mm: move memcg hierarchy reclaim to generic reclaim code
[cascardo/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  */
23
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/export.h>
37 #include <linux/mutex.h>
38 #include <linux/rbtree.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swapops.h>
42 #include <linux/spinlock.h>
43 #include <linux/eventfd.h>
44 #include <linux/sort.h>
45 #include <linux/fs.h>
46 #include <linux/seq_file.h>
47 #include <linux/vmalloc.h>
48 #include <linux/mm_inline.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/cpu.h>
51 #include <linux/oom.h>
52 #include "internal.h"
53 #include <net/sock.h>
54 #include <net/tcp_memcontrol.h>
55
56 #include <asm/uaccess.h>
57
58 #include <trace/events/vmscan.h>
59
60 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
61 #define MEM_CGROUP_RECLAIM_RETRIES      5
62 struct mem_cgroup *root_mem_cgroup __read_mostly;
63
64 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
65 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66 int do_swap_account __read_mostly;
67
68 /* for remember boot option*/
69 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
70 static int really_do_swap_account __initdata = 1;
71 #else
72 static int really_do_swap_account __initdata = 0;
73 #endif
74
75 #else
76 #define do_swap_account         (0)
77 #endif
78
79
80 /*
81  * Statistics for memory cgroup.
82  */
83 enum mem_cgroup_stat_index {
84         /*
85          * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
86          */
87         MEM_CGROUP_STAT_CACHE,     /* # of pages charged as cache */
88         MEM_CGROUP_STAT_RSS,       /* # of pages charged as anon rss */
89         MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
90         MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
91         MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
92         MEM_CGROUP_ON_MOVE,     /* someone is moving account between groups */
93         MEM_CGROUP_STAT_NSTATS,
94 };
95
96 enum mem_cgroup_events_index {
97         MEM_CGROUP_EVENTS_PGPGIN,       /* # of pages paged in */
98         MEM_CGROUP_EVENTS_PGPGOUT,      /* # of pages paged out */
99         MEM_CGROUP_EVENTS_COUNT,        /* # of pages paged in/out */
100         MEM_CGROUP_EVENTS_PGFAULT,      /* # of page-faults */
101         MEM_CGROUP_EVENTS_PGMAJFAULT,   /* # of major page-faults */
102         MEM_CGROUP_EVENTS_NSTATS,
103 };
104 /*
105  * Per memcg event counter is incremented at every pagein/pageout. With THP,
106  * it will be incremated by the number of pages. This counter is used for
107  * for trigger some periodic events. This is straightforward and better
108  * than using jiffies etc. to handle periodic memcg event.
109  */
110 enum mem_cgroup_events_target {
111         MEM_CGROUP_TARGET_THRESH,
112         MEM_CGROUP_TARGET_SOFTLIMIT,
113         MEM_CGROUP_TARGET_NUMAINFO,
114         MEM_CGROUP_NTARGETS,
115 };
116 #define THRESHOLDS_EVENTS_TARGET (128)
117 #define SOFTLIMIT_EVENTS_TARGET (1024)
118 #define NUMAINFO_EVENTS_TARGET  (1024)
119
120 struct mem_cgroup_stat_cpu {
121         long count[MEM_CGROUP_STAT_NSTATS];
122         unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
123         unsigned long targets[MEM_CGROUP_NTARGETS];
124 };
125
126 struct mem_cgroup_reclaim_iter {
127         /* css_id of the last scanned hierarchy member */
128         int position;
129         /* scan generation, increased every round-trip */
130         unsigned int generation;
131 };
132
133 /*
134  * per-zone information in memory controller.
135  */
136 struct mem_cgroup_per_zone {
137         /*
138          * spin_lock to protect the per cgroup LRU
139          */
140         struct list_head        lists[NR_LRU_LISTS];
141         unsigned long           count[NR_LRU_LISTS];
142
143         struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
144
145         struct zone_reclaim_stat reclaim_stat;
146         struct rb_node          tree_node;      /* RB tree node */
147         unsigned long long      usage_in_excess;/* Set to the value by which */
148                                                 /* the soft limit is exceeded*/
149         bool                    on_tree;
150         struct mem_cgroup       *mem;           /* Back pointer, we cannot */
151                                                 /* use container_of        */
152 };
153 /* Macro for accessing counter */
154 #define MEM_CGROUP_ZSTAT(mz, idx)       ((mz)->count[(idx)])
155
156 struct mem_cgroup_per_node {
157         struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
158 };
159
160 struct mem_cgroup_lru_info {
161         struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
162 };
163
164 /*
165  * Cgroups above their limits are maintained in a RB-Tree, independent of
166  * their hierarchy representation
167  */
168
169 struct mem_cgroup_tree_per_zone {
170         struct rb_root rb_root;
171         spinlock_t lock;
172 };
173
174 struct mem_cgroup_tree_per_node {
175         struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
176 };
177
178 struct mem_cgroup_tree {
179         struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
180 };
181
182 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
183
184 struct mem_cgroup_threshold {
185         struct eventfd_ctx *eventfd;
186         u64 threshold;
187 };
188
189 /* For threshold */
190 struct mem_cgroup_threshold_ary {
191         /* An array index points to threshold just below usage. */
192         int current_threshold;
193         /* Size of entries[] */
194         unsigned int size;
195         /* Array of thresholds */
196         struct mem_cgroup_threshold entries[0];
197 };
198
199 struct mem_cgroup_thresholds {
200         /* Primary thresholds array */
201         struct mem_cgroup_threshold_ary *primary;
202         /*
203          * Spare threshold array.
204          * This is needed to make mem_cgroup_unregister_event() "never fail".
205          * It must be able to store at least primary->size - 1 entries.
206          */
207         struct mem_cgroup_threshold_ary *spare;
208 };
209
210 /* for OOM */
211 struct mem_cgroup_eventfd_list {
212         struct list_head list;
213         struct eventfd_ctx *eventfd;
214 };
215
216 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
217 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
218
219 /*
220  * The memory controller data structure. The memory controller controls both
221  * page cache and RSS per cgroup. We would eventually like to provide
222  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
223  * to help the administrator determine what knobs to tune.
224  *
225  * TODO: Add a water mark for the memory controller. Reclaim will begin when
226  * we hit the water mark. May be even add a low water mark, such that
227  * no reclaim occurs from a cgroup at it's low water mark, this is
228  * a feature that will be implemented much later in the future.
229  */
230 struct mem_cgroup {
231         struct cgroup_subsys_state css;
232         /*
233          * the counter to account for memory usage
234          */
235         struct res_counter res;
236         /*
237          * the counter to account for mem+swap usage.
238          */
239         struct res_counter memsw;
240         /*
241          * Per cgroup active and inactive list, similar to the
242          * per zone LRU lists.
243          */
244         struct mem_cgroup_lru_info info;
245         int last_scanned_node;
246 #if MAX_NUMNODES > 1
247         nodemask_t      scan_nodes;
248         atomic_t        numainfo_events;
249         atomic_t        numainfo_updating;
250 #endif
251         /*
252          * Should the accounting and control be hierarchical, per subtree?
253          */
254         bool use_hierarchy;
255
256         bool            oom_lock;
257         atomic_t        under_oom;
258
259         atomic_t        refcnt;
260
261         int     swappiness;
262         /* OOM-Killer disable */
263         int             oom_kill_disable;
264
265         /* set when res.limit == memsw.limit */
266         bool            memsw_is_minimum;
267
268         /* protect arrays of thresholds */
269         struct mutex thresholds_lock;
270
271         /* thresholds for memory usage. RCU-protected */
272         struct mem_cgroup_thresholds thresholds;
273
274         /* thresholds for mem+swap usage. RCU-protected */
275         struct mem_cgroup_thresholds memsw_thresholds;
276
277         /* For oom notifier event fd */
278         struct list_head oom_notify;
279
280         /*
281          * Should we move charges of a task when a task is moved into this
282          * mem_cgroup ? And what type of charges should we move ?
283          */
284         unsigned long   move_charge_at_immigrate;
285         /*
286          * percpu counter.
287          */
288         struct mem_cgroup_stat_cpu *stat;
289         /*
290          * used when a cpu is offlined or other synchronizations
291          * See mem_cgroup_read_stat().
292          */
293         struct mem_cgroup_stat_cpu nocpu_base;
294         spinlock_t pcp_counter_lock;
295
296 #ifdef CONFIG_INET
297         struct tcp_memcontrol tcp_mem;
298 #endif
299 };
300
301 /* Stuffs for move charges at task migration. */
302 /*
303  * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
304  * left-shifted bitmap of these types.
305  */
306 enum move_type {
307         MOVE_CHARGE_TYPE_ANON,  /* private anonymous page and swap of it */
308         MOVE_CHARGE_TYPE_FILE,  /* file page(including tmpfs) and swap of it */
309         NR_MOVE_TYPE,
310 };
311
312 /* "mc" and its members are protected by cgroup_mutex */
313 static struct move_charge_struct {
314         spinlock_t        lock; /* for from, to */
315         struct mem_cgroup *from;
316         struct mem_cgroup *to;
317         unsigned long precharge;
318         unsigned long moved_charge;
319         unsigned long moved_swap;
320         struct task_struct *moving_task;        /* a task moving charges */
321         wait_queue_head_t waitq;                /* a waitq for other context */
322 } mc = {
323         .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
324         .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
325 };
326
327 static bool move_anon(void)
328 {
329         return test_bit(MOVE_CHARGE_TYPE_ANON,
330                                         &mc.to->move_charge_at_immigrate);
331 }
332
333 static bool move_file(void)
334 {
335         return test_bit(MOVE_CHARGE_TYPE_FILE,
336                                         &mc.to->move_charge_at_immigrate);
337 }
338
339 /*
340  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
341  * limit reclaim to prevent infinite loops, if they ever occur.
342  */
343 #define MEM_CGROUP_MAX_RECLAIM_LOOPS            (100)
344 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
345
346 enum charge_type {
347         MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
348         MEM_CGROUP_CHARGE_TYPE_MAPPED,
349         MEM_CGROUP_CHARGE_TYPE_SHMEM,   /* used by page migration of shmem */
350         MEM_CGROUP_CHARGE_TYPE_FORCE,   /* used by force_empty */
351         MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
352         MEM_CGROUP_CHARGE_TYPE_DROP,    /* a page was unused swap cache */
353         NR_CHARGE_TYPE,
354 };
355
356 /* for encoding cft->private value on file */
357 #define _MEM                    (0)
358 #define _MEMSWAP                (1)
359 #define _OOM_TYPE               (2)
360 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
361 #define MEMFILE_TYPE(val)       (((val) >> 16) & 0xffff)
362 #define MEMFILE_ATTR(val)       ((val) & 0xffff)
363 /* Used for OOM nofiier */
364 #define OOM_CONTROL             (0)
365
366 /*
367  * Reclaim flags for mem_cgroup_hierarchical_reclaim
368  */
369 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT   0x0
370 #define MEM_CGROUP_RECLAIM_NOSWAP       (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
371 #define MEM_CGROUP_RECLAIM_SHRINK_BIT   0x1
372 #define MEM_CGROUP_RECLAIM_SHRINK       (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
373
374 static void mem_cgroup_get(struct mem_cgroup *memcg);
375 static void mem_cgroup_put(struct mem_cgroup *memcg);
376
377 /* Writing them here to avoid exposing memcg's inner layout */
378 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
379 #ifdef CONFIG_INET
380 #include <net/sock.h>
381 #include <net/ip.h>
382
383 static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
384 void sock_update_memcg(struct sock *sk)
385 {
386         if (static_branch(&memcg_socket_limit_enabled)) {
387                 struct mem_cgroup *memcg;
388
389                 BUG_ON(!sk->sk_prot->proto_cgroup);
390
391                 /* Socket cloning can throw us here with sk_cgrp already
392                  * filled. It won't however, necessarily happen from
393                  * process context. So the test for root memcg given
394                  * the current task's memcg won't help us in this case.
395                  *
396                  * Respecting the original socket's memcg is a better
397                  * decision in this case.
398                  */
399                 if (sk->sk_cgrp) {
400                         BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
401                         mem_cgroup_get(sk->sk_cgrp->memcg);
402                         return;
403                 }
404
405                 rcu_read_lock();
406                 memcg = mem_cgroup_from_task(current);
407                 if (!mem_cgroup_is_root(memcg)) {
408                         mem_cgroup_get(memcg);
409                         sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
410                 }
411                 rcu_read_unlock();
412         }
413 }
414 EXPORT_SYMBOL(sock_update_memcg);
415
416 void sock_release_memcg(struct sock *sk)
417 {
418         if (static_branch(&memcg_socket_limit_enabled) && sk->sk_cgrp) {
419                 struct mem_cgroup *memcg;
420                 WARN_ON(!sk->sk_cgrp->memcg);
421                 memcg = sk->sk_cgrp->memcg;
422                 mem_cgroup_put(memcg);
423         }
424 }
425
426 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
427 {
428         if (!memcg || mem_cgroup_is_root(memcg))
429                 return NULL;
430
431         return &memcg->tcp_mem.cg_proto;
432 }
433 EXPORT_SYMBOL(tcp_proto_cgroup);
434 #endif /* CONFIG_INET */
435 #endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
436
437 static void drain_all_stock_async(struct mem_cgroup *memcg);
438
439 static struct mem_cgroup_per_zone *
440 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
441 {
442         return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
443 }
444
445 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
446 {
447         return &memcg->css;
448 }
449
450 static struct mem_cgroup_per_zone *
451 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
452 {
453         int nid = page_to_nid(page);
454         int zid = page_zonenum(page);
455
456         return mem_cgroup_zoneinfo(memcg, nid, zid);
457 }
458
459 static struct mem_cgroup_tree_per_zone *
460 soft_limit_tree_node_zone(int nid, int zid)
461 {
462         return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
463 }
464
465 static struct mem_cgroup_tree_per_zone *
466 soft_limit_tree_from_page(struct page *page)
467 {
468         int nid = page_to_nid(page);
469         int zid = page_zonenum(page);
470
471         return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
472 }
473
474 static void
475 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
476                                 struct mem_cgroup_per_zone *mz,
477                                 struct mem_cgroup_tree_per_zone *mctz,
478                                 unsigned long long new_usage_in_excess)
479 {
480         struct rb_node **p = &mctz->rb_root.rb_node;
481         struct rb_node *parent = NULL;
482         struct mem_cgroup_per_zone *mz_node;
483
484         if (mz->on_tree)
485                 return;
486
487         mz->usage_in_excess = new_usage_in_excess;
488         if (!mz->usage_in_excess)
489                 return;
490         while (*p) {
491                 parent = *p;
492                 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
493                                         tree_node);
494                 if (mz->usage_in_excess < mz_node->usage_in_excess)
495                         p = &(*p)->rb_left;
496                 /*
497                  * We can't avoid mem cgroups that are over their soft
498                  * limit by the same amount
499                  */
500                 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
501                         p = &(*p)->rb_right;
502         }
503         rb_link_node(&mz->tree_node, parent, p);
504         rb_insert_color(&mz->tree_node, &mctz->rb_root);
505         mz->on_tree = true;
506 }
507
508 static void
509 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
510                                 struct mem_cgroup_per_zone *mz,
511                                 struct mem_cgroup_tree_per_zone *mctz)
512 {
513         if (!mz->on_tree)
514                 return;
515         rb_erase(&mz->tree_node, &mctz->rb_root);
516         mz->on_tree = false;
517 }
518
519 static void
520 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
521                                 struct mem_cgroup_per_zone *mz,
522                                 struct mem_cgroup_tree_per_zone *mctz)
523 {
524         spin_lock(&mctz->lock);
525         __mem_cgroup_remove_exceeded(memcg, mz, mctz);
526         spin_unlock(&mctz->lock);
527 }
528
529
530 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
531 {
532         unsigned long long excess;
533         struct mem_cgroup_per_zone *mz;
534         struct mem_cgroup_tree_per_zone *mctz;
535         int nid = page_to_nid(page);
536         int zid = page_zonenum(page);
537         mctz = soft_limit_tree_from_page(page);
538
539         /*
540          * Necessary to update all ancestors when hierarchy is used.
541          * because their event counter is not touched.
542          */
543         for (; memcg; memcg = parent_mem_cgroup(memcg)) {
544                 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
545                 excess = res_counter_soft_limit_excess(&memcg->res);
546                 /*
547                  * We have to update the tree if mz is on RB-tree or
548                  * mem is over its softlimit.
549                  */
550                 if (excess || mz->on_tree) {
551                         spin_lock(&mctz->lock);
552                         /* if on-tree, remove it */
553                         if (mz->on_tree)
554                                 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
555                         /*
556                          * Insert again. mz->usage_in_excess will be updated.
557                          * If excess is 0, no tree ops.
558                          */
559                         __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
560                         spin_unlock(&mctz->lock);
561                 }
562         }
563 }
564
565 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
566 {
567         int node, zone;
568         struct mem_cgroup_per_zone *mz;
569         struct mem_cgroup_tree_per_zone *mctz;
570
571         for_each_node_state(node, N_POSSIBLE) {
572                 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
573                         mz = mem_cgroup_zoneinfo(memcg, node, zone);
574                         mctz = soft_limit_tree_node_zone(node, zone);
575                         mem_cgroup_remove_exceeded(memcg, mz, mctz);
576                 }
577         }
578 }
579
580 static struct mem_cgroup_per_zone *
581 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
582 {
583         struct rb_node *rightmost = NULL;
584         struct mem_cgroup_per_zone *mz;
585
586 retry:
587         mz = NULL;
588         rightmost = rb_last(&mctz->rb_root);
589         if (!rightmost)
590                 goto done;              /* Nothing to reclaim from */
591
592         mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
593         /*
594          * Remove the node now but someone else can add it back,
595          * we will to add it back at the end of reclaim to its correct
596          * position in the tree.
597          */
598         __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
599         if (!res_counter_soft_limit_excess(&mz->mem->res) ||
600                 !css_tryget(&mz->mem->css))
601                 goto retry;
602 done:
603         return mz;
604 }
605
606 static struct mem_cgroup_per_zone *
607 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
608 {
609         struct mem_cgroup_per_zone *mz;
610
611         spin_lock(&mctz->lock);
612         mz = __mem_cgroup_largest_soft_limit_node(mctz);
613         spin_unlock(&mctz->lock);
614         return mz;
615 }
616
617 /*
618  * Implementation Note: reading percpu statistics for memcg.
619  *
620  * Both of vmstat[] and percpu_counter has threshold and do periodic
621  * synchronization to implement "quick" read. There are trade-off between
622  * reading cost and precision of value. Then, we may have a chance to implement
623  * a periodic synchronizion of counter in memcg's counter.
624  *
625  * But this _read() function is used for user interface now. The user accounts
626  * memory usage by memory cgroup and he _always_ requires exact value because
627  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
628  * have to visit all online cpus and make sum. So, for now, unnecessary
629  * synchronization is not implemented. (just implemented for cpu hotplug)
630  *
631  * If there are kernel internal actions which can make use of some not-exact
632  * value, and reading all cpu value can be performance bottleneck in some
633  * common workload, threashold and synchonization as vmstat[] should be
634  * implemented.
635  */
636 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
637                                  enum mem_cgroup_stat_index idx)
638 {
639         long val = 0;
640         int cpu;
641
642         get_online_cpus();
643         for_each_online_cpu(cpu)
644                 val += per_cpu(memcg->stat->count[idx], cpu);
645 #ifdef CONFIG_HOTPLUG_CPU
646         spin_lock(&memcg->pcp_counter_lock);
647         val += memcg->nocpu_base.count[idx];
648         spin_unlock(&memcg->pcp_counter_lock);
649 #endif
650         put_online_cpus();
651         return val;
652 }
653
654 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
655                                          bool charge)
656 {
657         int val = (charge) ? 1 : -1;
658         this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
659 }
660
661 void mem_cgroup_pgfault(struct mem_cgroup *memcg, int val)
662 {
663         this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
664 }
665
666 void mem_cgroup_pgmajfault(struct mem_cgroup *memcg, int val)
667 {
668         this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
669 }
670
671 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
672                                             enum mem_cgroup_events_index idx)
673 {
674         unsigned long val = 0;
675         int cpu;
676
677         for_each_online_cpu(cpu)
678                 val += per_cpu(memcg->stat->events[idx], cpu);
679 #ifdef CONFIG_HOTPLUG_CPU
680         spin_lock(&memcg->pcp_counter_lock);
681         val += memcg->nocpu_base.events[idx];
682         spin_unlock(&memcg->pcp_counter_lock);
683 #endif
684         return val;
685 }
686
687 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
688                                          bool file, int nr_pages)
689 {
690         preempt_disable();
691
692         if (file)
693                 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
694                                 nr_pages);
695         else
696                 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
697                                 nr_pages);
698
699         /* pagein of a big page is an event. So, ignore page size */
700         if (nr_pages > 0)
701                 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
702         else {
703                 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
704                 nr_pages = -nr_pages; /* for event */
705         }
706
707         __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
708
709         preempt_enable();
710 }
711
712 unsigned long
713 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
714                         unsigned int lru_mask)
715 {
716         struct mem_cgroup_per_zone *mz;
717         enum lru_list l;
718         unsigned long ret = 0;
719
720         mz = mem_cgroup_zoneinfo(memcg, nid, zid);
721
722         for_each_lru(l) {
723                 if (BIT(l) & lru_mask)
724                         ret += MEM_CGROUP_ZSTAT(mz, l);
725         }
726         return ret;
727 }
728
729 static unsigned long
730 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
731                         int nid, unsigned int lru_mask)
732 {
733         u64 total = 0;
734         int zid;
735
736         for (zid = 0; zid < MAX_NR_ZONES; zid++)
737                 total += mem_cgroup_zone_nr_lru_pages(memcg,
738                                                 nid, zid, lru_mask);
739
740         return total;
741 }
742
743 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
744                         unsigned int lru_mask)
745 {
746         int nid;
747         u64 total = 0;
748
749         for_each_node_state(nid, N_HIGH_MEMORY)
750                 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
751         return total;
752 }
753
754 static bool __memcg_event_check(struct mem_cgroup *memcg, int target)
755 {
756         unsigned long val, next;
757
758         val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
759         next = __this_cpu_read(memcg->stat->targets[target]);
760         /* from time_after() in jiffies.h */
761         return ((long)next - (long)val < 0);
762 }
763
764 static void __mem_cgroup_target_update(struct mem_cgroup *memcg, int target)
765 {
766         unsigned long val, next;
767
768         val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
769
770         switch (target) {
771         case MEM_CGROUP_TARGET_THRESH:
772                 next = val + THRESHOLDS_EVENTS_TARGET;
773                 break;
774         case MEM_CGROUP_TARGET_SOFTLIMIT:
775                 next = val + SOFTLIMIT_EVENTS_TARGET;
776                 break;
777         case MEM_CGROUP_TARGET_NUMAINFO:
778                 next = val + NUMAINFO_EVENTS_TARGET;
779                 break;
780         default:
781                 return;
782         }
783
784         __this_cpu_write(memcg->stat->targets[target], next);
785 }
786
787 /*
788  * Check events in order.
789  *
790  */
791 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
792 {
793         preempt_disable();
794         /* threshold event is triggered in finer grain than soft limit */
795         if (unlikely(__memcg_event_check(memcg, MEM_CGROUP_TARGET_THRESH))) {
796                 mem_cgroup_threshold(memcg);
797                 __mem_cgroup_target_update(memcg, MEM_CGROUP_TARGET_THRESH);
798                 if (unlikely(__memcg_event_check(memcg,
799                              MEM_CGROUP_TARGET_SOFTLIMIT))) {
800                         mem_cgroup_update_tree(memcg, page);
801                         __mem_cgroup_target_update(memcg,
802                                                    MEM_CGROUP_TARGET_SOFTLIMIT);
803                 }
804 #if MAX_NUMNODES > 1
805                 if (unlikely(__memcg_event_check(memcg,
806                         MEM_CGROUP_TARGET_NUMAINFO))) {
807                         atomic_inc(&memcg->numainfo_events);
808                         __mem_cgroup_target_update(memcg,
809                                 MEM_CGROUP_TARGET_NUMAINFO);
810                 }
811 #endif
812         }
813         preempt_enable();
814 }
815
816 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
817 {
818         return container_of(cgroup_subsys_state(cont,
819                                 mem_cgroup_subsys_id), struct mem_cgroup,
820                                 css);
821 }
822
823 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
824 {
825         /*
826          * mm_update_next_owner() may clear mm->owner to NULL
827          * if it races with swapoff, page migration, etc.
828          * So this can be called with p == NULL.
829          */
830         if (unlikely(!p))
831                 return NULL;
832
833         return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
834                                 struct mem_cgroup, css);
835 }
836
837 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
838 {
839         struct mem_cgroup *memcg = NULL;
840
841         if (!mm)
842                 return NULL;
843         /*
844          * Because we have no locks, mm->owner's may be being moved to other
845          * cgroup. We use css_tryget() here even if this looks
846          * pessimistic (rather than adding locks here).
847          */
848         rcu_read_lock();
849         do {
850                 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
851                 if (unlikely(!memcg))
852                         break;
853         } while (!css_tryget(&memcg->css));
854         rcu_read_unlock();
855         return memcg;
856 }
857
858 /**
859  * mem_cgroup_iter - iterate over memory cgroup hierarchy
860  * @root: hierarchy root
861  * @prev: previously returned memcg, NULL on first invocation
862  * @reclaim: cookie for shared reclaim walks, NULL for full walks
863  *
864  * Returns references to children of the hierarchy below @root, or
865  * @root itself, or %NULL after a full round-trip.
866  *
867  * Caller must pass the return value in @prev on subsequent
868  * invocations for reference counting, or use mem_cgroup_iter_break()
869  * to cancel a hierarchy walk before the round-trip is complete.
870  *
871  * Reclaimers can specify a zone and a priority level in @reclaim to
872  * divide up the memcgs in the hierarchy among all concurrent
873  * reclaimers operating on the same zone and priority.
874  */
875 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
876                                    struct mem_cgroup *prev,
877                                    struct mem_cgroup_reclaim_cookie *reclaim)
878 {
879         struct mem_cgroup *memcg = NULL;
880         int id = 0;
881
882         if (mem_cgroup_disabled())
883                 return NULL;
884
885         if (!root)
886                 root = root_mem_cgroup;
887
888         if (prev && !reclaim)
889                 id = css_id(&prev->css);
890
891         if (prev && prev != root)
892                 css_put(&prev->css);
893
894         if (!root->use_hierarchy && root != root_mem_cgroup) {
895                 if (prev)
896                         return NULL;
897                 return root;
898         }
899
900         while (!memcg) {
901                 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
902                 struct cgroup_subsys_state *css;
903
904                 if (reclaim) {
905                         int nid = zone_to_nid(reclaim->zone);
906                         int zid = zone_idx(reclaim->zone);
907                         struct mem_cgroup_per_zone *mz;
908
909                         mz = mem_cgroup_zoneinfo(root, nid, zid);
910                         iter = &mz->reclaim_iter[reclaim->priority];
911                         if (prev && reclaim->generation != iter->generation)
912                                 return NULL;
913                         id = iter->position;
914                 }
915
916                 rcu_read_lock();
917                 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
918                 if (css) {
919                         if (css == &root->css || css_tryget(css))
920                                 memcg = container_of(css,
921                                                      struct mem_cgroup, css);
922                 } else
923                         id = 0;
924                 rcu_read_unlock();
925
926                 if (reclaim) {
927                         iter->position = id;
928                         if (!css)
929                                 iter->generation++;
930                         else if (!prev && memcg)
931                                 reclaim->generation = iter->generation;
932                 }
933
934                 if (prev && !css)
935                         return NULL;
936         }
937         return memcg;
938 }
939
940 /**
941  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
942  * @root: hierarchy root
943  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
944  */
945 void mem_cgroup_iter_break(struct mem_cgroup *root,
946                            struct mem_cgroup *prev)
947 {
948         if (!root)
949                 root = root_mem_cgroup;
950         if (prev && prev != root)
951                 css_put(&prev->css);
952 }
953
954 /*
955  * Iteration constructs for visiting all cgroups (under a tree).  If
956  * loops are exited prematurely (break), mem_cgroup_iter_break() must
957  * be used for reference counting.
958  */
959 #define for_each_mem_cgroup_tree(iter, root)            \
960         for (iter = mem_cgroup_iter(root, NULL, NULL);  \
961              iter != NULL;                              \
962              iter = mem_cgroup_iter(root, iter, NULL))
963
964 #define for_each_mem_cgroup(iter)                       \
965         for (iter = mem_cgroup_iter(NULL, NULL, NULL);  \
966              iter != NULL;                              \
967              iter = mem_cgroup_iter(NULL, iter, NULL))
968
969 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
970 {
971         return (memcg == root_mem_cgroup);
972 }
973
974 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
975 {
976         struct mem_cgroup *memcg;
977
978         if (!mm)
979                 return;
980
981         rcu_read_lock();
982         memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
983         if (unlikely(!memcg))
984                 goto out;
985
986         switch (idx) {
987         case PGMAJFAULT:
988                 mem_cgroup_pgmajfault(memcg, 1);
989                 break;
990         case PGFAULT:
991                 mem_cgroup_pgfault(memcg, 1);
992                 break;
993         default:
994                 BUG();
995         }
996 out:
997         rcu_read_unlock();
998 }
999 EXPORT_SYMBOL(mem_cgroup_count_vm_event);
1000
1001 /*
1002  * Following LRU functions are allowed to be used without PCG_LOCK.
1003  * Operations are called by routine of global LRU independently from memcg.
1004  * What we have to take care of here is validness of pc->mem_cgroup.
1005  *
1006  * Changes to pc->mem_cgroup happens when
1007  * 1. charge
1008  * 2. moving account
1009  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1010  * It is added to LRU before charge.
1011  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1012  * When moving account, the page is not on LRU. It's isolated.
1013  */
1014
1015 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
1016 {
1017         struct page_cgroup *pc;
1018         struct mem_cgroup_per_zone *mz;
1019
1020         if (mem_cgroup_disabled())
1021                 return;
1022         pc = lookup_page_cgroup(page);
1023         /* can happen while we handle swapcache. */
1024         if (!TestClearPageCgroupAcctLRU(pc))
1025                 return;
1026         VM_BUG_ON(!pc->mem_cgroup);
1027         /*
1028          * We don't check PCG_USED bit. It's cleared when the "page" is finally
1029          * removed from global LRU.
1030          */
1031         mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1032         /* huge page split is done under lru_lock. so, we have no races. */
1033         MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
1034         if (mem_cgroup_is_root(pc->mem_cgroup))
1035                 return;
1036         VM_BUG_ON(list_empty(&pc->lru));
1037         list_del_init(&pc->lru);
1038 }
1039
1040 void mem_cgroup_del_lru(struct page *page)
1041 {
1042         mem_cgroup_del_lru_list(page, page_lru(page));
1043 }
1044
1045 /*
1046  * Writeback is about to end against a page which has been marked for immediate
1047  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
1048  * inactive list.
1049  */
1050 void mem_cgroup_rotate_reclaimable_page(struct page *page)
1051 {
1052         struct mem_cgroup_per_zone *mz;
1053         struct page_cgroup *pc;
1054         enum lru_list lru = page_lru(page);
1055
1056         if (mem_cgroup_disabled())
1057                 return;
1058
1059         pc = lookup_page_cgroup(page);
1060         /* unused or root page is not rotated. */
1061         if (!PageCgroupUsed(pc))
1062                 return;
1063         /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1064         smp_rmb();
1065         if (mem_cgroup_is_root(pc->mem_cgroup))
1066                 return;
1067         mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1068         list_move_tail(&pc->lru, &mz->lists[lru]);
1069 }
1070
1071 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
1072 {
1073         struct mem_cgroup_per_zone *mz;
1074         struct page_cgroup *pc;
1075
1076         if (mem_cgroup_disabled())
1077                 return;
1078
1079         pc = lookup_page_cgroup(page);
1080         /* unused or root page is not rotated. */
1081         if (!PageCgroupUsed(pc))
1082                 return;
1083         /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1084         smp_rmb();
1085         if (mem_cgroup_is_root(pc->mem_cgroup))
1086                 return;
1087         mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1088         list_move(&pc->lru, &mz->lists[lru]);
1089 }
1090
1091 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
1092 {
1093         struct page_cgroup *pc;
1094         struct mem_cgroup_per_zone *mz;
1095
1096         if (mem_cgroup_disabled())
1097                 return;
1098         pc = lookup_page_cgroup(page);
1099         VM_BUG_ON(PageCgroupAcctLRU(pc));
1100         /*
1101          * putback:                             charge:
1102          * SetPageLRU                           SetPageCgroupUsed
1103          * smp_mb                               smp_mb
1104          * PageCgroupUsed && add to memcg LRU   PageLRU && add to memcg LRU
1105          *
1106          * Ensure that one of the two sides adds the page to the memcg
1107          * LRU during a race.
1108          */
1109         smp_mb();
1110         if (!PageCgroupUsed(pc))
1111                 return;
1112         /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1113         smp_rmb();
1114         mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1115         /* huge page split is done under lru_lock. so, we have no races. */
1116         MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
1117         SetPageCgroupAcctLRU(pc);
1118         if (mem_cgroup_is_root(pc->mem_cgroup))
1119                 return;
1120         list_add(&pc->lru, &mz->lists[lru]);
1121 }
1122
1123 /*
1124  * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
1125  * while it's linked to lru because the page may be reused after it's fully
1126  * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
1127  * It's done under lock_page and expected that zone->lru_lock isnever held.
1128  */
1129 static void mem_cgroup_lru_del_before_commit(struct page *page)
1130 {
1131         unsigned long flags;
1132         struct zone *zone = page_zone(page);
1133         struct page_cgroup *pc = lookup_page_cgroup(page);
1134
1135         /*
1136          * Doing this check without taking ->lru_lock seems wrong but this
1137          * is safe. Because if page_cgroup's USED bit is unset, the page
1138          * will not be added to any memcg's LRU. If page_cgroup's USED bit is
1139          * set, the commit after this will fail, anyway.
1140          * This all charge/uncharge is done under some mutual execustion.
1141          * So, we don't need to taking care of changes in USED bit.
1142          */
1143         if (likely(!PageLRU(page)))
1144                 return;
1145
1146         spin_lock_irqsave(&zone->lru_lock, flags);
1147         /*
1148          * Forget old LRU when this page_cgroup is *not* used. This Used bit
1149          * is guarded by lock_page() because the page is SwapCache.
1150          */
1151         if (!PageCgroupUsed(pc))
1152                 mem_cgroup_del_lru_list(page, page_lru(page));
1153         spin_unlock_irqrestore(&zone->lru_lock, flags);
1154 }
1155
1156 static void mem_cgroup_lru_add_after_commit(struct page *page)
1157 {
1158         unsigned long flags;
1159         struct zone *zone = page_zone(page);
1160         struct page_cgroup *pc = lookup_page_cgroup(page);
1161         /*
1162          * putback:                             charge:
1163          * SetPageLRU                           SetPageCgroupUsed
1164          * smp_mb                               smp_mb
1165          * PageCgroupUsed && add to memcg LRU   PageLRU && add to memcg LRU
1166          *
1167          * Ensure that one of the two sides adds the page to the memcg
1168          * LRU during a race.
1169          */
1170         smp_mb();
1171         /* taking care of that the page is added to LRU while we commit it */
1172         if (likely(!PageLRU(page)))
1173                 return;
1174         spin_lock_irqsave(&zone->lru_lock, flags);
1175         /* link when the page is linked to LRU but page_cgroup isn't */
1176         if (PageLRU(page) && !PageCgroupAcctLRU(pc))
1177                 mem_cgroup_add_lru_list(page, page_lru(page));
1178         spin_unlock_irqrestore(&zone->lru_lock, flags);
1179 }
1180
1181
1182 void mem_cgroup_move_lists(struct page *page,
1183                            enum lru_list from, enum lru_list to)
1184 {
1185         if (mem_cgroup_disabled())
1186                 return;
1187         mem_cgroup_del_lru_list(page, from);
1188         mem_cgroup_add_lru_list(page, to);
1189 }
1190
1191 /*
1192  * Checks whether given mem is same or in the root_mem_cgroup's
1193  * hierarchy subtree
1194  */
1195 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1196                 struct mem_cgroup *memcg)
1197 {
1198         if (root_memcg != memcg) {
1199                 return (root_memcg->use_hierarchy &&
1200                         css_is_ancestor(&memcg->css, &root_memcg->css));
1201         }
1202
1203         return true;
1204 }
1205
1206 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1207 {
1208         int ret;
1209         struct mem_cgroup *curr = NULL;
1210         struct task_struct *p;
1211
1212         p = find_lock_task_mm(task);
1213         if (!p)
1214                 return 0;
1215         curr = try_get_mem_cgroup_from_mm(p->mm);
1216         task_unlock(p);
1217         if (!curr)
1218                 return 0;
1219         /*
1220          * We should check use_hierarchy of "memcg" not "curr". Because checking
1221          * use_hierarchy of "curr" here make this function true if hierarchy is
1222          * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1223          * hierarchy(even if use_hierarchy is disabled in "memcg").
1224          */
1225         ret = mem_cgroup_same_or_subtree(memcg, curr);
1226         css_put(&curr->css);
1227         return ret;
1228 }
1229
1230 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
1231 {
1232         unsigned long inactive_ratio;
1233         int nid = zone_to_nid(zone);
1234         int zid = zone_idx(zone);
1235         unsigned long inactive;
1236         unsigned long active;
1237         unsigned long gb;
1238
1239         inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1240                                                 BIT(LRU_INACTIVE_ANON));
1241         active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1242                                               BIT(LRU_ACTIVE_ANON));
1243
1244         gb = (inactive + active) >> (30 - PAGE_SHIFT);
1245         if (gb)
1246                 inactive_ratio = int_sqrt(10 * gb);
1247         else
1248                 inactive_ratio = 1;
1249
1250         return inactive * inactive_ratio < active;
1251 }
1252
1253 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
1254 {
1255         unsigned long active;
1256         unsigned long inactive;
1257         int zid = zone_idx(zone);
1258         int nid = zone_to_nid(zone);
1259
1260         inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1261                                                 BIT(LRU_INACTIVE_FILE));
1262         active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1263                                               BIT(LRU_ACTIVE_FILE));
1264
1265         return (active > inactive);
1266 }
1267
1268 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1269                                                       struct zone *zone)
1270 {
1271         int nid = zone_to_nid(zone);
1272         int zid = zone_idx(zone);
1273         struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1274
1275         return &mz->reclaim_stat;
1276 }
1277
1278 struct zone_reclaim_stat *
1279 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1280 {
1281         struct page_cgroup *pc;
1282         struct mem_cgroup_per_zone *mz;
1283
1284         if (mem_cgroup_disabled())
1285                 return NULL;
1286
1287         pc = lookup_page_cgroup(page);
1288         if (!PageCgroupUsed(pc))
1289                 return NULL;
1290         /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1291         smp_rmb();
1292         mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1293         return &mz->reclaim_stat;
1294 }
1295
1296 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1297                                         struct list_head *dst,
1298                                         unsigned long *scanned, int order,
1299                                         isolate_mode_t mode,
1300                                         struct zone *z,
1301                                         struct mem_cgroup *mem_cont,
1302                                         int active, int file)
1303 {
1304         unsigned long nr_taken = 0;
1305         struct page *page;
1306         unsigned long scan;
1307         LIST_HEAD(pc_list);
1308         struct list_head *src;
1309         struct page_cgroup *pc, *tmp;
1310         int nid = zone_to_nid(z);
1311         int zid = zone_idx(z);
1312         struct mem_cgroup_per_zone *mz;
1313         int lru = LRU_FILE * file + active;
1314         int ret;
1315
1316         BUG_ON(!mem_cont);
1317         mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1318         src = &mz->lists[lru];
1319
1320         scan = 0;
1321         list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1322                 if (scan >= nr_to_scan)
1323                         break;
1324
1325                 if (unlikely(!PageCgroupUsed(pc)))
1326                         continue;
1327
1328                 page = lookup_cgroup_page(pc);
1329
1330                 if (unlikely(!PageLRU(page)))
1331                         continue;
1332
1333                 scan++;
1334                 ret = __isolate_lru_page(page, mode, file);
1335                 switch (ret) {
1336                 case 0:
1337                         list_move(&page->lru, dst);
1338                         mem_cgroup_del_lru(page);
1339                         nr_taken += hpage_nr_pages(page);
1340                         break;
1341                 case -EBUSY:
1342                         /* we don't affect global LRU but rotate in our LRU */
1343                         mem_cgroup_rotate_lru_list(page, page_lru(page));
1344                         break;
1345                 default:
1346                         break;
1347                 }
1348         }
1349
1350         *scanned = scan;
1351
1352         trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1353                                       0, 0, 0, mode);
1354
1355         return nr_taken;
1356 }
1357
1358 #define mem_cgroup_from_res_counter(counter, member)    \
1359         container_of(counter, struct mem_cgroup, member)
1360
1361 /**
1362  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1363  * @mem: the memory cgroup
1364  *
1365  * Returns the maximum amount of memory @mem can be charged with, in
1366  * pages.
1367  */
1368 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1369 {
1370         unsigned long long margin;
1371
1372         margin = res_counter_margin(&memcg->res);
1373         if (do_swap_account)
1374                 margin = min(margin, res_counter_margin(&memcg->memsw));
1375         return margin >> PAGE_SHIFT;
1376 }
1377
1378 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1379 {
1380         struct cgroup *cgrp = memcg->css.cgroup;
1381
1382         /* root ? */
1383         if (cgrp->parent == NULL)
1384                 return vm_swappiness;
1385
1386         return memcg->swappiness;
1387 }
1388
1389 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1390 {
1391         int cpu;
1392
1393         get_online_cpus();
1394         spin_lock(&memcg->pcp_counter_lock);
1395         for_each_online_cpu(cpu)
1396                 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1397         memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1398         spin_unlock(&memcg->pcp_counter_lock);
1399         put_online_cpus();
1400
1401         synchronize_rcu();
1402 }
1403
1404 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1405 {
1406         int cpu;
1407
1408         if (!memcg)
1409                 return;
1410         get_online_cpus();
1411         spin_lock(&memcg->pcp_counter_lock);
1412         for_each_online_cpu(cpu)
1413                 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1414         memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1415         spin_unlock(&memcg->pcp_counter_lock);
1416         put_online_cpus();
1417 }
1418 /*
1419  * 2 routines for checking "mem" is under move_account() or not.
1420  *
1421  * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1422  *                        for avoiding race in accounting. If true,
1423  *                        pc->mem_cgroup may be overwritten.
1424  *
1425  * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1426  *                        under hierarchy of moving cgroups. This is for
1427  *                        waiting at hith-memory prressure caused by "move".
1428  */
1429
1430 static bool mem_cgroup_stealed(struct mem_cgroup *memcg)
1431 {
1432         VM_BUG_ON(!rcu_read_lock_held());
1433         return this_cpu_read(memcg->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1434 }
1435
1436 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1437 {
1438         struct mem_cgroup *from;
1439         struct mem_cgroup *to;
1440         bool ret = false;
1441         /*
1442          * Unlike task_move routines, we access mc.to, mc.from not under
1443          * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1444          */
1445         spin_lock(&mc.lock);
1446         from = mc.from;
1447         to = mc.to;
1448         if (!from)
1449                 goto unlock;
1450
1451         ret = mem_cgroup_same_or_subtree(memcg, from)
1452                 || mem_cgroup_same_or_subtree(memcg, to);
1453 unlock:
1454         spin_unlock(&mc.lock);
1455         return ret;
1456 }
1457
1458 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1459 {
1460         if (mc.moving_task && current != mc.moving_task) {
1461                 if (mem_cgroup_under_move(memcg)) {
1462                         DEFINE_WAIT(wait);
1463                         prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1464                         /* moving charge context might have finished. */
1465                         if (mc.moving_task)
1466                                 schedule();
1467                         finish_wait(&mc.waitq, &wait);
1468                         return true;
1469                 }
1470         }
1471         return false;
1472 }
1473
1474 /**
1475  * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1476  * @memcg: The memory cgroup that went over limit
1477  * @p: Task that is going to be killed
1478  *
1479  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1480  * enabled
1481  */
1482 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1483 {
1484         struct cgroup *task_cgrp;
1485         struct cgroup *mem_cgrp;
1486         /*
1487          * Need a buffer in BSS, can't rely on allocations. The code relies
1488          * on the assumption that OOM is serialized for memory controller.
1489          * If this assumption is broken, revisit this code.
1490          */
1491         static char memcg_name[PATH_MAX];
1492         int ret;
1493
1494         if (!memcg || !p)
1495                 return;
1496
1497
1498         rcu_read_lock();
1499
1500         mem_cgrp = memcg->css.cgroup;
1501         task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1502
1503         ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1504         if (ret < 0) {
1505                 /*
1506                  * Unfortunately, we are unable to convert to a useful name
1507                  * But we'll still print out the usage information
1508                  */
1509                 rcu_read_unlock();
1510                 goto done;
1511         }
1512         rcu_read_unlock();
1513
1514         printk(KERN_INFO "Task in %s killed", memcg_name);
1515
1516         rcu_read_lock();
1517         ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1518         if (ret < 0) {
1519                 rcu_read_unlock();
1520                 goto done;
1521         }
1522         rcu_read_unlock();
1523
1524         /*
1525          * Continues from above, so we don't need an KERN_ level
1526          */
1527         printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1528 done:
1529
1530         printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1531                 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1532                 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1533                 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1534         printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1535                 "failcnt %llu\n",
1536                 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1537                 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1538                 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1539 }
1540
1541 /*
1542  * This function returns the number of memcg under hierarchy tree. Returns
1543  * 1(self count) if no children.
1544  */
1545 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1546 {
1547         int num = 0;
1548         struct mem_cgroup *iter;
1549
1550         for_each_mem_cgroup_tree(iter, memcg)
1551                 num++;
1552         return num;
1553 }
1554
1555 /*
1556  * Return the memory (and swap, if configured) limit for a memcg.
1557  */
1558 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1559 {
1560         u64 limit;
1561         u64 memsw;
1562
1563         limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1564         limit += total_swap_pages << PAGE_SHIFT;
1565
1566         memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1567         /*
1568          * If memsw is finite and limits the amount of swap space available
1569          * to this memcg, return that limit.
1570          */
1571         return min(limit, memsw);
1572 }
1573
1574 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1575                                         gfp_t gfp_mask,
1576                                         unsigned long flags)
1577 {
1578         unsigned long total = 0;
1579         bool noswap = false;
1580         int loop;
1581
1582         if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1583                 noswap = true;
1584         if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1585                 noswap = true;
1586
1587         for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1588                 if (loop)
1589                         drain_all_stock_async(memcg);
1590                 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1591                 /*
1592                  * Allow limit shrinkers, which are triggered directly
1593                  * by userspace, to catch signals and stop reclaim
1594                  * after minimal progress, regardless of the margin.
1595                  */
1596                 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1597                         break;
1598                 if (mem_cgroup_margin(memcg))
1599                         break;
1600                 /*
1601                  * If nothing was reclaimed after two attempts, there
1602                  * may be no reclaimable pages in this hierarchy.
1603                  */
1604                 if (loop && !total)
1605                         break;
1606         }
1607         return total;
1608 }
1609
1610 /**
1611  * test_mem_cgroup_node_reclaimable
1612  * @mem: the target memcg
1613  * @nid: the node ID to be checked.
1614  * @noswap : specify true here if the user wants flle only information.
1615  *
1616  * This function returns whether the specified memcg contains any
1617  * reclaimable pages on a node. Returns true if there are any reclaimable
1618  * pages in the node.
1619  */
1620 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1621                 int nid, bool noswap)
1622 {
1623         if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1624                 return true;
1625         if (noswap || !total_swap_pages)
1626                 return false;
1627         if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1628                 return true;
1629         return false;
1630
1631 }
1632 #if MAX_NUMNODES > 1
1633
1634 /*
1635  * Always updating the nodemask is not very good - even if we have an empty
1636  * list or the wrong list here, we can start from some node and traverse all
1637  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1638  *
1639  */
1640 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1641 {
1642         int nid;
1643         /*
1644          * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1645          * pagein/pageout changes since the last update.
1646          */
1647         if (!atomic_read(&memcg->numainfo_events))
1648                 return;
1649         if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1650                 return;
1651
1652         /* make a nodemask where this memcg uses memory from */
1653         memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1654
1655         for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1656
1657                 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1658                         node_clear(nid, memcg->scan_nodes);
1659         }
1660
1661         atomic_set(&memcg->numainfo_events, 0);
1662         atomic_set(&memcg->numainfo_updating, 0);
1663 }
1664
1665 /*
1666  * Selecting a node where we start reclaim from. Because what we need is just
1667  * reducing usage counter, start from anywhere is O,K. Considering
1668  * memory reclaim from current node, there are pros. and cons.
1669  *
1670  * Freeing memory from current node means freeing memory from a node which
1671  * we'll use or we've used. So, it may make LRU bad. And if several threads
1672  * hit limits, it will see a contention on a node. But freeing from remote
1673  * node means more costs for memory reclaim because of memory latency.
1674  *
1675  * Now, we use round-robin. Better algorithm is welcomed.
1676  */
1677 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1678 {
1679         int node;
1680
1681         mem_cgroup_may_update_nodemask(memcg);
1682         node = memcg->last_scanned_node;
1683
1684         node = next_node(node, memcg->scan_nodes);
1685         if (node == MAX_NUMNODES)
1686                 node = first_node(memcg->scan_nodes);
1687         /*
1688          * We call this when we hit limit, not when pages are added to LRU.
1689          * No LRU may hold pages because all pages are UNEVICTABLE or
1690          * memcg is too small and all pages are not on LRU. In that case,
1691          * we use curret node.
1692          */
1693         if (unlikely(node == MAX_NUMNODES))
1694                 node = numa_node_id();
1695
1696         memcg->last_scanned_node = node;
1697         return node;
1698 }
1699
1700 /*
1701  * Check all nodes whether it contains reclaimable pages or not.
1702  * For quick scan, we make use of scan_nodes. This will allow us to skip
1703  * unused nodes. But scan_nodes is lazily updated and may not cotain
1704  * enough new information. We need to do double check.
1705  */
1706 bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1707 {
1708         int nid;
1709
1710         /*
1711          * quick check...making use of scan_node.
1712          * We can skip unused nodes.
1713          */
1714         if (!nodes_empty(memcg->scan_nodes)) {
1715                 for (nid = first_node(memcg->scan_nodes);
1716                      nid < MAX_NUMNODES;
1717                      nid = next_node(nid, memcg->scan_nodes)) {
1718
1719                         if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1720                                 return true;
1721                 }
1722         }
1723         /*
1724          * Check rest of nodes.
1725          */
1726         for_each_node_state(nid, N_HIGH_MEMORY) {
1727                 if (node_isset(nid, memcg->scan_nodes))
1728                         continue;
1729                 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1730                         return true;
1731         }
1732         return false;
1733 }
1734
1735 #else
1736 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1737 {
1738         return 0;
1739 }
1740
1741 bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1742 {
1743         return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1744 }
1745 #endif
1746
1747 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1748                                    struct zone *zone,
1749                                    gfp_t gfp_mask,
1750                                    unsigned long *total_scanned)
1751 {
1752         struct mem_cgroup *victim = NULL;
1753         int total = 0;
1754         int loop = 0;
1755         unsigned long excess;
1756         unsigned long nr_scanned;
1757         struct mem_cgroup_reclaim_cookie reclaim = {
1758                 .zone = zone,
1759                 .priority = 0,
1760         };
1761
1762         excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1763
1764         while (1) {
1765                 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1766                 if (!victim) {
1767                         loop++;
1768                         if (loop >= 2) {
1769                                 /*
1770                                  * If we have not been able to reclaim
1771                                  * anything, it might because there are
1772                                  * no reclaimable pages under this hierarchy
1773                                  */
1774                                 if (!total)
1775                                         break;
1776                                 /*
1777                                  * We want to do more targeted reclaim.
1778                                  * excess >> 2 is not to excessive so as to
1779                                  * reclaim too much, nor too less that we keep
1780                                  * coming back to reclaim from this cgroup
1781                                  */
1782                                 if (total >= (excess >> 2) ||
1783                                         (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1784                                         break;
1785                         }
1786                         continue;
1787                 }
1788                 if (!mem_cgroup_reclaimable(victim, false))
1789                         continue;
1790                 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1791                                                      zone, &nr_scanned);
1792                 *total_scanned += nr_scanned;
1793                 if (!res_counter_soft_limit_excess(&root_memcg->res))
1794                         break;
1795         }
1796         mem_cgroup_iter_break(root_memcg, victim);
1797         return total;
1798 }
1799
1800 /*
1801  * Check OOM-Killer is already running under our hierarchy.
1802  * If someone is running, return false.
1803  * Has to be called with memcg_oom_lock
1804  */
1805 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1806 {
1807         struct mem_cgroup *iter, *failed = NULL;
1808
1809         for_each_mem_cgroup_tree(iter, memcg) {
1810                 if (iter->oom_lock) {
1811                         /*
1812                          * this subtree of our hierarchy is already locked
1813                          * so we cannot give a lock.
1814                          */
1815                         failed = iter;
1816                         mem_cgroup_iter_break(memcg, iter);
1817                         break;
1818                 } else
1819                         iter->oom_lock = true;
1820         }
1821
1822         if (!failed)
1823                 return true;
1824
1825         /*
1826          * OK, we failed to lock the whole subtree so we have to clean up
1827          * what we set up to the failing subtree
1828          */
1829         for_each_mem_cgroup_tree(iter, memcg) {
1830                 if (iter == failed) {
1831                         mem_cgroup_iter_break(memcg, iter);
1832                         break;
1833                 }
1834                 iter->oom_lock = false;
1835         }
1836         return false;
1837 }
1838
1839 /*
1840  * Has to be called with memcg_oom_lock
1841  */
1842 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1843 {
1844         struct mem_cgroup *iter;
1845
1846         for_each_mem_cgroup_tree(iter, memcg)
1847                 iter->oom_lock = false;
1848         return 0;
1849 }
1850
1851 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1852 {
1853         struct mem_cgroup *iter;
1854
1855         for_each_mem_cgroup_tree(iter, memcg)
1856                 atomic_inc(&iter->under_oom);
1857 }
1858
1859 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1860 {
1861         struct mem_cgroup *iter;
1862
1863         /*
1864          * When a new child is created while the hierarchy is under oom,
1865          * mem_cgroup_oom_lock() may not be called. We have to use
1866          * atomic_add_unless() here.
1867          */
1868         for_each_mem_cgroup_tree(iter, memcg)
1869                 atomic_add_unless(&iter->under_oom, -1, 0);
1870 }
1871
1872 static DEFINE_SPINLOCK(memcg_oom_lock);
1873 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1874
1875 struct oom_wait_info {
1876         struct mem_cgroup *mem;
1877         wait_queue_t    wait;
1878 };
1879
1880 static int memcg_oom_wake_function(wait_queue_t *wait,
1881         unsigned mode, int sync, void *arg)
1882 {
1883         struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg,
1884                           *oom_wait_memcg;
1885         struct oom_wait_info *oom_wait_info;
1886
1887         oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1888         oom_wait_memcg = oom_wait_info->mem;
1889
1890         /*
1891          * Both of oom_wait_info->mem and wake_mem are stable under us.
1892          * Then we can use css_is_ancestor without taking care of RCU.
1893          */
1894         if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1895                 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
1896                 return 0;
1897         return autoremove_wake_function(wait, mode, sync, arg);
1898 }
1899
1900 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1901 {
1902         /* for filtering, pass "memcg" as argument. */
1903         __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1904 }
1905
1906 static void memcg_oom_recover(struct mem_cgroup *memcg)
1907 {
1908         if (memcg && atomic_read(&memcg->under_oom))
1909                 memcg_wakeup_oom(memcg);
1910 }
1911
1912 /*
1913  * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1914  */
1915 bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask)
1916 {
1917         struct oom_wait_info owait;
1918         bool locked, need_to_kill;
1919
1920         owait.mem = memcg;
1921         owait.wait.flags = 0;
1922         owait.wait.func = memcg_oom_wake_function;
1923         owait.wait.private = current;
1924         INIT_LIST_HEAD(&owait.wait.task_list);
1925         need_to_kill = true;
1926         mem_cgroup_mark_under_oom(memcg);
1927
1928         /* At first, try to OOM lock hierarchy under memcg.*/
1929         spin_lock(&memcg_oom_lock);
1930         locked = mem_cgroup_oom_lock(memcg);
1931         /*
1932          * Even if signal_pending(), we can't quit charge() loop without
1933          * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1934          * under OOM is always welcomed, use TASK_KILLABLE here.
1935          */
1936         prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1937         if (!locked || memcg->oom_kill_disable)
1938                 need_to_kill = false;
1939         if (locked)
1940                 mem_cgroup_oom_notify(memcg);
1941         spin_unlock(&memcg_oom_lock);
1942
1943         if (need_to_kill) {
1944                 finish_wait(&memcg_oom_waitq, &owait.wait);
1945                 mem_cgroup_out_of_memory(memcg, mask);
1946         } else {
1947                 schedule();
1948                 finish_wait(&memcg_oom_waitq, &owait.wait);
1949         }
1950         spin_lock(&memcg_oom_lock);
1951         if (locked)
1952                 mem_cgroup_oom_unlock(memcg);
1953         memcg_wakeup_oom(memcg);
1954         spin_unlock(&memcg_oom_lock);
1955
1956         mem_cgroup_unmark_under_oom(memcg);
1957
1958         if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1959                 return false;
1960         /* Give chance to dying process */
1961         schedule_timeout_uninterruptible(1);
1962         return true;
1963 }
1964
1965 /*
1966  * Currently used to update mapped file statistics, but the routine can be
1967  * generalized to update other statistics as well.
1968  *
1969  * Notes: Race condition
1970  *
1971  * We usually use page_cgroup_lock() for accessing page_cgroup member but
1972  * it tends to be costly. But considering some conditions, we doesn't need
1973  * to do so _always_.
1974  *
1975  * Considering "charge", lock_page_cgroup() is not required because all
1976  * file-stat operations happen after a page is attached to radix-tree. There
1977  * are no race with "charge".
1978  *
1979  * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1980  * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1981  * if there are race with "uncharge". Statistics itself is properly handled
1982  * by flags.
1983  *
1984  * Considering "move", this is an only case we see a race. To make the race
1985  * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1986  * possibility of race condition. If there is, we take a lock.
1987  */
1988
1989 void mem_cgroup_update_page_stat(struct page *page,
1990                                  enum mem_cgroup_page_stat_item idx, int val)
1991 {
1992         struct mem_cgroup *memcg;
1993         struct page_cgroup *pc = lookup_page_cgroup(page);
1994         bool need_unlock = false;
1995         unsigned long uninitialized_var(flags);
1996
1997         if (unlikely(!pc))
1998                 return;
1999
2000         rcu_read_lock();
2001         memcg = pc->mem_cgroup;
2002         if (unlikely(!memcg || !PageCgroupUsed(pc)))
2003                 goto out;
2004         /* pc->mem_cgroup is unstable ? */
2005         if (unlikely(mem_cgroup_stealed(memcg)) || PageTransHuge(page)) {
2006                 /* take a lock against to access pc->mem_cgroup */
2007                 move_lock_page_cgroup(pc, &flags);
2008                 need_unlock = true;
2009                 memcg = pc->mem_cgroup;
2010                 if (!memcg || !PageCgroupUsed(pc))
2011                         goto out;
2012         }
2013
2014         switch (idx) {
2015         case MEMCG_NR_FILE_MAPPED:
2016                 if (val > 0)
2017                         SetPageCgroupFileMapped(pc);
2018                 else if (!page_mapped(page))
2019                         ClearPageCgroupFileMapped(pc);
2020                 idx = MEM_CGROUP_STAT_FILE_MAPPED;
2021                 break;
2022         default:
2023                 BUG();
2024         }
2025
2026         this_cpu_add(memcg->stat->count[idx], val);
2027
2028 out:
2029         if (unlikely(need_unlock))
2030                 move_unlock_page_cgroup(pc, &flags);
2031         rcu_read_unlock();
2032         return;
2033 }
2034 EXPORT_SYMBOL(mem_cgroup_update_page_stat);
2035
2036 /*
2037  * size of first charge trial. "32" comes from vmscan.c's magic value.
2038  * TODO: maybe necessary to use big numbers in big irons.
2039  */
2040 #define CHARGE_BATCH    32U
2041 struct memcg_stock_pcp {
2042         struct mem_cgroup *cached; /* this never be root cgroup */
2043         unsigned int nr_pages;
2044         struct work_struct work;
2045         unsigned long flags;
2046 #define FLUSHING_CACHED_CHARGE  (0)
2047 };
2048 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2049 static DEFINE_MUTEX(percpu_charge_mutex);
2050
2051 /*
2052  * Try to consume stocked charge on this cpu. If success, one page is consumed
2053  * from local stock and true is returned. If the stock is 0 or charges from a
2054  * cgroup which is not current target, returns false. This stock will be
2055  * refilled.
2056  */
2057 static bool consume_stock(struct mem_cgroup *memcg)
2058 {
2059         struct memcg_stock_pcp *stock;
2060         bool ret = true;
2061
2062         stock = &get_cpu_var(memcg_stock);
2063         if (memcg == stock->cached && stock->nr_pages)
2064                 stock->nr_pages--;
2065         else /* need to call res_counter_charge */
2066                 ret = false;
2067         put_cpu_var(memcg_stock);
2068         return ret;
2069 }
2070
2071 /*
2072  * Returns stocks cached in percpu to res_counter and reset cached information.
2073  */
2074 static void drain_stock(struct memcg_stock_pcp *stock)
2075 {
2076         struct mem_cgroup *old = stock->cached;
2077
2078         if (stock->nr_pages) {
2079                 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2080
2081                 res_counter_uncharge(&old->res, bytes);
2082                 if (do_swap_account)
2083                         res_counter_uncharge(&old->memsw, bytes);
2084                 stock->nr_pages = 0;
2085         }
2086         stock->cached = NULL;
2087 }
2088
2089 /*
2090  * This must be called under preempt disabled or must be called by
2091  * a thread which is pinned to local cpu.
2092  */
2093 static void drain_local_stock(struct work_struct *dummy)
2094 {
2095         struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2096         drain_stock(stock);
2097         clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2098 }
2099
2100 /*
2101  * Cache charges(val) which is from res_counter, to local per_cpu area.
2102  * This will be consumed by consume_stock() function, later.
2103  */
2104 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2105 {
2106         struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2107
2108         if (stock->cached != memcg) { /* reset if necessary */
2109                 drain_stock(stock);
2110                 stock->cached = memcg;
2111         }
2112         stock->nr_pages += nr_pages;
2113         put_cpu_var(memcg_stock);
2114 }
2115
2116 /*
2117  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2118  * of the hierarchy under it. sync flag says whether we should block
2119  * until the work is done.
2120  */
2121 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2122 {
2123         int cpu, curcpu;
2124
2125         /* Notify other cpus that system-wide "drain" is running */
2126         get_online_cpus();
2127         curcpu = get_cpu();
2128         for_each_online_cpu(cpu) {
2129                 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2130                 struct mem_cgroup *memcg;
2131
2132                 memcg = stock->cached;
2133                 if (!memcg || !stock->nr_pages)
2134                         continue;
2135                 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2136                         continue;
2137                 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2138                         if (cpu == curcpu)
2139                                 drain_local_stock(&stock->work);
2140                         else
2141                                 schedule_work_on(cpu, &stock->work);
2142                 }
2143         }
2144         put_cpu();
2145
2146         if (!sync)
2147                 goto out;
2148
2149         for_each_online_cpu(cpu) {
2150                 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2151                 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2152                         flush_work(&stock->work);
2153         }
2154 out:
2155         put_online_cpus();
2156 }
2157
2158 /*
2159  * Tries to drain stocked charges in other cpus. This function is asynchronous
2160  * and just put a work per cpu for draining localy on each cpu. Caller can
2161  * expects some charges will be back to res_counter later but cannot wait for
2162  * it.
2163  */
2164 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2165 {
2166         /*
2167          * If someone calls draining, avoid adding more kworker runs.
2168          */
2169         if (!mutex_trylock(&percpu_charge_mutex))
2170                 return;
2171         drain_all_stock(root_memcg, false);
2172         mutex_unlock(&percpu_charge_mutex);
2173 }
2174
2175 /* This is a synchronous drain interface. */
2176 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2177 {
2178         /* called when force_empty is called */
2179         mutex_lock(&percpu_charge_mutex);
2180         drain_all_stock(root_memcg, true);
2181         mutex_unlock(&percpu_charge_mutex);
2182 }
2183
2184 /*
2185  * This function drains percpu counter value from DEAD cpu and
2186  * move it to local cpu. Note that this function can be preempted.
2187  */
2188 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2189 {
2190         int i;
2191
2192         spin_lock(&memcg->pcp_counter_lock);
2193         for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2194                 long x = per_cpu(memcg->stat->count[i], cpu);
2195
2196                 per_cpu(memcg->stat->count[i], cpu) = 0;
2197                 memcg->nocpu_base.count[i] += x;
2198         }
2199         for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2200                 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2201
2202                 per_cpu(memcg->stat->events[i], cpu) = 0;
2203                 memcg->nocpu_base.events[i] += x;
2204         }
2205         /* need to clear ON_MOVE value, works as a kind of lock. */
2206         per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
2207         spin_unlock(&memcg->pcp_counter_lock);
2208 }
2209
2210 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *memcg, int cpu)
2211 {
2212         int idx = MEM_CGROUP_ON_MOVE;
2213
2214         spin_lock(&memcg->pcp_counter_lock);
2215         per_cpu(memcg->stat->count[idx], cpu) = memcg->nocpu_base.count[idx];
2216         spin_unlock(&memcg->pcp_counter_lock);
2217 }
2218
2219 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2220                                         unsigned long action,
2221                                         void *hcpu)
2222 {
2223         int cpu = (unsigned long)hcpu;
2224         struct memcg_stock_pcp *stock;
2225         struct mem_cgroup *iter;
2226
2227         if ((action == CPU_ONLINE)) {
2228                 for_each_mem_cgroup(iter)
2229                         synchronize_mem_cgroup_on_move(iter, cpu);
2230                 return NOTIFY_OK;
2231         }
2232
2233         if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2234                 return NOTIFY_OK;
2235
2236         for_each_mem_cgroup(iter)
2237                 mem_cgroup_drain_pcp_counter(iter, cpu);
2238
2239         stock = &per_cpu(memcg_stock, cpu);
2240         drain_stock(stock);
2241         return NOTIFY_OK;
2242 }
2243
2244
2245 /* See __mem_cgroup_try_charge() for details */
2246 enum {
2247         CHARGE_OK,              /* success */
2248         CHARGE_RETRY,           /* need to retry but retry is not bad */
2249         CHARGE_NOMEM,           /* we can't do more. return -ENOMEM */
2250         CHARGE_WOULDBLOCK,      /* GFP_WAIT wasn't set and no enough res. */
2251         CHARGE_OOM_DIE,         /* the current is killed because of OOM */
2252 };
2253
2254 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2255                                 unsigned int nr_pages, bool oom_check)
2256 {
2257         unsigned long csize = nr_pages * PAGE_SIZE;
2258         struct mem_cgroup *mem_over_limit;
2259         struct res_counter *fail_res;
2260         unsigned long flags = 0;
2261         int ret;
2262
2263         ret = res_counter_charge(&memcg->res, csize, &fail_res);
2264
2265         if (likely(!ret)) {
2266                 if (!do_swap_account)
2267                         return CHARGE_OK;
2268                 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2269                 if (likely(!ret))
2270                         return CHARGE_OK;
2271
2272                 res_counter_uncharge(&memcg->res, csize);
2273                 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2274                 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2275         } else
2276                 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2277         /*
2278          * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2279          * of regular pages (CHARGE_BATCH), or a single regular page (1).
2280          *
2281          * Never reclaim on behalf of optional batching, retry with a
2282          * single page instead.
2283          */
2284         if (nr_pages == CHARGE_BATCH)
2285                 return CHARGE_RETRY;
2286
2287         if (!(gfp_mask & __GFP_WAIT))
2288                 return CHARGE_WOULDBLOCK;
2289
2290         ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2291         if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2292                 return CHARGE_RETRY;
2293         /*
2294          * Even though the limit is exceeded at this point, reclaim
2295          * may have been able to free some pages.  Retry the charge
2296          * before killing the task.
2297          *
2298          * Only for regular pages, though: huge pages are rather
2299          * unlikely to succeed so close to the limit, and we fall back
2300          * to regular pages anyway in case of failure.
2301          */
2302         if (nr_pages == 1 && ret)
2303                 return CHARGE_RETRY;
2304
2305         /*
2306          * At task move, charge accounts can be doubly counted. So, it's
2307          * better to wait until the end of task_move if something is going on.
2308          */
2309         if (mem_cgroup_wait_acct_move(mem_over_limit))
2310                 return CHARGE_RETRY;
2311
2312         /* If we don't need to call oom-killer at el, return immediately */
2313         if (!oom_check)
2314                 return CHARGE_NOMEM;
2315         /* check OOM */
2316         if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
2317                 return CHARGE_OOM_DIE;
2318
2319         return CHARGE_RETRY;
2320 }
2321
2322 /*
2323  * Unlike exported interface, "oom" parameter is added. if oom==true,
2324  * oom-killer can be invoked.
2325  */
2326 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2327                                    gfp_t gfp_mask,
2328                                    unsigned int nr_pages,
2329                                    struct mem_cgroup **ptr,
2330                                    bool oom)
2331 {
2332         unsigned int batch = max(CHARGE_BATCH, nr_pages);
2333         int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2334         struct mem_cgroup *memcg = NULL;
2335         int ret;
2336
2337         /*
2338          * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2339          * in system level. So, allow to go ahead dying process in addition to
2340          * MEMDIE process.
2341          */
2342         if (unlikely(test_thread_flag(TIF_MEMDIE)
2343                      || fatal_signal_pending(current)))
2344                 goto bypass;
2345
2346         /*
2347          * We always charge the cgroup the mm_struct belongs to.
2348          * The mm_struct's mem_cgroup changes on task migration if the
2349          * thread group leader migrates. It's possible that mm is not
2350          * set, if so charge the init_mm (happens for pagecache usage).
2351          */
2352         if (!*ptr && !mm)
2353                 goto bypass;
2354 again:
2355         if (*ptr) { /* css should be a valid one */
2356                 memcg = *ptr;
2357                 VM_BUG_ON(css_is_removed(&memcg->css));
2358                 if (mem_cgroup_is_root(memcg))
2359                         goto done;
2360                 if (nr_pages == 1 && consume_stock(memcg))
2361                         goto done;
2362                 css_get(&memcg->css);
2363         } else {
2364                 struct task_struct *p;
2365
2366                 rcu_read_lock();
2367                 p = rcu_dereference(mm->owner);
2368                 /*
2369                  * Because we don't have task_lock(), "p" can exit.
2370                  * In that case, "memcg" can point to root or p can be NULL with
2371                  * race with swapoff. Then, we have small risk of mis-accouning.
2372                  * But such kind of mis-account by race always happens because
2373                  * we don't have cgroup_mutex(). It's overkill and we allo that
2374                  * small race, here.
2375                  * (*) swapoff at el will charge against mm-struct not against
2376                  * task-struct. So, mm->owner can be NULL.
2377                  */
2378                 memcg = mem_cgroup_from_task(p);
2379                 if (!memcg || mem_cgroup_is_root(memcg)) {
2380                         rcu_read_unlock();
2381                         goto done;
2382                 }
2383                 if (nr_pages == 1 && consume_stock(memcg)) {
2384                         /*
2385                          * It seems dagerous to access memcg without css_get().
2386                          * But considering how consume_stok works, it's not
2387                          * necessary. If consume_stock success, some charges
2388                          * from this memcg are cached on this cpu. So, we
2389                          * don't need to call css_get()/css_tryget() before
2390                          * calling consume_stock().
2391                          */
2392                         rcu_read_unlock();
2393                         goto done;
2394                 }
2395                 /* after here, we may be blocked. we need to get refcnt */
2396                 if (!css_tryget(&memcg->css)) {
2397                         rcu_read_unlock();
2398                         goto again;
2399                 }
2400                 rcu_read_unlock();
2401         }
2402
2403         do {
2404                 bool oom_check;
2405
2406                 /* If killed, bypass charge */
2407                 if (fatal_signal_pending(current)) {
2408                         css_put(&memcg->css);
2409                         goto bypass;
2410                 }
2411
2412                 oom_check = false;
2413                 if (oom && !nr_oom_retries) {
2414                         oom_check = true;
2415                         nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2416                 }
2417
2418                 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2419                 switch (ret) {
2420                 case CHARGE_OK:
2421                         break;
2422                 case CHARGE_RETRY: /* not in OOM situation but retry */
2423                         batch = nr_pages;
2424                         css_put(&memcg->css);
2425                         memcg = NULL;
2426                         goto again;
2427                 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2428                         css_put(&memcg->css);
2429                         goto nomem;
2430                 case CHARGE_NOMEM: /* OOM routine works */
2431                         if (!oom) {
2432                                 css_put(&memcg->css);
2433                                 goto nomem;
2434                         }
2435                         /* If oom, we never return -ENOMEM */
2436                         nr_oom_retries--;
2437                         break;
2438                 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2439                         css_put(&memcg->css);
2440                         goto bypass;
2441                 }
2442         } while (ret != CHARGE_OK);
2443
2444         if (batch > nr_pages)
2445                 refill_stock(memcg, batch - nr_pages);
2446         css_put(&memcg->css);
2447 done:
2448         *ptr = memcg;
2449         return 0;
2450 nomem:
2451         *ptr = NULL;
2452         return -ENOMEM;
2453 bypass:
2454         *ptr = NULL;
2455         return 0;
2456 }
2457
2458 /*
2459  * Somemtimes we have to undo a charge we got by try_charge().
2460  * This function is for that and do uncharge, put css's refcnt.
2461  * gotten by try_charge().
2462  */
2463 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2464                                        unsigned int nr_pages)
2465 {
2466         if (!mem_cgroup_is_root(memcg)) {
2467                 unsigned long bytes = nr_pages * PAGE_SIZE;
2468
2469                 res_counter_uncharge(&memcg->res, bytes);
2470                 if (do_swap_account)
2471                         res_counter_uncharge(&memcg->memsw, bytes);
2472         }
2473 }
2474
2475 /*
2476  * A helper function to get mem_cgroup from ID. must be called under
2477  * rcu_read_lock(). The caller must check css_is_removed() or some if
2478  * it's concern. (dropping refcnt from swap can be called against removed
2479  * memcg.)
2480  */
2481 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2482 {
2483         struct cgroup_subsys_state *css;
2484
2485         /* ID 0 is unused ID */
2486         if (!id)
2487                 return NULL;
2488         css = css_lookup(&mem_cgroup_subsys, id);
2489         if (!css)
2490                 return NULL;
2491         return container_of(css, struct mem_cgroup, css);
2492 }
2493
2494 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2495 {
2496         struct mem_cgroup *memcg = NULL;
2497         struct page_cgroup *pc;
2498         unsigned short id;
2499         swp_entry_t ent;
2500
2501         VM_BUG_ON(!PageLocked(page));
2502
2503         pc = lookup_page_cgroup(page);
2504         lock_page_cgroup(pc);
2505         if (PageCgroupUsed(pc)) {
2506                 memcg = pc->mem_cgroup;
2507                 if (memcg && !css_tryget(&memcg->css))
2508                         memcg = NULL;
2509         } else if (PageSwapCache(page)) {
2510                 ent.val = page_private(page);
2511                 id = lookup_swap_cgroup(ent);
2512                 rcu_read_lock();
2513                 memcg = mem_cgroup_lookup(id);
2514                 if (memcg && !css_tryget(&memcg->css))
2515                         memcg = NULL;
2516                 rcu_read_unlock();
2517         }
2518         unlock_page_cgroup(pc);
2519         return memcg;
2520 }
2521
2522 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2523                                        struct page *page,
2524                                        unsigned int nr_pages,
2525                                        struct page_cgroup *pc,
2526                                        enum charge_type ctype)
2527 {
2528         lock_page_cgroup(pc);
2529         if (unlikely(PageCgroupUsed(pc))) {
2530                 unlock_page_cgroup(pc);
2531                 __mem_cgroup_cancel_charge(memcg, nr_pages);
2532                 return;
2533         }
2534         /*
2535          * we don't need page_cgroup_lock about tail pages, becase they are not
2536          * accessed by any other context at this point.
2537          */
2538         pc->mem_cgroup = memcg;
2539         /*
2540          * We access a page_cgroup asynchronously without lock_page_cgroup().
2541          * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2542          * is accessed after testing USED bit. To make pc->mem_cgroup visible
2543          * before USED bit, we need memory barrier here.
2544          * See mem_cgroup_add_lru_list(), etc.
2545          */
2546         smp_wmb();
2547         switch (ctype) {
2548         case MEM_CGROUP_CHARGE_TYPE_CACHE:
2549         case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2550                 SetPageCgroupCache(pc);
2551                 SetPageCgroupUsed(pc);
2552                 break;
2553         case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2554                 ClearPageCgroupCache(pc);
2555                 SetPageCgroupUsed(pc);
2556                 break;
2557         default:
2558                 break;
2559         }
2560
2561         mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), nr_pages);
2562         unlock_page_cgroup(pc);
2563         /*
2564          * "charge_statistics" updated event counter. Then, check it.
2565          * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2566          * if they exceeds softlimit.
2567          */
2568         memcg_check_events(memcg, page);
2569 }
2570
2571 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2572
2573 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2574                         (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2575 /*
2576  * Because tail pages are not marked as "used", set it. We're under
2577  * zone->lru_lock, 'splitting on pmd' and compund_lock.
2578  */
2579 void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2580 {
2581         struct page_cgroup *head_pc = lookup_page_cgroup(head);
2582         struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2583         unsigned long flags;
2584
2585         if (mem_cgroup_disabled())
2586                 return;
2587         /*
2588          * We have no races with charge/uncharge but will have races with
2589          * page state accounting.
2590          */
2591         move_lock_page_cgroup(head_pc, &flags);
2592
2593         tail_pc->mem_cgroup = head_pc->mem_cgroup;
2594         smp_wmb(); /* see __commit_charge() */
2595         if (PageCgroupAcctLRU(head_pc)) {
2596                 enum lru_list lru;
2597                 struct mem_cgroup_per_zone *mz;
2598
2599                 /*
2600                  * LRU flags cannot be copied because we need to add tail
2601                  *.page to LRU by generic call and our hook will be called.
2602                  * We hold lru_lock, then, reduce counter directly.
2603                  */
2604                 lru = page_lru(head);
2605                 mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2606                 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2607         }
2608         tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2609         move_unlock_page_cgroup(head_pc, &flags);
2610 }
2611 #endif
2612
2613 /**
2614  * mem_cgroup_move_account - move account of the page
2615  * @page: the page
2616  * @nr_pages: number of regular pages (>1 for huge pages)
2617  * @pc: page_cgroup of the page.
2618  * @from: mem_cgroup which the page is moved from.
2619  * @to: mem_cgroup which the page is moved to. @from != @to.
2620  * @uncharge: whether we should call uncharge and css_put against @from.
2621  *
2622  * The caller must confirm following.
2623  * - page is not on LRU (isolate_page() is useful.)
2624  * - compound_lock is held when nr_pages > 1
2625  *
2626  * This function doesn't do "charge" nor css_get to new cgroup. It should be
2627  * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2628  * true, this function does "uncharge" from old cgroup, but it doesn't if
2629  * @uncharge is false, so a caller should do "uncharge".
2630  */
2631 static int mem_cgroup_move_account(struct page *page,
2632                                    unsigned int nr_pages,
2633                                    struct page_cgroup *pc,
2634                                    struct mem_cgroup *from,
2635                                    struct mem_cgroup *to,
2636                                    bool uncharge)
2637 {
2638         unsigned long flags;
2639         int ret;
2640
2641         VM_BUG_ON(from == to);
2642         VM_BUG_ON(PageLRU(page));
2643         /*
2644          * The page is isolated from LRU. So, collapse function
2645          * will not handle this page. But page splitting can happen.
2646          * Do this check under compound_page_lock(). The caller should
2647          * hold it.
2648          */
2649         ret = -EBUSY;
2650         if (nr_pages > 1 && !PageTransHuge(page))
2651                 goto out;
2652
2653         lock_page_cgroup(pc);
2654
2655         ret = -EINVAL;
2656         if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2657                 goto unlock;
2658
2659         move_lock_page_cgroup(pc, &flags);
2660
2661         if (PageCgroupFileMapped(pc)) {
2662                 /* Update mapped_file data for mem_cgroup */
2663                 preempt_disable();
2664                 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2665                 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2666                 preempt_enable();
2667         }
2668         mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2669         if (uncharge)
2670                 /* This is not "cancel", but cancel_charge does all we need. */
2671                 __mem_cgroup_cancel_charge(from, nr_pages);
2672
2673         /* caller should have done css_get */
2674         pc->mem_cgroup = to;
2675         mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2676         /*
2677          * We charges against "to" which may not have any tasks. Then, "to"
2678          * can be under rmdir(). But in current implementation, caller of
2679          * this function is just force_empty() and move charge, so it's
2680          * guaranteed that "to" is never removed. So, we don't check rmdir
2681          * status here.
2682          */
2683         move_unlock_page_cgroup(pc, &flags);
2684         ret = 0;
2685 unlock:
2686         unlock_page_cgroup(pc);
2687         /*
2688          * check events
2689          */
2690         memcg_check_events(to, page);
2691         memcg_check_events(from, page);
2692 out:
2693         return ret;
2694 }
2695
2696 /*
2697  * move charges to its parent.
2698  */
2699
2700 static int mem_cgroup_move_parent(struct page *page,
2701                                   struct page_cgroup *pc,
2702                                   struct mem_cgroup *child,
2703                                   gfp_t gfp_mask)
2704 {
2705         struct cgroup *cg = child->css.cgroup;
2706         struct cgroup *pcg = cg->parent;
2707         struct mem_cgroup *parent;
2708         unsigned int nr_pages;
2709         unsigned long uninitialized_var(flags);
2710         int ret;
2711
2712         /* Is ROOT ? */
2713         if (!pcg)
2714                 return -EINVAL;
2715
2716         ret = -EBUSY;
2717         if (!get_page_unless_zero(page))
2718                 goto out;
2719         if (isolate_lru_page(page))
2720                 goto put;
2721
2722         nr_pages = hpage_nr_pages(page);
2723
2724         parent = mem_cgroup_from_cont(pcg);
2725         ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2726         if (ret || !parent)
2727                 goto put_back;
2728
2729         if (nr_pages > 1)
2730                 flags = compound_lock_irqsave(page);
2731
2732         ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2733         if (ret)
2734                 __mem_cgroup_cancel_charge(parent, nr_pages);
2735
2736         if (nr_pages > 1)
2737                 compound_unlock_irqrestore(page, flags);
2738 put_back:
2739         putback_lru_page(page);
2740 put:
2741         put_page(page);
2742 out:
2743         return ret;
2744 }
2745
2746 /*
2747  * Charge the memory controller for page usage.
2748  * Return
2749  * 0 if the charge was successful
2750  * < 0 if the cgroup is over its limit
2751  */
2752 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2753                                 gfp_t gfp_mask, enum charge_type ctype)
2754 {
2755         struct mem_cgroup *memcg = NULL;
2756         unsigned int nr_pages = 1;
2757         struct page_cgroup *pc;
2758         bool oom = true;
2759         int ret;
2760
2761         if (PageTransHuge(page)) {
2762                 nr_pages <<= compound_order(page);
2763                 VM_BUG_ON(!PageTransHuge(page));
2764                 /*
2765                  * Never OOM-kill a process for a huge page.  The
2766                  * fault handler will fall back to regular pages.
2767                  */
2768                 oom = false;
2769         }
2770
2771         pc = lookup_page_cgroup(page);
2772         BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2773
2774         ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2775         if (ret || !memcg)
2776                 return ret;
2777
2778         __mem_cgroup_commit_charge(memcg, page, nr_pages, pc, ctype);
2779         return 0;
2780 }
2781
2782 int mem_cgroup_newpage_charge(struct page *page,
2783                               struct mm_struct *mm, gfp_t gfp_mask)
2784 {
2785         if (mem_cgroup_disabled())
2786                 return 0;
2787         /*
2788          * If already mapped, we don't have to account.
2789          * If page cache, page->mapping has address_space.
2790          * But page->mapping may have out-of-use anon_vma pointer,
2791          * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2792          * is NULL.
2793          */
2794         if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2795                 return 0;
2796         if (unlikely(!mm))
2797                 mm = &init_mm;
2798         return mem_cgroup_charge_common(page, mm, gfp_mask,
2799                                 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2800 }
2801
2802 static void
2803 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2804                                         enum charge_type ctype);
2805
2806 static void
2807 __mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *memcg,
2808                                         enum charge_type ctype)
2809 {
2810         struct page_cgroup *pc = lookup_page_cgroup(page);
2811         /*
2812          * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2813          * is already on LRU. It means the page may on some other page_cgroup's
2814          * LRU. Take care of it.
2815          */
2816         mem_cgroup_lru_del_before_commit(page);
2817         __mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
2818         mem_cgroup_lru_add_after_commit(page);
2819         return;
2820 }
2821
2822 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2823                                 gfp_t gfp_mask)
2824 {
2825         struct mem_cgroup *memcg = NULL;
2826         int ret;
2827
2828         if (mem_cgroup_disabled())
2829                 return 0;
2830         if (PageCompound(page))
2831                 return 0;
2832
2833         if (unlikely(!mm))
2834                 mm = &init_mm;
2835
2836         if (page_is_file_cache(page)) {
2837                 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &memcg, true);
2838                 if (ret || !memcg)
2839                         return ret;
2840
2841                 /*
2842                  * FUSE reuses pages without going through the final
2843                  * put that would remove them from the LRU list, make
2844                  * sure that they get relinked properly.
2845                  */
2846                 __mem_cgroup_commit_charge_lrucare(page, memcg,
2847                                         MEM_CGROUP_CHARGE_TYPE_CACHE);
2848                 return ret;
2849         }
2850         /* shmem */
2851         if (PageSwapCache(page)) {
2852                 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
2853                 if (!ret)
2854                         __mem_cgroup_commit_charge_swapin(page, memcg,
2855                                         MEM_CGROUP_CHARGE_TYPE_SHMEM);
2856         } else
2857                 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2858                                         MEM_CGROUP_CHARGE_TYPE_SHMEM);
2859
2860         return ret;
2861 }
2862
2863 /*
2864  * While swap-in, try_charge -> commit or cancel, the page is locked.
2865  * And when try_charge() successfully returns, one refcnt to memcg without
2866  * struct page_cgroup is acquired. This refcnt will be consumed by
2867  * "commit()" or removed by "cancel()"
2868  */
2869 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2870                                  struct page *page,
2871                                  gfp_t mask, struct mem_cgroup **ptr)
2872 {
2873         struct mem_cgroup *memcg;
2874         int ret;
2875
2876         *ptr = NULL;
2877
2878         if (mem_cgroup_disabled())
2879                 return 0;
2880
2881         if (!do_swap_account)
2882                 goto charge_cur_mm;
2883         /*
2884          * A racing thread's fault, or swapoff, may have already updated
2885          * the pte, and even removed page from swap cache: in those cases
2886          * do_swap_page()'s pte_same() test will fail; but there's also a
2887          * KSM case which does need to charge the page.
2888          */
2889         if (!PageSwapCache(page))
2890                 goto charge_cur_mm;
2891         memcg = try_get_mem_cgroup_from_page(page);
2892         if (!memcg)
2893                 goto charge_cur_mm;
2894         *ptr = memcg;
2895         ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
2896         css_put(&memcg->css);
2897         return ret;
2898 charge_cur_mm:
2899         if (unlikely(!mm))
2900                 mm = &init_mm;
2901         return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
2902 }
2903
2904 static void
2905 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2906                                         enum charge_type ctype)
2907 {
2908         if (mem_cgroup_disabled())
2909                 return;
2910         if (!ptr)
2911                 return;
2912         cgroup_exclude_rmdir(&ptr->css);
2913
2914         __mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
2915         /*
2916          * Now swap is on-memory. This means this page may be
2917          * counted both as mem and swap....double count.
2918          * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2919          * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2920          * may call delete_from_swap_cache() before reach here.
2921          */
2922         if (do_swap_account && PageSwapCache(page)) {
2923                 swp_entry_t ent = {.val = page_private(page)};
2924                 unsigned short id;
2925                 struct mem_cgroup *memcg;
2926
2927                 id = swap_cgroup_record(ent, 0);
2928                 rcu_read_lock();
2929                 memcg = mem_cgroup_lookup(id);
2930                 if (memcg) {
2931                         /*
2932                          * This recorded memcg can be obsolete one. So, avoid
2933                          * calling css_tryget
2934                          */
2935                         if (!mem_cgroup_is_root(memcg))
2936                                 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2937                         mem_cgroup_swap_statistics(memcg, false);
2938                         mem_cgroup_put(memcg);
2939                 }
2940                 rcu_read_unlock();
2941         }
2942         /*
2943          * At swapin, we may charge account against cgroup which has no tasks.
2944          * So, rmdir()->pre_destroy() can be called while we do this charge.
2945          * In that case, we need to call pre_destroy() again. check it here.
2946          */
2947         cgroup_release_and_wakeup_rmdir(&ptr->css);
2948 }
2949
2950 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2951 {
2952         __mem_cgroup_commit_charge_swapin(page, ptr,
2953                                         MEM_CGROUP_CHARGE_TYPE_MAPPED);
2954 }
2955
2956 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2957 {
2958         if (mem_cgroup_disabled())
2959                 return;
2960         if (!memcg)
2961                 return;
2962         __mem_cgroup_cancel_charge(memcg, 1);
2963 }
2964
2965 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2966                                    unsigned int nr_pages,
2967                                    const enum charge_type ctype)
2968 {
2969         struct memcg_batch_info *batch = NULL;
2970         bool uncharge_memsw = true;
2971
2972         /* If swapout, usage of swap doesn't decrease */
2973         if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2974                 uncharge_memsw = false;
2975
2976         batch = &current->memcg_batch;
2977         /*
2978          * In usual, we do css_get() when we remember memcg pointer.
2979          * But in this case, we keep res->usage until end of a series of
2980          * uncharges. Then, it's ok to ignore memcg's refcnt.
2981          */
2982         if (!batch->memcg)
2983                 batch->memcg = memcg;
2984         /*
2985          * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2986          * In those cases, all pages freed continuously can be expected to be in
2987          * the same cgroup and we have chance to coalesce uncharges.
2988          * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2989          * because we want to do uncharge as soon as possible.
2990          */
2991
2992         if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2993                 goto direct_uncharge;
2994
2995         if (nr_pages > 1)
2996                 goto direct_uncharge;
2997
2998         /*
2999          * In typical case, batch->memcg == mem. This means we can
3000          * merge a series of uncharges to an uncharge of res_counter.
3001          * If not, we uncharge res_counter ony by one.
3002          */
3003         if (batch->memcg != memcg)
3004                 goto direct_uncharge;
3005         /* remember freed charge and uncharge it later */
3006         batch->nr_pages++;
3007         if (uncharge_memsw)
3008                 batch->memsw_nr_pages++;
3009         return;
3010 direct_uncharge:
3011         res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
3012         if (uncharge_memsw)
3013                 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
3014         if (unlikely(batch->memcg != memcg))
3015                 memcg_oom_recover(memcg);
3016         return;
3017 }
3018
3019 /*
3020  * uncharge if !page_mapped(page)
3021  */
3022 static struct mem_cgroup *
3023 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
3024 {
3025         struct mem_cgroup *memcg = NULL;
3026         unsigned int nr_pages = 1;
3027         struct page_cgroup *pc;
3028
3029         if (mem_cgroup_disabled())
3030                 return NULL;
3031
3032         if (PageSwapCache(page))
3033                 return NULL;
3034
3035         if (PageTransHuge(page)) {
3036                 nr_pages <<= compound_order(page);
3037                 VM_BUG_ON(!PageTransHuge(page));
3038         }
3039         /*
3040          * Check if our page_cgroup is valid
3041          */
3042         pc = lookup_page_cgroup(page);
3043         if (unlikely(!pc || !PageCgroupUsed(pc)))
3044                 return NULL;
3045
3046         lock_page_cgroup(pc);
3047
3048         memcg = pc->mem_cgroup;
3049
3050         if (!PageCgroupUsed(pc))
3051                 goto unlock_out;
3052
3053         switch (ctype) {
3054         case MEM_CGROUP_CHARGE_TYPE_MAPPED:
3055         case MEM_CGROUP_CHARGE_TYPE_DROP:
3056                 /* See mem_cgroup_prepare_migration() */
3057                 if (page_mapped(page) || PageCgroupMigration(pc))
3058                         goto unlock_out;
3059                 break;
3060         case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3061                 if (!PageAnon(page)) {  /* Shared memory */
3062                         if (page->mapping && !page_is_file_cache(page))
3063                                 goto unlock_out;
3064                 } else if (page_mapped(page)) /* Anon */
3065                                 goto unlock_out;
3066                 break;
3067         default:
3068                 break;
3069         }
3070
3071         mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -nr_pages);
3072
3073         ClearPageCgroupUsed(pc);
3074         /*
3075          * pc->mem_cgroup is not cleared here. It will be accessed when it's
3076          * freed from LRU. This is safe because uncharged page is expected not
3077          * to be reused (freed soon). Exception is SwapCache, it's handled by
3078          * special functions.
3079          */
3080
3081         unlock_page_cgroup(pc);
3082         /*
3083          * even after unlock, we have memcg->res.usage here and this memcg
3084          * will never be freed.
3085          */
3086         memcg_check_events(memcg, page);
3087         if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3088                 mem_cgroup_swap_statistics(memcg, true);
3089                 mem_cgroup_get(memcg);
3090         }
3091         if (!mem_cgroup_is_root(memcg))
3092                 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3093
3094         return memcg;
3095
3096 unlock_out:
3097         unlock_page_cgroup(pc);
3098         return NULL;
3099 }
3100
3101 void mem_cgroup_uncharge_page(struct page *page)
3102 {
3103         /* early check. */
3104         if (page_mapped(page))
3105                 return;
3106         if (page->mapping && !PageAnon(page))
3107                 return;
3108         __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3109 }
3110
3111 void mem_cgroup_uncharge_cache_page(struct page *page)
3112 {
3113         VM_BUG_ON(page_mapped(page));
3114         VM_BUG_ON(page->mapping);
3115         __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3116 }
3117
3118 /*
3119  * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3120  * In that cases, pages are freed continuously and we can expect pages
3121  * are in the same memcg. All these calls itself limits the number of
3122  * pages freed at once, then uncharge_start/end() is called properly.
3123  * This may be called prural(2) times in a context,
3124  */
3125
3126 void mem_cgroup_uncharge_start(void)
3127 {
3128         current->memcg_batch.do_batch++;
3129         /* We can do nest. */
3130         if (current->memcg_batch.do_batch == 1) {
3131                 current->memcg_batch.memcg = NULL;
3132                 current->memcg_batch.nr_pages = 0;
3133                 current->memcg_batch.memsw_nr_pages = 0;
3134         }
3135 }
3136
3137 void mem_cgroup_uncharge_end(void)
3138 {
3139         struct memcg_batch_info *batch = &current->memcg_batch;
3140
3141         if (!batch->do_batch)
3142                 return;
3143
3144         batch->do_batch--;
3145         if (batch->do_batch) /* If stacked, do nothing. */
3146                 return;
3147
3148         if (!batch->memcg)
3149                 return;
3150         /*
3151          * This "batch->memcg" is valid without any css_get/put etc...
3152          * bacause we hide charges behind us.
3153          */
3154         if (batch->nr_pages)
3155                 res_counter_uncharge(&batch->memcg->res,
3156                                      batch->nr_pages * PAGE_SIZE);
3157         if (batch->memsw_nr_pages)
3158                 res_counter_uncharge(&batch->memcg->memsw,
3159                                      batch->memsw_nr_pages * PAGE_SIZE);
3160         memcg_oom_recover(batch->memcg);
3161         /* forget this pointer (for sanity check) */
3162         batch->memcg = NULL;
3163 }
3164
3165 #ifdef CONFIG_SWAP
3166 /*
3167  * called after __delete_from_swap_cache() and drop "page" account.
3168  * memcg information is recorded to swap_cgroup of "ent"
3169  */
3170 void
3171 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3172 {
3173         struct mem_cgroup *memcg;
3174         int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3175
3176         if (!swapout) /* this was a swap cache but the swap is unused ! */
3177                 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3178
3179         memcg = __mem_cgroup_uncharge_common(page, ctype);
3180
3181         /*
3182          * record memcg information,  if swapout && memcg != NULL,
3183          * mem_cgroup_get() was called in uncharge().
3184          */
3185         if (do_swap_account && swapout && memcg)
3186                 swap_cgroup_record(ent, css_id(&memcg->css));
3187 }
3188 #endif
3189
3190 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3191 /*
3192  * called from swap_entry_free(). remove record in swap_cgroup and
3193  * uncharge "memsw" account.
3194  */
3195 void mem_cgroup_uncharge_swap(swp_entry_t ent)
3196 {
3197         struct mem_cgroup *memcg;
3198         unsigned short id;
3199
3200         if (!do_swap_account)
3201                 return;
3202
3203         id = swap_cgroup_record(ent, 0);
3204         rcu_read_lock();
3205         memcg = mem_cgroup_lookup(id);
3206         if (memcg) {
3207                 /*
3208                  * We uncharge this because swap is freed.
3209                  * This memcg can be obsolete one. We avoid calling css_tryget
3210                  */
3211                 if (!mem_cgroup_is_root(memcg))
3212                         res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3213                 mem_cgroup_swap_statistics(memcg, false);
3214                 mem_cgroup_put(memcg);
3215         }
3216         rcu_read_unlock();
3217 }
3218
3219 /**
3220  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3221  * @entry: swap entry to be moved
3222  * @from:  mem_cgroup which the entry is moved from
3223  * @to:  mem_cgroup which the entry is moved to
3224  * @need_fixup: whether we should fixup res_counters and refcounts.
3225  *
3226  * It succeeds only when the swap_cgroup's record for this entry is the same
3227  * as the mem_cgroup's id of @from.
3228  *
3229  * Returns 0 on success, -EINVAL on failure.
3230  *
3231  * The caller must have charged to @to, IOW, called res_counter_charge() about
3232  * both res and memsw, and called css_get().
3233  */
3234 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3235                 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3236 {
3237         unsigned short old_id, new_id;
3238
3239         old_id = css_id(&from->css);
3240         new_id = css_id(&to->css);
3241
3242         if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3243                 mem_cgroup_swap_statistics(from, false);
3244                 mem_cgroup_swap_statistics(to, true);
3245                 /*
3246                  * This function is only called from task migration context now.
3247                  * It postpones res_counter and refcount handling till the end
3248                  * of task migration(mem_cgroup_clear_mc()) for performance
3249                  * improvement. But we cannot postpone mem_cgroup_get(to)
3250                  * because if the process that has been moved to @to does
3251                  * swap-in, the refcount of @to might be decreased to 0.
3252                  */
3253                 mem_cgroup_get(to);
3254                 if (need_fixup) {
3255                         if (!mem_cgroup_is_root(from))
3256                                 res_counter_uncharge(&from->memsw, PAGE_SIZE);
3257                         mem_cgroup_put(from);
3258                         /*
3259                          * we charged both to->res and to->memsw, so we should
3260                          * uncharge to->res.
3261                          */
3262                         if (!mem_cgroup_is_root(to))
3263                                 res_counter_uncharge(&to->res, PAGE_SIZE);
3264                 }
3265                 return 0;
3266         }
3267         return -EINVAL;
3268 }
3269 #else
3270 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3271                 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3272 {
3273         return -EINVAL;
3274 }
3275 #endif
3276
3277 /*
3278  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3279  * page belongs to.
3280  */
3281 int mem_cgroup_prepare_migration(struct page *page,
3282         struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
3283 {
3284         struct mem_cgroup *memcg = NULL;
3285         struct page_cgroup *pc;
3286         enum charge_type ctype;
3287         int ret = 0;
3288
3289         *ptr = NULL;
3290
3291         VM_BUG_ON(PageTransHuge(page));
3292         if (mem_cgroup_disabled())
3293                 return 0;
3294
3295         pc = lookup_page_cgroup(page);
3296         lock_page_cgroup(pc);
3297         if (PageCgroupUsed(pc)) {
3298                 memcg = pc->mem_cgroup;
3299                 css_get(&memcg->css);
3300                 /*
3301                  * At migrating an anonymous page, its mapcount goes down
3302                  * to 0 and uncharge() will be called. But, even if it's fully
3303                  * unmapped, migration may fail and this page has to be
3304                  * charged again. We set MIGRATION flag here and delay uncharge
3305                  * until end_migration() is called
3306                  *
3307                  * Corner Case Thinking
3308                  * A)
3309                  * When the old page was mapped as Anon and it's unmap-and-freed
3310                  * while migration was ongoing.
3311                  * If unmap finds the old page, uncharge() of it will be delayed
3312                  * until end_migration(). If unmap finds a new page, it's
3313                  * uncharged when it make mapcount to be 1->0. If unmap code
3314                  * finds swap_migration_entry, the new page will not be mapped
3315                  * and end_migration() will find it(mapcount==0).
3316                  *
3317                  * B)
3318                  * When the old page was mapped but migraion fails, the kernel
3319                  * remaps it. A charge for it is kept by MIGRATION flag even
3320                  * if mapcount goes down to 0. We can do remap successfully
3321                  * without charging it again.
3322                  *
3323                  * C)
3324                  * The "old" page is under lock_page() until the end of
3325                  * migration, so, the old page itself will not be swapped-out.
3326                  * If the new page is swapped out before end_migraton, our
3327                  * hook to usual swap-out path will catch the event.
3328                  */
3329                 if (PageAnon(page))
3330                         SetPageCgroupMigration(pc);
3331         }
3332         unlock_page_cgroup(pc);
3333         /*
3334          * If the page is not charged at this point,
3335          * we return here.
3336          */
3337         if (!memcg)
3338                 return 0;
3339
3340         *ptr = memcg;
3341         ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
3342         css_put(&memcg->css);/* drop extra refcnt */
3343         if (ret || *ptr == NULL) {
3344                 if (PageAnon(page)) {
3345                         lock_page_cgroup(pc);
3346                         ClearPageCgroupMigration(pc);
3347                         unlock_page_cgroup(pc);
3348                         /*
3349                          * The old page may be fully unmapped while we kept it.
3350                          */
3351                         mem_cgroup_uncharge_page(page);
3352                 }
3353                 return -ENOMEM;
3354         }
3355         /*
3356          * We charge new page before it's used/mapped. So, even if unlock_page()
3357          * is called before end_migration, we can catch all events on this new
3358          * page. In the case new page is migrated but not remapped, new page's
3359          * mapcount will be finally 0 and we call uncharge in end_migration().
3360          */
3361         pc = lookup_page_cgroup(newpage);
3362         if (PageAnon(page))
3363                 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3364         else if (page_is_file_cache(page))
3365                 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3366         else
3367                 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3368         __mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
3369         return ret;
3370 }
3371
3372 /* remove redundant charge if migration failed*/
3373 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3374         struct page *oldpage, struct page *newpage, bool migration_ok)
3375 {
3376         struct page *used, *unused;
3377         struct page_cgroup *pc;
3378
3379         if (!memcg)
3380                 return;
3381         /* blocks rmdir() */
3382         cgroup_exclude_rmdir(&memcg->css);
3383         if (!migration_ok) {
3384                 used = oldpage;
3385                 unused = newpage;
3386         } else {
3387                 used = newpage;
3388                 unused = oldpage;
3389         }
3390         /*
3391          * We disallowed uncharge of pages under migration because mapcount
3392          * of the page goes down to zero, temporarly.
3393          * Clear the flag and check the page should be charged.
3394          */
3395         pc = lookup_page_cgroup(oldpage);
3396         lock_page_cgroup(pc);
3397         ClearPageCgroupMigration(pc);
3398         unlock_page_cgroup(pc);
3399
3400         __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3401
3402         /*
3403          * If a page is a file cache, radix-tree replacement is very atomic
3404          * and we can skip this check. When it was an Anon page, its mapcount
3405          * goes down to 0. But because we added MIGRATION flage, it's not
3406          * uncharged yet. There are several case but page->mapcount check
3407          * and USED bit check in mem_cgroup_uncharge_page() will do enough
3408          * check. (see prepare_charge() also)
3409          */
3410         if (PageAnon(used))
3411                 mem_cgroup_uncharge_page(used);
3412         /*
3413          * At migration, we may charge account against cgroup which has no
3414          * tasks.
3415          * So, rmdir()->pre_destroy() can be called while we do this charge.
3416          * In that case, we need to call pre_destroy() again. check it here.
3417          */
3418         cgroup_release_and_wakeup_rmdir(&memcg->css);
3419 }
3420
3421 /*
3422  * At replace page cache, newpage is not under any memcg but it's on
3423  * LRU. So, this function doesn't touch res_counter but handles LRU
3424  * in correct way. Both pages are locked so we cannot race with uncharge.
3425  */
3426 void mem_cgroup_replace_page_cache(struct page *oldpage,
3427                                   struct page *newpage)
3428 {
3429         struct mem_cgroup *memcg;
3430         struct page_cgroup *pc;
3431         struct zone *zone;
3432         enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3433         unsigned long flags;
3434
3435         if (mem_cgroup_disabled())
3436                 return;
3437
3438         pc = lookup_page_cgroup(oldpage);
3439         /* fix accounting on old pages */
3440         lock_page_cgroup(pc);
3441         memcg = pc->mem_cgroup;
3442         mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -1);
3443         ClearPageCgroupUsed(pc);
3444         unlock_page_cgroup(pc);
3445
3446         if (PageSwapBacked(oldpage))
3447                 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3448
3449         zone = page_zone(newpage);
3450         pc = lookup_page_cgroup(newpage);
3451         /*
3452          * Even if newpage->mapping was NULL before starting replacement,
3453          * the newpage may be on LRU(or pagevec for LRU) already. We lock
3454          * LRU while we overwrite pc->mem_cgroup.
3455          */
3456         spin_lock_irqsave(&zone->lru_lock, flags);
3457         if (PageLRU(newpage))
3458                 del_page_from_lru_list(zone, newpage, page_lru(newpage));
3459         __mem_cgroup_commit_charge(memcg, newpage, 1, pc, type);
3460         if (PageLRU(newpage))
3461                 add_page_to_lru_list(zone, newpage, page_lru(newpage));
3462         spin_unlock_irqrestore(&zone->lru_lock, flags);
3463 }
3464
3465 #ifdef CONFIG_DEBUG_VM
3466 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3467 {
3468         struct page_cgroup *pc;
3469
3470         pc = lookup_page_cgroup(page);
3471         if (likely(pc) && PageCgroupUsed(pc))
3472                 return pc;
3473         return NULL;
3474 }
3475
3476 bool mem_cgroup_bad_page_check(struct page *page)
3477 {
3478         if (mem_cgroup_disabled())
3479                 return false;
3480
3481         return lookup_page_cgroup_used(page) != NULL;
3482 }
3483
3484 void mem_cgroup_print_bad_page(struct page *page)
3485 {
3486         struct page_cgroup *pc;
3487
3488         pc = lookup_page_cgroup_used(page);
3489         if (pc) {
3490                 int ret = -1;
3491                 char *path;
3492
3493                 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3494                        pc, pc->flags, pc->mem_cgroup);
3495
3496                 path = kmalloc(PATH_MAX, GFP_KERNEL);
3497                 if (path) {
3498                         rcu_read_lock();
3499                         ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3500                                                         path, PATH_MAX);
3501                         rcu_read_unlock();
3502                 }
3503
3504                 printk(KERN_CONT "(%s)\n",
3505                                 (ret < 0) ? "cannot get the path" : path);
3506                 kfree(path);
3507         }
3508 }
3509 #endif
3510
3511 static DEFINE_MUTEX(set_limit_mutex);
3512
3513 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3514                                 unsigned long long val)
3515 {
3516         int retry_count;
3517         u64 memswlimit, memlimit;
3518         int ret = 0;
3519         int children = mem_cgroup_count_children(memcg);
3520         u64 curusage, oldusage;
3521         int enlarge;
3522
3523         /*
3524          * For keeping hierarchical_reclaim simple, how long we should retry
3525          * is depends on callers. We set our retry-count to be function
3526          * of # of children which we should visit in this loop.
3527          */
3528         retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3529
3530         oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3531
3532         enlarge = 0;
3533         while (retry_count) {
3534                 if (signal_pending(current)) {
3535                         ret = -EINTR;
3536                         break;
3537                 }
3538                 /*
3539                  * Rather than hide all in some function, I do this in
3540                  * open coded manner. You see what this really does.
3541                  * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3542                  */
3543                 mutex_lock(&set_limit_mutex);
3544                 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3545                 if (memswlimit < val) {
3546                         ret = -EINVAL;
3547                         mutex_unlock(&set_limit_mutex);
3548                         break;
3549                 }
3550
3551                 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3552                 if (memlimit < val)
3553                         enlarge = 1;
3554
3555                 ret = res_counter_set_limit(&memcg->res, val);
3556                 if (!ret) {
3557                         if (memswlimit == val)
3558                                 memcg->memsw_is_minimum = true;
3559                         else
3560                                 memcg->memsw_is_minimum = false;
3561                 }
3562                 mutex_unlock(&set_limit_mutex);
3563
3564                 if (!ret)
3565                         break;
3566
3567                 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3568                                    MEM_CGROUP_RECLAIM_SHRINK);
3569                 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3570                 /* Usage is reduced ? */
3571                 if (curusage >= oldusage)
3572                         retry_count--;
3573                 else
3574                         oldusage = curusage;
3575         }
3576         if (!ret && enlarge)
3577                 memcg_oom_recover(memcg);
3578
3579         return ret;
3580 }
3581
3582 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3583                                         unsigned long long val)
3584 {
3585         int retry_count;
3586         u64 memlimit, memswlimit, oldusage, curusage;
3587         int children = mem_cgroup_count_children(memcg);
3588         int ret = -EBUSY;
3589         int enlarge = 0;
3590
3591         /* see mem_cgroup_resize_res_limit */
3592         retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3593         oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3594         while (retry_count) {
3595                 if (signal_pending(current)) {
3596                         ret = -EINTR;
3597                         break;
3598                 }
3599                 /*
3600                  * Rather than hide all in some function, I do this in
3601                  * open coded manner. You see what this really does.
3602                  * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3603                  */
3604                 mutex_lock(&set_limit_mutex);
3605                 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3606                 if (memlimit > val) {
3607                         ret = -EINVAL;
3608                         mutex_unlock(&set_limit_mutex);
3609                         break;
3610                 }
3611                 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3612                 if (memswlimit < val)
3613                         enlarge = 1;
3614                 ret = res_counter_set_limit(&memcg->memsw, val);
3615                 if (!ret) {
3616                         if (memlimit == val)
3617                                 memcg->memsw_is_minimum = true;
3618                         else
3619                                 memcg->memsw_is_minimum = false;
3620                 }
3621                 mutex_unlock(&set_limit_mutex);
3622
3623                 if (!ret)
3624                         break;
3625
3626                 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3627                                    MEM_CGROUP_RECLAIM_NOSWAP |
3628                                    MEM_CGROUP_RECLAIM_SHRINK);
3629                 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3630                 /* Usage is reduced ? */
3631                 if (curusage >= oldusage)
3632                         retry_count--;
3633                 else
3634                         oldusage = curusage;
3635         }
3636         if (!ret && enlarge)
3637                 memcg_oom_recover(memcg);
3638         return ret;
3639 }
3640
3641 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3642                                             gfp_t gfp_mask,
3643                                             unsigned long *total_scanned)
3644 {
3645         unsigned long nr_reclaimed = 0;
3646         struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3647         unsigned long reclaimed;
3648         int loop = 0;
3649         struct mem_cgroup_tree_per_zone *mctz;
3650         unsigned long long excess;
3651         unsigned long nr_scanned;
3652
3653         if (order > 0)
3654                 return 0;
3655
3656         mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3657         /*
3658          * This loop can run a while, specially if mem_cgroup's continuously
3659          * keep exceeding their soft limit and putting the system under
3660          * pressure
3661          */
3662         do {
3663                 if (next_mz)
3664                         mz = next_mz;
3665                 else
3666                         mz = mem_cgroup_largest_soft_limit_node(mctz);
3667                 if (!mz)
3668                         break;
3669
3670                 nr_scanned = 0;
3671                 reclaimed = mem_cgroup_soft_reclaim(mz->mem, zone,
3672                                                     gfp_mask, &nr_scanned);
3673                 nr_reclaimed += reclaimed;
3674                 *total_scanned += nr_scanned;
3675                 spin_lock(&mctz->lock);
3676
3677                 /*
3678                  * If we failed to reclaim anything from this memory cgroup
3679                  * it is time to move on to the next cgroup
3680                  */
3681                 next_mz = NULL;
3682                 if (!reclaimed) {
3683                         do {
3684                                 /*
3685                                  * Loop until we find yet another one.
3686                                  *
3687                                  * By the time we get the soft_limit lock
3688                                  * again, someone might have aded the
3689                                  * group back on the RB tree. Iterate to
3690                                  * make sure we get a different mem.
3691                                  * mem_cgroup_largest_soft_limit_node returns
3692                                  * NULL if no other cgroup is present on
3693                                  * the tree
3694                                  */
3695                                 next_mz =
3696                                 __mem_cgroup_largest_soft_limit_node(mctz);
3697                                 if (next_mz == mz)
3698                                         css_put(&next_mz->mem->css);
3699                                 else /* next_mz == NULL or other memcg */
3700                                         break;
3701                         } while (1);
3702                 }
3703                 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3704                 excess = res_counter_soft_limit_excess(&mz->mem->res);
3705                 /*
3706                  * One school of thought says that we should not add
3707                  * back the node to the tree if reclaim returns 0.
3708                  * But our reclaim could return 0, simply because due
3709                  * to priority we are exposing a smaller subset of
3710                  * memory to reclaim from. Consider this as a longer
3711                  * term TODO.
3712                  */
3713                 /* If excess == 0, no tree ops */
3714                 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3715                 spin_unlock(&mctz->lock);
3716                 css_put(&mz->mem->css);
3717                 loop++;
3718                 /*
3719                  * Could not reclaim anything and there are no more
3720                  * mem cgroups to try or we seem to be looping without
3721                  * reclaiming anything.
3722                  */
3723                 if (!nr_reclaimed &&
3724                         (next_mz == NULL ||
3725                         loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3726                         break;
3727         } while (!nr_reclaimed);
3728         if (next_mz)
3729                 css_put(&next_mz->mem->css);
3730         return nr_reclaimed;
3731 }
3732
3733 /*
3734  * This routine traverse page_cgroup in given list and drop them all.
3735  * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3736  */
3737 static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3738                                 int node, int zid, enum lru_list lru)
3739 {
3740         struct zone *zone;
3741         struct mem_cgroup_per_zone *mz;
3742         struct page_cgroup *pc, *busy;
3743         unsigned long flags, loop;
3744         struct list_head *list;
3745         int ret = 0;
3746
3747         zone = &NODE_DATA(node)->node_zones[zid];
3748         mz = mem_cgroup_zoneinfo(memcg, node, zid);
3749         list = &mz->lists[lru];
3750
3751         loop = MEM_CGROUP_ZSTAT(mz, lru);
3752         /* give some margin against EBUSY etc...*/
3753         loop += 256;
3754         busy = NULL;
3755         while (loop--) {
3756                 struct page *page;
3757
3758                 ret = 0;
3759                 spin_lock_irqsave(&zone->lru_lock, flags);
3760                 if (list_empty(list)) {
3761                         spin_unlock_irqrestore(&zone->lru_lock, flags);
3762                         break;
3763                 }
3764                 pc = list_entry(list->prev, struct page_cgroup, lru);
3765                 if (busy == pc) {
3766                         list_move(&pc->lru, list);
3767                         busy = NULL;
3768                         spin_unlock_irqrestore(&zone->lru_lock, flags);
3769                         continue;
3770                 }
3771                 spin_unlock_irqrestore(&zone->lru_lock, flags);
3772
3773                 page = lookup_cgroup_page(pc);
3774
3775                 ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3776                 if (ret == -ENOMEM)
3777                         break;
3778
3779                 if (ret == -EBUSY || ret == -EINVAL) {
3780                         /* found lock contention or "pc" is obsolete. */
3781                         busy = pc;
3782                         cond_resched();
3783                 } else
3784                         busy = NULL;
3785         }
3786
3787         if (!ret && !list_empty(list))
3788                 return -EBUSY;
3789         return ret;
3790 }
3791
3792 /*
3793  * make mem_cgroup's charge to be 0 if there is no task.
3794  * This enables deleting this mem_cgroup.
3795  */
3796 static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3797 {
3798         int ret;
3799         int node, zid, shrink;
3800         int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3801         struct cgroup *cgrp = memcg->css.cgroup;
3802
3803         css_get(&memcg->css);
3804
3805         shrink = 0;
3806         /* should free all ? */
3807         if (free_all)
3808                 goto try_to_free;
3809 move_account:
3810         do {
3811                 ret = -EBUSY;
3812                 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3813                         goto out;
3814                 ret = -EINTR;
3815                 if (signal_pending(current))
3816                         goto out;
3817                 /* This is for making all *used* pages to be on LRU. */
3818                 lru_add_drain_all();
3819                 drain_all_stock_sync(memcg);
3820                 ret = 0;
3821                 mem_cgroup_start_move(memcg);
3822                 for_each_node_state(node, N_HIGH_MEMORY) {
3823                         for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3824                                 enum lru_list l;
3825                                 for_each_lru(l) {
3826                                         ret = mem_cgroup_force_empty_list(memcg,
3827                                                         node, zid, l);
3828                                         if (ret)
3829                                                 break;
3830                                 }
3831                         }
3832                         if (ret)
3833                                 break;
3834                 }
3835                 mem_cgroup_end_move(memcg);
3836                 memcg_oom_recover(memcg);
3837                 /* it seems parent cgroup doesn't have enough mem */
3838                 if (ret == -ENOMEM)
3839                         goto try_to_free;
3840                 cond_resched();
3841         /* "ret" should also be checked to ensure all lists are empty. */
3842         } while (memcg->res.usage > 0 || ret);
3843 out:
3844         css_put(&memcg->css);
3845         return ret;
3846
3847 try_to_free:
3848         /* returns EBUSY if there is a task or if we come here twice. */
3849         if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3850                 ret = -EBUSY;
3851                 goto out;
3852         }
3853         /* we call try-to-free pages for make this cgroup empty */
3854         lru_add_drain_all();
3855         /* try to free all pages in this cgroup */
3856         shrink = 1;
3857         while (nr_retries && memcg->res.usage > 0) {
3858                 int progress;
3859
3860                 if (signal_pending(current)) {
3861                         ret = -EINTR;
3862                         goto out;
3863                 }
3864                 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3865                                                 false);
3866                 if (!progress) {
3867                         nr_retries--;
3868                         /* maybe some writeback is necessary */
3869                         congestion_wait(BLK_RW_ASYNC, HZ/10);
3870                 }
3871
3872         }
3873         lru_add_drain();
3874         /* try move_account...there may be some *locked* pages. */
3875         goto move_account;
3876 }
3877
3878 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3879 {
3880         return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3881 }
3882
3883
3884 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3885 {
3886         return mem_cgroup_from_cont(cont)->use_hierarchy;
3887 }
3888
3889 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3890                                         u64 val)
3891 {
3892         int retval = 0;
3893         struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3894         struct cgroup *parent = cont->parent;
3895         struct mem_cgroup *parent_memcg = NULL;
3896
3897         if (parent)
3898                 parent_memcg = mem_cgroup_from_cont(parent);
3899
3900         cgroup_lock();
3901         /*
3902          * If parent's use_hierarchy is set, we can't make any modifications
3903          * in the child subtrees. If it is unset, then the change can
3904          * occur, provided the current cgroup has no children.
3905          *
3906          * For the root cgroup, parent_mem is NULL, we allow value to be
3907          * set if there are no children.
3908          */
3909         if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3910                                 (val == 1 || val == 0)) {
3911                 if (list_empty(&cont->children))
3912                         memcg->use_hierarchy = val;
3913                 else
3914                         retval = -EBUSY;
3915         } else
3916                 retval = -EINVAL;
3917         cgroup_unlock();
3918
3919         return retval;
3920 }
3921
3922
3923 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3924                                                enum mem_cgroup_stat_index idx)
3925 {
3926         struct mem_cgroup *iter;
3927         long val = 0;
3928
3929         /* Per-cpu values can be negative, use a signed accumulator */
3930         for_each_mem_cgroup_tree(iter, memcg)
3931                 val += mem_cgroup_read_stat(iter, idx);
3932
3933         if (val < 0) /* race ? */
3934                 val = 0;
3935         return val;
3936 }
3937
3938 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3939 {
3940         u64 val;
3941
3942         if (!mem_cgroup_is_root(memcg)) {
3943                 if (!swap)
3944                         return res_counter_read_u64(&memcg->res, RES_USAGE);
3945                 else
3946                         return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3947         }
3948
3949         val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3950         val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3951
3952         if (swap)
3953                 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3954
3955         return val << PAGE_SHIFT;
3956 }
3957
3958 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3959 {
3960         struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3961         u64 val;
3962         int type, name;
3963
3964         type = MEMFILE_TYPE(cft->private);
3965         name = MEMFILE_ATTR(cft->private);
3966         switch (type) {
3967         case _MEM:
3968                 if (name == RES_USAGE)
3969                         val = mem_cgroup_usage(memcg, false);
3970                 else
3971                         val = res_counter_read_u64(&memcg->res, name);
3972                 break;
3973         case _MEMSWAP:
3974                 if (name == RES_USAGE)
3975                         val = mem_cgroup_usage(memcg, true);
3976                 else
3977                         val = res_counter_read_u64(&memcg->memsw, name);
3978                 break;
3979         default:
3980                 BUG();
3981                 break;
3982         }
3983         return val;
3984 }
3985 /*
3986  * The user of this function is...
3987  * RES_LIMIT.
3988  */
3989 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3990                             const char *buffer)
3991 {
3992         struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3993         int type, name;
3994         unsigned long long val;
3995         int ret;
3996
3997         type = MEMFILE_TYPE(cft->private);
3998         name = MEMFILE_ATTR(cft->private);
3999         switch (name) {
4000         case RES_LIMIT:
4001                 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
4002                         ret = -EINVAL;
4003                         break;
4004                 }
4005                 /* This function does all necessary parse...reuse it */
4006                 ret = res_counter_memparse_write_strategy(buffer, &val);
4007                 if (ret)
4008                         break;
4009                 if (type == _MEM)
4010                         ret = mem_cgroup_resize_limit(memcg, val);
4011                 else
4012                         ret = mem_cgroup_resize_memsw_limit(memcg, val);
4013                 break;
4014         case RES_SOFT_LIMIT:
4015                 ret = res_counter_memparse_write_strategy(buffer, &val);
4016                 if (ret)
4017                         break;
4018                 /*
4019                  * For memsw, soft limits are hard to implement in terms
4020                  * of semantics, for now, we support soft limits for
4021                  * control without swap
4022                  */
4023                 if (type == _MEM)
4024                         ret = res_counter_set_soft_limit(&memcg->res, val);
4025                 else
4026                         ret = -EINVAL;
4027                 break;
4028         default:
4029                 ret = -EINVAL; /* should be BUG() ? */
4030                 break;
4031         }
4032         return ret;
4033 }
4034
4035 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
4036                 unsigned long long *mem_limit, unsigned long long *memsw_limit)
4037 {
4038         struct cgroup *cgroup;
4039         unsigned long long min_limit, min_memsw_limit, tmp;
4040
4041         min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4042         min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4043         cgroup = memcg->css.cgroup;
4044         if (!memcg->use_hierarchy)
4045                 goto out;
4046
4047         while (cgroup->parent) {
4048                 cgroup = cgroup->parent;
4049                 memcg = mem_cgroup_from_cont(cgroup);
4050                 if (!memcg->use_hierarchy)
4051                         break;
4052                 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4053                 min_limit = min(min_limit, tmp);
4054                 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4055                 min_memsw_limit = min(min_memsw_limit, tmp);
4056         }
4057 out:
4058         *mem_limit = min_limit;
4059         *memsw_limit = min_memsw_limit;
4060         return;
4061 }
4062
4063 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4064 {
4065         struct mem_cgroup *memcg;
4066         int type, name;
4067
4068         memcg = mem_cgroup_from_cont(cont);
4069         type = MEMFILE_TYPE(event);
4070         name = MEMFILE_ATTR(event);
4071         switch (name) {
4072         case RES_MAX_USAGE:
4073                 if (type == _MEM)
4074                         res_counter_reset_max(&memcg->res);
4075                 else
4076                         res_counter_reset_max(&memcg->memsw);
4077                 break;
4078         case RES_FAILCNT:
4079                 if (type == _MEM)
4080                         res_counter_reset_failcnt(&memcg->res);
4081                 else
4082                         res_counter_reset_failcnt(&memcg->memsw);
4083                 break;
4084         }
4085
4086         return 0;
4087 }
4088
4089 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4090                                         struct cftype *cft)
4091 {
4092         return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4093 }
4094
4095 #ifdef CONFIG_MMU
4096 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4097                                         struct cftype *cft, u64 val)
4098 {
4099         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4100
4101         if (val >= (1 << NR_MOVE_TYPE))
4102                 return -EINVAL;
4103         /*
4104          * We check this value several times in both in can_attach() and
4105          * attach(), so we need cgroup lock to prevent this value from being
4106          * inconsistent.
4107          */
4108         cgroup_lock();
4109         memcg->move_charge_at_immigrate = val;
4110         cgroup_unlock();
4111
4112         return 0;
4113 }
4114 #else
4115 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4116                                         struct cftype *cft, u64 val)
4117 {
4118         return -ENOSYS;
4119 }
4120 #endif
4121
4122
4123 /* For read statistics */
4124 enum {
4125         MCS_CACHE,
4126         MCS_RSS,
4127         MCS_FILE_MAPPED,
4128         MCS_PGPGIN,
4129         MCS_PGPGOUT,
4130         MCS_SWAP,
4131         MCS_PGFAULT,
4132         MCS_PGMAJFAULT,
4133         MCS_INACTIVE_ANON,
4134         MCS_ACTIVE_ANON,
4135         MCS_INACTIVE_FILE,
4136         MCS_ACTIVE_FILE,
4137         MCS_UNEVICTABLE,
4138         NR_MCS_STAT,
4139 };
4140
4141 struct mcs_total_stat {
4142         s64 stat[NR_MCS_STAT];
4143 };
4144
4145 struct {
4146         char *local_name;
4147         char *total_name;
4148 } memcg_stat_strings[NR_MCS_STAT] = {
4149         {"cache", "total_cache"},
4150         {"rss", "total_rss"},
4151         {"mapped_file", "total_mapped_file"},
4152         {"pgpgin", "total_pgpgin"},
4153         {"pgpgout", "total_pgpgout"},
4154         {"swap", "total_swap"},
4155         {"pgfault", "total_pgfault"},
4156         {"pgmajfault", "total_pgmajfault"},
4157         {"inactive_anon", "total_inactive_anon"},
4158         {"active_anon", "total_active_anon"},
4159         {"inactive_file", "total_inactive_file"},
4160         {"active_file", "total_active_file"},
4161         {"unevictable", "total_unevictable"}
4162 };
4163
4164
4165 static void
4166 mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4167 {
4168         s64 val;
4169
4170         /* per cpu stat */
4171         val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
4172         s->stat[MCS_CACHE] += val * PAGE_SIZE;
4173         val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
4174         s->stat[MCS_RSS] += val * PAGE_SIZE;
4175         val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
4176         s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4177         val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
4178         s->stat[MCS_PGPGIN] += val;
4179         val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
4180         s->stat[MCS_PGPGOUT] += val;
4181         if (do_swap_account) {
4182                 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
4183                 s->stat[MCS_SWAP] += val * PAGE_SIZE;
4184         }
4185         val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
4186         s->stat[MCS_PGFAULT] += val;
4187         val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
4188         s->stat[MCS_PGMAJFAULT] += val;
4189
4190         /* per zone stat */
4191         val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
4192         s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4193         val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
4194         s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4195         val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
4196         s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4197         val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
4198         s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4199         val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4200         s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
4201 }
4202
4203 static void
4204 mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4205 {
4206         struct mem_cgroup *iter;
4207
4208         for_each_mem_cgroup_tree(iter, memcg)
4209                 mem_cgroup_get_local_stat(iter, s);
4210 }
4211
4212 #ifdef CONFIG_NUMA
4213 static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4214 {
4215         int nid;
4216         unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4217         unsigned long node_nr;
4218         struct cgroup *cont = m->private;
4219         struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4220
4221         total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
4222         seq_printf(m, "total=%lu", total_nr);
4223         for_each_node_state(nid, N_HIGH_MEMORY) {
4224                 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
4225                 seq_printf(m, " N%d=%lu", nid, node_nr);
4226         }
4227         seq_putc(m, '\n');
4228
4229         file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
4230         seq_printf(m, "file=%lu", file_nr);
4231         for_each_node_state(nid, N_HIGH_MEMORY) {
4232                 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4233                                 LRU_ALL_FILE);
4234                 seq_printf(m, " N%d=%lu", nid, node_nr);
4235         }
4236         seq_putc(m, '\n');
4237
4238         anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
4239         seq_printf(m, "anon=%lu", anon_nr);
4240         for_each_node_state(nid, N_HIGH_MEMORY) {
4241                 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4242                                 LRU_ALL_ANON);
4243                 seq_printf(m, " N%d=%lu", nid, node_nr);
4244         }
4245         seq_putc(m, '\n');
4246
4247         unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
4248         seq_printf(m, "unevictable=%lu", unevictable_nr);
4249         for_each_node_state(nid, N_HIGH_MEMORY) {
4250                 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4251                                 BIT(LRU_UNEVICTABLE));
4252                 seq_printf(m, " N%d=%lu", nid, node_nr);
4253         }
4254         seq_putc(m, '\n');
4255         return 0;
4256 }
4257 #endif /* CONFIG_NUMA */
4258
4259 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4260                                  struct cgroup_map_cb *cb)
4261 {
4262         struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4263         struct mcs_total_stat mystat;
4264         int i;
4265
4266         memset(&mystat, 0, sizeof(mystat));
4267         mem_cgroup_get_local_stat(mem_cont, &mystat);
4268
4269
4270         for (i = 0; i < NR_MCS_STAT; i++) {
4271                 if (i == MCS_SWAP && !do_swap_account)
4272                         continue;
4273                 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4274         }
4275
4276         /* Hierarchical information */
4277         {
4278                 unsigned long long limit, memsw_limit;
4279                 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
4280                 cb->fill(cb, "hierarchical_memory_limit", limit);
4281                 if (do_swap_account)
4282                         cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4283         }
4284
4285         memset(&mystat, 0, sizeof(mystat));
4286         mem_cgroup_get_total_stat(mem_cont, &mystat);
4287         for (i = 0; i < NR_MCS_STAT; i++) {
4288                 if (i == MCS_SWAP && !do_swap_account)
4289                         continue;
4290                 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4291         }
4292
4293 #ifdef CONFIG_DEBUG_VM
4294         {
4295                 int nid, zid;
4296                 struct mem_cgroup_per_zone *mz;
4297                 unsigned long recent_rotated[2] = {0, 0};
4298                 unsigned long recent_scanned[2] = {0, 0};
4299
4300                 for_each_online_node(nid)
4301                         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4302                                 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
4303
4304                                 recent_rotated[0] +=
4305                                         mz->reclaim_stat.recent_rotated[0];
4306                                 recent_rotated[1] +=
4307                                         mz->reclaim_stat.recent_rotated[1];
4308                                 recent_scanned[0] +=
4309                                         mz->reclaim_stat.recent_scanned[0];
4310                                 recent_scanned[1] +=
4311                                         mz->reclaim_stat.recent_scanned[1];
4312                         }
4313                 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4314                 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4315                 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4316                 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4317         }
4318 #endif
4319
4320         return 0;
4321 }
4322
4323 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4324 {
4325         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4326
4327         return mem_cgroup_swappiness(memcg);
4328 }
4329
4330 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4331                                        u64 val)
4332 {
4333         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4334         struct mem_cgroup *parent;
4335
4336         if (val > 100)
4337                 return -EINVAL;
4338
4339         if (cgrp->parent == NULL)
4340                 return -EINVAL;
4341
4342         parent = mem_cgroup_from_cont(cgrp->parent);
4343
4344         cgroup_lock();
4345
4346         /* If under hierarchy, only empty-root can set this value */
4347         if ((parent->use_hierarchy) ||
4348             (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4349                 cgroup_unlock();
4350                 return -EINVAL;
4351         }
4352
4353         memcg->swappiness = val;
4354
4355         cgroup_unlock();
4356
4357         return 0;
4358 }
4359
4360 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4361 {
4362         struct mem_cgroup_threshold_ary *t;
4363         u64 usage;
4364         int i;
4365
4366         rcu_read_lock();
4367         if (!swap)
4368                 t = rcu_dereference(memcg->thresholds.primary);
4369         else
4370                 t = rcu_dereference(memcg->memsw_thresholds.primary);
4371
4372         if (!t)
4373                 goto unlock;
4374
4375         usage = mem_cgroup_usage(memcg, swap);
4376
4377         /*
4378          * current_threshold points to threshold just below usage.
4379          * If it's not true, a threshold was crossed after last
4380          * call of __mem_cgroup_threshold().
4381          */
4382         i = t->current_threshold;
4383
4384         /*
4385          * Iterate backward over array of thresholds starting from
4386          * current_threshold and check if a threshold is crossed.
4387          * If none of thresholds below usage is crossed, we read
4388          * only one element of the array here.
4389          */
4390         for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4391                 eventfd_signal(t->entries[i].eventfd, 1);
4392
4393         /* i = current_threshold + 1 */
4394         i++;
4395
4396         /*
4397          * Iterate forward over array of thresholds starting from
4398          * current_threshold+1 and check if a threshold is crossed.
4399          * If none of thresholds above usage is crossed, we read
4400          * only one element of the array here.
4401          */
4402         for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4403                 eventfd_signal(t->entries[i].eventfd, 1);
4404
4405         /* Update current_threshold */
4406         t->current_threshold = i - 1;
4407 unlock:
4408         rcu_read_unlock();
4409 }
4410
4411 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4412 {
4413         while (memcg) {
4414                 __mem_cgroup_threshold(memcg, false);
4415                 if (do_swap_account)
4416                         __mem_cgroup_threshold(memcg, true);
4417
4418                 memcg = parent_mem_cgroup(memcg);
4419         }
4420 }
4421
4422 static int compare_thresholds(const void *a, const void *b)
4423 {
4424         const struct mem_cgroup_threshold *_a = a;
4425         const struct mem_cgroup_threshold *_b = b;
4426
4427         return _a->threshold - _b->threshold;
4428 }
4429
4430 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4431 {
4432         struct mem_cgroup_eventfd_list *ev;
4433
4434         list_for_each_entry(ev, &memcg->oom_notify, list)
4435                 eventfd_signal(ev->eventfd, 1);
4436         return 0;
4437 }
4438
4439 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4440 {
4441         struct mem_cgroup *iter;
4442
4443         for_each_mem_cgroup_tree(iter, memcg)
4444                 mem_cgroup_oom_notify_cb(iter);
4445 }
4446
4447 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4448         struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4449 {
4450         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4451         struct mem_cgroup_thresholds *thresholds;
4452         struct mem_cgroup_threshold_ary *new;
4453         int type = MEMFILE_TYPE(cft->private);
4454         u64 threshold, usage;
4455         int i, size, ret;
4456
4457         ret = res_counter_memparse_write_strategy(args, &threshold);
4458         if (ret)
4459                 return ret;
4460
4461         mutex_lock(&memcg->thresholds_lock);
4462
4463         if (type == _MEM)
4464                 thresholds = &memcg->thresholds;
4465         else if (type == _MEMSWAP)
4466                 thresholds = &memcg->memsw_thresholds;
4467         else
4468                 BUG();
4469
4470         usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4471
4472         /* Check if a threshold crossed before adding a new one */
4473         if (thresholds->primary)
4474                 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4475
4476         size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4477
4478         /* Allocate memory for new array of thresholds */
4479         new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4480                         GFP_KERNEL);
4481         if (!new) {
4482                 ret = -ENOMEM;
4483                 goto unlock;
4484         }
4485         new->size = size;
4486
4487         /* Copy thresholds (if any) to new array */
4488         if (thresholds->primary) {
4489                 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4490                                 sizeof(struct mem_cgroup_threshold));
4491         }
4492
4493         /* Add new threshold */
4494         new->entries[size - 1].eventfd = eventfd;
4495         new->entries[size - 1].threshold = threshold;
4496
4497         /* Sort thresholds. Registering of new threshold isn't time-critical */
4498         sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4499                         compare_thresholds, NULL);
4500
4501         /* Find current threshold */
4502         new->current_threshold = -1;
4503         for (i = 0; i < size; i++) {
4504                 if (new->entries[i].threshold < usage) {
4505                         /*
4506                          * new->current_threshold will not be used until
4507                          * rcu_assign_pointer(), so it's safe to increment
4508                          * it here.
4509                          */
4510                         ++new->current_threshold;
4511                 }
4512         }
4513
4514         /* Free old spare buffer and save old primary buffer as spare */
4515         kfree(thresholds->spare);
4516         thresholds->spare = thresholds->primary;
4517
4518         rcu_assign_pointer(thresholds->primary, new);
4519
4520         /* To be sure that nobody uses thresholds */
4521         synchronize_rcu();
4522
4523 unlock:
4524         mutex_unlock(&memcg->thresholds_lock);
4525
4526         return ret;
4527 }
4528
4529 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4530         struct cftype *cft, struct eventfd_ctx *eventfd)
4531 {
4532         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4533         struct mem_cgroup_thresholds *thresholds;
4534         struct mem_cgroup_threshold_ary *new;
4535         int type = MEMFILE_TYPE(cft->private);
4536         u64 usage;
4537         int i, j, size;
4538
4539         mutex_lock(&memcg->thresholds_lock);
4540         if (type == _MEM)
4541                 thresholds = &memcg->thresholds;
4542         else if (type == _MEMSWAP)
4543                 thresholds = &memcg->memsw_thresholds;
4544         else
4545                 BUG();
4546
4547         /*
4548          * Something went wrong if we trying to unregister a threshold
4549          * if we don't have thresholds
4550          */
4551         BUG_ON(!thresholds);
4552
4553         usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4554
4555         /* Check if a threshold crossed before removing */
4556         __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4557
4558         /* Calculate new number of threshold */
4559         size = 0;
4560         for (i = 0; i < thresholds->primary->size; i++) {
4561                 if (thresholds->primary->entries[i].eventfd != eventfd)
4562                         size++;
4563         }
4564
4565         new = thresholds->spare;
4566
4567         /* Set thresholds array to NULL if we don't have thresholds */
4568         if (!size) {
4569                 kfree(new);
4570                 new = NULL;
4571                 goto swap_buffers;
4572         }
4573
4574         new->size = size;
4575
4576         /* Copy thresholds and find current threshold */
4577         new->current_threshold = -1;
4578         for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4579                 if (thresholds->primary->entries[i].eventfd == eventfd)
4580                         continue;
4581
4582                 new->entries[j] = thresholds->primary->entries[i];
4583                 if (new->entries[j].threshold < usage) {
4584                         /*
4585                          * new->current_threshold will not be used
4586                          * until rcu_assign_pointer(), so it's safe to increment
4587                          * it here.
4588                          */
4589                         ++new->current_threshold;
4590                 }
4591                 j++;
4592         }
4593
4594 swap_buffers:
4595         /* Swap primary and spare array */
4596         thresholds->spare = thresholds->primary;
4597         rcu_assign_pointer(thresholds->primary, new);
4598
4599         /* To be sure that nobody uses thresholds */
4600         synchronize_rcu();
4601
4602         mutex_unlock(&memcg->thresholds_lock);
4603 }
4604
4605 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4606         struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4607 {
4608         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4609         struct mem_cgroup_eventfd_list *event;
4610         int type = MEMFILE_TYPE(cft->private);
4611
4612         BUG_ON(type != _OOM_TYPE);
4613         event = kmalloc(sizeof(*event), GFP_KERNEL);
4614         if (!event)
4615                 return -ENOMEM;
4616
4617         spin_lock(&memcg_oom_lock);
4618
4619         event->eventfd = eventfd;
4620         list_add(&event->list, &memcg->oom_notify);
4621
4622         /* already in OOM ? */
4623         if (atomic_read(&memcg->under_oom))
4624                 eventfd_signal(eventfd, 1);
4625         spin_unlock(&memcg_oom_lock);
4626
4627         return 0;
4628 }
4629
4630 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4631         struct cftype *cft, struct eventfd_ctx *eventfd)
4632 {
4633         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4634         struct mem_cgroup_eventfd_list *ev, *tmp;
4635         int type = MEMFILE_TYPE(cft->private);
4636
4637         BUG_ON(type != _OOM_TYPE);
4638
4639         spin_lock(&memcg_oom_lock);
4640
4641         list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4642                 if (ev->eventfd == eventfd) {
4643                         list_del(&ev->list);
4644                         kfree(ev);
4645                 }
4646         }
4647
4648         spin_unlock(&memcg_oom_lock);
4649 }
4650
4651 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4652         struct cftype *cft,  struct cgroup_map_cb *cb)
4653 {
4654         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4655
4656         cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4657
4658         if (atomic_read(&memcg->under_oom))
4659                 cb->fill(cb, "under_oom", 1);
4660         else
4661                 cb->fill(cb, "under_oom", 0);
4662         return 0;
4663 }
4664
4665 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4666         struct cftype *cft, u64 val)
4667 {
4668         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4669         struct mem_cgroup *parent;
4670
4671         /* cannot set to root cgroup and only 0 and 1 are allowed */
4672         if (!cgrp->parent || !((val == 0) || (val == 1)))
4673                 return -EINVAL;
4674
4675         parent = mem_cgroup_from_cont(cgrp->parent);
4676
4677         cgroup_lock();
4678         /* oom-kill-disable is a flag for subhierarchy. */
4679         if ((parent->use_hierarchy) ||
4680             (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4681                 cgroup_unlock();
4682                 return -EINVAL;
4683         }
4684         memcg->oom_kill_disable = val;
4685         if (!val)
4686                 memcg_oom_recover(memcg);
4687         cgroup_unlock();
4688         return 0;
4689 }
4690
4691 #ifdef CONFIG_NUMA
4692 static const struct file_operations mem_control_numa_stat_file_operations = {
4693         .read = seq_read,
4694         .llseek = seq_lseek,
4695         .release = single_release,
4696 };
4697
4698 static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4699 {
4700         struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4701
4702         file->f_op = &mem_control_numa_stat_file_operations;
4703         return single_open(file, mem_control_numa_stat_show, cont);
4704 }
4705 #endif /* CONFIG_NUMA */
4706
4707 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
4708 static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4709 {
4710         /*
4711          * Part of this would be better living in a separate allocation
4712          * function, leaving us with just the cgroup tree population work.
4713          * We, however, depend on state such as network's proto_list that
4714          * is only initialized after cgroup creation. I found the less
4715          * cumbersome way to deal with it to defer it all to populate time
4716          */
4717         return mem_cgroup_sockets_init(cont, ss);
4718 };
4719
4720 static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
4721                                 struct cgroup *cont)
4722 {
4723         mem_cgroup_sockets_destroy(cont, ss);
4724 }
4725 #else
4726 static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4727 {
4728         return 0;
4729 }
4730
4731 static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
4732                                 struct cgroup *cont)
4733 {
4734 }
4735 #endif
4736
4737 static struct cftype mem_cgroup_files[] = {
4738         {
4739                 .name = "usage_in_bytes",
4740                 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4741                 .read_u64 = mem_cgroup_read,
4742                 .register_event = mem_cgroup_usage_register_event,
4743                 .unregister_event = mem_cgroup_usage_unregister_event,
4744         },
4745         {
4746                 .name = "max_usage_in_bytes",
4747                 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4748                 .trigger = mem_cgroup_reset,
4749                 .read_u64 = mem_cgroup_read,
4750         },
4751         {
4752                 .name = "limit_in_bytes",
4753                 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4754                 .write_string = mem_cgroup_write,
4755                 .read_u64 = mem_cgroup_read,
4756         },
4757         {
4758                 .name = "soft_limit_in_bytes",
4759                 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4760                 .write_string = mem_cgroup_write,
4761                 .read_u64 = mem_cgroup_read,
4762         },
4763         {
4764                 .name = "failcnt",
4765                 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4766                 .trigger = mem_cgroup_reset,
4767                 .read_u64 = mem_cgroup_read,
4768         },
4769         {
4770                 .name = "stat",
4771                 .read_map = mem_control_stat_show,
4772         },
4773         {
4774                 .name = "force_empty",
4775                 .trigger = mem_cgroup_force_empty_write,
4776         },
4777         {
4778                 .name = "use_hierarchy",
4779                 .write_u64 = mem_cgroup_hierarchy_write,
4780                 .read_u64 = mem_cgroup_hierarchy_read,
4781         },
4782         {
4783                 .name = "swappiness",
4784                 .read_u64 = mem_cgroup_swappiness_read,
4785                 .write_u64 = mem_cgroup_swappiness_write,
4786         },
4787         {
4788                 .name = "move_charge_at_immigrate",
4789                 .read_u64 = mem_cgroup_move_charge_read,
4790                 .write_u64 = mem_cgroup_move_charge_write,
4791         },
4792         {
4793                 .name = "oom_control",
4794                 .read_map = mem_cgroup_oom_control_read,
4795                 .write_u64 = mem_cgroup_oom_control_write,
4796                 .register_event = mem_cgroup_oom_register_event,
4797                 .unregister_event = mem_cgroup_oom_unregister_event,
4798                 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4799         },
4800 #ifdef CONFIG_NUMA
4801         {
4802                 .name = "numa_stat",
4803                 .open = mem_control_numa_stat_open,
4804                 .mode = S_IRUGO,
4805         },
4806 #endif
4807 };
4808
4809 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4810 static struct cftype memsw_cgroup_files[] = {
4811         {
4812                 .name = "memsw.usage_in_bytes",
4813                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4814                 .read_u64 = mem_cgroup_read,
4815                 .register_event = mem_cgroup_usage_register_event,
4816                 .unregister_event = mem_cgroup_usage_unregister_event,
4817         },
4818         {
4819                 .name = "memsw.max_usage_in_bytes",
4820                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4821                 .trigger = mem_cgroup_reset,
4822                 .read_u64 = mem_cgroup_read,
4823         },
4824         {
4825                 .name = "memsw.limit_in_bytes",
4826                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4827                 .write_string = mem_cgroup_write,
4828                 .read_u64 = mem_cgroup_read,
4829         },
4830         {
4831                 .name = "memsw.failcnt",
4832                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4833                 .trigger = mem_cgroup_reset,
4834                 .read_u64 = mem_cgroup_read,
4835         },
4836 };
4837
4838 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4839 {
4840         if (!do_swap_account)
4841                 return 0;
4842         return cgroup_add_files(cont, ss, memsw_cgroup_files,
4843                                 ARRAY_SIZE(memsw_cgroup_files));
4844 };
4845 #else
4846 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4847 {
4848         return 0;
4849 }
4850 #endif
4851
4852 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4853 {
4854         struct mem_cgroup_per_node *pn;
4855         struct mem_cgroup_per_zone *mz;
4856         enum lru_list l;
4857         int zone, tmp = node;
4858         /*
4859          * This routine is called against possible nodes.
4860          * But it's BUG to call kmalloc() against offline node.
4861          *
4862          * TODO: this routine can waste much memory for nodes which will
4863          *       never be onlined. It's better to use memory hotplug callback
4864          *       function.
4865          */
4866         if (!node_state(node, N_NORMAL_MEMORY))
4867                 tmp = -1;
4868         pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4869         if (!pn)
4870                 return 1;
4871
4872         for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4873                 mz = &pn->zoneinfo[zone];
4874                 for_each_lru(l)
4875                         INIT_LIST_HEAD(&mz->lists[l]);
4876                 mz->usage_in_excess = 0;
4877                 mz->on_tree = false;
4878                 mz->mem = memcg;
4879         }
4880         memcg->info.nodeinfo[node] = pn;
4881         return 0;
4882 }
4883
4884 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4885 {
4886         kfree(memcg->info.nodeinfo[node]);
4887 }
4888
4889 static struct mem_cgroup *mem_cgroup_alloc(void)
4890 {
4891         struct mem_cgroup *mem;
4892         int size = sizeof(struct mem_cgroup);
4893
4894         /* Can be very big if MAX_NUMNODES is very big */
4895         if (size < PAGE_SIZE)
4896                 mem = kzalloc(size, GFP_KERNEL);
4897         else
4898                 mem = vzalloc(size);
4899
4900         if (!mem)
4901                 return NULL;
4902
4903         mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4904         if (!mem->stat)
4905                 goto out_free;
4906         spin_lock_init(&mem->pcp_counter_lock);
4907         return mem;
4908
4909 out_free:
4910         if (size < PAGE_SIZE)
4911                 kfree(mem);
4912         else
4913                 vfree(mem);
4914         return NULL;
4915 }
4916
4917 /*
4918  * At destroying mem_cgroup, references from swap_cgroup can remain.
4919  * (scanning all at force_empty is too costly...)
4920  *
4921  * Instead of clearing all references at force_empty, we remember
4922  * the number of reference from swap_cgroup and free mem_cgroup when
4923  * it goes down to 0.
4924  *
4925  * Removal of cgroup itself succeeds regardless of refs from swap.
4926  */
4927
4928 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4929 {
4930         int node;
4931
4932         mem_cgroup_remove_from_trees(memcg);
4933         free_css_id(&mem_cgroup_subsys, &memcg->css);
4934
4935         for_each_node_state(node, N_POSSIBLE)
4936                 free_mem_cgroup_per_zone_info(memcg, node);
4937
4938         free_percpu(memcg->stat);
4939         if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4940                 kfree(memcg);
4941         else
4942                 vfree(memcg);
4943 }
4944
4945 static void mem_cgroup_get(struct mem_cgroup *memcg)
4946 {
4947         atomic_inc(&memcg->refcnt);
4948 }
4949
4950 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4951 {
4952         if (atomic_sub_and_test(count, &memcg->refcnt)) {
4953                 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4954                 __mem_cgroup_free(memcg);
4955                 if (parent)
4956                         mem_cgroup_put(parent);
4957         }
4958 }
4959
4960 static void mem_cgroup_put(struct mem_cgroup *memcg)
4961 {
4962         __mem_cgroup_put(memcg, 1);
4963 }
4964
4965 /*
4966  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4967  */
4968 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4969 {
4970         if (!memcg->res.parent)
4971                 return NULL;
4972         return mem_cgroup_from_res_counter(memcg->res.parent, res);
4973 }
4974 EXPORT_SYMBOL(parent_mem_cgroup);
4975
4976 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4977 static void __init enable_swap_cgroup(void)
4978 {
4979         if (!mem_cgroup_disabled() && really_do_swap_account)
4980                 do_swap_account = 1;
4981 }
4982 #else
4983 static void __init enable_swap_cgroup(void)
4984 {
4985 }
4986 #endif
4987
4988 static int mem_cgroup_soft_limit_tree_init(void)
4989 {
4990         struct mem_cgroup_tree_per_node *rtpn;
4991         struct mem_cgroup_tree_per_zone *rtpz;
4992         int tmp, node, zone;
4993
4994         for_each_node_state(node, N_POSSIBLE) {
4995                 tmp = node;
4996                 if (!node_state(node, N_NORMAL_MEMORY))
4997                         tmp = -1;
4998                 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4999                 if (!rtpn)
5000                         return 1;
5001
5002                 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5003
5004                 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5005                         rtpz = &rtpn->rb_tree_per_zone[zone];
5006                         rtpz->rb_root = RB_ROOT;
5007                         spin_lock_init(&rtpz->lock);
5008                 }
5009         }
5010         return 0;
5011 }
5012
5013 static struct cgroup_subsys_state * __ref
5014 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
5015 {
5016         struct mem_cgroup *memcg, *parent;
5017         long error = -ENOMEM;
5018         int node;
5019
5020         memcg = mem_cgroup_alloc();
5021         if (!memcg)
5022                 return ERR_PTR(error);
5023
5024         for_each_node_state(node, N_POSSIBLE)
5025                 if (alloc_mem_cgroup_per_zone_info(memcg, node))
5026                         goto free_out;
5027
5028         /* root ? */
5029         if (cont->parent == NULL) {
5030                 int cpu;
5031                 enable_swap_cgroup();
5032                 parent = NULL;
5033                 if (mem_cgroup_soft_limit_tree_init())
5034                         goto free_out;
5035                 root_mem_cgroup = memcg;
5036                 for_each_possible_cpu(cpu) {
5037                         struct memcg_stock_pcp *stock =
5038                                                 &per_cpu(memcg_stock, cpu);
5039                         INIT_WORK(&stock->work, drain_local_stock);
5040                 }
5041                 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5042         } else {
5043                 parent = mem_cgroup_from_cont(cont->parent);
5044                 memcg->use_hierarchy = parent->use_hierarchy;
5045                 memcg->oom_kill_disable = parent->oom_kill_disable;
5046         }
5047
5048         if (parent && parent->use_hierarchy) {
5049                 res_counter_init(&memcg->res, &parent->res);
5050                 res_counter_init(&memcg->memsw, &parent->memsw);
5051                 /*
5052                  * We increment refcnt of the parent to ensure that we can
5053                  * safely access it on res_counter_charge/uncharge.
5054                  * This refcnt will be decremented when freeing this
5055                  * mem_cgroup(see mem_cgroup_put).
5056                  */
5057                 mem_cgroup_get(parent);
5058         } else {
5059                 res_counter_init(&memcg->res, NULL);
5060                 res_counter_init(&memcg->memsw, NULL);
5061         }
5062         memcg->last_scanned_node = MAX_NUMNODES;
5063         INIT_LIST_HEAD(&memcg->oom_notify);
5064
5065         if (parent)
5066                 memcg->swappiness = mem_cgroup_swappiness(parent);
5067         atomic_set(&memcg->refcnt, 1);
5068         memcg->move_charge_at_immigrate = 0;
5069         mutex_init(&memcg->thresholds_lock);
5070         return &memcg->css;
5071 free_out:
5072         __mem_cgroup_free(memcg);
5073         return ERR_PTR(error);
5074 }
5075
5076 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
5077                                         struct cgroup *cont)
5078 {
5079         struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5080
5081         return mem_cgroup_force_empty(memcg, false);
5082 }
5083
5084 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
5085                                 struct cgroup *cont)
5086 {
5087         struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5088
5089         kmem_cgroup_destroy(ss, cont);
5090
5091         mem_cgroup_put(memcg);
5092 }
5093
5094 static int mem_cgroup_populate(struct cgroup_subsys *ss,
5095                                 struct cgroup *cont)
5096 {
5097         int ret;
5098
5099         ret = cgroup_add_files(cont, ss, mem_cgroup_files,
5100                                 ARRAY_SIZE(mem_cgroup_files));
5101
5102         if (!ret)
5103                 ret = register_memsw_files(cont, ss);
5104
5105         if (!ret)
5106                 ret = register_kmem_files(cont, ss);
5107
5108         return ret;
5109 }
5110
5111 #ifdef CONFIG_MMU
5112 /* Handlers for move charge at task migration. */
5113 #define PRECHARGE_COUNT_AT_ONCE 256
5114 static int mem_cgroup_do_precharge(unsigned long count)
5115 {
5116         int ret = 0;
5117         int batch_count = PRECHARGE_COUNT_AT_ONCE;
5118         struct mem_cgroup *memcg = mc.to;
5119
5120         if (mem_cgroup_is_root(memcg)) {
5121                 mc.precharge += count;
5122                 /* we don't need css_get for root */
5123                 return ret;
5124         }
5125         /* try to charge at once */
5126         if (count > 1) {
5127                 struct res_counter *dummy;
5128                 /*
5129                  * "memcg" cannot be under rmdir() because we've already checked
5130                  * by cgroup_lock_live_cgroup() that it is not removed and we
5131                  * are still under the same cgroup_mutex. So we can postpone
5132                  * css_get().
5133                  */
5134                 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5135                         goto one_by_one;
5136                 if (do_swap_account && res_counter_charge(&memcg->memsw,
5137                                                 PAGE_SIZE * count, &dummy)) {
5138                         res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5139                         goto one_by_one;
5140                 }
5141                 mc.precharge += count;
5142                 return ret;
5143         }
5144 one_by_one:
5145         /* fall back to one by one charge */
5146         while (count--) {
5147                 if (signal_pending(current)) {
5148                         ret = -EINTR;
5149                         break;
5150                 }
5151                 if (!batch_count--) {
5152                         batch_count = PRECHARGE_COUNT_AT_ONCE;
5153                         cond_resched();
5154                 }
5155                 ret = __mem_cgroup_try_charge(NULL,
5156                                         GFP_KERNEL, 1, &memcg, false);
5157                 if (ret || !memcg)
5158                         /* mem_cgroup_clear_mc() will do uncharge later */
5159                         return -ENOMEM;
5160                 mc.precharge++;
5161         }
5162         return ret;
5163 }
5164
5165 /**
5166  * is_target_pte_for_mc - check a pte whether it is valid for move charge
5167  * @vma: the vma the pte to be checked belongs
5168  * @addr: the address corresponding to the pte to be checked
5169  * @ptent: the pte to be checked
5170  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5171  *
5172  * Returns
5173  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5174  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5175  *     move charge. if @target is not NULL, the page is stored in target->page
5176  *     with extra refcnt got(Callers should handle it).
5177  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5178  *     target for charge migration. if @target is not NULL, the entry is stored
5179  *     in target->ent.
5180  *
5181  * Called with pte lock held.
5182  */
5183 union mc_target {
5184         struct page     *page;
5185         swp_entry_t     ent;
5186 };
5187
5188 enum mc_target_type {
5189         MC_TARGET_NONE, /* not used */
5190         MC_TARGET_PAGE,
5191         MC_TARGET_SWAP,
5192 };
5193
5194 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5195                                                 unsigned long addr, pte_t ptent)
5196 {
5197         struct page *page = vm_normal_page(vma, addr, ptent);
5198
5199         if (!page || !page_mapped(page))
5200                 return NULL;
5201         if (PageAnon(page)) {
5202                 /* we don't move shared anon */
5203                 if (!move_anon() || page_mapcount(page) > 2)
5204                         return NULL;
5205         } else if (!move_file())
5206                 /* we ignore mapcount for file pages */
5207                 return NULL;
5208         if (!get_page_unless_zero(page))
5209                 return NULL;
5210
5211         return page;
5212 }
5213
5214 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5215                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
5216 {
5217         int usage_count;
5218         struct page *page = NULL;
5219         swp_entry_t ent = pte_to_swp_entry(ptent);
5220
5221         if (!move_anon() || non_swap_entry(ent))
5222                 return NULL;
5223         usage_count = mem_cgroup_count_swap_user(ent, &page);
5224         if (usage_count > 1) { /* we don't move shared anon */
5225                 if (page)
5226                         put_page(page);
5227                 return NULL;
5228         }
5229         if (do_swap_account)
5230                 entry->val = ent.val;
5231
5232         return page;
5233 }
5234
5235 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5236                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
5237 {
5238         struct page *page = NULL;
5239         struct inode *inode;
5240         struct address_space *mapping;
5241         pgoff_t pgoff;
5242
5243         if (!vma->vm_file) /* anonymous vma */
5244                 return NULL;
5245         if (!move_file())
5246                 return NULL;
5247
5248         inode = vma->vm_file->f_path.dentry->d_inode;
5249         mapping = vma->vm_file->f_mapping;
5250         if (pte_none(ptent))
5251                 pgoff = linear_page_index(vma, addr);
5252         else /* pte_file(ptent) is true */
5253                 pgoff = pte_to_pgoff(ptent);
5254
5255         /* page is moved even if it's not RSS of this task(page-faulted). */
5256         page = find_get_page(mapping, pgoff);
5257
5258 #ifdef CONFIG_SWAP
5259         /* shmem/tmpfs may report page out on swap: account for that too. */
5260         if (radix_tree_exceptional_entry(page)) {
5261                 swp_entry_t swap = radix_to_swp_entry(page);
5262                 if (do_swap_account)
5263                         *entry = swap;
5264                 page = find_get_page(&swapper_space, swap.val);
5265         }
5266 #endif
5267         return page;
5268 }
5269
5270 static int is_target_pte_for_mc(struct vm_area_struct *vma,
5271                 unsigned long addr, pte_t ptent, union mc_target *target)
5272 {
5273         struct page *page = NULL;
5274         struct page_cgroup *pc;
5275         int ret = 0;
5276         swp_entry_t ent = { .val = 0 };
5277
5278         if (pte_present(ptent))
5279                 page = mc_handle_present_pte(vma, addr, ptent);
5280         else if (is_swap_pte(ptent))
5281                 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5282         else if (pte_none(ptent) || pte_file(ptent))
5283                 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5284
5285         if (!page && !ent.val)
5286                 return 0;
5287         if (page) {
5288                 pc = lookup_page_cgroup(page);
5289                 /*
5290                  * Do only loose check w/o page_cgroup lock.
5291                  * mem_cgroup_move_account() checks the pc is valid or not under
5292                  * the lock.
5293                  */
5294                 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5295                         ret = MC_TARGET_PAGE;
5296                         if (target)
5297                                 target->page = page;
5298                 }
5299                 if (!ret || !target)
5300                         put_page(page);
5301         }
5302         /* There is a swap entry and a page doesn't exist or isn't charged */
5303         if (ent.val && !ret &&
5304                         css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
5305                 ret = MC_TARGET_SWAP;
5306                 if (target)
5307                         target->ent = ent;
5308         }
5309         return ret;
5310 }
5311
5312 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5313                                         unsigned long addr, unsigned long end,
5314                                         struct mm_walk *walk)
5315 {
5316         struct vm_area_struct *vma = walk->private;
5317         pte_t *pte;
5318         spinlock_t *ptl;
5319
5320         split_huge_page_pmd(walk->mm, pmd);
5321
5322         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5323         for (; addr != end; pte++, addr += PAGE_SIZE)
5324                 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
5325                         mc.precharge++; /* increment precharge temporarily */
5326         pte_unmap_unlock(pte - 1, ptl);
5327         cond_resched();
5328
5329         return 0;
5330 }
5331
5332 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5333 {
5334         unsigned long precharge;
5335         struct vm_area_struct *vma;
5336
5337         down_read(&mm->mmap_sem);
5338         for (vma = mm->mmap; vma; vma = vma->vm_next) {
5339                 struct mm_walk mem_cgroup_count_precharge_walk = {
5340                         .pmd_entry = mem_cgroup_count_precharge_pte_range,
5341                         .mm = mm,
5342                         .private = vma,
5343                 };
5344                 if (is_vm_hugetlb_page(vma))
5345                         continue;
5346                 walk_page_range(vma->vm_start, vma->vm_end,
5347                                         &mem_cgroup_count_precharge_walk);
5348         }
5349         up_read(&mm->mmap_sem);
5350
5351         precharge = mc.precharge;
5352         mc.precharge = 0;
5353
5354         return precharge;
5355 }
5356
5357 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5358 {
5359         unsigned long precharge = mem_cgroup_count_precharge(mm);
5360
5361         VM_BUG_ON(mc.moving_task);
5362         mc.moving_task = current;
5363         return mem_cgroup_do_precharge(precharge);
5364 }
5365
5366 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5367 static void __mem_cgroup_clear_mc(void)
5368 {
5369         struct mem_cgroup *from = mc.from;
5370         struct mem_cgroup *to = mc.to;
5371
5372         /* we must uncharge all the leftover precharges from mc.to */
5373         if (mc.precharge) {
5374                 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5375                 mc.precharge = 0;
5376         }
5377         /*
5378          * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5379          * we must uncharge here.
5380          */
5381         if (mc.moved_charge) {
5382                 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5383                 mc.moved_charge = 0;
5384         }
5385         /* we must fixup refcnts and charges */
5386         if (mc.moved_swap) {
5387                 /* uncharge swap account from the old cgroup */
5388                 if (!mem_cgroup_is_root(mc.from))
5389                         res_counter_uncharge(&mc.from->memsw,
5390                                                 PAGE_SIZE * mc.moved_swap);
5391                 __mem_cgroup_put(mc.from, mc.moved_swap);
5392
5393                 if (!mem_cgroup_is_root(mc.to)) {
5394                         /*
5395                          * we charged both to->res and to->memsw, so we should
5396                          * uncharge to->res.
5397                          */
5398                         res_counter_uncharge(&mc.to->res,
5399                                                 PAGE_SIZE * mc.moved_swap);
5400                 }
5401                 /* we've already done mem_cgroup_get(mc.to) */
5402                 mc.moved_swap = 0;
5403         }
5404         memcg_oom_recover(from);
5405         memcg_oom_recover(to);
5406         wake_up_all(&mc.waitq);
5407 }
5408
5409 static void mem_cgroup_clear_mc(void)
5410 {
5411         struct mem_cgroup *from = mc.from;
5412
5413         /*
5414          * we must clear moving_task before waking up waiters at the end of
5415          * task migration.
5416          */
5417         mc.moving_task = NULL;
5418         __mem_cgroup_clear_mc();
5419         spin_lock(&mc.lock);
5420         mc.from = NULL;
5421         mc.to = NULL;
5422         spin_unlock(&mc.lock);
5423         mem_cgroup_end_move(from);
5424 }
5425
5426 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5427                                 struct cgroup *cgroup,
5428                                 struct cgroup_taskset *tset)
5429 {
5430         struct task_struct *p = cgroup_taskset_first(tset);
5431         int ret = 0;
5432         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5433
5434         if (memcg->move_charge_at_immigrate) {
5435                 struct mm_struct *mm;
5436                 struct mem_cgroup *from = mem_cgroup_from_task(p);
5437
5438                 VM_BUG_ON(from == memcg);
5439
5440                 mm = get_task_mm(p);
5441                 if (!mm)
5442                         return 0;
5443                 /* We move charges only when we move a owner of the mm */
5444                 if (mm->owner == p) {
5445                         VM_BUG_ON(mc.from);
5446                         VM_BUG_ON(mc.to);
5447                         VM_BUG_ON(mc.precharge);
5448                         VM_BUG_ON(mc.moved_charge);
5449                         VM_BUG_ON(mc.moved_swap);
5450                         mem_cgroup_start_move(from);
5451                         spin_lock(&mc.lock);
5452                         mc.from = from;
5453                         mc.to = memcg;
5454                         spin_unlock(&mc.lock);
5455                         /* We set mc.moving_task later */
5456
5457                         ret = mem_cgroup_precharge_mc(mm);
5458                         if (ret)
5459                                 mem_cgroup_clear_mc();
5460                 }
5461                 mmput(mm);
5462         }
5463         return ret;
5464 }
5465
5466 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5467                                 struct cgroup *cgroup,
5468                                 struct cgroup_taskset *tset)
5469 {
5470         mem_cgroup_clear_mc();
5471 }
5472
5473 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5474                                 unsigned long addr, unsigned long end,
5475                                 struct mm_walk *walk)
5476 {
5477         int ret = 0;
5478         struct vm_area_struct *vma = walk->private;
5479         pte_t *pte;
5480         spinlock_t *ptl;
5481
5482         split_huge_page_pmd(walk->mm, pmd);
5483 retry:
5484         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5485         for (; addr != end; addr += PAGE_SIZE) {
5486                 pte_t ptent = *(pte++);
5487                 union mc_target target;
5488                 int type;
5489                 struct page *page;
5490                 struct page_cgroup *pc;
5491                 swp_entry_t ent;
5492
5493                 if (!mc.precharge)
5494                         break;
5495
5496                 type = is_target_pte_for_mc(vma, addr, ptent, &target);
5497                 switch (type) {
5498                 case MC_TARGET_PAGE:
5499                         page = target.page;
5500                         if (isolate_lru_page(page))
5501                                 goto put;
5502                         pc = lookup_page_cgroup(page);
5503                         if (!mem_cgroup_move_account(page, 1, pc,
5504                                                      mc.from, mc.to, false)) {
5505                                 mc.precharge--;
5506                                 /* we uncharge from mc.from later. */
5507                                 mc.moved_charge++;
5508                         }
5509                         putback_lru_page(page);
5510 put:                    /* is_target_pte_for_mc() gets the page */
5511                         put_page(page);
5512                         break;
5513                 case MC_TARGET_SWAP:
5514                         ent = target.ent;
5515                         if (!mem_cgroup_move_swap_account(ent,
5516                                                 mc.from, mc.to, false)) {
5517                                 mc.precharge--;
5518                                 /* we fixup refcnts and charges later. */
5519                                 mc.moved_swap++;
5520                         }
5521                         break;
5522                 default:
5523                         break;
5524                 }
5525         }
5526         pte_unmap_unlock(pte - 1, ptl);
5527         cond_resched();
5528
5529         if (addr != end) {
5530                 /*
5531                  * We have consumed all precharges we got in can_attach().
5532                  * We try charge one by one, but don't do any additional
5533                  * charges to mc.to if we have failed in charge once in attach()
5534                  * phase.
5535                  */
5536                 ret = mem_cgroup_do_precharge(1);
5537                 if (!ret)
5538                         goto retry;
5539         }
5540
5541         return ret;
5542 }
5543
5544 static void mem_cgroup_move_charge(struct mm_struct *mm)
5545 {
5546         struct vm_area_struct *vma;
5547
5548         lru_add_drain_all();
5549 retry:
5550         if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5551                 /*
5552                  * Someone who are holding the mmap_sem might be waiting in
5553                  * waitq. So we cancel all extra charges, wake up all waiters,
5554                  * and retry. Because we cancel precharges, we might not be able
5555                  * to move enough charges, but moving charge is a best-effort
5556                  * feature anyway, so it wouldn't be a big problem.
5557                  */
5558                 __mem_cgroup_clear_mc();
5559                 cond_resched();
5560                 goto retry;
5561         }
5562         for (vma = mm->mmap; vma; vma = vma->vm_next) {
5563                 int ret;
5564                 struct mm_walk mem_cgroup_move_charge_walk = {
5565                         .pmd_entry = mem_cgroup_move_charge_pte_range,
5566                         .mm = mm,
5567                         .private = vma,
5568                 };
5569                 if (is_vm_hugetlb_page(vma))
5570                         continue;
5571                 ret = walk_page_range(vma->vm_start, vma->vm_end,
5572                                                 &mem_cgroup_move_charge_walk);
5573                 if (ret)
5574                         /*
5575                          * means we have consumed all precharges and failed in
5576                          * doing additional charge. Just abandon here.
5577                          */
5578                         break;
5579         }
5580         up_read(&mm->mmap_sem);
5581 }
5582
5583 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5584                                 struct cgroup *cont,
5585                                 struct cgroup_taskset *tset)
5586 {
5587         struct task_struct *p = cgroup_taskset_first(tset);
5588         struct mm_struct *mm = get_task_mm(p);
5589
5590         if (mm) {
5591                 if (mc.to)
5592                         mem_cgroup_move_charge(mm);
5593                 put_swap_token(mm);
5594                 mmput(mm);
5595         }
5596         if (mc.to)
5597                 mem_cgroup_clear_mc();
5598 }
5599 #else   /* !CONFIG_MMU */
5600 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5601                                 struct cgroup *cgroup,
5602                                 struct cgroup_taskset *tset)
5603 {
5604         return 0;
5605 }
5606 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5607                                 struct cgroup *cgroup,
5608                                 struct cgroup_taskset *tset)
5609 {
5610 }
5611 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5612                                 struct cgroup *cont,
5613                                 struct cgroup_taskset *tset)
5614 {
5615 }
5616 #endif
5617
5618 struct cgroup_subsys mem_cgroup_subsys = {
5619         .name = "memory",
5620         .subsys_id = mem_cgroup_subsys_id,
5621         .create = mem_cgroup_create,
5622         .pre_destroy = mem_cgroup_pre_destroy,
5623         .destroy = mem_cgroup_destroy,
5624         .populate = mem_cgroup_populate,
5625         .can_attach = mem_cgroup_can_attach,
5626         .cancel_attach = mem_cgroup_cancel_attach,
5627         .attach = mem_cgroup_move_task,
5628         .early_init = 0,
5629         .use_id = 1,
5630 };
5631
5632 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5633 static int __init enable_swap_account(char *s)
5634 {
5635         /* consider enabled if no parameter or 1 is given */
5636         if (!strcmp(s, "1"))
5637                 really_do_swap_account = 1;
5638         else if (!strcmp(s, "0"))
5639                 really_do_swap_account = 0;
5640         return 1;
5641 }
5642 __setup("swapaccount=", enable_swap_account);
5643
5644 #endif