_order(h));
1153                 free_gigantic_page(page, huge_page_order(h));
1154         } else {
1155                 __free_pages(page, huge_page_order(h));
1156         }
1157 }
1158
1159 struct hstate *size_to_hstate(unsigned long size)
1160 {
1161         struct hstate *h;
1162
1163         for_each_hstate(h) {
1164                 if (huge_page_size(h) == size)
1165                         return h;
1166         }
1167         return NULL;
1168 }
1169
1170 /*
1171  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1172  * to hstate->hugepage_activelist.)
1173  *
1174  * This function can be called for tail pages, but never returns true for them.
1175  */
1176 bool page_huge_active(struct page *page)
1177 {
1178         VM_BUG_ON_PAGE(!PageHuge(page), page);
1179         return PageHead(page) && PagePrivate(&page[1]);
1180 }
1181
1182 /* never called for tail page */
1183 static void set_page_huge_active(struct page *page)
1184 {
1185         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1186         SetPagePrivate(&page[1]);
1187 }
1188
1189 static void clear_page_huge_active(struct page *page)
1190 {
1191         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1192         ClearPagePrivate(&page[1]);
1193 }
1194
1195 void free_huge_page(struct page *page)
1196 {
1197         /*
1198          * Can't pass hstate in here because it is called from the
1199          * compound page destructor.
1200          */
1201         struct hstate *h = page_hstate(page);
1202         int nid = page_to_nid(page);
1203         struct hugepage_subpool *spool =
1204                 (struct hugepage_subpool *)page_private(page);
1205         bool restore_reserve;
1206
1207         set_page_private(page, 0);
1208         page->mapping = NULL;
1209         BUG_ON(page_count(page));
1210         BUG_ON(page_mapcount(page));
1211         restore_reserve = PagePrivate(page);
1212         ClearPagePrivate(page);
1213
1214         /*
1215          * A return code of zero implies that the subpool will be under its
1216          * minimum size if the reservation is not restored after page is free.
1217          * Therefore, force restore_reserve operation.
1218          */
1219         if (hugepage_subpool_put_pages(spool, 1) == 0)
1220                 restore_reserve = true;
1221
1222         spin_lock(&hugetlb_lock);
1223         clear_page_huge_active(page);
1224         hugetlb_cgroup_uncharge_page(hstate_index(h),
1225                                      pages_per_huge_page(h), page);
1226         if (restore_reserve)
1227                 h->resv_huge_pages++;
1228
1229         if (h->surplus_huge_pages_node[nid]) {
1230                 /* remove the page from active list */
1231                 list_del(&page->lru);
1232                 update_and_free_page(h, page);
1233                 h->surplus_huge_pages--;
1234                 h->surplus_huge_pages_node[nid]--;
1235         } else {
1236                 arch_clear_hugepage_flags(page);
1237                 enqueue_huge_page(h, page);
1238         }
1239         spin_unlock(&hugetlb_lock);
1240 }
1241
1242 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1243 {
1244         INIT_LIST_HEAD(&page->lru);
1245         set_compound_page_dtor(page, free_huge_page);
1246         spin_lock(&hugetlb_lock);
1247         set_hugetlb_cgroup(page, NULL);
1248         h->nr_huge_pages++;
1249         h->nr_huge_pages_node[nid]++;
1250         spin_unlock(&hugetlb_lock);
1251         put_page(page); /* free it into the hugepage allocator */
1252 }
1253
1254 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
1255 {
1256         int i;
1257         int nr_pages = 1 << order;
1258         struct page *p = page + 1;
1259
1260         /* we rely on prep_new_huge_page to set the destructor */
1261         set_compound_order(page, order);
1262         __SetPageHead(page);
1263         __ClearPageReserved(page);
1264         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1265                 /*
1266                  * For gigantic hugepages allocated through bootmem at
1267                  * boot, it's safer to be consistent with the not-gigantic
1268                  * hugepages and clear the PG_reserved bit from all tail pages
1269                  * too.  Otherwse drivers using get_user_pages() to access tail
1270                  * pages may get the reference counting wrong if they see
1271                  * PG_reserved set on a tail page (despite the head page not
1272                  * having PG_reserved set).  Enforcing this consistency between
1273                  * head and tail pages allows drivers to optimize away a check
1274                  * on the head page when they need know if put_page() is needed
1275                  * after get_user_pages().
1276                  */
1277                 __ClearPageReserved(p);
1278                 set_page_count(p, 0);
1279                 p->first_page = page;
1280                 /* Make sure p->first_page is always valid for PageTail() */
1281                 smp_wmb();
1282                 __SetPageTail(p);
1283         }
1284 }
1285
1286 /*
1287  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1288  * transparent huge pages.  See the PageTransHuge() documentation for more
1289  * details.
1290  */
1291 int PageHuge(struct page *page)
1292 {
1293         if (!PageCompound(page))
1294                 return 0;
1295
1296         page = compound_head(page);
1297         return get_compound_page_dtor(page) == free_huge_page;
1298 }
1299 EXPORT_SYMBOL_GPL(PageHuge);
1300
1301 /*
1302  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1303  * normal or transparent huge pages.
1304  */
1305 int PageHeadHuge(struct page *page_head)
1306 {
1307         if (!PageHead(page_head))
1308                 return 0;
1309
1310         return get_compound_page_dtor(page_head) == free_huge_page;
1311 }
1312
1313 pgoff_t __basepage_index(struct page *page)
1314 {
1315         struct page *page_head = compound_head(page);
1316         pgoff_t index = page_index(page_head);
1317         unsigned long compound_idx;
1318
1319         if (!PageHuge(page_head))
1320                 return page_index(page);
1321
1322         if (compound_order(page_head) >= MAX_ORDER)
1323                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1324         else
1325                 compound_idx = page - page_head;
1326
1327         return (index << compound_order(page_head)) + compound_idx;
1328 }
1329
1330 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1331 {
1332         struct page *page;
1333
1334         page = alloc_pages_exact_node(nid,
1335                 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1336                                                 __GFP_REPEAT|__GFP_NOWARN,
1337                 huge_page_order(h));
1338         if (page) {
1339                 prep_new_huge_page(h, page, nid);
1340         }
1341
1342         return page;
1343 }
1344
1345 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1346 {
1347         struct page *page;
1348         int nr_nodes, node;
1349         int ret = 0;
1350
1351         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1352                 page = alloc_fresh_huge_page_node(h, node);
1353                 if (page) {
1354                         ret = 1;
1355                         break;
1356                 }
1357         }
1358
1359         if (ret)
1360                 count_vm_event(HTLB_BUDDY_PGALLOC);
1361         else
1362                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1363
1364         return ret;
1365 }
1366
1367 /*
1368  * Free huge page from pool from next node to free.
1369  * Attempt to keep persistent huge pages more or less
1370  * balanced over allowed nodes.
1371  * Called with hugetlb_lock locked.
1372  */
1373 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1374                                                          bool acct_surplus)
1375 {
1376         int nr_nodes, node;
1377         int ret = 0;
1378
1379         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1380                 /*
1381                  * If we're returning unused surplus pages, only examine
1382                  * nodes with surplus pages.
1383                  */
1384                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1385                     !list_empty(&h->hugepage_freelists[node])) {
1386                         struct page *page =
1387                                 list_entry(h->hugepage_freelists[node].next,
1388                                           struct page, lru);
1389                         list_del(&page->lru);
1390                         h->free_huge_pages--;
1391                         h->free_huge_pages_node[node]--;
1392                         if (acct_surplus) {
1393                                 h->surplus_huge_pages--;
1394                                 h->surplus_huge_pages_node[node]--;
1395                         }
1396                         update_and_free_page(h, page);
1397                         ret = 1;
1398                         break;
1399                 }
1400         }
1401
1402         return ret;
1403 }
1404
1405 /*
1406  * Dissolve a given free hugepage into free buddy pages. This function does
1407  * nothing for in-use (including surplus) hugepages.
1408  */
1409 static void dissolve_free_huge_page(struct page *page)
1410 {
1411         spin_lock(&hugetlb_lock);
1412         if (PageHuge(page) && !page_count(page)) {
1413                 struct hstate *h = page_hstate(page);
1414                 int nid = page_to_nid(page);
1415                 list_del(&page->lru);
1416                 h->free_huge_pages--;
1417                 h->free_huge_pages_node[nid]--;
1418                 update_and_free_page(h, page);
1419         }
1420         spin_unlock(&hugetlb_lock);
1421 }
1422
1423 /*
1424  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1425  * make specified memory blocks removable from the system.
1426  * Note that start_pfn should aligned with (minimum) hugepage size.
1427  */
1428 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1429 {
1430         unsigned long pfn;
1431
1432         if (!hugepages_supported())
1433                 return;
1434
1435         VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order));
1436         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
1437                 dissolve_free_huge_page(pfn_to_page(pfn));
1438 }
1439
1440 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
1441 {
1442         struct page *page;
1443         unsigned int r_nid;
1444
1445         if (hstate_is_gigantic(h))
1446                 return NULL;
1447
1448         /*
1449          * Assume we will successfully allocate the surplus page to
1450          * prevent racing processes from causing the surplus to exceed
1451          * overcommit
1452          *
1453          * This however introduces a different race, where a process B
1454          * tries to grow the static hugepage pool while alloc_pages() is
1455          * called by process A. B will only examine the per-node
1456          * counters in determining if surplus huge pages can be
1457          * converted to normal huge pages in adjust_pool_surplus(). A
1458          * won't be able to increment the per-node counter, until the
1459          * lock is dropped by B, but B doesn't drop hugetlb_lock until
1460          * no more huge pages can be converted from surplus to normal
1461          * state (and doesn't try to convert again). Thus, we have a
1462          * case where a surplus huge page exists, the pool is grown, and
1463          * the surplus huge page still exists after, even though it
1464          * should just have been converted to a normal huge page. This
1465          * does not leak memory, though, as the hugepage will be freed
1466          * once it is out of use. It also does not allow the counters to
1467          * go out of whack in adjust_pool_surplus() as we don't modify
1468          * the node values until we've gotten the hugepage and only the
1469          * per-node value is checked there.
1470          */
1471         spin_lock(&hugetlb_lock);
1472         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1473                 spin_unlock(&hugetlb_lock);
1474                 return NULL;
1475         } else {
1476                 h->nr_huge_pages++;
1477                 h->surplus_huge_pages++;
1478         }
1479         spin_unlock(&hugetlb_lock);
1480
1481         if (nid == NUMA_NO_NODE)
1482                 page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
1483                                    __GFP_REPEAT|__GFP_NOWARN,
1484                                    huge_page_order(h));
1485         else
1486                 page = alloc_pages_exact_node(nid,
1487                         htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1488                         __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
1489
1490         spin_lock(&hugetlb_lock);
1491         if (page) {
1492                 INIT_LIST_HEAD(&page->lru);
1493                 r_nid = page_to_nid(page);
1494                 set_compound_page_dtor(page, free_huge_page);
1495                 set_hugetlb_cgroup(page, NULL);
1496                 /*
1497                  * We incremented the global counters already
1498                  */
1499                 h->nr_huge_pages_node[r_nid]++;
1500                 h->surplus_huge_pages_node[r_nid]++;
1501                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1502         } else {
1503                 h->nr_huge_pages--;
1504                 h->surplus_huge_pages--;
1505                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1506         }
1507         spin_unlock(&hugetlb_lock);
1508
1509         return page;
1510 }
1511
1512 /*
1513  * This allocation function is useful in the context where vma is irrelevant.
1514  * E.g. soft-offlining uses this function because it only cares physical
1515  * address of error page.
1516  */
1517 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1518 {
1519         struct page *page = NULL;
1520
1521         spin_lock(&hugetlb_lock);
1522         if (h->free_huge_pages - h->resv_huge_pages > 0)
1523                 page = dequeue_huge_page_node(h, nid);
1524         spin_unlock(&hugetlb_lock);
1525
1526         if (!page)
1527                 page = alloc_buddy_huge_page(h, nid);
1528
1529         return page;
1530 }
1531
1532 /*
1533  * Increase the hugetlb pool such that it can accommodate a reservation
1534  * of size 'delta'.
1535  */
1536 static int gather_surplus_pages(struct hstate *h, int delta)
1537 {
1538         struct list_head surplus_list;
1539         struct page *page, *tmp;
1540         int ret, i;
1541         int needed, allocated;
1542         bool alloc_ok = true;
1543
1544         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1545         if (needed <= 0) {
1546                 h->resv_huge_pages += delta;
1547                 return 0;
1548         }
1549
1550         allocated = 0;
1551         INIT_LIST_HEAD(&surplus_list);
1552
1553         ret = -ENOMEM;
1554 retry:
1555         spin_unlock(&hugetlb_lock);
1556         for (i = 0; i < needed; i++) {
1557                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1558                 if (!page) {
1559                         alloc_ok = false;
1560                         break;
1561                 }
1562                 list_add(&page->lru, &surplus_list);
1563         }
1564         allocated += i;
1565
1566         /*
1567          * After retaking hugetlb_lock, we need to recalculate 'needed'
1568          * because either resv_huge_pages or free_huge_pages may have changed.
1569          */
1570         spin_lock(&hugetlb_lock);
1571         needed = (h->resv_huge_pages + delta) -
1572                         (h->free_huge_pages + allocated);
1573         if (needed > 0) {
1574                 if (alloc_ok)
1575                         goto retry;
1576                 /*
1577                  * We were not able to allocate enough pages to
1578                  * satisfy the entire reservation so we free what
1579                  * we've allocated so far.
1580                  */
1581                 goto free;
1582         }
1583         /*
1584          * The surplus_list now contains _at_least_ the number of extra pages
1585          * needed to accommodate the reservation.  Add the appropriate number
1586          * of pages to the hugetlb pool and free the extras back to the buddy
1587          * allocator.  Commit the entire reservation here to prevent another
1588          * process from stealing the pages as they are added to the pool but
1589          * before they are reserved.
1590          */
1591         needed += allocated;
1592         h->resv_huge_pages += delta;
1593         ret = 0;
1594
1595         /* Free the needed pages to the hugetlb pool */
1596         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1597                 if ((--needed) < 0)
1598                         break;
1599                 /*
1600                  * This page is now managed by the hugetlb allocator and has
1601                  * no users -- drop the buddy allocator's reference.
1602                  */
1603                 put_page_testzero(page);
1604                 VM_BUG_ON_PAGE(page_count(page), page);
1605                 enqueue_huge_page(h, page);
1606         }
1607 free:
1608         spin_unlock(&hugetlb_lock);
1609
1610         /* Free unnecessary surplus pages to the buddy allocator */
1611         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1612                 put_page(page);
1613         spin_lock(&hugetlb_lock);
1614
1615         return ret;
1616 }
1617
1618 /*
1619  * When releasing a hugetlb pool reservation, any surplus pages that were
1620  * allocated to satisfy the reservation must be explicitly freed if they were
1621  * never used.
1622  * Called with hugetlb_lock held.
1623  */
1624 static void return_unused_surplus_pages(struct hstate *h,
1625                                         unsigned long unused_resv_pages)
1626 {
1627         unsigned long nr_pages;
1628
1629         /* Uncommit the reservation */
1630         h->resv_huge_pages -= unused_resv_pages;
1631
1632         /* Cannot return gigantic pages currently */
1633         if (hstate_is_gigantic(h))
1634                 return;
1635
1636         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1637
1638         /*
1639          * We want to release as many surplus pages as possible, spread
1640          * evenly across all nodes with memory. Iterate across these nodes
1641          * until we can no longer free unreserved surplus pages. This occurs
1642          * when the nodes with surplus pages have no free pages.
1643          * free_pool_huge_page() will balance the the freed pages across the
1644          * on-line nodes with memory and will handle the hstate accounting.
1645          */
1646         while (nr_pages--) {
1647                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1648                         break;
1649                 cond_resched_lock(&hugetlb_lock);
1650         }
1651 }
1652
1653
1654 /*
1655  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1656  * are used by the huge page allocation routines to manage reservations.
1657  *
1658  * vma_needs_reservation is called to determine if the huge page at addr
1659  * within the vma has an associated reservation.  If a reservation is
1660  * needed, the value 1 is returned.  The caller is then responsible for
1661  * managing the global reservation and subpool usage counts.  After
1662  * the huge page has been allocated, vma_commit_reservation is called
1663  * to add the page to the reservation map.  If the page allocation fails,
1664  * the reservation must be ended instead of committed.  vma_end_reservation
1665  * is called in such cases.
1666  *
1667  * In the normal case, vma_commit_reservation returns the same value
1668  * as the preceding vma_needs_reservation call.  The only time this
1669  * is not the case is if a reserve map was changed between calls.  It
1670  * is the responsibility of the caller to notice the difference and
1671  * take appropriate action.
1672  */
1673 enum vma_resv_mode {
1674         VMA_NEEDS_RESV,
1675         VMA_COMMIT_RESV,
1676         VMA_END_RESV,
1677 };
1678 static long __vma_reservation_common(struct hstate *h,
1679                                 struct vm_area_struct *vma, unsigned long addr,
1680                                 enum vma_resv_mode mode)
1681 {
1682         struct resv_map *resv;
1683         pgoff_t idx;
1684         long ret;
1685
1686         resv = vma_resv_map(vma);
1687         if (!resv)
1688                 return 1;
1689
1690         idx = vma_hugecache_offset(h, vma, addr);
1691         switch (mode) {
1692         case VMA_NEEDS_RESV:
1693                 ret = region_chg(resv, idx, idx + 1);
1694                 break;
1695         case VMA_COMMIT_RESV:
1696                 ret = region_add(resv, idx, idx + 1);
1697                 break;
1698         case VMA_END_RESV:
1699                 region_abort(resv, idx, idx + 1);
1700                 ret = 0;
1701                 break;
1702         default:
1703                 BUG();
1704         }
1705
1706         if (vma->vm_flags & VM_MAYSHARE)
1707                 return ret;
1708         else
1709                 return ret < 0 ? ret : 0;
1710 }
1711
1712 static long vma_needs_reservation(struct hstate *h,
1713                         struct vm_area_struct *vma, unsigned long addr)
1714 {
1715         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1716 }
1717
1718 static long vma_commit_reservation(struct hstate *h,
1719                         struct vm_area_struct *vma, unsigned long addr)
1720 {
1721         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1722 }
1723
1724 static void vma_end_reservation(struct hstate *h,
1725                         struct vm_area_struct *vma, unsigned long addr)
1726 {
1727         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1728 }
1729
1730 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1731                                     unsigned long addr, int avoid_reserve)
1732 {
1733         struct hugepage_subpool *spool = subpool_vma(vma);
1734         struct hstate *h = hstate_vma(vma);
1735         struct page *page;
1736         long chg, commit;
1737         int ret, idx;
1738         struct hugetlb_cgroup *h_cg;
1739
1740         idx = hstate_index(h);
1741         /*
1742          * Processes that did not create the mapping will have no
1743          * reserves and will not have accounted against subpool
1744          * limit. Check that the subpool limit can be made before
1745          * satisfying the allocation MAP_NORESERVE mappings may also
1746          * need pages and subpool limit allocated allocated if no reserve
1747          * mapping overlaps.
1748          */
1749         chg = vma_needs_reservation(h, vma, addr);
1750         if (chg < 0)
1751                 return ERR_PTR(-ENOMEM);
1752         if (chg || avoid_reserve)
1753                 if (hugepage_subpool_get_pages(spool, 1) < 0) {
1754                         vma_end_reservation(h, vma, addr);
1755                         return ERR_PTR(-ENOSPC);
1756                 }
1757
1758         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1759         if (ret)
1760                 goto out_subpool_put;
1761
1762         spin_lock(&hugetlb_lock);
1763         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1764         if (!page) {
1765                 spin_unlock(&hugetlb_lock);
1766                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1767                 if (!page)
1768                         goto out_uncharge_cgroup;
1769
1770                 spin_lock(&hugetlb_lock);
1771                 list_move(&page->lru, &h->hugepage_activelist);
1772                 /* Fall through */
1773         }
1774         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1775         spin_unlock(&hugetlb_lock);
1776
1777         set_page_private(page, (unsigned long)spool);
1778
1779         commit = vma_commit_reservation(h, vma, addr);
1780         if (unlikely(chg > commit)) {
1781                 /*
1782                  * The page was added to the reservation map between
1783                  * vma_needs_reservation and vma_commit_reservation.
1784                  * This indicates a race with hugetlb_reserve_pages.
1785                  * Adjust for the subpool count incremented above AND
1786                  * in hugetlb_reserve_pages for the same page.  Also,
1787                  * the reservation count added in hugetlb_reserve_pages
1788                  * no longer applies.
1789                  */
1790                 long rsv_adjust;
1791
1792                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
1793                 hugetlb_acct_memory(h, -rsv_adjust);
1794         }
1795         return page;
1796
1797 out_uncharge_cgroup:
1798         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1799 out_subpool_put:
1800         if (chg || avoid_reserve)
1801                 hugepage_subpool_put_pages(spool, 1);
1802         vma_end_reservation(h, vma, addr);
1803         return ERR_PTR(-ENOSPC);
1804 }
1805
1806 /*
1807  * alloc_huge_page()'s wrapper which simply returns the page if allocation
1808  * succeeds, otherwise NULL. This function is called from new_vma_page(),
1809  * where no ERR_VALUE is expected to be returned.
1810  */
1811 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1812                                 unsigned long addr, int avoid_reserve)
1813 {
1814         struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1815         if (IS_ERR(page))
1816                 page = NULL;
1817         return page;
1818 }
1819
1820 int __weak alloc_bootmem_huge_page(struct hstate *h)
1821 {
1822         struct huge_bootmem_page *m;
1823         int nr_nodes, node;
1824
1825         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1826                 void *addr;
1827
1828                 addr = memblock_virt_alloc_try_nid_nopanic(
1829                                 huge_page_size(h), huge_page_size(h),
1830                                 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1831                 if (addr) {
1832                         /*
1833                          * Use the beginning of the huge page to store the
1834                          * huge_bootmem_page struct (until gather_bootmem
1835                          * puts them into the mem_map).
1836                          */
1837                         m = addr;
1838                         goto found;
1839                 }
1840         }
1841         return 0;
1842
1843 found:
1844         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
1845         /* Put them into a private list first because mem_map is not up yet */
1846         list_add(&m->list, &huge_boot_pages);
1847         m->hstate = h;
1848         return 1;
1849 }
1850
1851 static void __init prep_compound_huge_page(struct page *page, int order)
1852 {
1853         if (unlikely(order > (MAX_ORDER - 1)))
1854                 prep_compound_gigantic_page(page, order);
1855         else
1856                 prep_compound_page(page, order);
1857 }
1858
1859 /* Put bootmem huge pages into the standard lists after mem_map is up */
1860 static void __init gather_bootmem_prealloc(void)
1861 {
1862         struct huge_bootmem_page *m;
1863
1864         list_for_each_entry(m, &huge_boot_pages, list) {
1865                 struct hstate *h = m->hstate;
1866                 struct page *page;
1867
1868 #ifdef CONFIG_HIGHMEM
1869                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1870                 memblock_free_late(__pa(m),
1871                                    sizeof(struct huge_bootmem_page));
1872 #else
1873                 page = virt_to_page(m);
1874 #endif
1875                 WARN_ON(page_count(page) != 1);
1876                 prep_compound_huge_page(page, h->order);
1877                 WARN_ON(PageReserved(page));
1878                 prep_new_huge_page(h, page, page_to_nid(page));
1879                 /*
1880                  * If we had gigantic hugepages allocated at boot time, we need
1881                  * to restore the 'stolen' pages to totalram_pages in order to
1882                  * fix confusing memory reports from free(1) and another
1883                  * side-effects, like CommitLimit going negative.
1884                  */
1885                 if (hstate_is_gigantic(h))
1886                         adjust_managed_page_count(page, 1 << h->order);
1887         }
1888 }
1889
1890 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1891 {
1892         unsigned long i;
1893
1894         for (i = 0; i < h->max_huge_pages; ++i) {
1895                 if (hstate_is_gigantic(h)) {
1896                         if (!alloc_bootmem_huge_page(h))
1897                                 break;
1898                 } else if (!alloc_fresh_huge_page(h,
1899                                          &node_states[N_MEMORY]))
1900                         break;
1901         }
1902         h->max_huge_pages = i;
1903 }
1904
1905 static void __init hugetlb_init_hstates(void)
1906 {
1907         struct hstate *h;
1908
1909         for_each_hstate(h) {
1910                 if (minimum_order > huge_page_order(h))
1911                         minimum_order = huge_page_order(h);
1912
1913                 /* oversize hugepages were init'ed in early boot */
1914                 if (!hstate_is_gigantic(h))
1915                         hugetlb_hstate_alloc_pages(h);
1916         }
1917         VM_BUG_ON(minimum_order == UINT_MAX);
1918 }
1919
1920 static char * __init memfmt(char *buf, unsigned long n)
1921 {
1922         if (n >= (1UL << 30))
1923                 sprintf(buf, "%lu GB", n >> 30);
1924         else if (n >= (1UL << 20))
1925                 sprintf(buf, "%lu MB", n >> 20);
1926         else
1927                 sprintf(buf, "%lu KB", n >> 10);
1928         return buf;
1929 }
1930
1931 static void __init report_hugepages(void)
1932 {
1933         struct hstate *h;
1934
1935         for_each_hstate(h) {
1936                 char buf[32];
1937                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1938                         memfmt(buf, huge_page_size(h)),
1939                         h->free_huge_pages);
1940         }
1941 }
1942
1943 #ifdef CONFIG_HIGHMEM
1944 static void try_to_free_low(struct hstate *h, unsigned long count,
1945                                                 nodemask_t *nodes_allowed)
1946 {
1947         int i;
1948
1949         if (hstate_is_gigantic(h))
1950                 return;
1951
1952         for_each_node_mask(i, *nodes_allowed) {
1953                 struct page *page, *next;
1954                 struct list_head *freel = &h->hugepage_freelists[i];
1955                 list_for_each_entry_safe(page, next, freel, lru) {
1956                         if (count >= h->nr_huge_pages)
1957                                 return;
1958                         if (PageHighMem(page))
1959                                 continue;
1960                         list_del(&page->lru);
1961                         update_and_free_page(h, page);
1962                         h->free_huge_pages--;
1963                         h->free_huge_pages_node[page_to_nid(page)]--;
1964                 }
1965         }
1966 }
1967 #else
1968 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1969                                                 nodemask_t *nodes_allowed)
1970 {
1971 }
1972 #endif
1973
1974 /*
1975  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1976  * balanced by operating on them in a round-robin fashion.
1977  * Returns 1 if an adjustment was made.
1978  */
1979 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1980                                 int delta)
1981 {
1982         int nr_nodes, node;
1983
1984         VM_BUG_ON(delta != -1 && delta != 1);
1985
1986         if (delta < 0) {
1987                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1988                         if (h->surplus_huge_pages_node[node])
1989                                 goto found;
1990                 }
1991         } else {
1992                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1993                         if (h->surplus_huge_pages_node[node] <
1994                                         h->nr_huge_pages_node[node])
1995                                 goto found;
1996                 }
1997         }
1998         return 0;
1999
2000 found:
2001         h->surplus_huge_pages += delta;
2002         h->surplus_huge_pages_node[node] += delta;
2003         return 1;
2004 }
2005
2006 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2007 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2008                                                 nodemask_t *nodes_allowed)
2009 {
2010         unsigned long min_count, ret;
2011
2012         if (hstate_is_gigantic(h) && !gigantic_page_supported())
2013                 return h->max_huge_pages;
2014
2015         /*
2016          * Increase the pool size
2017          * First take pages out of surplus state.  Then make up the
2018          * remaining difference by allocating fresh huge pages.
2019          *
2020          * We might race with alloc_buddy_huge_page() here and be unable
2021          * to convert a surplus huge page to a normal huge page. That is
2022          * not critical, though, it just means the overall size of the
2023          * pool might be one hugepage larger than it needs to be, but
2024          * within all the constraints specified by the sysctls.
2025          */
2026         spin_lock(&hugetlb_lock);
2027         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2028                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2029                         break;
2030         }
2031
2032         while (count > persistent_huge_pages(h)) {
2033                 /*
2034                  * If this allocation races such that we no longer need the
2035                  * page, free_huge_page will handle it by freeing the page
2036                  * and reducing the surplus.
2037                  */
2038                 spin_unlock(&hugetlb_lock);
2039                 if (hstate_is_gigantic(h))
2040                         ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2041                 else
2042                         ret = alloc_fresh_huge_page(h, nodes_allowed);
2043                 spin_lock(&hugetlb_lock);
2044                 if (!ret)
2045                         goto out;
2046
2047                 /* Bail for signals. Probably ctrl-c from user */
2048                 if (signal_pending(current))
2049                         goto out;
2050         }
2051
2052         /*
2053          * Decrease the pool size
2054          * First return free pages to the buddy allocator (being careful
2055          * to keep enough around to satisfy reservations).  Then place
2056          * pages into surplus state as needed so the pool will shrink
2057          * to the desired size as pages become free.
2058          *
2059          * By placing pages into the surplus state independent of the
2060          * overcommit value, we are allowing the surplus pool size to
2061          * exceed overcommit. There are few sane options here. Since
2062          * alloc_buddy_huge_page() is checking the global counter,
2063          * though, we'll note that we're not allowed to exceed surplus
2064          * and won't grow the pool anywhere else. Not until one of the
2065          * sysctls are changed, or the surplus pages go out of use.
2066          */
2067         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2068         min_count = max(count, min_count);
2069         try_to_free_low(h, min_count, nodes_allowed);
2070         while (min_count < persistent_huge_pages(h)) {
2071                 if (!free_pool_huge_page(h, nodes_allowed, 0))
2072                         break;
2073                 cond_resched_lock(&hugetlb_lock);
2074         }
2075         while (count < persistent_huge_pages(h)) {
2076                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2077                         break;
2078         }
2079 out:
2080         ret = persistent_huge_pages(h);
2081         spin_unlock(&hugetlb_lock);
2082         return ret;
2083 }
2084
2085 #define HSTATE_ATTR_RO(_name) \
2086         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2087
2088 #define HSTATE_ATTR(_name) \
2089         static struct kobj_attribute _name##_attr = \
2090                 __ATTR(_name, 0644, _name##_show, _name##_store)
2091
2092 static struct kobject *hugepages_kobj;
2093 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2094
2095 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2096
2097 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2098 {
2099         int i;
2100
2101         for (i = 0; i < HUGE_MAX_HSTATE; i++)
2102                 if (hstate_kobjs[i] == kobj) {
2103                         if (nidp)
2104                                 *nidp = NUMA_NO_NODE;
2105                         return &hstates[i];
2106                 }
2107
2108         return kobj_to_node_hstate(kobj, nidp);
2109 }
2110
2111 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2112                                         struct kobj_attribute *attr, char *buf)
2113 {
2114         struct hstate *h;
2115         unsigned long nr_huge_pages;
2116         int nid;
2117
2118         h = kobj_to_hstate(kobj, &nid);
2119         if (nid == NUMA_NO_NODE)
2120                 nr_huge_pages = h->nr_huge_pages;
2121         else
2122                 nr_huge_pages = h->nr_huge_pages_node[nid];
2123
2124         return sprintf(buf, "%lu\n", nr_huge_pages);
2125 }
2126
2127 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2128                                            struct hstate *h, int nid,
2129                                            unsigned long count, size_t len)
2130 {
2131         int err;
2132         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2133
2134         if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2135                 err = -EINVAL;
2136                 goto out;
2137         }
2138
2139         if (nid == NUMA_NO_NODE) {
2140                 /*
2141                  * global hstate attribute
2142                  */
2143                 if (!(obey_mempolicy &&
2144                                 init_nodemask_of_mempolicy(nodes_allowed))) {
2145                         NODEMASK_FREE(nodes_allowed);
2146                         nodes_allowed = &node_states[N_MEMORY];
2147                 }
2148         } else if (nodes_allowed) {
2149                 /*
2150                  * per node hstate attribute: adjust count to global,
2151                  * but restrict alloc/free to the specified node.
2152                  */
2153                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2154                 init_nodemask_of_node(nodes_allowed, nid);
2155         } else
2156                 nodes_allowed = &node_states[N_MEMORY];
2157
2158         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2159
2160         if (nodes_allowed != &node_states[N_MEMORY])
2161                 NODEMASK_FREE(nodes_allowed);
2162
2163         return len;
2164 out:
2165         NODEMASK_FREE(nodes_allowed);
2166         return err;
2167 }
2168
2169 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2170                                          struct kobject *kobj, const char *buf,
2171                                          size_t len)
2172 {
2173         struct hstate *h;
2174         unsigned long count;
2175         int nid;
2176         int err;
2177
2178         err = kstrtoul(buf, 10, &count);
2179         if (err)
2180                 return err;
2181
2182         h = kobj_to_hstate(kobj, &nid);
2183         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2184 }
2185
2186 static ssize_t nr_hugepages_show(struct kobject *kobj,
2187                                        struct kobj_attribute *attr, char *buf)
2188 {
2189         return nr_hugepages_show_common(kobj, attr, buf);
2190 }
2191
2192 static ssize_t nr_hugepages_store(struct kobject *kobj,
2193                struct kobj_attribute *attr, const char *buf, size_t len)
2194 {
2195         return nr_hugepages_store_common(false, kobj, buf, len);
2196 }
2197 HSTATE_ATTR(nr_hugepages);
2198
2199 #ifdef CONFIG_NUMA
2200
2201 /*
2202  * hstate attribute for optionally mempolicy-based constraint on persistent
2203  * huge page alloc/free.
2204  */
2205 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2206                                        struct kobj_attribute *attr, char *buf)
2207 {
2208         return nr_hugepages_show_common(kobj, attr, buf);
2209 }
2210
2211 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2212                struct kobj_attribute *attr, const char *buf, size_t len)
2213 {
2214         return nr_hugepages_store_common(true, kobj, buf, len);
2215 }
2216 HSTATE_ATTR(nr_hugepages_mempolicy);
2217 #endif
2218
2219
2220 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2221                                         struct kobj_attribute *attr, char *buf)
2222 {
2223         struct hstate *h = kobj_to_hstate(kobj, NULL);
2224         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2225 }
2226
2227 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2228                 struct kobj_attribute *attr, const char *buf, size_t count)
2229 {
2230         int err;
2231         unsigned long input;
2232         struct hstate *h = kobj_to_hstate(kobj, NULL);
2233
2234         if (hstate_is_gigantic(h))
2235                 return -EINVAL;
2236
2237         err = kstrtoul(buf, 10, &input);
2238         if (err)
2239                 return err;
2240
2241         spin_lock(&hugetlb_lock);
2242         h->nr_overcommit_huge_pages = input;
2243         spin_unlock(&hugetlb_lock);
2244
2245         return count;
2246 }
2247 HSTATE_ATTR(nr_overcommit_hugepages);
2248
2249 static ssize_t free_hugepages_show(struct kobject *kobj,
2250                                         struct kobj_attribute *attr, char *buf)
2251 {
2252         struct hstate *h;
2253         unsigned long free_huge_pages;
2254         int nid;
2255
2256         h = kobj_to_hstate(kobj, &nid);
2257         if (nid == NUMA_NO_NODE)
2258                 free_huge_pages = h->free_huge_pages;
2259         else
2260                 free_huge_pages = h->free_huge_pages_node[nid];
2261
2262         return sprintf(buf, "%lu\n", free_huge_pages);
2263 }
2264 HSTATE_ATTR_RO(free_hugepages);
2265
2266 static ssize_t resv_hugepages_show(struct kobject *kobj,
2267                                         struct kobj_attribute *attr, char *buf)
2268 {
2269         struct hstate *h = kobj_to_hstate(kobj, NULL);
2270         return sprintf(buf, "%lu\n", h->resv_huge_pages);
2271 }
2272 HSTATE_ATTR_RO(resv_hugepages);
2273
2274 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2275                                         struct kobj_attribute *attr, char *buf)
2276 {
2277         struct hstate *h;
2278         unsigned long surplus_huge_pages;
2279         int nid;
2280
2281         h = kobj_to_hstate(kobj, &nid);
2282         if (nid == NUMA_NO_NODE)
2283                 surplus_huge_pages = h->surplus_huge_pages;
2284         else
2285                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2286
2287         return sprintf(buf, "%lu\n", surplus_huge_pages);
2288 }
2289 HSTATE_ATTR_RO(surplus_hugepages);
2290
2291 static struct attribute *hstate_attrs[] = {
2292         &nr_hugepages_attr.attr,
2293         &nr_overcommit_hugepages_attr.attr,
2294         &free_hugepages_attr.attr,
2295         &resv_hugepages_attr.attr,
2296         &surplus_hugepages_attr.attr,
2297 #ifdef CONFIG_NUMA
2298         &nr_hugepages_mempolicy_attr.attr,
2299 #endif
2300         NULL,
2301 };
2302
2303 static struct attribute_group hstate_attr_group = {
2304         .attrs = hstate_attrs,
2305 };
2306
2307 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2308                                     struct kobject **hstate_kobjs,
2309                                     struct attribute_group *hstate_attr_group)
2310 {
2311         int retval;
2312         int hi = hstate_index(h);
2313
2314         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2315         if (!hstate_kobjs[hi])
2316                 return -ENOMEM;
2317
2318         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2319         if (retval)
2320                 kobject_put(hstate_kobjs[hi]);
2321
2322         return retval;
2323 }
2324
2325 static void __init hugetlb_sysfs_init(void)
2326 {
2327         struct hstate *h;
2328         int err;
2329
2330         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2331         if (!hugepages_kobj)
2332                 return;
2333
2334         for_each_hstate(h) {
2335                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2336                                          hstate_kobjs, &hstate_attr_group);
2337                 if (err)
2338                         pr_err("Hugetlb: Unable to add hstate %s", h->name);
2339         }
2340 }
2341
2342 #ifdef CONFIG_NUMA
2343
2344 /*
2345  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2346  * with node devices in node_devices[] using a parallel array.  The array
2347  * index of a node device or _hstate == node id.
2348  * This is here to avoid any static dependency of the node device driver, in
2349  * the base kernel, on the hugetlb module.
2350  */
2351 struct node_hstate {
2352         struct kobject          *hugepages_kobj;
2353         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
2354 };
2355 struct node_hstate node_hstates[MAX_NUMNODES];
2356
2357 /*
2358  * A subset of global hstate attributes for node devices
2359  */
2360 static struct attribute *per_node_hstate_attrs[] = {
2361         &nr_hugepages_attr.attr,
2362         &free_hugepages_attr.attr,
2363         &surplus_hugepages_attr.attr,
2364         NULL,
2365 };
2366
2367 static struct attribute_group per_node_hstate_attr_group = {
2368         .attrs = per_node_hstate_attrs,
2369 };
2370
2371 /*
2372  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2373  * Returns node id via non-NULL nidp.
2374  */
2375 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2376 {
2377         int nid;
2378
2379         for (nid = 0; nid < nr_node_ids; nid++) {
2380                 struct node_hstate *nhs = &node_hstates[nid];
2381                 int i;
2382                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2383                         if (nhs->hstate_kobjs[i] == kobj) {
2384                                 if (nidp)
2385                                         *nidp = nid;
2386                                 return &hstates[i];
2387                         }
2388         }
2389
2390         BUG();
2391         return NULL;
2392 }
2393
2394 /*
2395  * Unregister hstate attributes from a single node device.
2396  * No-op if no hstate attributes attached.
2397  */
2398 static void hugetlb_unregister_node(struct node *node)
2399 {
2400         struct hstate *h;
2401         struct node_hstate *nhs = &node_hstates[node->dev.id];
2402
2403         if (!nhs->hugepages_kobj)
2404                 return;         /* no hstate attributes */
2405
2406         for_each_hstate(h) {
2407                 int idx = hstate_index(h);
2408                 if (nhs->hstate_kobjs[idx]) {
2409                         kobject_put(nhs->hstate_kobjs[idx]);
2410                         nhs->hstate_kobjs[idx] = NULL;
2411                 }
2412         }
2413
2414         kobject_put(nhs->hugepages_kobj);
2415         nhs->hugepages_kobj = NULL;
2416 }
2417
2418 /*
2419  * hugetlb module exit:  unregister hstate attributes from node devices
2420  * that have them.
2421  */
2422 static void hugetlb_unregister_all_nodes(void)
2423 {
2424         int nid;
2425
2426         /*
2427          * disable node device registrations.
2428          */
2429         register_hugetlbfs_with_node(NULL, NULL);
2430
2431         /*
2432          * remove hstate attributes from any nodes that have them.
2433          */
2434         for (nid = 0; nid < nr_node_ids; nid++)
2435                 hugetlb_unregister_node(node_devices[nid]);
2436 }
2437
2438 /*
2439  * Register hstate attributes for a single node device.
2440  * No-op if attributes already registered.
2441  */
2442 static void hugetlb_register_node(struct node *node)
2443 {
2444         struct hstate *h;
2445         struct node_hstate *nhs = &node_hstates[node->dev.id];
2446         int err;
2447
2448         if (nhs->hugepages_kobj)
2449                 return;         /* already allocated */
2450
2451         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2452                                                         &node->dev.kobj);
2453         if (!nhs->hugepages_kobj)
2454                 return;
2455
2456         for_each_hstate(h) {
2457                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2458                                                 nhs->hstate_kobjs,
2459                                                 &per_node_hstate_attr_group);
2460                 if (err) {
2461                         pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2462                                 h->name, node->dev.id);
2463                         hugetlb_unregister_node(node);
2464                         break;
2465                 }
2466         }
2467 }
2468
2469 /*
2470  * hugetlb init time:  register hstate attributes for all registered node
2471  * devices of nodes that have memory.  All on-line nodes should have
2472  * registered their associated device by this time.
2473  */
2474 static void __init hugetlb_register_all_nodes(void)
2475 {
2476         int nid;
2477
2478         for_each_node_state(nid, N_MEMORY) {
2479                 struct node *node = node_devices[nid];
2480                 if (node->dev.id == nid)
2481                         hugetlb_register_node(node);
2482         }
2483
2484         /*
2485          * Let the node device driver know we're here so it can
2486          * [un]register hstate attributes on node hotplug.
2487          */
2488         register_hugetlbfs_with_node(hugetlb_register_node,
2489                                      hugetlb_unregister_node);
2490 }
2491 #else   /* !CONFIG_NUMA */
2492
2493 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2494 {
2495         BUG();
2496         if (nidp)
2497                 *nidp = -1;
2498         return NULL;
2499 }
2500
2501 static void hugetlb_unregister_all_nodes(void) { }
2502
2503 static void hugetlb_register_all_nodes(void) { }
2504
2505 #endif
2506
2507 static void __exit hugetlb_exit(void)
2508 {
2509         struct hstate *h;
2510
2511         hugetlb_unregister_all_nodes();
2512
2513         for_each_hstate(h) {
2514                 kobject_put(hstate_kobjs[hstate_index(h)]);
2515         }
2516
2517         kobject_put(hugepages_kobj);
2518         kfree(hugetlb_fault_mutex_table);
2519 }
2520 module_exit(hugetlb_exit);
2521
2522 static int __init hugetlb_init(void)
2523 {
2524         int i;
2525
2526         if (!hugepages_supported())
2527                 return 0;
2528
2529         if (!size_to_hstate(default_hstate_size)) {
2530                 default_hstate_size = HPAGE_SIZE;
2531                 if (!size_to_hstate(default_hstate_size))
2532                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2533         }
2534         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2535         if (default_hstate_max_huge_pages)
2536                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2537
2538         hugetlb_init_hstates();
2539         gather_bootmem_prealloc();
2540         report_hugepages();
2541
2542         hugetlb_sysfs_init();
2543         hugetlb_register_all_nodes();
2544         hugetlb_cgroup_file_init();
2545
2546 #ifdef CONFIG_SMP
2547         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2548 #else
2549         num_fault_mutexes = 1;
2550 #endif
2551         hugetlb_fault_mutex_table =
2552                 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2553         BUG_ON(!hugetlb_fault_mutex_table);
2554
2555         for (i = 0; i < num_fault_mutexes; i++)
2556                 mutex_init(&hugetlb_fault_mutex_table[i]);
2557         return 0;
2558 }
2559 module_init(hugetlb_init);
2560
2561 /* Should be called on processing a hugepagesz=... option */
2562 void __init hugetlb_add_hstate(unsigned order)
2563 {
2564         struct hstate *h;
2565         unsigned long i;
2566
2567         if (size_to_hstate(PAGE_SIZE << order)) {
2568                 pr_warning("hugepagesz= specified twice, ignoring\n");
2569                 return;
2570         }
2571         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2572         BUG_ON(order == 0);
2573         h = &hstates[hugetlb_max_hstate++];
2574         h->order = order;
2575         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2576         h->nr_huge_pages = 0;
2577         h->free_huge_pages = 0;
2578         for (i = 0; i < MAX_NUMNODES; ++i)
2579                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2580         INIT_LIST_HEAD(&h->hugepage_activelist);
2581         h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2582         h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2583         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2584                                         huge_page_size(h)/1024);
2585
2586         parsed_hstate = h;
2587 }
2588
2589 static int __init hugetlb_nrpages_setup(char *s)
2590 {
2591         unsigned long *mhp;
2592         static unsigned long *last_mhp;
2593
2594         /*
2595          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2596          * so this hugepages= parameter goes to the "default hstate".
2597          */
2598         if (!hugetlb_max_hstate)
2599                 mhp = &default_hstate_max_huge_pages;
2600         else
2601                 mhp = &parsed_hstate->max_huge_pages;
2602
2603         if (mhp == last_mhp) {
2604                 pr_warning("hugepages= specified twice without "
2605                            "interleaving hugepagesz=, ignoring\n");
2606                 return 1;
2607         }
2608
2609         if (sscanf(s, "%lu", mhp) <= 0)
2610                 *mhp = 0;
2611
2612         /*
2613          * Global state is always initialized later in hugetlb_init.
2614          * But we need to allocate >= MAX_ORDER hstates here early to still
2615          * use the bootmem allocator.
2616          */
2617         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2618                 hugetlb_hstate_alloc_pages(parsed_hstate);
2619
2620         last_mhp = mhp;
2621
2622         return 1;
2623 }
2624 __setup("hugepages=", hugetlb_nrpages_setup);
2625
2626 static int __init hugetlb_default_setup(char *s)
2627 {
2628         default_hstate_size = memparse(s, &s);
2629         return 1;
2630 }
2631 __setup("default_hugepagesz=", hugetlb_default_setup);
2632
2633 static unsigned int cpuset_mems_nr(unsigned int *array)
2634 {
2635         int node;
2636         unsigned int nr = 0;
2637
2638         for_each_node_mask(node, cpuset_current_mems_allowed)
2639                 nr += array[node];
2640
2641         return nr;
2642 }
2643
2644 #ifdef CONFIG_SYSCTL
2645 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2646                          struct ctl_table *table, int write,
2647                          void __user *buffer, size_t *length, loff_t *ppos)
2648 {
2649         struct hstate *h = &default_hstate;
2650         unsigned long tmp = h->max_huge_pages;
2651         int ret;
2652
2653         if (!hugepages_supported())
2654                 return -ENOTSUPP;
2655
2656         table->data = &tmp;
2657         table->maxlen = sizeof(unsigned long);
2658         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2659         if (ret)
2660                 goto out;
2661
2662         if (write)
2663                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2664                                                   NUMA_NO_NODE, tmp, *length);
2665 out:
2666         return ret;
2667 }
2668
2669 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2670                           void __user *buffer, size_t *length, loff_t *ppos)
2671 {
2672
2673         return hugetlb_sysctl_handler_common(false, table, write,
2674                                                         buffer, length, ppos);
2675 }
2676
2677 #ifdef CONFIG_NUMA
2678 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2679                           void __user *buffer, size_t *length, loff_t *ppos)
2680 {
2681         return hugetlb_sysctl_handler_common(true, table, write,
2682                                                         buffer, length, ppos);
2683 }
2684 #endif /* CONFIG_NUMA */
2685
2686 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2687                         void __user *buffer,
2688                         size_t *length, loff_t *ppos)
2689 {
2690         struct hstate *h = &default_hstate;
2691         unsigned long tmp;
2692         int ret;
2693
2694         if (!hugepages_supported())
2695                 return -ENOTSUPP;
2696
2697         tmp = h->nr_overcommit_huge_pages;
2698
2699         if (write && hstate_is_gigantic(h))
2700                 return -EINVAL;
2701
2702         table->data = &tmp;
2703         table->maxlen = sizeof(unsigned long);
2704         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2705         if (ret)
2706                 goto out;
2707
2708         if (write) {
2709                 spin_lock(&hugetlb_lock);
2710                 h->nr_overcommit_huge_pages = tmp;
2711                 spin_unlock(&hugetlb_lock);
2712         }
2713 out:
2714         return ret;
2715 }
2716
2717 #endif /* CONFIG_SYSCTL */
2718
2719 void hugetlb_report_meminfo(struct seq_file *m)
2720 {
2721         struct hstate *h = &default_hstate;
2722         if (!hugepages_supported())
2723                 return;
2724         seq_printf(m,
2725                         "HugePages_Total:   %5lu\n"
2726                         "HugePages_Free:    %5lu\n"
2727                         "HugePages_Rsvd:    %5lu\n"
2728                         "HugePages_Surp:    %5lu\n"
2729                         "Hugepagesize:   %8lu kB\n",
2730                         h->nr_huge_pages,
2731                         h->free_huge_pages,
2732                         h->resv_huge_pages,
2733                         h->surplus_huge_pages,
2734                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2735 }
2736
2737 int hugetlb_report_node_meminfo(int nid, char *buf)
2738 {
2739         struct hstate *h = &default_hstate;
2740         if (!hugepages_supported())
2741                 return 0;
2742         return sprintf(buf,
2743                 "Node %d HugePages_Total: %5u\n"
2744                 "Node %d HugePages_Free:  %5u\n"
2745                 "Node %d HugePages_Surp:  %5u\n",
2746                 nid, h->nr_huge_pages_node[nid],
2747                 nid, h->free_huge_pages_node[nid],
2748                 nid, h->surplus_huge_pages_node[nid]);
2749 }
2750
2751 void hugetlb_show_meminfo(void)
2752 {
2753         struct hstate *h;
2754         int nid;
2755
2756         if (!hugepages_supported())
2757                 return;
2758
2759         for_each_node_state(nid, N_MEMORY)
2760                 for_each_hstate(h)
2761                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2762                                 nid,
2763                                 h->nr_huge_pages_node[nid],
2764                                 h->free_huge_pages_node[nid],
2765                                 h->surplus_huge_pages_node[nid],
2766                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2767 }
2768
2769 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2770 unsigned long hugetlb_total_pages(void)
2771 {
2772         struct hstate *h;
2773         unsigned long nr_total_pages = 0;
2774
2775         for_each_hstate(h)
2776                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2777         return nr_total_pages;
2778 }
2779
2780 static int hugetlb_acct_memory(struct hstate *h, long delta)
2781 {
2782         int ret = -ENOMEM;
2783
2784         spin_lock(&hugetlb_lock);
2785         /*
2786          * When cpuset is configured, it breaks the strict hugetlb page
2787          * reservation as the accounting is done on a global variable. Such
2788          * reservation is completely rubbish in the presence of cpuset because
2789          * the reservation is not checked against page availability for the
2790          * current cpuset. Application can still potentially OOM'ed by kernel
2791          * with lack of free htlb page in cpuset that the task is in.
2792          * Attempt to enforce strict accounting with cpuset is almost
2793          * impossible (or too ugly) because cpuset is too fluid that
2794          * task or memory node can be dynamically moved between cpusets.
2795          *
2796          * The change of semantics for shared hugetlb mapping with cpuset is
2797          * undesirable. However, in order to preserve some of the semantics,
2798          * we fall back to check against current free page availability as
2799          * a best attempt and hopefully to minimize the impact of changing
2800          * semantics that cpuset has.
2801          */
2802         if (delta > 0) {
2803                 if (gather_surplus_pages(h, delta) < 0)
2804                         goto out;
2805
2806                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2807                         return_unused_surplus_pages(h, delta);
2808                         goto out;
2809                 }
2810         }
2811
2812         ret = 0;
2813         if (delta < 0)
2814                 return_unused_surplus_pages(h, (unsigned long) -delta);
2815
2816 out:
2817         spin_unlock(&hugetlb_lock);
2818         return ret;
2819 }
2820
2821 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2822 {
2823         struct resv_map *resv = vma_resv_map(vma);
2824
2825         /*
2826          * This new VMA should share its siblings reservation map if present.
2827          * The VMA will only ever have a valid reservation map pointer where
2828          * it is being copied for another still existing VMA.  As that VMA
2829          * has a reference to the reservation map it cannot disappear until
2830          * after this open call completes.  It is therefore safe to take a
2831          * new reference here without additional locking.
2832          */
2833         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2834                 kref_get(&resv->refs);
2835 }
2836
2837 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2838 {
2839         struct hstate *h = hstate_vma(vma);
2840         struct resv_map *resv = vma_resv_map(vma);
2841         struct hugepage_subpool *spool = subpool_vma(vma);
2842         unsigned long reserve, start, end;
2843         long gbl_reserve;
2844
2845         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2846                 return;
2847
2848         start = vma_hugecache_offset(h, vma, vma->vm_start);
2849         end = vma_hugecache_offset(h, vma, vma->vm_end);
2850
2851         reserve = (end - start) - region_count(resv, start, end);
2852
2853         kref_put(&resv->refs, resv_map_release);
2854
2855         if (reserve) {
2856                 /*
2857                  * Decrement reserve counts.  The global reserve count may be
2858                  * adjusted if the subpool has a minimum size.
2859                  */
2860                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
2861                 hugetlb_acct_memory(h, -gbl_reserve);
2862         }
2863 }
2864
2865 /*
2866  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2867  * handle_mm_fault() to try to instantiate regular-sized pages in the
2868  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2869  * this far.
2870  */
2871 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2872 {
2873         BUG();
2874         return 0;
2875 }
2876
2877 const struct vm_operations_struct hugetlb_vm_ops = {
2878         .fault = hugetlb_vm_op_fault,
2879         .open = hugetlb_vm_op_open,
2880         .close = hugetlb_vm_op_close,
2881 };
2882
2883 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2884                                 int writable)
2885 {
2886         pte_t entry;
2887
2888         if (writable) {
2889                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2890                                          vma->vm_page_prot)));
2891         } else {
2892                 entry = huge_pte_wrprotect(mk_huge_pte(page,
2893                                            vma->vm_page_prot));
2894         }
2895         entry = pte_mkyoung(entry);
2896         entry = pte_mkhuge(entry);
2897         entry = arch_make_huge_pte(entry, vma, page, writable);
2898
2899         return entry;
2900 }
2901
2902 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2903                                    unsigned long address, pte_t *ptep)
2904 {
2905         pte_t entry;
2906
2907         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2908         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2909                 update_mmu_cache(vma, address, ptep);
2910 }
2911
2912 static int is_hugetlb_entry_migration(pte_t pte)
2913 {
2914         swp_entry_t swp;
2915
2916         if (huge_pte_none(pte) || pte_present(pte))
2917                 return 0;
2918         swp = pte_to_swp_entry(pte);
2919         if (non_swap_entry(swp) && is_migration_entry(swp))
2920                 return 1;
2921         else
2922                 return 0;
2923 }
2924
2925 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2926 {
2927         swp_entry_t swp;
2928
2929         if (huge_pte_none(pte) || pte_present(pte))
2930                 return 0;
2931         swp = pte_to_swp_entry(pte);
2932         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2933                 return 1;
2934         else
2935                 return 0;
2936 }
2937
2938 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2939                             struct vm_area_struct *vma)
2940 {
2941         pte_t *src_pte, *dst_pte, entry;
2942         struct page *ptepage;
2943         unsigned long addr;
2944         int cow;
2945         struct hstate *h = hstate_vma(vma);
2946         unsigned long sz = huge_page_size(h);
2947         unsigned long mmun_start;       /* For mmu_notifiers */
2948         unsigned long mmun_end;         /* For mmu_notifiers */
2949         int ret = 0;
2950
2951         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2952
2953         mmun_start = vma->vm_start;
2954         mmun_end = vma->vm_end;
2955         if (cow)
2956                 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
2957
2958         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2959                 spinlock_t *src_ptl, *dst_ptl;
2960                 src_pte = huge_pte_offset(src, addr);
2961                 if (!src_pte)
2962                         continue;
2963                 dst_pte = huge_pte_alloc(dst, addr, sz);
2964                 if (!dst_pte) {
2965                         ret = -ENOMEM;
2966                         break;
2967                 }
2968
2969                 /* If the pagetables are shared don't copy or take references */
2970                 if (dst_pte == src_pte)
2971                         continue;
2972
2973                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
2974                 src_ptl = huge_pte_lockptr(h, src, src_pte);
2975                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
2976                 entry = huge_ptep_get(src_pte);
2977                 if (huge_pte_none(entry)) { /* skip none entry */
2978                         ;
2979                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
2980                                     is_hugetlb_entry_hwpoisoned(entry))) {
2981                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
2982
2983                         if (is_write_migration_entry(swp_entry) && cow) {
2984                                 /*
2985                                  * COW mappings require pages in both
2986                                  * parent and child to be set to read.
2987                                  */
2988                                 make_migration_entry_read(&swp_entry);
2989                                 entry = swp_entry_to_pte(swp_entry);
2990                                 set_huge_pte_at(src, addr, src_pte, entry);
2991                         }
2992                         set_huge_pte_at(dst, addr, dst_pte, entry);
2993                 } else {
2994                         if (cow) {
2995                                 huge_ptep_set_wrprotect(src, addr, src_pte);
2996                                 mmu_notifier_invalidate_range(src, mmun_start,
2997                                                                    mmun_end);
2998                         }
2999                         entry = huge_ptep_get(src_pte);
3000                         ptepage = pte_page(entry);
3001                         get_page(ptepage);
3002                         page_dup_rmap(ptepage);
3003                         set_huge_pte_at(dst, addr, dst_pte, entry);
3004                 }
3005                 spin_unlock(src_ptl);
3006                 spin_unlock(dst_ptl);
3007         }
3008
3009         if (cow)
3010                 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3011
3012         return ret;
3013 }
3014
3015 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3016                             unsigned long start, unsigned long end,
3017                             struct page *ref_page)
3018 {
3019         int force_flush = 0;
3020         struct mm_struct *mm = vma->vm_mm;
3021         unsigned long address;
3022         pte_t *ptep;
3023         pte_t pte;
3024         spinlock_t *ptl;
3025         struct page *page;
3026         struct hstate *h = hstate_vma(vma);
3027         unsigned long sz = huge_page_size(h);
3028         const unsigned long mmun_start = start; /* For mmu_notifiers */
3029         const unsigned long mmun_end   = end;   /* For mmu_notifiers */
3030
3031         WARN_ON(!is_vm_hugetlb_page(vma));
3032         BUG_ON(start & ~huge_page_mask(h));
3033         BUG_ON(end & ~huge_page_mask(h));
3034
3035         tlb_start_vma(tlb, vma);
3036         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3037         address = start;
3038 again:
3039         for (; address < end; address += sz) {
3040                 ptep = huge_pte_offset(mm, address);
3041                 if (!ptep)
3042                         continue;
3043
3044                 ptl = huge_pte_lock(h, mm, ptep);
3045                 if (huge_pmd_unshare(mm, &address, ptep))
3046                         goto unlock;
3047
3048                 pte = huge_ptep_get(ptep);
3049                 if (huge_pte_none(pte))
3050                         goto unlock;
3051
3052                 /*
3053                  * Migrating hugepage or HWPoisoned hugepage is already
3054                  * unmapped and its refcount is dropped, so just clear pte here.
3055                  */
3056                 if (unlikely(!pte_present(pte))) {
3057                         huge_pte_clear(mm, address, ptep);
3058                         goto unlock;
3059                 }
3060
3061                 page = pte_page(pte);
3062                 /*
3063                  * If a reference page is supplied, it is because a specific
3064                  * page is being unmapped, not a range. Ensure the page we
3065                  * are about to unmap is the actual page of interest.
3066                  */
3067                 if (ref_page) {
3068                         if (page != ref_page)
3069                                 goto unlock;
3070
3071                         /*
3072                          * Mark the VMA as having unmapped its page so that
3073                          * future faults in this VMA will fail rather than
3074                          * looking like data was lost
3075                          */
3076                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3077                 }
3078
3079                 pte = huge_ptep_get_and_clear(mm, address, ptep);
3080                 tlb_remove_tlb_entry(tlb, ptep, address);
3081                 if (huge_pte_dirty(pte))
3082                         set_page_dirty(page);
3083
3084                 page_remove_rmap(page);
3085                 force_flush = !__tlb_remove_page(tlb, page);
3086                 if (force_flush) {
3087                         address += sz;
3088                         spin_unlock(ptl);
3089                         break;
3090                 }
3091                 /* Bail out after unmapping reference page if supplied */
3092                 if (ref_page) {
3093                         spin_unlock(ptl);
3094                         break;
3095                 }
3096 unlock:
3097                 spin_unlock(ptl);
3098         }
3099         /*
3100          * mmu_gather ran out of room to batch pages, we break out of
3101          * the PTE lock to avoid doing the potential expensive TLB invalidate
3102          * and page-free while holding it.
3103          */
3104         if (force_flush) {
3105                 force_flush = 0;
3106                 tlb_flush_mmu(tlb);
3107                 if (address < end && !ref_page)
3108                         goto again;
3109         }
3110         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3111         tlb_end_vma(tlb, vma);
3112 }
3113
3114 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3115                           struct vm_area_struct *vma, unsigned long start,
3116                           unsigned long end, struct page *ref_page)
3117 {
3118         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3119
3120         /*
3121          * Clear this flag so that x86's huge_pmd_share page_table_shareable
3122          * test will fail on a vma being torn down, and not grab a page table
3123          * on its way out.  We're lucky that the flag has such an appropriate
3124          * name, and can in fact be safely cleared here. We could clear it
3125          * before the __unmap_hugepage_range above, but all that's necessary
3126          * is to clear it before releasing the i_mmap_rwsem. This works
3127          * because in the context this is called, the VMA is about to be
3128          * destroyed and the i_mmap_rwsem is held.
3129          */
3130         vma->vm_flags &= ~VM_MAYSHARE;
3131 }
3132
3133 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3134                           unsigned long end, struct page *ref_page)
3135 {
3136         struct mm_struct *mm;
3137         struct mmu_gather tlb;
3138
3139         mm = vma->vm_mm;
3140
3141         tlb_gather_mmu(&tlb, mm, start, end);
3142         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3143         tlb_finish_mmu(&tlb, start, end);
3144 }
3145
3146 /*
3147  * This is called when the original mapper is failing to COW a MAP_PRIVATE
3148  * mappping it owns the reserve page for. The intention is to unmap the page
3149  * from other VMAs and let the children be SIGKILLed if they are faulting the
3150  * same region.
3151  */
3152 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3153                               struct page *page, unsigned long address)
3154 {
3155         struct hstate *h = hstate_vma(vma);
3156         struct vm_area_struct *iter_vma;
3157         struct address_space *mapping;
3158         pgoff_t pgoff;
3159
3160         /*
3161          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3162          * from page cache lookup which is in HPAGE_SIZE units.
3163          */
3164         address = address & huge_page_mask(h);
3165         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3166                         vma->vm_pgoff;
3167         mapping = file_inode(vma->vm_file)->i_mapping;
3168
3169         /*
3170          * Take the mapping lock for the duration of the table walk. As
3171          * this mapping should be shared between all the VMAs,
3172          * __unmap_hugepage_range() is called as the lock is already held
3173          */
3174         i_mmap_lock_write(mapping);
3175         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3176                 /* Do not unmap the current VMA */
3177                 if (iter_vma == vma)
3178                         continue;
3179
3180                 /*
3181                  * Unmap the page from other VMAs without their own reserves.
3182                  * They get marked to be SIGKILLed if they fault in these
3183                  * areas. This is because a future no-page fault on this VMA
3184                  * could insert a zeroed page instead of the data existing
3185                  * from the time of fork. This would look like data corruption
3186                  */
3187                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3188                         unmap_hugepage_range(iter_vma, address,
3189                                              address + huge_page_size(h), page);
3190         }
3191         i_mmap_unlock_write(mapping);
3192 }
3193
3194 /*
3195  * Hugetlb_cow() should be called with page lock of the original hugepage held.
3196  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3197  * cannot race with other handlers or page migration.
3198  * Keep the pte_same checks anyway to make transition from the mutex easier.
3199  */
3200 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3201                         unsigned long address, pte_t *ptep, pte_t pte,
3202                         struct page *pagecache_page, spinlock_t *ptl)
3203 {
3204         struct hstate *h = hstate_vma(vma);
3205         struct page *old_page, *new_page;
3206         int ret = 0, outside_reserve = 0;
3207         unsigned long mmun_start;       /* For mmu_notifiers */
3208         unsigned long mmun_end;         /* For mmu_notifiers */
3209
3210         old_page = pte_page(pte);
3211
3212 retry_avoidcopy:
3213         /* If no-one else is actually using this page, avoid the copy
3214          * and just make the page writable */
3215         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3216                 page_move_anon_rmap(old_page, vma, address);
3217                 set_huge_ptep_writable(vma, address, ptep);
3218                 return 0;
3219         }
3220
3221         /*
3222          * If the process that created a MAP_PRIVATE mapping is about to
3223          * perform a COW due to a shared page count, attempt to satisfy
3224          * the allocation without using the existing reserves. The pagecache
3225          * page is used to determine if the reserve at this address was
3226          * consumed or not. If reserves were used, a partial faulted mapping
3227          * at the time of fork() could consume its reserves on COW instead
3228          * of the full address range.
3229          */
3230         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3231                         old_page != pagecache_page)
3232                 outside_reserve = 1;
3233
3234         page_cache_get(old_page);
3235
3236         /*
3237          * Drop page table lock as buddy allocator may be called. It will
3238          * be acquired again before returning to the caller, as expected.
3239          */
3240         spin_unlock(ptl);
3241         new_page = alloc_huge_page(vma, address, outside_reserve);
3242
3243         if (IS_ERR(new_page)) {
3244                 /*
3245                  * If a process owning a MAP_PRIVATE mapping fails to COW,
3246                  * it is due to references held by a child and an insufficient
3247                  * huge page pool. To guarantee the original mappers
3248                  * reliability, unmap the page from child processes. The child
3249                  * may get SIGKILLed if it later faults.
3250                  */
3251                 if (outside_reserve) {
3252                         page_cache_release(old_page);
3253                         BUG_ON(huge_pte_none(pte));
3254                         unmap_ref_private(mm, vma, old_page, address);
3255                         BUG_ON(huge_pte_none(pte));
3256                         spin_lock(ptl);
3257                         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3258                         if (likely(ptep &&
3259                                    pte_same(huge_ptep_get(ptep), pte)))
3260                                 goto retry_avoidcopy;
3261                         /*
3262                          * race occurs while re-acquiring page table
3263                          * lock, and our job is done.
3264                          */
3265                         return 0;
3266                 }
3267
3268                 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3269                         VM_FAULT_OOM : VM_FAULT_SIGBUS;
3270                 goto out_release_old;
3271         }
3272
3273         /*
3274          * When the original hugepage is shared one, it does not have
3275          * anon_vma prepared.
3276          */
3277         if (unlikely(anon_vma_prepare(vma))) {
3278                 ret = VM_FAULT_OOM;
3279                 goto out_release_all;
3280         }
3281
3282         copy_user_huge_page(new_page, old_page, address, vma,
3283                             pages_per_huge_page(h));
3284         __SetPageUptodate(new_page);
3285         set_page_huge_active(new_page);
3286
3287         mmun_start = address & huge_page_mask(h);
3288         mmun_end = mmun_start + huge_page_size(h);
3289         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3290
3291         /*
3292          * Retake the page table lock to check for racing updates
3293          * before the page tables are altered
3294          */
3295         spin_lock(ptl);
3296         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3297         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3298                 ClearPagePrivate(new_page);
3299
3300                 /* Break COW */
3301                 huge_ptep_clear_flush(vma, address, ptep);
3302                 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3303                 set_huge_pte_at(mm, address, ptep,
3304                                 make_huge_pte(vma, new_page, 1));
3305                 page_remove_rmap(old_page);
3306                 hugepage_add_new_anon_rmap(new_page, vma, address);
3307                 /* Make the old page be freed below */
3308                 new_page = old_page;
3309         }
3310         spin_unlock(ptl);
3311         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3312 out_release_all:
3313         page_cache_release(new_page);
3314 out_release_old:
3315         page_cache_release(old_page);
3316
3317         spin_lock(ptl); /* Caller expects lock to be held */
3318         return ret;
3319 }
3320
3321 /* Return the pagecache page at a given address within a VMA */
3322 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3323                         struct vm_area_struct *vma, unsigned long address)
3324 {
3325         struct address_space *mapping;
3326         pgoff_t idx;
3327
3328         mapping = vma->vm_file->f_mapping;
3329         idx = vma_hugecache_offset(h, vma, address);
3330
3331         return find_lock_page(mapping, idx);
3332 }
3333
3334 /*
3335  * Return whether there is a pagecache page to back given address within VMA.
3336  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3337  */
3338 static bool hugetlbfs_pagecache_present(struct hstate *h,
3339                         struct vm_area_struct *vma, unsigned long address)
3340 {
3341         struct address_space *mapping;
3342         pgoff_t idx;
3343         struct page *page;
3344
3345         mapping = vma->vm_file->f_mapping;
3346         idx = vma_hugecache_offset(h, vma, address);
3347
3348         page = find_get_page(mapping, idx);
3349         if (page)
3350                 put_page(page);
3351         return page != NULL;
3352 }
3353
3354 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3355                            struct address_space *mapping, pgoff_t idx,
3356                            unsigned long address, pte_t *ptep, unsigned int flags)
3357 {
3358         struct hstate *h = hstate_vma(vma);
3359         int ret = VM_FAULT_SIGBUS;
3360         int anon_rmap = 0;
3361         unsigned long size;
3362         struct page *page;
3363         pte_t new_pte;
3364         spinlock_t *ptl;
3365
3366         /*
3367          * Currently, we are forced to kill the process in the event the
3368          * original mapper has unmapped pages from the child due to a failed
3369          * COW. Warn that such a situation has occurred as it may not be obvious
3370          */
3371         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3372                 pr_warning("PID %d killed due to inadequate hugepage pool\n",
3373                            current->pid);
3374                 return ret;
3375         }
3376
3377         /*
3378          * Use page lock to guard against racing truncation
3379          * before we get page_table_lock.
3380          */
3381 retry:
3382         page = find_lock_page(mapping, idx);
3383         if (!page) {
3384                 size = i_size_read(mapping->host) >> huge_page_shift(h);
3385                 if (idx >= size)
3386                         goto out;
3387                 page = alloc_huge_page(vma, address, 0);
3388                 if (IS_ERR(page)) {
3389                         ret = PTR_ERR(page);
3390                         if (ret == -ENOMEM)
3391                                 ret = VM_FAULT_OOM;
3392                         else
3393                                 ret = VM_FAULT_SIGBUS;
3394                         goto out;
3395                 }
3396                 clear_huge_page(page, address, pages_per_huge_page(h));
3397                 __SetPageUptodate(page);
3398                 set_page_huge_active(page);
3399
3400                 if (vma->vm_flags & VM_MAYSHARE) {
3401                         int err;
3402                         struct inode *inode = mapping->host;
3403
3404                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3405                         if (err) {
3406                                 put_page(page);
3407                                 if (err == -EEXIST)
3408                                         goto retry;
3409                                 goto out;
3410                         }
3411                         ClearPagePrivate(page);
3412
3413                         spin_lock(&inode->i_lock);
3414                         inode->i_blocks += blocks_per_huge_page(h);
3415                         spin_unlock(&inode->i_lock);
3416                 } else {
3417                         lock_page(page);
3418                         if (unlikely(anon_vma_prepare(vma))) {
3419                                 ret = VM_FAULT_OOM;
3420                                 goto backout_unlocked;
3421                         }
3422                         anon_rmap = 1;
3423                 }
3424         } else {
3425                 /*
3426                  * If memory error occurs between mmap() and fault, some process
3427                  * don't have hwpoisoned swap entry for errored virtual address.
3428                  * So we need to block hugepage fault by PG_hwpoison bit check.
3429                  */
3430                 if (unlikely(PageHWPoison(page))) {
3431                         ret = VM_FAULT_HWPOISON |
3432                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3433                         goto backout_unlocked;
3434                 }
3435         }
3436
3437         /*
3438          * If we are going to COW a private mapping later, we examine the
3439          * pending reservations for this page now. This will ensure that
3440          * any allocations necessary to record that reservation occur outside
3441          * the spinlock.
3442          */
3443         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3444                 if (vma_needs_reservation(h, vma, address) < 0) {
3445                         ret = VM_FAULT_OOM;
3446                         goto backout_unlocked;
3447                 }
3448                 /* Just decrements count, does not deallocate */
3449                 vma_end_reservation(h, vma, address);
3450         }
3451
3452         ptl = huge_pte_lockptr(h, mm, ptep);
3453         spin_lock(ptl);
3454         size = i_size_read(mapping->host) >> huge_page_shift(h);
3455         if (idx >= size)
3456                 goto backout;
3457
3458         ret = 0;
3459         if (!huge_pte_none(huge_ptep_get(ptep)))
3460                 goto backout;
3461
3462         if (anon_rmap) {
3463                 ClearPagePrivate(page);
3464                 hugepage_add_new_anon_rmap(page, vma, address);
3465         } else
3466                 page_dup_rmap(page);
3467         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3468                                 && (vma->vm_flags & VM_SHARED)));
3469         set_huge_pte_at(mm, address, ptep, new_pte);
3470
3471         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3472                 /* Optimization, do the COW without a second fault */
3473                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3474         }
3475
3476         spin_unlock(ptl);
3477         unlock_page(page);
3478 out:
3479         return ret;
3480
3481 backout:
3482         spin_unlock(ptl);
3483 backout_unlocked:
3484         unlock_page(page);
3485         put_page(page);
3486         goto out;
3487 }
3488
3489 #ifdef CONFIG_SMP
3490 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3491                             struct vm_area_struct *vma,
3492                             struct address_space *mapping,
3493                             pgoff_t idx, unsigned long address)
3494 {
3495         unsigned long key[2];
3496         u32 hash;
3497
3498         if (vma->vm_flags & VM_SHARED) {
3499                 key[0] = (unsigned long) mapping;
3500                 key[1] = idx;
3501         } else {
3502                 key[0] = (unsigned long) mm;
3503                 key[1] = address >> huge_page_shift(h);
3504         }
3505
3506         hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3507
3508         return hash & (num_fault_mutexes - 1);
3509 }
3510 #else
3511 /*
3512  * For uniprocesor systems we always use a single mutex, so just
3513  * return 0 and avoid the hashing overhead.
3514  */
3515 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3516                             struct vm_area_struct *vma,
3517                             struct address_space *mapping,
3518                             pgoff_t idx, unsigned long address)
3519 {
3520         return 0;
3521 }
3522 #endif
3523
3524 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3525                         unsigned long address, unsigned int flags)
3526 {
3527         pte_t *ptep, entry;
3528         spinlock_t *ptl;
3529         int ret;
3530         u32 hash;
3531         pgoff_t idx;
3532         struct page *page = NULL;
3533         struct page *pagecache_page = NULL;
3534         struct hstate *h = hstate_vma(vma);
3535         struct address_space *mapping;
3536         int need_wait_lock = 0;
3537
3538         address &= huge_page_mask(h);
3539
3540         ptep = huge_pte_offset(mm, address);
3541         if (ptep) {
3542                 entry = huge_ptep_get(ptep);
3543                 if (unlikely(is_hugetlb_entry_migration(entry))) {
3544                         migration_entry_wait_huge(vma, mm, ptep);
3545                         return 0;
3546                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3547                         return VM_FAULT_HWPOISON_LARGE |
3548                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3549         }
3550
3551         ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3552         if (!ptep)
3553                 return VM_FAULT_OOM;
3554
3555         mapping = vma->vm_file->f_mapping;
3556         idx = vma_hugecache_offset(h, vma, address);
3557
3558         /*
3559          * Serialize hugepage allocation and instantiation, so that we don't
3560          * get spurious allocation failures if two CPUs race to instantiate
3561          * the same page in the page cache.
3562          */
3563         hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3564         mutex_lock(&hugetlb_fault_mutex_table[hash]);
3565
3566         entry = huge_ptep_get(ptep);
3567         if (huge_pte_none(entry)) {
3568                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3569                 goto out_mutex;
3570         }
3571
3572         ret = 0;
3573
3574         /*
3575          * entry could be a migration/hwpoison entry at this point, so this
3576          * check prevents the kernel from going below assuming that we have
3577          * a active hugepage in pagecache. This goto expects the 2nd page fault,
3578          * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3579          * handle it.
3580          */
3581         if (!pte_present(entry))
3582                 goto out_mutex;
3583
3584         /*
3585          * If we are going to COW the mapping later, we examine the pending
3586          * reservations for this page now. This will ensure that any
3587          * allocations necessary to record that reservation occur outside the
3588          * spinlock. For private mappings, we also lookup the pagecache
3589          * page now as it is used to determine if a reservation has been
3590          * consumed.
3591          */
3592         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3593                 if (vma_needs_reservation(h, vma, address) < 0) {
3594                         ret = VM_FAULT_OOM;
3595                         goto out_mutex;
3596                 }
3597                 /* Just decrements count, does not deallocate */
3598                 vma_end_reservation(h, vma, address);
3599
3600                 if (!(vma->vm_flags & VM_MAYSHARE))
3601                         pagecache_page = hugetlbfs_pagecache_page(h,
3602                                                                 vma, address);
3603         }
3604
3605         ptl = huge_pte_lock(h, mm, ptep);
3606
3607         /* Check for a racing update before calling hugetlb_cow */
3608         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3609                 goto out_ptl;
3610
3611         /*
3612          * hugetlb_cow() requires page locks of pte_page(entry) and
3613          * pagecache_page, so here we need take the former one
3614          * when page != pagecache_page or !pagecache_page.
3615          */
3616         page = pte_page(entry);
3617         if (page != pagecache_page)
3618                 if (!trylock_page(page)) {
3619                         need_wait_lock = 1;
3620                         goto out_ptl;
3621                 }
3622
3623         get_page(page);
3624
3625         if (flags & FAULT_FLAG_WRITE) {
3626                 if (!huge_pte_write(entry)) {
3627                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
3628                                         pagecache_page, ptl);
3629                         goto out_put_page;
3630                 }
3631                 entry = huge_pte_mkdirty(entry);
3632         }
3633         entry = pte_mkyoung(entry);
3634         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3635                                                 flags & FAULT_FLAG_WRITE))
3636                 update_mmu_cache(vma, address, ptep);
3637 out_put_page:
3638         if (page != pagecache_page)
3639                 unlock_page(page);
3640         put_page(page);
3641 out_ptl:
3642         spin_unlock(ptl);
3643
3644         if (pagecache_page) {
3645                 unlock_page(pagecache_page);
3646                 put_page(pagecache_page);
3647         }
3648 out_mutex:
3649         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3650         /*
3651          * Generally it's safe to hold refcount during waiting page lock. But
3652          * here we just wait to defer the next page fault to avoid busy loop and
3653          * the page is not used after unlocked before returning from the current
3654          * page fault. So we are safe from accessing freed page, even if we wait
3655          * here without taking refcount.
3656          */
3657         if (need_wait_lock)
3658                 wait_on_page_locked(page);
3659         return ret;
3660 }
3661
3662 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3663                          struct page **pages, struct vm_area_struct **vmas,
3664                          unsigned long *position, unsigned long *nr_pages,
3665                          long i, unsigned int flags)
3666 {
3667         unsigned long pfn_offset;
3668         unsigned long vaddr = *position;
3669         unsigned long remainder = *nr_pages;
3670         struct hstate *h = hstate_vma(vma);
3671
3672         while (vaddr < vma->vm_end && remainder) {
3673                 pte_t *pte;
3674                 spinlock_t *ptl = NULL;
3675                 int absent;
3676                 struct page *page;
3677
3678                 /*
3679                  * If we have a pending SIGKILL, don't keep faulting pages and
3680                  * potentially allocating memory.
3681                  */
3682                 if (unlikely(fatal_signal_pending(current))) {
3683                         remainder = 0;
3684                         break;
3685                 }
3686
3687                 /*
3688                  * Some archs (sparc64, sh*) have multiple pte_ts to
3689                  * each hugepage.  We have to make sure we get the
3690                  * first, for the page indexing below to work.
3691                  *
3692                  * Note that page table lock is not held when pte is null.
3693                  */
3694                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3695                 if (pte)
3696                         ptl = huge_pte_lock(h, mm, pte);
3697                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3698
3699                 /*
3700                  * When coredumping, it suits get_dump_page if we just return
3701                  * an error where there's an empty slot with no huge pagecache
3702                  * to back it.  This way, we avoid allocating a hugepage, and
3703                  * the sparse dumpfile avoids allocating disk blocks, but its
3704                  * huge holes still show up with zeroes where they need to be.
3705                  */
3706                 if (absent && (flags & FOLL_DUMP) &&
3707                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3708                         if (pte)
3709                                 spin_unlock(ptl);
3710                         remainder = 0;
3711                         break;
3712                 }
3713
3714                 /*
3715                  * We need call hugetlb_fault for both hugepages under migration
3716                  * (in which case hugetlb_fault waits for the migration,) and
3717                  * hwpoisoned hugepages (in which case we need to prevent the
3718                  * caller from accessing to them.) In order to do this, we use
3719                  * here is_swap_pte instead of is_hugetlb_entry_migration and
3720                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3721                  * both cases, and because we can't follow correct pages
3722                  * directly from any kind of swap entries.
3723                  */
3724                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3725                     ((flags & FOLL_WRITE) &&
3726                       !huge_pte_write(huge_ptep_get(pte)))) {
3727                         int ret;
3728
3729                         if (pte)
3730                                 spin_unlock(ptl);
3731                         ret = hugetlb_fault(mm, vma, vaddr,
3732                                 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3733                         if (!(ret & VM_FAULT_ERROR))
3734                                 continue;
3735
3736                         remainder = 0;
3737                         break;
3738                 }
3739
3740                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3741                 page = pte_page(huge_ptep_get(pte));
3742 same_page:
3743                 if (pages) {
3744                         pages[i] = mem_map_offset(page, pfn_offset);
3745                         get_page_foll(pages[i]);
3746                 }
3747
3748                 if (vmas)
3749                         vmas[i] = vma;
3750
3751                 vaddr += PAGE_SIZE;
3752                 ++pfn_offset;
3753                 --remainder;
3754                 ++i;
3755                 if (vaddr < vma->vm_end && remainder &&
3756                                 pfn_offset < pages_per_huge_page(h)) {
3757                         /*
3758                          * We use pfn_offset to avoid touching the pageframes
3759                          * of this compound page.
3760                          */
3761                         goto same_page;
3762                 }
3763                 spin_unlock(ptl);
3764         }
3765         *nr_pages = remainder;
3766         *position = vaddr;
3767
3768         return i ? i : -EFAULT;
3769 }
3770
3771 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3772                 unsigned long address, unsigned long end, pgprot_t newprot)
3773 {
3774         struct mm_struct *mm = vma->vm_mm;
3775         unsigned long start = address;
3776         pte_t *ptep;
3777         pte_t pte;
3778         struct hstate *h = hstate_vma(vma);
3779         unsigned long pages = 0;
3780
3781         BUG_ON(address >= end);
3782         flush_cache_range(vma, address, end);
3783
3784         mmu_notifier_invalidate_range_start(mm, start, end);
3785         i_mmap_lock_write(vma->vm_file->f_mapping);
3786         for (; address < end; address += huge_page_size(h)) {
3787                 spinlock_t *ptl;
3788                 ptep = huge_pte_offset(mm, address);
3789                 if (!ptep)
3790                         continue;
3791                 ptl = huge_pte_lock(h, mm, ptep);
3792                 if (huge_pmd_unshare(mm, &address, ptep)) {
3793                         pages++;
3794                         spin_unlock(ptl);
3795                         continue;
3796                 }
3797                 pte = huge_ptep_get(ptep);
3798                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
3799                         spin_unlock(ptl);
3800                         continue;
3801                 }
3802                 if (unlikely(is_hugetlb_entry_migration(pte))) {
3803                         swp_entry_t entry = pte_to_swp_entry(pte);
3804
3805                         if (is_write_migration_entry(entry)) {
3806                                 pte_t newpte;
3807
3808                                 make_migration_entry_read(&entry);
3809                                 newpte = swp_entry_to_pte(entry);
3810                                 set_huge_pte_at(mm, address, ptep, newpte);
3811                                 pages++;
3812                         }
3813                         spin_unlock(ptl);
3814                         continue;
3815                 }
3816                 if (!huge_pte_none(pte)) {
3817                         pte = huge_ptep_get_and_clear(mm, address, ptep);
3818                         pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3819                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
3820                         set_huge_pte_at(mm, address, ptep, pte);
3821                         pages++;
3822                 }
3823                 spin_unlock(ptl);
3824         }
3825         /*
3826          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
3827          * may have cleared our pud entry and done put_page on the page table:
3828          * once we release i_mmap_rwsem, another task can do the final put_page
3829          * and that page table be reused and filled with junk.
3830          */
3831         flush_tlb_range(vma, start, end);
3832         mmu_notifier_invalidate_range(mm, start, end);
3833         i_mmap_unlock_write(vma->vm_file->f_mapping);
3834         mmu_notifier_invalidate_range_end(mm, start, end);
3835
3836         return pages << h->order;
3837 }
3838
3839 int hugetlb_reserve_pages(struct inode *inode,
3840                                         long from, long to,
3841                                         struct vm_area_struct *vma,
3842                                         vm_flags_t vm_flags)
3843 {
3844         long ret, chg;
3845         struct hstate *h = hstate_inode(inode);
3846         struct hugepage_subpool *spool = subpool_inode(inode);
3847         struct resv_map *resv_map;
3848         long gbl_reserve;
3849
3850         /*
3851          * Only apply hugepage reservation if asked. At fault time, an
3852          * attempt will be made for VM_NORESERVE to allocate a page
3853          * without using reserves
3854          */
3855         if (vm_flags & VM_NORESERVE)
3856                 return 0;
3857
3858         /*
3859          * Shared mappings base their reservation on the number of pages that
3860          * are already allocated on behalf of the file. Private mappings need
3861          * to reserve the full area even if read-only as mprotect() may be
3862          * called to make the mapping read-write. Assume !vma is a shm mapping
3863          */
3864         if (!vma || vma->vm_flags & VM_MAYSHARE) {
3865                 resv_map = inode_resv_map(inode);
3866
3867                 chg = region_chg(resv_map, from, to);
3868
3869         } else {
3870                 resv_map = resv_map_alloc();
3871                 if (!resv_map)
3872                         return -ENOMEM;
3873
3874                 chg = to - from;
3875
3876                 set_vma_resv_map(vma, resv_map);
3877                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3878         }
3879
3880         if (chg < 0) {
3881                 ret = chg;
3882                 goto out_err;
3883         }
3884
3885         /*
3886          * There must be enough pages in the subpool for the mapping. If
3887          * the subpool has a minimum size, there may be some global
3888          * reservations already in place (gbl_reserve).
3889          */
3890         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
3891         if (gbl_reserve < 0) {
3892                 ret = -ENOSPC;
3893                 goto out_err;
3894         }
3895
3896         /*
3897          * Check enough hugepages are available for the reservation.
3898          * Hand the pages back to the subpool if there are not
3899          */
3900         ret = hugetlb_acct_memory(h, gbl_reserve);
3901         if (ret < 0) {
3902                 /* put back original number of pages, chg */
3903                 (void)hugepage_subpool_put_pages(spool, chg);
3904                 goto out_err;
3905         }
3906
3907         /*
3908          * Account for the reservations made. Shared mappings record regions
3909          * that have reservations as they are shared by multiple VMAs.
3910          * When the last VMA disappears, the region map says how much
3911          * the reservation was and the page cache tells how much of
3912          * the reservation was consumed. Private mappings are per-VMA and
3913          * only the consumed reservations are tracked. When the VMA
3914          * disappears, the original reservation is the VMA size and the
3915          * consumed reservations are stored in the map. Hence, nothing
3916          * else has to be done for private mappings here
3917          */
3918         if (!vma || vma->vm_flags & VM_MAYSHARE) {
3919                 long add = region_add(resv_map, from, to);
3920
3921                 if (unlikely(chg > add)) {
3922                         /*
3923                          * pages in this range were added to the reserve
3924                          * map between region_chg and region_add.  This
3925                          * indicates a race with alloc_huge_page.  Adjust
3926                          * the subpool and reserve counts modified above
3927                          * based on the difference.
3928                          */
3929                         long rsv_adjust;
3930
3931                         rsv_adjust = hugepage_subpool_put_pages(spool,
3932                                                                 chg - add);
3933                         hugetlb_acct_memory(h, -rsv_adjust);
3934                 }
3935         }
3936         return 0;
3937 out_err:
3938         if (!vma || vma->vm_flags & VM_MAYSHARE)
3939                 region_abort(resv_map, from, to);
3940         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3941                 kref_put(&resv_map->refs, resv_map_release);
3942         return ret;
3943 }
3944
3945 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
3946                                                                 long freed)
3947 {
3948         struct hstate *h = hstate_inode(inode);
3949         struct resv_map *resv_map = inode_resv_map(inode);
3950         long chg = 0;
3951         struct hugepage_subpool *spool = subpool_inode(inode);
3952         long gbl_reserve;
3953
3954         if (resv_map) {
3955                 chg = region_del(resv_map, start, end);
3956                 /*
3957                  * region_del() can fail in the rare case where a region
3958                  * must be split and another region descriptor can not be
3959                  * allocated.  If end == LONG_MAX, it will not fail.
3960                  */
3961                 if (chg < 0)
3962                         return chg;
3963         }
3964
3965         spin_lock(&inode->i_lock);
3966         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3967         spin_unlock(&inode->i_lock);
3968
3969         /*
3970          * If the subpool has a minimum size, the number of global
3971          * reservations to be released may be adjusted.
3972          */
3973         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
3974         hugetlb_acct_memory(h, -gbl_reserve);
3975
3976         return 0;
3977 }
3978
3979 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3980 static unsigned long page_table_shareable(struct vm_area_struct *svma,
3981                                 struct vm_area_struct *vma,
3982                                 unsigned long addr, pgoff_t idx)
3983 {
3984         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3985                                 svma->vm_start;
3986         unsigned long sbase = saddr & PUD_MASK;
3987         unsigned long s_end = sbase + PUD_SIZE;
3988
3989         /* Allow segments to share if only one is marked locked */
3990         unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3991         unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3992
3993         /*
3994          * match the virtual addresses, permission and the alignment of the
3995          * page table page.
3996          */
3997         if (pmd_index(addr) != pmd_index(saddr) ||
3998             vm_flags != svm_flags ||
3999             sbase < svma->vm_start || svma->vm_end < s_end)
4000                 return 0;
4001
4002         return saddr;
4003 }
4004
4005 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4006 {
4007         unsigned long base = addr & PUD_MASK;
4008         unsigned long end = base + PUD_SIZE;
4009
4010         /*
4011          * check on proper vm_flags and page table alignment
4012          */
4013         if (vma->vm_flags & VM_MAYSHARE &&
4014             vma->vm_start <= base && end <= vma->vm_end)
4015                 return true;
4016         return false;
4017 }
4018
4019 /*
4020  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4021  * and returns the corresponding pte. While this is not necessary for the
4022  * !shared pmd case because we can allocate the pmd later as well, it makes the
4023  * code much cleaner. pmd allocation is essential for the shared case because
4024  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4025  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4026  * bad pmd for sharing.
4027  */
4028 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4029 {
4030         struct vm_area_struct *vma = find_vma(mm, addr);
4031         struct address_space *mapping = vma->vm_file->f_mapping;
4032         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4033                         vma->vm_pgoff;
4034         struct vm_area_struct *svma;
4035         unsigned long saddr;
4036         pte_t *spte = NULL;
4037         pte_t *pte;
4038         spinlock_t *ptl;
4039
4040         if (!vma_shareable(vma, addr))
4041                 return (pte_t *)pmd_alloc(mm, pud, addr);
4042
4043         i_mmap_lock_write(mapping);
4044         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4045                 if (svma == vma)
4046                         continue;
4047
4048                 saddr = page_table_shareable(svma, vma, addr, idx);
4049                 if (saddr) {
4050                         spte = huge_pte_offset(svma->vm_mm, saddr);
4051                         if (spte) {
4052                                 mm_inc_nr_pmds(mm);
4053                                 get_page(virt_to_page(spte));
4054                                 break;
4055                         }
4056                 }
4057         }
4058
4059         if (!spte)
4060                 goto out;
4061
4062         ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
4063         spin_lock(ptl);
4064         if (pud_none(*pud)) {
4065                 pud_populate(mm, pud,
4066                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4067         } else {
4068                 put_page(virt_to_page(spte));
4069                 mm_inc_nr_pmds(mm);
4070         }
4071         spin_unlock(ptl);
4072 out:
4073         pte = (pte_t *)pmd_alloc(mm, pud, addr);
4074         i_mmap_unlock_write(mapping);
4075         return pte;
4076 }
4077
4078 /*
4079  * unmap huge page backed by shared pte.
4080  *
4081  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4082  * indicated by page_count > 1, unmap is achieved by clearing pud and
4083  * decrementing the ref count. If count == 1, the pte page is not shared.
4084  *
4085  * called with page table lock held.
4086  *
4087  * returns: 1 successfully unmapped a shared pte page
4088  *          0 the underlying pte page is not shared, or it is the last user
4089  */
4090 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4091 {
4092         pgd_t *pgd = pgd_offset(mm, *addr);
4093         pud_t *pud = pud_offset(pgd, *addr);
4094
4095         BUG_ON(page_count(virt_to_page(ptep)) == 0);
4096         if (page_count(virt_to_page(ptep)) == 1)
4097                 return 0;
4098
4099         pud_clear(pud);
4100         put_page(virt_to_page(ptep));
4101         mm_dec_nr_pmds(mm);
4102         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4103         return 1;
4104 }
4105 #define want_pmd_share()        (1)
4106 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4107 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4108 {
4109         return NULL;
4110 }
4111
4112 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4113 {
4114         return 0;
4115 }
4116 #define want_pmd_share()        (0)
4117 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4118
4119 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4120 pte_t *huge_pte_alloc(struct mm_struct *mm,
4121                         unsigned long addr, unsigned long sz)
4122 {
4123         pgd_t *pgd;
4124         pud_t *pud;
4125         pte_t *pte = NULL;
4126
4127         pgd = pgd_offset(mm, addr);
4128         pud = pud_alloc(mm, pgd, addr);
4129         if (pud) {
4130                 if (sz == PUD_SIZE) {
4131                         pte = (pte_t *)pud;
4132                 } else {
4133                         BUG_ON(sz != PMD_SIZE);
4134                         if (want_pmd_share() && pud_none(*pud))
4135                                 pte = huge_pmd_share(mm, addr, pud);
4136                         else
4137                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4138                 }
4139         }
4140         BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
4141
4142         return pte;
4143 }
4144
4145 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
4146 {
4147         pgd_t *pgd;
4148         pud_t *pud;
4149         pmd_t *pmd = NULL;
4150
4151         pgd = pgd_offset(mm, addr);
4152         if (pgd_present(*pgd)) {
4153                 pud = pud_offset(pgd, addr);
4154                 if (pud_present(*pud)) {
4155                         if (pud_huge(*pud))
4156                                 return (pte_t *)pud;
4157                         pmd = pmd_offset(pud, addr);
4158                 }
4159         }
4160         return (pte_t *) pmd;
4161 }
4162
4163 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4164
4165 /*
4166  * These functions are overwritable if your architecture needs its own
4167  * behavior.
4168  */
4169 struct page * __weak
4170 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4171                               int write)
4172 {
4173         return ERR_PTR(-EINVAL);
4174 }
4175
4176 struct page * __weak
4177 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4178                 pmd_t *pmd, int flags)
4179 {
4180         struct page *page = NULL;
4181         spinlock_t *ptl;
4182 retry:
4183         ptl = pmd_lockptr(mm, pmd);
4184         spin_lock(ptl);
4185         /*
4186          * make sure that the address range covered by this pmd is not
4187          * unmapped from other threads.
4188          */
4189         if (!pmd_huge(*pmd))
4190                 goto out;
4191         if (pmd_present(*pmd)) {
4192                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4193                 if (flags & FOLL_GET)
4194                         get_page(page);
4195         } else {
4196                 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
4197                         spin_unlock(ptl);
4198                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4199                         goto retry;
4200                 }
4201                 /*
4202                  * hwpoisoned entry is treated as no_page_table in
4203                  * follow_page_mask().
4204                  */
4205         }
4206 out:
4207         spin_unlock(ptl);
4208         return page;
4209 }
4210
4211 struct page * __weak
4212 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4213                 pud_t *pud, int flags)
4214 {
4215         if (flags & FOLL_GET)
4216                 return NULL;
4217
4218         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4219 }
4220
4221 #ifdef CONFIG_MEMORY_FAILURE
4222
4223 /*
4224  * This function is called from memory failure code.
4225  * Assume the caller holds page lock of the head page.
4226  */
4227 int dequeue_hwpoisoned_huge_page(struct page *hpage)
4228 {
4229         struct hstate *h = page_hstate(hpage);
4230         int nid = page_to_nid(hpage);
4231         int ret = -EBUSY;
4232
4233         spin_lock(&hugetlb_lock);
4234         /*
4235          * Just checking !page_huge_active is not enough, because that could be
4236          * an isolated/hwpoisoned hugepage (which have >0 refcount).
4237          */
4238         if (!page_huge_active(hpage) && !page_count(hpage)) {
4239                 /*
4240                  * Hwpoisoned hugepage isn't linked to activelist or freelist,
4241                  * but dangling hpage->lru can trigger list-debug warnings
4242                  * (this happens when we call unpoison_memory() on it),
4243                  * so let it point to itself with list_del_init().
4244                  */
4245                 list_del_init(&hpage->lru);
4246                 set_page_refcounted(hpage);
4247                 h->free_huge_pages--;
4248                 h->free_huge_pages_node[nid]--;
4249                 ret = 0;
4250         }
4251         spin_unlock(&hugetlb_lock);
4252         return ret;
4253 }
4254 #endif
4255
4256 bool isolate_huge_page(struct page *page, struct list_head *list)
4257 {
4258         bool ret = true;
4259
4260         VM_BUG_ON_PAGE(!PageHead(page), page);
4261         spin_lock(&hugetlb_lock);
4262         if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4263                 ret = false;
4264                 goto unlock;
4265         }
4266         clear_page_huge_active(page);
4267         list_move_tail(&page->lru, list);
4268 unlock:
4269         spin_unlock(&hugetlb_lock);
4270         return ret;
4271 }
4272
4273 void putback_active_hugepage(struct page *page)
4274 {
4275         VM_BUG_ON_PAGE(!PageHead(page), page);
4276         spin_lock(&hugetlb_lock);
4277         set_page_huge_active(page);
4278         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4279         spin_unlock(&hugetlb_lock);
4280         put_page(page);
4281 }