Merge tag 'acpi-4.7-rc1-more' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[cascardo/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * Kernel Memory Controller
14  * Copyright (C) 2012 Parallels Inc. and Google Inc.
15  * Authors: Glauber Costa and Suleiman Souhlal
16  *
17  * Native page reclaim
18  * Charge lifetime sanitation
19  * Lockless page tracking & accounting
20  * Unified hierarchy configuration model
21  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22  *
23  * This program is free software; you can redistribute it and/or modify
24  * it under the terms of the GNU General Public License as published by
25  * the Free Software Foundation; either version 2 of the License, or
26  * (at your option) any later version.
27  *
28  * This program is distributed in the hope that it will be useful,
29  * but WITHOUT ANY WARRANTY; without even the implied warranty of
30  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
31  * GNU General Public License for more details.
32  */
33
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70
71 #include <asm/uaccess.h>
72
73 #include <trace/events/vmscan.h>
74
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76 EXPORT_SYMBOL(memory_cgrp_subsys);
77
78 struct mem_cgroup *root_mem_cgroup __read_mostly;
79
80 #define MEM_CGROUP_RECLAIM_RETRIES      5
81
82 /* Socket memory accounting disabled? */
83 static bool cgroup_memory_nosocket;
84
85 /* Kernel memory accounting disabled? */
86 static bool cgroup_memory_nokmem;
87
88 /* Whether the swap controller is active */
89 #ifdef CONFIG_MEMCG_SWAP
90 int do_swap_account __read_mostly;
91 #else
92 #define do_swap_account         0
93 #endif
94
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
97 {
98         return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99 }
100
101 static const char * const mem_cgroup_stat_names[] = {
102         "cache",
103         "rss",
104         "rss_huge",
105         "mapped_file",
106         "dirty",
107         "writeback",
108         "swap",
109 };
110
111 static const char * const mem_cgroup_events_names[] = {
112         "pgpgin",
113         "pgpgout",
114         "pgfault",
115         "pgmajfault",
116 };
117
118 static const char * const mem_cgroup_lru_names[] = {
119         "inactive_anon",
120         "active_anon",
121         "inactive_file",
122         "active_file",
123         "unevictable",
124 };
125
126 #define THRESHOLDS_EVENTS_TARGET 128
127 #define SOFTLIMIT_EVENTS_TARGET 1024
128 #define NUMAINFO_EVENTS_TARGET  1024
129
130 /*
131  * Cgroups above their limits are maintained in a RB-Tree, independent of
132  * their hierarchy representation
133  */
134
135 struct mem_cgroup_tree_per_zone {
136         struct rb_root rb_root;
137         spinlock_t lock;
138 };
139
140 struct mem_cgroup_tree_per_node {
141         struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
142 };
143
144 struct mem_cgroup_tree {
145         struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
146 };
147
148 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
149
150 /* for OOM */
151 struct mem_cgroup_eventfd_list {
152         struct list_head list;
153         struct eventfd_ctx *eventfd;
154 };
155
156 /*
157  * cgroup_event represents events which userspace want to receive.
158  */
159 struct mem_cgroup_event {
160         /*
161          * memcg which the event belongs to.
162          */
163         struct mem_cgroup *memcg;
164         /*
165          * eventfd to signal userspace about the event.
166          */
167         struct eventfd_ctx *eventfd;
168         /*
169          * Each of these stored in a list by the cgroup.
170          */
171         struct list_head list;
172         /*
173          * register_event() callback will be used to add new userspace
174          * waiter for changes related to this event.  Use eventfd_signal()
175          * on eventfd to send notification to userspace.
176          */
177         int (*register_event)(struct mem_cgroup *memcg,
178                               struct eventfd_ctx *eventfd, const char *args);
179         /*
180          * unregister_event() callback will be called when userspace closes
181          * the eventfd or on cgroup removing.  This callback must be set,
182          * if you want provide notification functionality.
183          */
184         void (*unregister_event)(struct mem_cgroup *memcg,
185                                  struct eventfd_ctx *eventfd);
186         /*
187          * All fields below needed to unregister event when
188          * userspace closes eventfd.
189          */
190         poll_table pt;
191         wait_queue_head_t *wqh;
192         wait_queue_t wait;
193         struct work_struct remove;
194 };
195
196 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
197 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
198
199 /* Stuffs for move charges at task migration. */
200 /*
201  * Types of charges to be moved.
202  */
203 #define MOVE_ANON       0x1U
204 #define MOVE_FILE       0x2U
205 #define MOVE_MASK       (MOVE_ANON | MOVE_FILE)
206
207 /* "mc" and its members are protected by cgroup_mutex */
208 static struct move_charge_struct {
209         spinlock_t        lock; /* for from, to */
210         struct mm_struct  *mm;
211         struct mem_cgroup *from;
212         struct mem_cgroup *to;
213         unsigned long flags;
214         unsigned long precharge;
215         unsigned long moved_charge;
216         unsigned long moved_swap;
217         struct task_struct *moving_task;        /* a task moving charges */
218         wait_queue_head_t waitq;                /* a waitq for other context */
219 } mc = {
220         .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
221         .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
222 };
223
224 /*
225  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
226  * limit reclaim to prevent infinite loops, if they ever occur.
227  */
228 #define MEM_CGROUP_MAX_RECLAIM_LOOPS            100
229 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
230
231 enum charge_type {
232         MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
233         MEM_CGROUP_CHARGE_TYPE_ANON,
234         MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
235         MEM_CGROUP_CHARGE_TYPE_DROP,    /* a page was unused swap cache */
236         NR_CHARGE_TYPE,
237 };
238
239 /* for encoding cft->private value on file */
240 enum res_type {
241         _MEM,
242         _MEMSWAP,
243         _OOM_TYPE,
244         _KMEM,
245         _TCP,
246 };
247
248 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
249 #define MEMFILE_TYPE(val)       ((val) >> 16 & 0xffff)
250 #define MEMFILE_ATTR(val)       ((val) & 0xffff)
251 /* Used for OOM nofiier */
252 #define OOM_CONTROL             (0)
253
254 /* Some nice accessors for the vmpressure. */
255 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
256 {
257         if (!memcg)
258                 memcg = root_mem_cgroup;
259         return &memcg->vmpressure;
260 }
261
262 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
263 {
264         return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
265 }
266
267 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
268 {
269         return (memcg == root_mem_cgroup);
270 }
271
272 #ifndef CONFIG_SLOB
273 /*
274  * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
275  * The main reason for not using cgroup id for this:
276  *  this works better in sparse environments, where we have a lot of memcgs,
277  *  but only a few kmem-limited. Or also, if we have, for instance, 200
278  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
279  *  200 entry array for that.
280  *
281  * The current size of the caches array is stored in memcg_nr_cache_ids. It
282  * will double each time we have to increase it.
283  */
284 static DEFINE_IDA(memcg_cache_ida);
285 int memcg_nr_cache_ids;
286
287 /* Protects memcg_nr_cache_ids */
288 static DECLARE_RWSEM(memcg_cache_ids_sem);
289
290 void memcg_get_cache_ids(void)
291 {
292         down_read(&memcg_cache_ids_sem);
293 }
294
295 void memcg_put_cache_ids(void)
296 {
297         up_read(&memcg_cache_ids_sem);
298 }
299
300 /*
301  * MIN_SIZE is different than 1, because we would like to avoid going through
302  * the alloc/free process all the time. In a small machine, 4 kmem-limited
303  * cgroups is a reasonable guess. In the future, it could be a parameter or
304  * tunable, but that is strictly not necessary.
305  *
306  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
307  * this constant directly from cgroup, but it is understandable that this is
308  * better kept as an internal representation in cgroup.c. In any case, the
309  * cgrp_id space is not getting any smaller, and we don't have to necessarily
310  * increase ours as well if it increases.
311  */
312 #define MEMCG_CACHES_MIN_SIZE 4
313 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
314
315 /*
316  * A lot of the calls to the cache allocation functions are expected to be
317  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
318  * conditional to this static branch, we'll have to allow modules that does
319  * kmem_cache_alloc and the such to see this symbol as well
320  */
321 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
322 EXPORT_SYMBOL(memcg_kmem_enabled_key);
323
324 #endif /* !CONFIG_SLOB */
325
326 static struct mem_cgroup_per_zone *
327 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
328 {
329         int nid = zone_to_nid(zone);
330         int zid = zone_idx(zone);
331
332         return &memcg->nodeinfo[nid]->zoneinfo[zid];
333 }
334
335 /**
336  * mem_cgroup_css_from_page - css of the memcg associated with a page
337  * @page: page of interest
338  *
339  * If memcg is bound to the default hierarchy, css of the memcg associated
340  * with @page is returned.  The returned css remains associated with @page
341  * until it is released.
342  *
343  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
344  * is returned.
345  */
346 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
347 {
348         struct mem_cgroup *memcg;
349
350         memcg = page->mem_cgroup;
351
352         if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
353                 memcg = root_mem_cgroup;
354
355         return &memcg->css;
356 }
357
358 /**
359  * page_cgroup_ino - return inode number of the memcg a page is charged to
360  * @page: the page
361  *
362  * Look up the closest online ancestor of the memory cgroup @page is charged to
363  * and return its inode number or 0 if @page is not charged to any cgroup. It
364  * is safe to call this function without holding a reference to @page.
365  *
366  * Note, this function is inherently racy, because there is nothing to prevent
367  * the cgroup inode from getting torn down and potentially reallocated a moment
368  * after page_cgroup_ino() returns, so it only should be used by callers that
369  * do not care (such as procfs interfaces).
370  */
371 ino_t page_cgroup_ino(struct page *page)
372 {
373         struct mem_cgroup *memcg;
374         unsigned long ino = 0;
375
376         rcu_read_lock();
377         memcg = READ_ONCE(page->mem_cgroup);
378         while (memcg && !(memcg->css.flags & CSS_ONLINE))
379                 memcg = parent_mem_cgroup(memcg);
380         if (memcg)
381                 ino = cgroup_ino(memcg->css.cgroup);
382         rcu_read_unlock();
383         return ino;
384 }
385
386 static struct mem_cgroup_per_zone *
387 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
388 {
389         int nid = page_to_nid(page);
390         int zid = page_zonenum(page);
391
392         return &memcg->nodeinfo[nid]->zoneinfo[zid];
393 }
394
395 static struct mem_cgroup_tree_per_zone *
396 soft_limit_tree_node_zone(int nid, int zid)
397 {
398         return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
399 }
400
401 static struct mem_cgroup_tree_per_zone *
402 soft_limit_tree_from_page(struct page *page)
403 {
404         int nid = page_to_nid(page);
405         int zid = page_zonenum(page);
406
407         return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
408 }
409
410 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
411                                          struct mem_cgroup_tree_per_zone *mctz,
412                                          unsigned long new_usage_in_excess)
413 {
414         struct rb_node **p = &mctz->rb_root.rb_node;
415         struct rb_node *parent = NULL;
416         struct mem_cgroup_per_zone *mz_node;
417
418         if (mz->on_tree)
419                 return;
420
421         mz->usage_in_excess = new_usage_in_excess;
422         if (!mz->usage_in_excess)
423                 return;
424         while (*p) {
425                 parent = *p;
426                 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
427                                         tree_node);
428                 if (mz->usage_in_excess < mz_node->usage_in_excess)
429                         p = &(*p)->rb_left;
430                 /*
431                  * We can't avoid mem cgroups that are over their soft
432                  * limit by the same amount
433                  */
434                 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
435                         p = &(*p)->rb_right;
436         }
437         rb_link_node(&mz->tree_node, parent, p);
438         rb_insert_color(&mz->tree_node, &mctz->rb_root);
439         mz->on_tree = true;
440 }
441
442 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
443                                          struct mem_cgroup_tree_per_zone *mctz)
444 {
445         if (!mz->on_tree)
446                 return;
447         rb_erase(&mz->tree_node, &mctz->rb_root);
448         mz->on_tree = false;
449 }
450
451 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
452                                        struct mem_cgroup_tree_per_zone *mctz)
453 {
454         unsigned long flags;
455
456         spin_lock_irqsave(&mctz->lock, flags);
457         __mem_cgroup_remove_exceeded(mz, mctz);
458         spin_unlock_irqrestore(&mctz->lock, flags);
459 }
460
461 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
462 {
463         unsigned long nr_pages = page_counter_read(&memcg->memory);
464         unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
465         unsigned long excess = 0;
466
467         if (nr_pages > soft_limit)
468                 excess = nr_pages - soft_limit;
469
470         return excess;
471 }
472
473 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
474 {
475         unsigned long excess;
476         struct mem_cgroup_per_zone *mz;
477         struct mem_cgroup_tree_per_zone *mctz;
478
479         mctz = soft_limit_tree_from_page(page);
480         /*
481          * Necessary to update all ancestors when hierarchy is used.
482          * because their event counter is not touched.
483          */
484         for (; memcg; memcg = parent_mem_cgroup(memcg)) {
485                 mz = mem_cgroup_page_zoneinfo(memcg, page);
486                 excess = soft_limit_excess(memcg);
487                 /*
488                  * We have to update the tree if mz is on RB-tree or
489                  * mem is over its softlimit.
490                  */
491                 if (excess || mz->on_tree) {
492                         unsigned long flags;
493
494                         spin_lock_irqsave(&mctz->lock, flags);
495                         /* if on-tree, remove it */
496                         if (mz->on_tree)
497                                 __mem_cgroup_remove_exceeded(mz, mctz);
498                         /*
499                          * Insert again. mz->usage_in_excess will be updated.
500                          * If excess is 0, no tree ops.
501                          */
502                         __mem_cgroup_insert_exceeded(mz, mctz, excess);
503                         spin_unlock_irqrestore(&mctz->lock, flags);
504                 }
505         }
506 }
507
508 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
509 {
510         struct mem_cgroup_tree_per_zone *mctz;
511         struct mem_cgroup_per_zone *mz;
512         int nid, zid;
513
514         for_each_node(nid) {
515                 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
516                         mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
517                         mctz = soft_limit_tree_node_zone(nid, zid);
518                         mem_cgroup_remove_exceeded(mz, mctz);
519                 }
520         }
521 }
522
523 static struct mem_cgroup_per_zone *
524 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
525 {
526         struct rb_node *rightmost = NULL;
527         struct mem_cgroup_per_zone *mz;
528
529 retry:
530         mz = NULL;
531         rightmost = rb_last(&mctz->rb_root);
532         if (!rightmost)
533                 goto done;              /* Nothing to reclaim from */
534
535         mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
536         /*
537          * Remove the node now but someone else can add it back,
538          * we will to add it back at the end of reclaim to its correct
539          * position in the tree.
540          */
541         __mem_cgroup_remove_exceeded(mz, mctz);
542         if (!soft_limit_excess(mz->memcg) ||
543             !css_tryget_online(&mz->memcg->css))
544                 goto retry;
545 done:
546         return mz;
547 }
548
549 static struct mem_cgroup_per_zone *
550 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
551 {
552         struct mem_cgroup_per_zone *mz;
553
554         spin_lock_irq(&mctz->lock);
555         mz = __mem_cgroup_largest_soft_limit_node(mctz);
556         spin_unlock_irq(&mctz->lock);
557         return mz;
558 }
559
560 /*
561  * Return page count for single (non recursive) @memcg.
562  *
563  * Implementation Note: reading percpu statistics for memcg.
564  *
565  * Both of vmstat[] and percpu_counter has threshold and do periodic
566  * synchronization to implement "quick" read. There are trade-off between
567  * reading cost and precision of value. Then, we may have a chance to implement
568  * a periodic synchronization of counter in memcg's counter.
569  *
570  * But this _read() function is used for user interface now. The user accounts
571  * memory usage by memory cgroup and he _always_ requires exact value because
572  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
573  * have to visit all online cpus and make sum. So, for now, unnecessary
574  * synchronization is not implemented. (just implemented for cpu hotplug)
575  *
576  * If there are kernel internal actions which can make use of some not-exact
577  * value, and reading all cpu value can be performance bottleneck in some
578  * common workload, threshold and synchronization as vmstat[] should be
579  * implemented.
580  */
581 static unsigned long
582 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
583 {
584         long val = 0;
585         int cpu;
586
587         /* Per-cpu values can be negative, use a signed accumulator */
588         for_each_possible_cpu(cpu)
589                 val += per_cpu(memcg->stat->count[idx], cpu);
590         /*
591          * Summing races with updates, so val may be negative.  Avoid exposing
592          * transient negative values.
593          */
594         if (val < 0)
595                 val = 0;
596         return val;
597 }
598
599 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
600                                             enum mem_cgroup_events_index idx)
601 {
602         unsigned long val = 0;
603         int cpu;
604
605         for_each_possible_cpu(cpu)
606                 val += per_cpu(memcg->stat->events[idx], cpu);
607         return val;
608 }
609
610 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
611                                          struct page *page,
612                                          bool compound, int nr_pages)
613 {
614         /*
615          * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
616          * counted as CACHE even if it's on ANON LRU.
617          */
618         if (PageAnon(page))
619                 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
620                                 nr_pages);
621         else
622                 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
623                                 nr_pages);
624
625         if (compound) {
626                 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
627                 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
628                                 nr_pages);
629         }
630
631         /* pagein of a big page is an event. So, ignore page size */
632         if (nr_pages > 0)
633                 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
634         else {
635                 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
636                 nr_pages = -nr_pages; /* for event */
637         }
638
639         __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
640 }
641
642 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
643                                            int nid, unsigned int lru_mask)
644 {
645         unsigned long nr = 0;
646         int zid;
647
648         VM_BUG_ON((unsigned)nid >= nr_node_ids);
649
650         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
651                 struct mem_cgroup_per_zone *mz;
652                 enum lru_list lru;
653
654                 for_each_lru(lru) {
655                         if (!(BIT(lru) & lru_mask))
656                                 continue;
657                         mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
658                         nr += mz->lru_size[lru];
659                 }
660         }
661         return nr;
662 }
663
664 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
665                         unsigned int lru_mask)
666 {
667         unsigned long nr = 0;
668         int nid;
669
670         for_each_node_state(nid, N_MEMORY)
671                 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
672         return nr;
673 }
674
675 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
676                                        enum mem_cgroup_events_target target)
677 {
678         unsigned long val, next;
679
680         val = __this_cpu_read(memcg->stat->nr_page_events);
681         next = __this_cpu_read(memcg->stat->targets[target]);
682         /* from time_after() in jiffies.h */
683         if ((long)next - (long)val < 0) {
684                 switch (target) {
685                 case MEM_CGROUP_TARGET_THRESH:
686                         next = val + THRESHOLDS_EVENTS_TARGET;
687                         break;
688                 case MEM_CGROUP_TARGET_SOFTLIMIT:
689                         next = val + SOFTLIMIT_EVENTS_TARGET;
690                         break;
691                 case MEM_CGROUP_TARGET_NUMAINFO:
692                         next = val + NUMAINFO_EVENTS_TARGET;
693                         break;
694                 default:
695                         break;
696                 }
697                 __this_cpu_write(memcg->stat->targets[target], next);
698                 return true;
699         }
700         return false;
701 }
702
703 /*
704  * Check events in order.
705  *
706  */
707 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
708 {
709         /* threshold event is triggered in finer grain than soft limit */
710         if (unlikely(mem_cgroup_event_ratelimit(memcg,
711                                                 MEM_CGROUP_TARGET_THRESH))) {
712                 bool do_softlimit;
713                 bool do_numainfo __maybe_unused;
714
715                 do_softlimit = mem_cgroup_event_ratelimit(memcg,
716                                                 MEM_CGROUP_TARGET_SOFTLIMIT);
717 #if MAX_NUMNODES > 1
718                 do_numainfo = mem_cgroup_event_ratelimit(memcg,
719                                                 MEM_CGROUP_TARGET_NUMAINFO);
720 #endif
721                 mem_cgroup_threshold(memcg);
722                 if (unlikely(do_softlimit))
723                         mem_cgroup_update_tree(memcg, page);
724 #if MAX_NUMNODES > 1
725                 if (unlikely(do_numainfo))
726                         atomic_inc(&memcg->numainfo_events);
727 #endif
728         }
729 }
730
731 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
732 {
733         /*
734          * mm_update_next_owner() may clear mm->owner to NULL
735          * if it races with swapoff, page migration, etc.
736          * So this can be called with p == NULL.
737          */
738         if (unlikely(!p))
739                 return NULL;
740
741         return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
742 }
743 EXPORT_SYMBOL(mem_cgroup_from_task);
744
745 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
746 {
747         struct mem_cgroup *memcg = NULL;
748
749         rcu_read_lock();
750         do {
751                 /*
752                  * Page cache insertions can happen withou an
753                  * actual mm context, e.g. during disk probing
754                  * on boot, loopback IO, acct() writes etc.
755                  */
756                 if (unlikely(!mm))
757                         memcg = root_mem_cgroup;
758                 else {
759                         memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
760                         if (unlikely(!memcg))
761                                 memcg = root_mem_cgroup;
762                 }
763         } while (!css_tryget_online(&memcg->css));
764         rcu_read_unlock();
765         return memcg;
766 }
767
768 /**
769  * mem_cgroup_iter - iterate over memory cgroup hierarchy
770  * @root: hierarchy root
771  * @prev: previously returned memcg, NULL on first invocation
772  * @reclaim: cookie for shared reclaim walks, NULL for full walks
773  *
774  * Returns references to children of the hierarchy below @root, or
775  * @root itself, or %NULL after a full round-trip.
776  *
777  * Caller must pass the return value in @prev on subsequent
778  * invocations for reference counting, or use mem_cgroup_iter_break()
779  * to cancel a hierarchy walk before the round-trip is complete.
780  *
781  * Reclaimers can specify a zone and a priority level in @reclaim to
782  * divide up the memcgs in the hierarchy among all concurrent
783  * reclaimers operating on the same zone and priority.
784  */
785 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
786                                    struct mem_cgroup *prev,
787                                    struct mem_cgroup_reclaim_cookie *reclaim)
788 {
789         struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
790         struct cgroup_subsys_state *css = NULL;
791         struct mem_cgroup *memcg = NULL;
792         struct mem_cgroup *pos = NULL;
793
794         if (mem_cgroup_disabled())
795                 return NULL;
796
797         if (!root)
798                 root = root_mem_cgroup;
799
800         if (prev && !reclaim)
801                 pos = prev;
802
803         if (!root->use_hierarchy && root != root_mem_cgroup) {
804                 if (prev)
805                         goto out;
806                 return root;
807         }
808
809         rcu_read_lock();
810
811         if (reclaim) {
812                 struct mem_cgroup_per_zone *mz;
813
814                 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
815                 iter = &mz->iter[reclaim->priority];
816
817                 if (prev && reclaim->generation != iter->generation)
818                         goto out_unlock;
819
820                 while (1) {
821                         pos = READ_ONCE(iter->position);
822                         if (!pos || css_tryget(&pos->css))
823                                 break;
824                         /*
825                          * css reference reached zero, so iter->position will
826                          * be cleared by ->css_released. However, we should not
827                          * rely on this happening soon, because ->css_released
828                          * is called from a work queue, and by busy-waiting we
829                          * might block it. So we clear iter->position right
830                          * away.
831                          */
832                         (void)cmpxchg(&iter->position, pos, NULL);
833                 }
834         }
835
836         if (pos)
837                 css = &pos->css;
838
839         for (;;) {
840                 css = css_next_descendant_pre(css, &root->css);
841                 if (!css) {
842                         /*
843                          * Reclaimers share the hierarchy walk, and a
844                          * new one might jump in right at the end of
845                          * the hierarchy - make sure they see at least
846                          * one group and restart from the beginning.
847                          */
848                         if (!prev)
849                                 continue;
850                         break;
851                 }
852
853                 /*
854                  * Verify the css and acquire a reference.  The root
855                  * is provided by the caller, so we know it's alive
856                  * and kicking, and don't take an extra reference.
857                  */
858                 memcg = mem_cgroup_from_css(css);
859
860                 if (css == &root->css)
861                         break;
862
863                 if (css_tryget(css))
864                         break;
865
866                 memcg = NULL;
867         }
868
869         if (reclaim) {
870                 /*
871                  * The position could have already been updated by a competing
872                  * thread, so check that the value hasn't changed since we read
873                  * it to avoid reclaiming from the same cgroup twice.
874                  */
875                 (void)cmpxchg(&iter->position, pos, memcg);
876
877                 if (pos)
878                         css_put(&pos->css);
879
880                 if (!memcg)
881                         iter->generation++;
882                 else if (!prev)
883                         reclaim->generation = iter->generation;
884         }
885
886 out_unlock:
887         rcu_read_unlock();
888 out:
889         if (prev && prev != root)
890                 css_put(&prev->css);
891
892         return memcg;
893 }
894
895 /**
896  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
897  * @root: hierarchy root
898  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
899  */
900 void mem_cgroup_iter_break(struct mem_cgroup *root,
901                            struct mem_cgroup *prev)
902 {
903         if (!root)
904                 root = root_mem_cgroup;
905         if (prev && prev != root)
906                 css_put(&prev->css);
907 }
908
909 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
910 {
911         struct mem_cgroup *memcg = dead_memcg;
912         struct mem_cgroup_reclaim_iter *iter;
913         struct mem_cgroup_per_zone *mz;
914         int nid, zid;
915         int i;
916
917         while ((memcg = parent_mem_cgroup(memcg))) {
918                 for_each_node(nid) {
919                         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
920                                 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
921                                 for (i = 0; i <= DEF_PRIORITY; i++) {
922                                         iter = &mz->iter[i];
923                                         cmpxchg(&iter->position,
924                                                 dead_memcg, NULL);
925                                 }
926                         }
927                 }
928         }
929 }
930
931 /*
932  * Iteration constructs for visiting all cgroups (under a tree).  If
933  * loops are exited prematurely (break), mem_cgroup_iter_break() must
934  * be used for reference counting.
935  */
936 #define for_each_mem_cgroup_tree(iter, root)            \
937         for (iter = mem_cgroup_iter(root, NULL, NULL);  \
938              iter != NULL;                              \
939              iter = mem_cgroup_iter(root, iter, NULL))
940
941 #define for_each_mem_cgroup(iter)                       \
942         for (iter = mem_cgroup_iter(NULL, NULL, NULL);  \
943              iter != NULL;                              \
944              iter = mem_cgroup_iter(NULL, iter, NULL))
945
946 /**
947  * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
948  * @zone: zone of the wanted lruvec
949  * @memcg: memcg of the wanted lruvec
950  *
951  * Returns the lru list vector holding pages for the given @zone and
952  * @mem.  This can be the global zone lruvec, if the memory controller
953  * is disabled.
954  */
955 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
956                                       struct mem_cgroup *memcg)
957 {
958         struct mem_cgroup_per_zone *mz;
959         struct lruvec *lruvec;
960
961         if (mem_cgroup_disabled()) {
962                 lruvec = &zone->lruvec;
963                 goto out;
964         }
965
966         mz = mem_cgroup_zone_zoneinfo(memcg, zone);
967         lruvec = &mz->lruvec;
968 out:
969         /*
970          * Since a node can be onlined after the mem_cgroup was created,
971          * we have to be prepared to initialize lruvec->zone here;
972          * and if offlined then reonlined, we need to reinitialize it.
973          */
974         if (unlikely(lruvec->zone != zone))
975                 lruvec->zone = zone;
976         return lruvec;
977 }
978
979 /**
980  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
981  * @page: the page
982  * @zone: zone of the page
983  *
984  * This function is only safe when following the LRU page isolation
985  * and putback protocol: the LRU lock must be held, and the page must
986  * either be PageLRU() or the caller must have isolated/allocated it.
987  */
988 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
989 {
990         struct mem_cgroup_per_zone *mz;
991         struct mem_cgroup *memcg;
992         struct lruvec *lruvec;
993
994         if (mem_cgroup_disabled()) {
995                 lruvec = &zone->lruvec;
996                 goto out;
997         }
998
999         memcg = page->mem_cgroup;
1000         /*
1001          * Swapcache readahead pages are added to the LRU - and
1002          * possibly migrated - before they are charged.
1003          */
1004         if (!memcg)
1005                 memcg = root_mem_cgroup;
1006
1007         mz = mem_cgroup_page_zoneinfo(memcg, page);
1008         lruvec = &mz->lruvec;
1009 out:
1010         /*
1011          * Since a node can be onlined after the mem_cgroup was created,
1012          * we have to be prepared to initialize lruvec->zone here;
1013          * and if offlined then reonlined, we need to reinitialize it.
1014          */
1015         if (unlikely(lruvec->zone != zone))
1016                 lruvec->zone = zone;
1017         return lruvec;
1018 }
1019
1020 /**
1021  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1022  * @lruvec: mem_cgroup per zone lru vector
1023  * @lru: index of lru list the page is sitting on
1024  * @nr_pages: positive when adding or negative when removing
1025  *
1026  * This function must be called under lru_lock, just before a page is added
1027  * to or just after a page is removed from an lru list (that ordering being
1028  * so as to allow it to check that lru_size 0 is consistent with list_empty).
1029  */
1030 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1031                                 int nr_pages)
1032 {
1033         struct mem_cgroup_per_zone *mz;
1034         unsigned long *lru_size;
1035         long size;
1036         bool empty;
1037
1038         __update_lru_size(lruvec, lru, nr_pages);
1039
1040         if (mem_cgroup_disabled())
1041                 return;
1042
1043         mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1044         lru_size = mz->lru_size + lru;
1045         empty = list_empty(lruvec->lists + lru);
1046
1047         if (nr_pages < 0)
1048                 *lru_size += nr_pages;
1049
1050         size = *lru_size;
1051         if (WARN_ONCE(size < 0 || empty != !size,
1052                 "%s(%p, %d, %d): lru_size %ld but %sempty\n",
1053                 __func__, lruvec, lru, nr_pages, size, empty ? "" : "not ")) {
1054                 VM_BUG_ON(1);
1055                 *lru_size = 0;
1056         }
1057
1058         if (nr_pages > 0)
1059                 *lru_size += nr_pages;
1060 }
1061
1062 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1063 {
1064         struct mem_cgroup *task_memcg;
1065         struct task_struct *p;
1066         bool ret;
1067
1068         p = find_lock_task_mm(task);
1069         if (p) {
1070                 task_memcg = get_mem_cgroup_from_mm(p->mm);
1071                 task_unlock(p);
1072         } else {
1073                 /*
1074                  * All threads may have already detached their mm's, but the oom
1075                  * killer still needs to detect if they have already been oom
1076                  * killed to prevent needlessly killing additional tasks.
1077                  */
1078                 rcu_read_lock();
1079                 task_memcg = mem_cgroup_from_task(task);
1080                 css_get(&task_memcg->css);
1081                 rcu_read_unlock();
1082         }
1083         ret = mem_cgroup_is_descendant(task_memcg, memcg);
1084         css_put(&task_memcg->css);
1085         return ret;
1086 }
1087
1088 /**
1089  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1090  * @memcg: the memory cgroup
1091  *
1092  * Returns the maximum amount of memory @mem can be charged with, in
1093  * pages.
1094  */
1095 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1096 {
1097         unsigned long margin = 0;
1098         unsigned long count;
1099         unsigned long limit;
1100
1101         count = page_counter_read(&memcg->memory);
1102         limit = READ_ONCE(memcg->memory.limit);
1103         if (count < limit)
1104                 margin = limit - count;
1105
1106         if (do_memsw_account()) {
1107                 count = page_counter_read(&memcg->memsw);
1108                 limit = READ_ONCE(memcg->memsw.limit);
1109                 if (count <= limit)
1110                         margin = min(margin, limit - count);
1111         }
1112
1113         return margin;
1114 }
1115
1116 /*
1117  * A routine for checking "mem" is under move_account() or not.
1118  *
1119  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1120  * moving cgroups. This is for waiting at high-memory pressure
1121  * caused by "move".
1122  */
1123 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1124 {
1125         struct mem_cgroup *from;
1126         struct mem_cgroup *to;
1127         bool ret = false;
1128         /*
1129          * Unlike task_move routines, we access mc.to, mc.from not under
1130          * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1131          */
1132         spin_lock(&mc.lock);
1133         from = mc.from;
1134         to = mc.to;
1135         if (!from)
1136                 goto unlock;
1137
1138         ret = mem_cgroup_is_descendant(from, memcg) ||
1139                 mem_cgroup_is_descendant(to, memcg);
1140 unlock:
1141         spin_unlock(&mc.lock);
1142         return ret;
1143 }
1144
1145 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1146 {
1147         if (mc.moving_task && current != mc.moving_task) {
1148                 if (mem_cgroup_under_move(memcg)) {
1149                         DEFINE_WAIT(wait);
1150                         prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1151                         /* moving charge context might have finished. */
1152                         if (mc.moving_task)
1153                                 schedule();
1154                         finish_wait(&mc.waitq, &wait);
1155                         return true;
1156                 }
1157         }
1158         return false;
1159 }
1160
1161 #define K(x) ((x) << (PAGE_SHIFT-10))
1162 /**
1163  * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1164  * @memcg: The memory cgroup that went over limit
1165  * @p: Task that is going to be killed
1166  *
1167  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1168  * enabled
1169  */
1170 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1171 {
1172         struct mem_cgroup *iter;
1173         unsigned int i;
1174
1175         rcu_read_lock();
1176
1177         if (p) {
1178                 pr_info("Task in ");
1179                 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1180                 pr_cont(" killed as a result of limit of ");
1181         } else {
1182                 pr_info("Memory limit reached of cgroup ");
1183         }
1184
1185         pr_cont_cgroup_path(memcg->css.cgroup);
1186         pr_cont("\n");
1187
1188         rcu_read_unlock();
1189
1190         pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1191                 K((u64)page_counter_read(&memcg->memory)),
1192                 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1193         pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1194                 K((u64)page_counter_read(&memcg->memsw)),
1195                 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1196         pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1197                 K((u64)page_counter_read(&memcg->kmem)),
1198                 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1199
1200         for_each_mem_cgroup_tree(iter, memcg) {
1201                 pr_info("Memory cgroup stats for ");
1202                 pr_cont_cgroup_path(iter->css.cgroup);
1203                 pr_cont(":");
1204
1205                 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1206                         if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1207                                 continue;
1208                         pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1209                                 K(mem_cgroup_read_stat(iter, i)));
1210                 }
1211
1212                 for (i = 0; i < NR_LRU_LISTS; i++)
1213                         pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1214                                 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1215
1216                 pr_cont("\n");
1217         }
1218 }
1219
1220 /*
1221  * This function returns the number of memcg under hierarchy tree. Returns
1222  * 1(self count) if no children.
1223  */
1224 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1225 {
1226         int num = 0;
1227         struct mem_cgroup *iter;
1228
1229         for_each_mem_cgroup_tree(iter, memcg)
1230                 num++;
1231         return num;
1232 }
1233
1234 /*
1235  * Return the memory (and swap, if configured) limit for a memcg.
1236  */
1237 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1238 {
1239         unsigned long limit;
1240
1241         limit = memcg->memory.limit;
1242         if (mem_cgroup_swappiness(memcg)) {
1243                 unsigned long memsw_limit;
1244                 unsigned long swap_limit;
1245
1246                 memsw_limit = memcg->memsw.limit;
1247                 swap_limit = memcg->swap.limit;
1248                 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1249                 limit = min(limit + swap_limit, memsw_limit);
1250         }
1251         return limit;
1252 }
1253
1254 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1255                                      int order)
1256 {
1257         struct oom_control oc = {
1258                 .zonelist = NULL,
1259                 .nodemask = NULL,
1260                 .gfp_mask = gfp_mask,
1261                 .order = order,
1262         };
1263         struct mem_cgroup *iter;
1264         unsigned long chosen_points = 0;
1265         unsigned long totalpages;
1266         unsigned int points = 0;
1267         struct task_struct *chosen = NULL;
1268
1269         mutex_lock(&oom_lock);
1270
1271         /*
1272          * If current has a pending SIGKILL or is exiting, then automatically
1273          * select it.  The goal is to allow it to allocate so that it may
1274          * quickly exit and free its memory.
1275          */
1276         if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1277                 mark_oom_victim(current);
1278                 try_oom_reaper(current);
1279                 goto unlock;
1280         }
1281
1282         check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1283         totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1284         for_each_mem_cgroup_tree(iter, memcg) {
1285                 struct css_task_iter it;
1286                 struct task_struct *task;
1287
1288                 css_task_iter_start(&iter->css, &it);
1289                 while ((task = css_task_iter_next(&it))) {
1290                         switch (oom_scan_process_thread(&oc, task, totalpages)) {
1291                         case OOM_SCAN_SELECT:
1292                                 if (chosen)
1293                                         put_task_struct(chosen);
1294                                 chosen = task;
1295                                 chosen_points = ULONG_MAX;
1296                                 get_task_struct(chosen);
1297                                 /* fall through */
1298                         case OOM_SCAN_CONTINUE:
1299                                 continue;
1300                         case OOM_SCAN_ABORT:
1301                                 css_task_iter_end(&it);
1302                                 mem_cgroup_iter_break(memcg, iter);
1303                                 if (chosen)
1304                                         put_task_struct(chosen);
1305                                 goto unlock;
1306                         case OOM_SCAN_OK:
1307                                 break;
1308                         };
1309                         points = oom_badness(task, memcg, NULL, totalpages);
1310                         if (!points || points < chosen_points)
1311                                 continue;
1312                         /* Prefer thread group leaders for display purposes */
1313                         if (points == chosen_points &&
1314                             thread_group_leader(chosen))
1315                                 continue;
1316
1317                         if (chosen)
1318                                 put_task_struct(chosen);
1319                         chosen = task;
1320                         chosen_points = points;
1321                         get_task_struct(chosen);
1322                 }
1323                 css_task_iter_end(&it);
1324         }
1325
1326         if (chosen) {
1327                 points = chosen_points * 1000 / totalpages;
1328                 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1329                                  "Memory cgroup out of memory");
1330         }
1331 unlock:
1332         mutex_unlock(&oom_lock);
1333         return chosen;
1334 }
1335
1336 #if MAX_NUMNODES > 1
1337
1338 /**
1339  * test_mem_cgroup_node_reclaimable
1340  * @memcg: the target memcg
1341  * @nid: the node ID to be checked.
1342  * @noswap : specify true here if the user wants flle only information.
1343  *
1344  * This function returns whether the specified memcg contains any
1345  * reclaimable pages on a node. Returns true if there are any reclaimable
1346  * pages in the node.
1347  */
1348 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1349                 int nid, bool noswap)
1350 {
1351         if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1352                 return true;
1353         if (noswap || !total_swap_pages)
1354                 return false;
1355         if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1356                 return true;
1357         return false;
1358
1359 }
1360
1361 /*
1362  * Always updating the nodemask is not very good - even if we have an empty
1363  * list or the wrong list here, we can start from some node and traverse all
1364  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1365  *
1366  */
1367 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1368 {
1369         int nid;
1370         /*
1371          * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1372          * pagein/pageout changes since the last update.
1373          */
1374         if (!atomic_read(&memcg->numainfo_events))
1375                 return;
1376         if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1377                 return;
1378
1379         /* make a nodemask where this memcg uses memory from */
1380         memcg->scan_nodes = node_states[N_MEMORY];
1381
1382         for_each_node_mask(nid, node_states[N_MEMORY]) {
1383
1384                 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1385                         node_clear(nid, memcg->scan_nodes);
1386         }
1387
1388         atomic_set(&memcg->numainfo_events, 0);
1389         atomic_set(&memcg->numainfo_updating, 0);
1390 }
1391
1392 /*
1393  * Selecting a node where we start reclaim from. Because what we need is just
1394  * reducing usage counter, start from anywhere is O,K. Considering
1395  * memory reclaim from current node, there are pros. and cons.
1396  *
1397  * Freeing memory from current node means freeing memory from a node which
1398  * we'll use or we've used. So, it may make LRU bad. And if several threads
1399  * hit limits, it will see a contention on a node. But freeing from remote
1400  * node means more costs for memory reclaim because of memory latency.
1401  *
1402  * Now, we use round-robin. Better algorithm is welcomed.
1403  */
1404 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1405 {
1406         int node;
1407
1408         mem_cgroup_may_update_nodemask(memcg);
1409         node = memcg->last_scanned_node;
1410
1411         node = next_node_in(node, memcg->scan_nodes);
1412         /*
1413          * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1414          * last time it really checked all the LRUs due to rate limiting.
1415          * Fallback to the current node in that case for simplicity.
1416          */
1417         if (unlikely(node == MAX_NUMNODES))
1418                 node = numa_node_id();
1419
1420         memcg->last_scanned_node = node;
1421         return node;
1422 }
1423 #else
1424 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1425 {
1426         return 0;
1427 }
1428 #endif
1429
1430 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1431                                    struct zone *zone,
1432                                    gfp_t gfp_mask,
1433                                    unsigned long *total_scanned)
1434 {
1435         struct mem_cgroup *victim = NULL;
1436         int total = 0;
1437         int loop = 0;
1438         unsigned long excess;
1439         unsigned long nr_scanned;
1440         struct mem_cgroup_reclaim_cookie reclaim = {
1441                 .zone = zone,
1442                 .priority = 0,
1443         };
1444
1445         excess = soft_limit_excess(root_memcg);
1446
1447         while (1) {
1448                 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1449                 if (!victim) {
1450                         loop++;
1451                         if (loop >= 2) {
1452                                 /*
1453                                  * If we have not been able to reclaim
1454                                  * anything, it might because there are
1455                                  * no reclaimable pages under this hierarchy
1456                                  */
1457                                 if (!total)
1458                                         break;
1459                                 /*
1460                                  * We want to do more targeted reclaim.
1461                                  * excess >> 2 is not to excessive so as to
1462                                  * reclaim too much, nor too less that we keep
1463                                  * coming back to reclaim from this cgroup
1464                                  */
1465                                 if (total >= (excess >> 2) ||
1466                                         (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1467                                         break;
1468                         }
1469                         continue;
1470                 }
1471                 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1472                                                      zone, &nr_scanned);
1473                 *total_scanned += nr_scanned;
1474                 if (!soft_limit_excess(root_memcg))
1475                         break;
1476         }
1477         mem_cgroup_iter_break(root_memcg, victim);
1478         return total;
1479 }
1480
1481 #ifdef CONFIG_LOCKDEP
1482 static struct lockdep_map memcg_oom_lock_dep_map = {
1483         .name = "memcg_oom_lock",
1484 };
1485 #endif
1486
1487 static DEFINE_SPINLOCK(memcg_oom_lock);
1488
1489 /*
1490  * Check OOM-Killer is already running under our hierarchy.
1491  * If someone is running, return false.
1492  */
1493 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1494 {
1495         struct mem_cgroup *iter, *failed = NULL;
1496
1497         spin_lock(&memcg_oom_lock);
1498
1499         for_each_mem_cgroup_tree(iter, memcg) {
1500                 if (iter->oom_lock) {
1501                         /*
1502                          * this subtree of our hierarchy is already locked
1503                          * so we cannot give a lock.
1504                          */
1505                         failed = iter;
1506                         mem_cgroup_iter_break(memcg, iter);
1507                         break;
1508                 } else
1509                         iter->oom_lock = true;
1510         }
1511
1512         if (failed) {
1513                 /*
1514                  * OK, we failed to lock the whole subtree so we have
1515                  * to clean up what we set up to the failing subtree
1516                  */
1517                 for_each_mem_cgroup_tree(iter, memcg) {
1518                         if (iter == failed) {
1519                                 mem_cgroup_iter_break(memcg, iter);
1520                                 break;
1521                         }
1522                         iter->oom_lock = false;
1523                 }
1524         } else
1525                 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1526
1527         spin_unlock(&memcg_oom_lock);
1528
1529         return !failed;
1530 }
1531
1532 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1533 {
1534         struct mem_cgroup *iter;
1535
1536         spin_lock(&memcg_oom_lock);
1537         mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1538         for_each_mem_cgroup_tree(iter, memcg)
1539                 iter->oom_lock = false;
1540         spin_unlock(&memcg_oom_lock);
1541 }
1542
1543 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1544 {
1545         struct mem_cgroup *iter;
1546
1547         spin_lock(&memcg_oom_lock);
1548         for_each_mem_cgroup_tree(iter, memcg)
1549                 iter->under_oom++;
1550         spin_unlock(&memcg_oom_lock);
1551 }
1552
1553 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1554 {
1555         struct mem_cgroup *iter;
1556
1557         /*
1558          * When a new child is created while the hierarchy is under oom,
1559          * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1560          */
1561         spin_lock(&memcg_oom_lock);
1562         for_each_mem_cgroup_tree(iter, memcg)
1563                 if (iter->under_oom > 0)
1564                         iter->under_oom--;
1565         spin_unlock(&memcg_oom_lock);
1566 }
1567
1568 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1569
1570 struct oom_wait_info {
1571         struct mem_cgroup *memcg;
1572         wait_queue_t    wait;
1573 };
1574
1575 static int memcg_oom_wake_function(wait_queue_t *wait,
1576         unsigned mode, int sync, void *arg)
1577 {
1578         struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1579         struct mem_cgroup *oom_wait_memcg;
1580         struct oom_wait_info *oom_wait_info;
1581
1582         oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1583         oom_wait_memcg = oom_wait_info->memcg;
1584
1585         if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1586             !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1587                 return 0;
1588         return autoremove_wake_function(wait, mode, sync, arg);
1589 }
1590
1591 static void memcg_oom_recover(struct mem_cgroup *memcg)
1592 {
1593         /*
1594          * For the following lockless ->under_oom test, the only required
1595          * guarantee is that it must see the state asserted by an OOM when
1596          * this function is called as a result of userland actions
1597          * triggered by the notification of the OOM.  This is trivially
1598          * achieved by invoking mem_cgroup_mark_under_oom() before
1599          * triggering notification.
1600          */
1601         if (memcg && memcg->under_oom)
1602                 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1603 }
1604
1605 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1606 {
1607         if (!current->memcg_may_oom || current->memcg_in_oom)
1608                 return;
1609         /*
1610          * We are in the middle of the charge context here, so we
1611          * don't want to block when potentially sitting on a callstack
1612          * that holds all kinds of filesystem and mm locks.
1613          *
1614          * Also, the caller may handle a failed allocation gracefully
1615          * (like optional page cache readahead) and so an OOM killer
1616          * invocation might not even be necessary.
1617          *
1618          * That's why we don't do anything here except remember the
1619          * OOM context and then deal with it at the end of the page
1620          * fault when the stack is unwound, the locks are released,
1621          * and when we know whether the fault was overall successful.
1622          */
1623         css_get(&memcg->css);
1624         current->memcg_in_oom = memcg;
1625         current->memcg_oom_gfp_mask = mask;
1626         current->memcg_oom_order = order;
1627 }
1628
1629 /**
1630  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1631  * @handle: actually kill/wait or just clean up the OOM state
1632  *
1633  * This has to be called at the end of a page fault if the memcg OOM
1634  * handler was enabled.
1635  *
1636  * Memcg supports userspace OOM handling where failed allocations must
1637  * sleep on a waitqueue until the userspace task resolves the
1638  * situation.  Sleeping directly in the charge context with all kinds
1639  * of locks held is not a good idea, instead we remember an OOM state
1640  * in the task and mem_cgroup_oom_synchronize() has to be called at
1641  * the end of the page fault to complete the OOM handling.
1642  *
1643  * Returns %true if an ongoing memcg OOM situation was detected and
1644  * completed, %false otherwise.
1645  */
1646 bool mem_cgroup_oom_synchronize(bool handle)
1647 {
1648         struct mem_cgroup *memcg = current->memcg_in_oom;
1649         struct oom_wait_info owait;
1650         bool locked;
1651
1652         /* OOM is global, do not handle */
1653         if (!memcg)
1654                 return false;
1655
1656         if (!handle || oom_killer_disabled)
1657                 goto cleanup;
1658
1659         owait.memcg = memcg;
1660         owait.wait.flags = 0;
1661         owait.wait.func = memcg_oom_wake_function;
1662         owait.wait.private = current;
1663         INIT_LIST_HEAD(&owait.wait.task_list);
1664
1665         prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1666         mem_cgroup_mark_under_oom(memcg);
1667
1668         locked = mem_cgroup_oom_trylock(memcg);
1669
1670         if (locked)
1671                 mem_cgroup_oom_notify(memcg);
1672
1673         if (locked && !memcg->oom_kill_disable) {
1674                 mem_cgroup_unmark_under_oom(memcg);
1675                 finish_wait(&memcg_oom_waitq, &owait.wait);
1676                 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1677                                          current->memcg_oom_order);
1678         } else {
1679                 schedule();
1680                 mem_cgroup_unmark_under_oom(memcg);
1681                 finish_wait(&memcg_oom_waitq, &owait.wait);
1682         }
1683
1684         if (locked) {
1685                 mem_cgroup_oom_unlock(memcg);
1686                 /*
1687                  * There is no guarantee that an OOM-lock contender
1688                  * sees the wakeups triggered by the OOM kill
1689                  * uncharges.  Wake any sleepers explicitely.
1690                  */
1691                 memcg_oom_recover(memcg);
1692         }
1693 cleanup:
1694         current->memcg_in_oom = NULL;
1695         css_put(&memcg->css);
1696         return true;
1697 }
1698
1699 /**
1700  * lock_page_memcg - lock a page->mem_cgroup binding
1701  * @page: the page
1702  *
1703  * This function protects unlocked LRU pages from being moved to
1704  * another cgroup and stabilizes their page->mem_cgroup binding.
1705  */
1706 void lock_page_memcg(struct page *page)
1707 {
1708         struct mem_cgroup *memcg;
1709         unsigned long flags;
1710
1711         /*
1712          * The RCU lock is held throughout the transaction.  The fast
1713          * path can get away without acquiring the memcg->move_lock
1714          * because page moving starts with an RCU grace period.
1715          */
1716         rcu_read_lock();
1717
1718         if (mem_cgroup_disabled())
1719                 return;
1720 again:
1721         memcg = page->mem_cgroup;
1722         if (unlikely(!memcg))
1723                 return;
1724
1725         if (atomic_read(&memcg->moving_account) <= 0)
1726                 return;
1727
1728         spin_lock_irqsave(&memcg->move_lock, flags);
1729         if (memcg != page->mem_cgroup) {
1730                 spin_unlock_irqrestore(&memcg->move_lock, flags);
1731                 goto again;
1732         }
1733
1734         /*
1735          * When charge migration first begins, we can have locked and
1736          * unlocked page stat updates happening concurrently.  Track
1737          * the task who has the lock for unlock_page_memcg().
1738          */
1739         memcg->move_lock_task = current;
1740         memcg->move_lock_flags = flags;
1741
1742         return;
1743 }
1744 EXPORT_SYMBOL(lock_page_memcg);
1745
1746 /**
1747  * unlock_page_memcg - unlock a page->mem_cgroup binding
1748  * @page: the page
1749  */
1750 void unlock_page_memcg(struct page *page)
1751 {
1752         struct mem_cgroup *memcg = page->mem_cgroup;
1753
1754         if (memcg && memcg->move_lock_task == current) {
1755                 unsigned long flags = memcg->move_lock_flags;
1756
1757                 memcg->move_lock_task = NULL;
1758                 memcg->move_lock_flags = 0;
1759
1760                 spin_unlock_irqrestore(&memcg->move_lock, flags);
1761         }
1762
1763         rcu_read_unlock();
1764 }
1765 EXPORT_SYMBOL(unlock_page_memcg);
1766
1767 /*
1768  * size of first charge trial. "32" comes from vmscan.c's magic value.
1769  * TODO: maybe necessary to use big numbers in big irons.
1770  */
1771 #define CHARGE_BATCH    32U
1772 struct memcg_stock_pcp {
1773         struct mem_cgroup *cached; /* this never be root cgroup */
1774         unsigned int nr_pages;
1775         struct work_struct work;
1776         unsigned long flags;
1777 #define FLUSHING_CACHED_CHARGE  0
1778 };
1779 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1780 static DEFINE_MUTEX(percpu_charge_mutex);
1781
1782 /**
1783  * consume_stock: Try to consume stocked charge on this cpu.
1784  * @memcg: memcg to consume from.
1785  * @nr_pages: how many pages to charge.
1786  *
1787  * The charges will only happen if @memcg matches the current cpu's memcg
1788  * stock, and at least @nr_pages are available in that stock.  Failure to
1789  * service an allocation will refill the stock.
1790  *
1791  * returns true if successful, false otherwise.
1792  */
1793 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1794 {
1795         struct memcg_stock_pcp *stock;
1796         bool ret = false;
1797
1798         if (nr_pages > CHARGE_BATCH)
1799                 return ret;
1800
1801         stock = &get_cpu_var(memcg_stock);
1802         if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1803                 stock->nr_pages -= nr_pages;
1804                 ret = true;
1805         }
1806         put_cpu_var(memcg_stock);
1807         return ret;
1808 }
1809
1810 /*
1811  * Returns stocks cached in percpu and reset cached information.
1812  */
1813 static void drain_stock(struct memcg_stock_pcp *stock)
1814 {
1815         struct mem_cgroup *old = stock->cached;
1816
1817         if (stock->nr_pages) {
1818                 page_counter_uncharge(&old->memory, stock->nr_pages);
1819                 if (do_memsw_account())
1820                         page_counter_uncharge(&old->memsw, stock->nr_pages);
1821                 css_put_many(&old->css, stock->nr_pages);
1822                 stock->nr_pages = 0;
1823         }
1824         stock->cached = NULL;
1825 }
1826
1827 /*
1828  * This must be called under preempt disabled or must be called by
1829  * a thread which is pinned to local cpu.
1830  */
1831 static void drain_local_stock(struct work_struct *dummy)
1832 {
1833         struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1834         drain_stock(stock);
1835         clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1836 }
1837
1838 /*
1839  * Cache charges(val) to local per_cpu area.
1840  * This will be consumed by consume_stock() function, later.
1841  */
1842 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1843 {
1844         struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1845
1846         if (stock->cached != memcg) { /* reset if necessary */
1847                 drain_stock(stock);
1848                 stock->cached = memcg;
1849         }
1850         stock->nr_pages += nr_pages;
1851         put_cpu_var(memcg_stock);
1852 }
1853
1854 /*
1855  * Drains all per-CPU charge caches for given root_memcg resp. subtree
1856  * of the hierarchy under it.
1857  */
1858 static void drain_all_stock(struct mem_cgroup *root_memcg)
1859 {
1860         int cpu, curcpu;
1861
1862         /* If someone's already draining, avoid adding running more workers. */
1863         if (!mutex_trylock(&percpu_charge_mutex))
1864                 return;
1865         /* Notify other cpus that system-wide "drain" is running */
1866         get_online_cpus();
1867         curcpu = get_cpu();
1868         for_each_online_cpu(cpu) {
1869                 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1870                 struct mem_cgroup *memcg;
1871
1872                 memcg = stock->cached;
1873                 if (!memcg || !stock->nr_pages)
1874                         continue;
1875                 if (!mem_cgroup_is_descendant(memcg, root_memcg))
1876                         continue;
1877                 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1878                         if (cpu == curcpu)
1879                                 drain_local_stock(&stock->work);
1880                         else
1881                                 schedule_work_on(cpu, &stock->work);
1882                 }
1883         }
1884         put_cpu();
1885         put_online_cpus();
1886         mutex_unlock(&percpu_charge_mutex);
1887 }
1888
1889 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1890                                         unsigned long action,
1891                                         void *hcpu)
1892 {
1893         int cpu = (unsigned long)hcpu;
1894         struct memcg_stock_pcp *stock;
1895
1896         if (action == CPU_ONLINE)
1897                 return NOTIFY_OK;
1898
1899         if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1900                 return NOTIFY_OK;
1901
1902         stock = &per_cpu(memcg_stock, cpu);
1903         drain_stock(stock);
1904         return NOTIFY_OK;
1905 }
1906
1907 static void reclaim_high(struct mem_cgroup *memcg,
1908                          unsigned int nr_pages,
1909                          gfp_t gfp_mask)
1910 {
1911         do {
1912                 if (page_counter_read(&memcg->memory) <= memcg->high)
1913                         continue;
1914                 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1915                 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1916         } while ((memcg = parent_mem_cgroup(memcg)));
1917 }
1918
1919 static void high_work_func(struct work_struct *work)
1920 {
1921         struct mem_cgroup *memcg;
1922
1923         memcg = container_of(work, struct mem_cgroup, high_work);
1924         reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1925 }
1926
1927 /*
1928  * Scheduled by try_charge() to be executed from the userland return path
1929  * and reclaims memory over the high limit.
1930  */
1931 void mem_cgroup_handle_over_high(void)
1932 {
1933         unsigned int nr_pages = current->memcg_nr_pages_over_high;
1934         struct mem_cgroup *memcg;
1935
1936         if (likely(!nr_pages))
1937                 return;
1938
1939         memcg = get_mem_cgroup_from_mm(current->mm);
1940         reclaim_high(memcg, nr_pages, GFP_KERNEL);
1941         css_put(&memcg->css);
1942         current->memcg_nr_pages_over_high = 0;
1943 }
1944
1945 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1946                       unsigned int nr_pages)
1947 {
1948         unsigned int batch = max(CHARGE_BATCH, nr_pages);
1949         int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1950         struct mem_cgroup *mem_over_limit;
1951         struct page_counter *counter;
1952         unsigned long nr_reclaimed;
1953         bool may_swap = true;
1954         bool drained = false;
1955
1956         if (mem_cgroup_is_root(memcg))
1957                 return 0;
1958 retry:
1959         if (consume_stock(memcg, nr_pages))
1960                 return 0;
1961
1962         if (!do_memsw_account() ||
1963             page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1964                 if (page_counter_try_charge(&memcg->memory, batch, &counter))
1965                         goto done_restock;
1966                 if (do_memsw_account())
1967                         page_counter_uncharge(&memcg->memsw, batch);
1968                 mem_over_limit = mem_cgroup_from_counter(counter, memory);
1969         } else {
1970                 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1971                 may_swap = false;
1972         }
1973
1974         if (batch > nr_pages) {
1975                 batch = nr_pages;
1976                 goto retry;
1977         }
1978
1979         /*
1980          * Unlike in global OOM situations, memcg is not in a physical
1981          * memory shortage.  Allow dying and OOM-killed tasks to
1982          * bypass the last charges so that they can exit quickly and
1983          * free their memory.
1984          */
1985         if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1986                      fatal_signal_pending(current) ||
1987                      current->flags & PF_EXITING))
1988                 goto force;
1989
1990         if (unlikely(task_in_memcg_oom(current)))
1991                 goto nomem;
1992
1993         if (!gfpflags_allow_blocking(gfp_mask))
1994                 goto nomem;
1995
1996         mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1997
1998         nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1999                                                     gfp_mask, may_swap);
2000
2001         if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2002                 goto retry;
2003
2004         if (!drained) {
2005                 drain_all_stock(mem_over_limit);
2006                 drained = true;
2007                 goto retry;
2008         }
2009
2010         if (gfp_mask & __GFP_NORETRY)
2011                 goto nomem;
2012         /*
2013          * Even though the limit is exceeded at this point, reclaim
2014          * may have been able to free some pages.  Retry the charge
2015          * before killing the task.
2016          *
2017          * Only for regular pages, though: huge pages are rather
2018          * unlikely to succeed so close to the limit, and we fall back
2019          * to regular pages anyway in case of failure.
2020          */
2021         if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2022                 goto retry;
2023         /*
2024          * At task move, charge accounts can be doubly counted. So, it's
2025          * better to wait until the end of task_move if something is going on.
2026          */
2027         if (mem_cgroup_wait_acct_move(mem_over_limit))
2028                 goto retry;
2029
2030         if (nr_retries--)
2031                 goto retry;
2032
2033         if (gfp_mask & __GFP_NOFAIL)
2034                 goto force;
2035
2036         if (fatal_signal_pending(current))
2037                 goto force;
2038
2039         mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2040
2041         mem_cgroup_oom(mem_over_limit, gfp_mask,
2042                        get_order(nr_pages * PAGE_SIZE));
2043 nomem:
2044         if (!(gfp_mask & __GFP_NOFAIL))
2045                 return -ENOMEM;
2046 force:
2047         /*
2048          * The allocation either can't fail or will lead to more memory
2049          * being freed very soon.  Allow memory usage go over the limit
2050          * temporarily by force charging it.
2051          */
2052         page_counter_charge(&memcg->memory, nr_pages);
2053         if (do_memsw_account())
2054                 page_counter_charge(&memcg->memsw, nr_pages);
2055         css_get_many(&memcg->css, nr_pages);
2056
2057         return 0;
2058
2059 done_restock:
2060         css_get_many(&memcg->css, batch);
2061         if (batch > nr_pages)
2062                 refill_stock(memcg, batch - nr_pages);
2063
2064         /*
2065          * If the hierarchy is above the normal consumption range, schedule
2066          * reclaim on returning to userland.  We can perform reclaim here
2067          * if __GFP_RECLAIM but let's always punt for simplicity and so that
2068          * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2069          * not recorded as it most likely matches current's and won't
2070          * change in the meantime.  As high limit is checked again before
2071          * reclaim, the cost of mismatch is negligible.
2072          */
2073         do {
2074                 if (page_counter_read(&memcg->memory) > memcg->high) {
2075                         /* Don't bother a random interrupted task */
2076                         if (in_interrupt()) {
2077                                 schedule_work(&memcg->high_work);
2078                                 break;
2079                         }
2080                         current->memcg_nr_pages_over_high += batch;
2081                         set_notify_resume(current);
2082                         break;
2083                 }
2084         } while ((memcg = parent_mem_cgroup(memcg)));
2085
2086         return 0;
2087 }
2088
2089 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2090 {
2091         if (mem_cgroup_is_root(memcg))
2092                 return;
2093
2094         page_counter_uncharge(&memcg->memory, nr_pages);
2095         if (do_memsw_account())
2096                 page_counter_uncharge(&memcg->memsw, nr_pages);
2097
2098         css_put_many(&memcg->css, nr_pages);
2099 }
2100
2101 static void lock_page_lru(struct page *page, int *isolated)
2102 {
2103         struct zone *zone = page_zone(page);
2104
2105         spin_lock_irq(&zone->lru_lock);
2106         if (PageLRU(page)) {
2107                 struct lruvec *lruvec;
2108
2109                 lruvec = mem_cgroup_page_lruvec(page, zone);
2110                 ClearPageLRU(page);
2111                 del_page_from_lru_list(page, lruvec, page_lru(page));
2112                 *isolated = 1;
2113         } else
2114                 *isolated = 0;
2115 }
2116
2117 static void unlock_page_lru(struct page *page, int isolated)
2118 {
2119         struct zone *zone = page_zone(page);
2120
2121         if (isolated) {
2122                 struct lruvec *lruvec;
2123
2124                 lruvec = mem_cgroup_page_lruvec(page, zone);
2125                 VM_BUG_ON_PAGE(PageLRU(page), page);
2126                 SetPageLRU(page);
2127                 add_page_to_lru_list(page, lruvec, page_lru(page));
2128         }
2129         spin_unlock_irq(&zone->lru_lock);
2130 }
2131
2132 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2133                           bool lrucare)
2134 {
2135         int isolated;
2136
2137         VM_BUG_ON_PAGE(page->mem_cgroup, page);
2138
2139         /*
2140          * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2141          * may already be on some other mem_cgroup's LRU.  Take care of it.
2142          */
2143         if (lrucare)
2144                 lock_page_lru(page, &isolated);
2145
2146         /*
2147          * Nobody should be changing or seriously looking at
2148          * page->mem_cgroup at this point:
2149          *
2150          * - the page is uncharged
2151          *
2152          * - the page is off-LRU
2153          *
2154          * - an anonymous fault has exclusive page access, except for
2155          *   a locked page table
2156          *
2157          * - a page cache insertion, a swapin fault, or a migration
2158          *   have the page locked
2159          */
2160         page->mem_cgroup = memcg;
2161
2162         if (lrucare)
2163                 unlock_page_lru(page, isolated);
2164 }
2165
2166 #ifndef CONFIG_SLOB
2167 static int memcg_alloc_cache_id(void)
2168 {
2169         int id, size;
2170         int err;
2171
2172         id = ida_simple_get(&memcg_cache_ida,
2173                             0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2174         if (id < 0)
2175                 return id;
2176
2177         if (id < memcg_nr_cache_ids)
2178                 return id;
2179
2180         /*
2181          * There's no space for the new id in memcg_caches arrays,
2182          * so we have to grow them.
2183          */
2184         down_write(&memcg_cache_ids_sem);
2185
2186         size = 2 * (id + 1);
2187         if (size < MEMCG_CACHES_MIN_SIZE)
2188                 size = MEMCG_CACHES_MIN_SIZE;
2189         else if (size > MEMCG_CACHES_MAX_SIZE)
2190                 size = MEMCG_CACHES_MAX_SIZE;
2191
2192         err = memcg_update_all_caches(size);
2193         if (!err)
2194                 err = memcg_update_all_list_lrus(size);
2195         if (!err)
2196                 memcg_nr_cache_ids = size;
2197
2198         up_write(&memcg_cache_ids_sem);
2199
2200         if (err) {
2201                 ida_simple_remove(&memcg_cache_ida, id);
2202                 return err;
2203         }
2204         return id;
2205 }
2206
2207 static void memcg_free_cache_id(int id)
2208 {
2209         ida_simple_remove(&memcg_cache_ida, id);
2210 }
2211
2212 struct memcg_kmem_cache_create_work {
2213         struct mem_cgroup *memcg;
2214         struct kmem_cache *cachep;
2215         struct work_struct work;
2216 };
2217
2218 static void memcg_kmem_cache_create_func(struct work_struct *w)
2219 {
2220         struct memcg_kmem_cache_create_work *cw =
2221                 container_of(w, struct memcg_kmem_cache_create_work, work);
2222         struct mem_cgroup *memcg = cw->memcg;
2223         struct kmem_cache *cachep = cw->cachep;
2224
2225         memcg_create_kmem_cache(memcg, cachep);
2226
2227         css_put(&memcg->css);
2228         kfree(cw);
2229 }
2230
2231 /*
2232  * Enqueue the creation of a per-memcg kmem_cache.
2233  */
2234 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2235                                                struct kmem_cache *cachep)
2236 {
2237         struct memcg_kmem_cache_create_work *cw;
2238
2239         cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2240         if (!cw)
2241                 return;
2242
2243         css_get(&memcg->css);
2244
2245         cw->memcg = memcg;
2246         cw->cachep = cachep;
2247         INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2248
2249         schedule_work(&cw->work);
2250 }
2251
2252 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2253                                              struct kmem_cache *cachep)
2254 {
2255         /*
2256          * We need to stop accounting when we kmalloc, because if the
2257          * corresponding kmalloc cache is not yet created, the first allocation
2258          * in __memcg_schedule_kmem_cache_create will recurse.
2259          *
2260          * However, it is better to enclose the whole function. Depending on
2261          * the debugging options enabled, INIT_WORK(), for instance, can
2262          * trigger an allocation. This too, will make us recurse. Because at
2263          * this point we can't allow ourselves back into memcg_kmem_get_cache,
2264          * the safest choice is to do it like this, wrapping the whole function.
2265          */
2266         current->memcg_kmem_skip_account = 1;
2267         __memcg_schedule_kmem_cache_create(memcg, cachep);
2268         current->memcg_kmem_skip_account = 0;
2269 }
2270
2271 /*
2272  * Return the kmem_cache we're supposed to use for a slab allocation.
2273  * We try to use the current memcg's version of the cache.
2274  *
2275  * If the cache does not exist yet, if we are the first user of it,
2276  * we either create it immediately, if possible, or create it asynchronously
2277  * in a workqueue.
2278  * In the latter case, we will let the current allocation go through with
2279  * the original cache.
2280  *
2281  * Can't be called in interrupt context or from kernel threads.
2282  * This function needs to be called with rcu_read_lock() held.
2283  */
2284 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
2285 {
2286         struct mem_cgroup *memcg;
2287         struct kmem_cache *memcg_cachep;
2288         int kmemcg_id;
2289
2290         VM_BUG_ON(!is_root_cache(cachep));
2291
2292         if (cachep->flags & SLAB_ACCOUNT)
2293                 gfp |= __GFP_ACCOUNT;
2294
2295         if (!(gfp & __GFP_ACCOUNT))
2296                 return cachep;
2297
2298         if (current->memcg_kmem_skip_account)
2299                 return cachep;
2300
2301         memcg = get_mem_cgroup_from_mm(current->mm);
2302         kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2303         if (kmemcg_id < 0)
2304                 goto out;
2305
2306         memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2307         if (likely(memcg_cachep))
2308                 return memcg_cachep;
2309
2310         /*
2311          * If we are in a safe context (can wait, and not in interrupt
2312          * context), we could be be predictable and return right away.
2313          * This would guarantee that the allocation being performed
2314          * already belongs in the new cache.
2315          *
2316          * However, there are some clashes that can arrive from locking.
2317          * For instance, because we acquire the slab_mutex while doing
2318          * memcg_create_kmem_cache, this means no further allocation
2319          * could happen with the slab_mutex held. So it's better to
2320          * defer everything.
2321          */
2322         memcg_schedule_kmem_cache_create(memcg, cachep);
2323 out:
2324         css_put(&memcg->css);
2325         return cachep;
2326 }
2327
2328 void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2329 {
2330         if (!is_root_cache(cachep))
2331                 css_put(&cachep->memcg_params.memcg->css);
2332 }
2333
2334 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2335                               struct mem_cgroup *memcg)
2336 {
2337         unsigned int nr_pages = 1 << order;
2338         struct page_counter *counter;
2339         int ret;
2340
2341         ret = try_charge(memcg, gfp, nr_pages);
2342         if (ret)
2343                 return ret;
2344
2345         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2346             !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2347                 cancel_charge(memcg, nr_pages);
2348                 return -ENOMEM;
2349         }
2350
2351         page->mem_cgroup = memcg;
2352
2353         return 0;
2354 }
2355
2356 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2357 {
2358         struct mem_cgroup *memcg;
2359         int ret = 0;
2360
2361         memcg = get_mem_cgroup_from_mm(current->mm);
2362         if (!mem_cgroup_is_root(memcg))
2363                 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2364         css_put(&memcg->css);
2365         return ret;
2366 }
2367
2368 void __memcg_kmem_uncharge(struct page *page, int order)
2369 {
2370         struct mem_cgroup *memcg = page->mem_cgroup;
2371         unsigned int nr_pages = 1 << order;
2372
2373         if (!memcg)
2374                 return;
2375
2376         VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2377
2378         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2379                 page_counter_uncharge(&memcg->kmem, nr_pages);
2380
2381         page_counter_uncharge(&memcg->memory, nr_pages);
2382         if (do_memsw_account())
2383                 page_counter_uncharge(&memcg->memsw, nr_pages);
2384
2385         page->mem_cgroup = NULL;
2386         css_put_many(&memcg->css, nr_pages);
2387 }
2388 #endif /* !CONFIG_SLOB */
2389
2390 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2391
2392 /*
2393  * Because tail pages are not marked as "used", set it. We're under
2394  * zone->lru_lock and migration entries setup in all page mappings.
2395  */
2396 void mem_cgroup_split_huge_fixup(struct page *head)
2397 {
2398         int i;
2399
2400         if (mem_cgroup_disabled())
2401                 return;
2402
2403         for (i = 1; i < HPAGE_PMD_NR; i++)
2404                 head[i].mem_cgroup = head->mem_cgroup;
2405
2406         __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2407                        HPAGE_PMD_NR);
2408 }
2409 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2410
2411 #ifdef CONFIG_MEMCG_SWAP
2412 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2413                                          bool charge)
2414 {
2415         int val = (charge) ? 1 : -1;
2416         this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2417 }
2418
2419 /**
2420  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2421  * @entry: swap entry to be moved
2422  * @from:  mem_cgroup which the entry is moved from
2423  * @to:  mem_cgroup which the entry is moved to
2424  *
2425  * It succeeds only when the swap_cgroup's record for this entry is the same
2426  * as the mem_cgroup's id of @from.
2427  *
2428  * Returns 0 on success, -EINVAL on failure.
2429  *
2430  * The caller must have charged to @to, IOW, called page_counter_charge() about
2431  * both res and memsw, and called css_get().
2432  */
2433 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2434                                 struct mem_cgroup *from, struct mem_cgroup *to)
2435 {
2436         unsigned short old_id, new_id;
2437
2438         old_id = mem_cgroup_id(from);
2439         new_id = mem_cgroup_id(to);
2440
2441         if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2442                 mem_cgroup_swap_statistics(from, false);
2443                 mem_cgroup_swap_statistics(to, true);
2444                 return 0;
2445         }
2446         return -EINVAL;
2447 }
2448 #else
2449 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2450                                 struct mem_cgroup *from, struct mem_cgroup *to)
2451 {
2452         return -EINVAL;
2453 }
2454 #endif
2455
2456 static DEFINE_MUTEX(memcg_limit_mutex);
2457
2458 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2459                                    unsigned long limit)
2460 {
2461         unsigned long curusage;
2462         unsigned long oldusage;
2463         bool enlarge = false;
2464         int retry_count;
2465         int ret;
2466
2467         /*
2468          * For keeping hierarchical_reclaim simple, how long we should retry
2469          * is depends on callers. We set our retry-count to be function
2470          * of # of children which we should visit in this loop.
2471          */
2472         retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2473                       mem_cgroup_count_children(memcg);
2474
2475         oldusage = page_counter_read(&memcg->memory);
2476
2477         do {
2478                 if (signal_pending(current)) {
2479                         ret = -EINTR;
2480                         break;
2481                 }
2482
2483                 mutex_lock(&memcg_limit_mutex);
2484                 if (limit > memcg->memsw.limit) {
2485                         mutex_unlock(&memcg_limit_mutex);
2486                         ret = -EINVAL;
2487                         break;
2488                 }
2489                 if (limit > memcg->memory.limit)
2490                         enlarge = true;
2491                 ret = page_counter_limit(&memcg->memory, limit);
2492                 mutex_unlock(&memcg_limit_mutex);
2493
2494                 if (!ret)
2495                         break;
2496
2497                 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2498
2499                 curusage = page_counter_read(&memcg->memory);
2500                 /* Usage is reduced ? */
2501                 if (curusage >= oldusage)
2502                         retry_count--;
2503                 else
2504                         oldusage = curusage;
2505         } while (retry_count);
2506
2507         if (!ret && enlarge)
2508                 memcg_oom_recover(memcg);
2509
2510         return ret;
2511 }
2512
2513 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2514                                          unsigned long limit)
2515 {
2516         unsigned long curusage;
2517         unsigned long oldusage;
2518         bool enlarge = false;
2519         int retry_count;
2520         int ret;
2521
2522         /* see mem_cgroup_resize_res_limit */
2523         retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2524                       mem_cgroup_count_children(memcg);
2525
2526         oldusage = page_counter_read(&memcg->memsw);
2527
2528         do {
2529                 if (signal_pending(current)) {
2530                         ret = -EINTR;
2531                         break;
2532                 }
2533
2534                 mutex_lock(&memcg_limit_mutex);
2535                 if (limit < memcg->memory.limit) {
2536                         mutex_unlock(&memcg_limit_mutex);
2537                         ret = -EINVAL;
2538                         break;
2539                 }
2540                 if (limit > memcg->memsw.limit)
2541                         enlarge = true;
2542                 ret = page_counter_limit(&memcg->memsw, limit);
2543                 mutex_unlock(&memcg_limit_mutex);
2544
2545                 if (!ret)
2546                         break;
2547
2548                 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2549
2550                 curusage = page_counter_read(&memcg->memsw);
2551                 /* Usage is reduced ? */
2552                 if (curusage >= oldusage)
2553                         retry_count--;
2554                 else
2555                         oldusage = curusage;
2556         } while (retry_count);
2557
2558         if (!ret && enlarge)
2559                 memcg_oom_recover(memcg);
2560
2561         return ret;
2562 }
2563
2564 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2565                                             gfp_t gfp_mask,
2566                                             unsigned long *total_scanned)
2567 {
2568         unsigned long nr_reclaimed = 0;
2569         struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2570         unsigned long reclaimed;
2571         int loop = 0;
2572         struct mem_cgroup_tree_per_zone *mctz;
2573         unsigned long excess;
2574         unsigned long nr_scanned;
2575
2576         if (order > 0)
2577                 return 0;
2578
2579         mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2580         /*
2581          * This loop can run a while, specially if mem_cgroup's continuously
2582          * keep exceeding their soft limit and putting the system under
2583          * pressure
2584          */
2585         do {
2586                 if (next_mz)
2587                         mz = next_mz;
2588                 else
2589                         mz = mem_cgroup_largest_soft_limit_node(mctz);
2590                 if (!mz)
2591                         break;
2592
2593                 nr_scanned = 0;
2594                 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2595                                                     gfp_mask, &nr_scanned);
2596                 nr_reclaimed += reclaimed;
2597                 *total_scanned += nr_scanned;
2598                 spin_lock_irq(&mctz->lock);
2599                 __mem_cgroup_remove_exceeded(mz, mctz);
2600
2601                 /*
2602                  * If we failed to reclaim anything from this memory cgroup
2603                  * it is time to move on to the next cgroup
2604                  */
2605                 next_mz = NULL;
2606                 if (!reclaimed)
2607                         next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2608
2609                 excess = soft_limit_excess(mz->memcg);
2610                 /*
2611                  * One school of thought says that we should not add
2612                  * back the node to the tree if reclaim returns 0.
2613                  * But our reclaim could return 0, simply because due
2614                  * to priority we are exposing a smaller subset of
2615                  * memory to reclaim from. Consider this as a longer
2616                  * term TODO.
2617                  */
2618                 /* If excess == 0, no tree ops */
2619                 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2620                 spin_unlock_irq(&mctz->lock);
2621                 css_put(&mz->memcg->css);
2622                 loop++;
2623                 /*
2624                  * Could not reclaim anything and there are no more
2625                  * mem cgroups to try or we seem to be looping without
2626                  * reclaiming anything.
2627                  */
2628                 if (!nr_reclaimed &&
2629                         (next_mz == NULL ||
2630                         loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2631                         break;
2632         } while (!nr_reclaimed);
2633         if (next_mz)
2634                 css_put(&next_mz->memcg->css);
2635         return nr_reclaimed;
2636 }
2637
2638 /*
2639  * Test whether @memcg has children, dead or alive.  Note that this
2640  * function doesn't care whether @memcg has use_hierarchy enabled and
2641  * returns %true if there are child csses according to the cgroup
2642  * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
2643  */
2644 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2645 {
2646         bool ret;
2647
2648         rcu_read_lock();
2649         ret = css_next_child(NULL, &memcg->css);
2650         rcu_read_unlock();
2651         return ret;
2652 }
2653
2654 /*
2655  * Reclaims as many pages from the given memcg as possible.
2656  *
2657  * Caller is responsible for holding css reference for memcg.
2658  */
2659 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2660 {
2661         int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2662
2663         /* we call try-to-free pages for make this cgroup empty */
2664         lru_add_drain_all();
2665         /* try to free all pages in this cgroup */
2666         while (nr_retries && page_counter_read(&memcg->memory)) {
2667                 int progress;
2668
2669                 if (signal_pending(current))
2670                         return -EINTR;
2671
2672                 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2673                                                         GFP_KERNEL, true);
2674                 if (!progress) {
2675                         nr_retries--;
2676                         /* maybe some writeback is necessary */
2677                         congestion_wait(BLK_RW_ASYNC, HZ/10);
2678                 }
2679
2680         }
2681
2682         return 0;
2683 }
2684
2685 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2686                                             char *buf, size_t nbytes,
2687                                             loff_t off)
2688 {
2689         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2690
2691         if (mem_cgroup_is_root(memcg))
2692                 return -EINVAL;
2693         return mem_cgroup_force_empty(memcg) ?: nbytes;
2694 }
2695
2696 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2697                                      struct cftype *cft)
2698 {
2699         return mem_cgroup_from_css(css)->use_hierarchy;
2700 }
2701
2702 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2703                                       struct cftype *cft, u64 val)
2704 {
2705         int retval = 0;
2706         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2707         struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2708
2709         if (memcg->use_hierarchy == val)
2710                 return 0;
2711
2712         /*
2713          * If parent's use_hierarchy is set, we can't make any modifications
2714          * in the child subtrees. If it is unset, then the change can
2715          * occur, provided the current cgroup has no children.
2716          *
2717          * For the root cgroup, parent_mem is NULL, we allow value to be
2718          * set if there are no children.
2719          */
2720         if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2721                                 (val == 1 || val == 0)) {
2722                 if (!memcg_has_children(memcg))
2723                         memcg->use_hierarchy = val;
2724                 else
2725                         retval = -EBUSY;
2726         } else
2727                 retval = -EINVAL;
2728
2729         return retval;
2730 }
2731
2732 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2733 {
2734         struct mem_cgroup *iter;
2735         int i;
2736
2737         memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2738
2739         for_each_mem_cgroup_tree(iter, memcg) {
2740                 for (i = 0; i < MEMCG_NR_STAT; i++)
2741                         stat[i] += mem_cgroup_read_stat(iter, i);
2742         }
2743 }
2744
2745 static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2746 {
2747         struct mem_cgroup *iter;
2748         int i;
2749
2750         memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2751
2752         for_each_mem_cgroup_tree(iter, memcg) {
2753                 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2754                         events[i] += mem_cgroup_read_events(iter, i);
2755         }
2756 }
2757
2758 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2759 {
2760         unsigned long val = 0;
2761
2762         if (mem_cgroup_is_root(memcg)) {
2763                 struct mem_cgroup *iter;
2764
2765                 for_each_mem_cgroup_tree(iter, memcg) {
2766                         val += mem_cgroup_read_stat(iter,
2767                                         MEM_CGROUP_STAT_CACHE);
2768                         val += mem_cgroup_read_stat(iter,
2769                                         MEM_CGROUP_STAT_RSS);
2770                         if (swap)
2771                                 val += mem_cgroup_read_stat(iter,
2772                                                 MEM_CGROUP_STAT_SWAP);
2773                 }
2774         } else {
2775                 if (!swap)
2776                         val = page_counter_read(&memcg->memory);
2777                 else
2778                         val = page_counter_read(&memcg->memsw);
2779         }
2780         return val;
2781 }
2782
2783 enum {
2784         RES_USAGE,
2785         RES_LIMIT,
2786         RES_MAX_USAGE,
2787         RES_FAILCNT,
2788         RES_SOFT_LIMIT,
2789 };
2790
2791 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2792                                struct cftype *cft)
2793 {
2794         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2795         struct page_counter *counter;
2796
2797         switch (MEMFILE_TYPE(cft->private)) {
2798         case _MEM:
2799                 counter = &memcg->memory;
2800                 break;
2801         case _MEMSWAP:
2802                 counter = &memcg->memsw;
2803                 break;
2804         case _KMEM:
2805                 counter = &memcg->kmem;
2806                 break;
2807         case _TCP:
2808                 counter = &memcg->tcpmem;
2809                 break;
2810         default:
2811                 BUG();
2812         }
2813
2814         switch (MEMFILE_ATTR(cft->private)) {
2815         case RES_USAGE:
2816                 if (counter == &memcg->memory)
2817                         return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2818                 if (counter == &memcg->memsw)
2819                         return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2820                 return (u64)page_counter_read(counter) * PAGE_SIZE;
2821         case RES_LIMIT:
2822                 return (u64)counter->limit * PAGE_SIZE;
2823         case RES_MAX_USAGE:
2824                 return (u64)counter->watermark * PAGE_SIZE;
2825         case RES_FAILCNT:
2826                 return counter->failcnt;
2827         case RES_SOFT_LIMIT:
2828                 return (u64)memcg->soft_limit * PAGE_SIZE;
2829         default:
2830                 BUG();
2831         }
2832 }
2833
2834 #ifndef CONFIG_SLOB
2835 static int memcg_online_kmem(struct mem_cgroup *memcg)
2836 {
2837         int memcg_id;
2838
2839         if (cgroup_memory_nokmem)
2840                 return 0;
2841
2842         BUG_ON(memcg->kmemcg_id >= 0);
2843         BUG_ON(memcg->kmem_state);
2844
2845         memcg_id = memcg_alloc_cache_id();
2846         if (memcg_id < 0)
2847                 return memcg_id;
2848
2849         static_branch_inc(&memcg_kmem_enabled_key);
2850         /*
2851          * A memory cgroup is considered kmem-online as soon as it gets
2852          * kmemcg_id. Setting the id after enabling static branching will
2853          * guarantee no one starts accounting before all call sites are
2854          * patched.
2855          */
2856         memcg->kmemcg_id = memcg_id;
2857         memcg->kmem_state = KMEM_ONLINE;
2858
2859         return 0;
2860 }
2861
2862 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2863 {
2864         struct cgroup_subsys_state *css;
2865         struct mem_cgroup *parent, *child;
2866         int kmemcg_id;
2867
2868         if (memcg->kmem_state != KMEM_ONLINE)
2869                 return;
2870         /*
2871          * Clear the online state before clearing memcg_caches array
2872          * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2873          * guarantees that no cache will be created for this cgroup
2874          * after we are done (see memcg_create_kmem_cache()).
2875          */
2876         memcg->kmem_state = KMEM_ALLOCATED;
2877
2878         memcg_deactivate_kmem_caches(memcg);
2879
2880         kmemcg_id = memcg->kmemcg_id;
2881         BUG_ON(kmemcg_id < 0);
2882
2883         parent = parent_mem_cgroup(memcg);
2884         if (!parent)
2885                 parent = root_mem_cgroup;
2886
2887         /*
2888          * Change kmemcg_id of this cgroup and all its descendants to the
2889          * parent's id, and then move all entries from this cgroup's list_lrus
2890          * to ones of the parent. After we have finished, all list_lrus
2891          * corresponding to this cgroup are guaranteed to remain empty. The
2892          * ordering is imposed by list_lru_node->lock taken by
2893          * memcg_drain_all_list_lrus().
2894          */
2895         css_for_each_descendant_pre(css, &memcg->css) {
2896                 child = mem_cgroup_from_css(css);
2897                 BUG_ON(child->kmemcg_id != kmemcg_id);
2898                 child->kmemcg_id = parent->kmemcg_id;
2899                 if (!memcg->use_hierarchy)
2900                         break;
2901         }
2902         memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2903
2904         memcg_free_cache_id(kmemcg_id);
2905 }
2906
2907 static void memcg_free_kmem(struct mem_cgroup *memcg)
2908 {
2909         /* css_alloc() failed, offlining didn't happen */
2910         if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2911                 memcg_offline_kmem(memcg);
2912
2913         if (memcg->kmem_state == KMEM_ALLOCATED) {
2914                 memcg_destroy_kmem_caches(memcg);
2915                 static_branch_dec(&memcg_kmem_enabled_key);
2916                 WARN_ON(page_counter_read(&memcg->kmem));
2917         }
2918 }
2919 #else
2920 static int memcg_online_kmem(struct mem_cgroup *memcg)
2921 {
2922         return 0;
2923 }
2924 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2925 {
2926 }
2927 static void memcg_free_kmem(struct mem_cgroup *memcg)
2928 {
2929 }
2930 #endif /* !CONFIG_SLOB */
2931
2932 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2933                                    unsigned long limit)
2934 {
2935         int ret;
2936
2937         mutex_lock(&memcg_limit_mutex);
2938         ret = page_counter_limit(&memcg->kmem, limit);
2939         mutex_unlock(&memcg_limit_mutex);
2940         return ret;
2941 }
2942
2943 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2944 {
2945         int ret;
2946
2947         mutex_lock(&memcg_limit_mutex);
2948
2949         ret = page_counter_limit(&memcg->tcpmem, limit);
2950         if (ret)
2951                 goto out;
2952
2953         if (!memcg->tcpmem_active) {
2954                 /*
2955                  * The active flag needs to be written after the static_key
2956                  * update. This is what guarantees that the socket activation
2957                  * function is the last one to run. See sock_update_memcg() for
2958                  * details, and note that we don't mark any socket as belonging
2959                  * to this memcg until that flag is up.
2960                  *
2961                  * We need to do this, because static_keys will span multiple
2962                  * sites, but we can't control their order. If we mark a socket
2963                  * as accounted, but the accounting functions are not patched in
2964                  * yet, we'll lose accounting.
2965                  *
2966                  * We never race with the readers in sock_update_memcg(),
2967                  * because when this value change, the code to process it is not
2968                  * patched in yet.
2969                  */
2970                 static_branch_inc(&memcg_sockets_enabled_key);
2971                 memcg->tcpmem_active = true;
2972         }
2973 out:
2974         mutex_unlock(&memcg_limit_mutex);
2975         return ret;
2976 }
2977
2978 /*
2979  * The user of this function is...
2980  * RES_LIMIT.
2981  */
2982 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2983                                 char *buf, size_t nbytes, loff_t off)
2984 {
2985         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2986         unsigned long nr_pages;
2987         int ret;
2988
2989         buf = strstrip(buf);
2990         ret = page_counter_memparse(buf, "-1", &nr_pages);
2991         if (ret)
2992                 return ret;
2993
2994         switch (MEMFILE_ATTR(of_cft(of)->private)) {
2995         case RES_LIMIT:
2996                 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2997                         ret = -EINVAL;
2998                         break;
2999                 }
3000                 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3001                 case _MEM:
3002                         ret = mem_cgroup_resize_limit(memcg, nr_pages);
3003                         break;
3004                 case _MEMSWAP:
3005                         ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3006                         break;
3007                 case _KMEM:
3008                         ret = memcg_update_kmem_limit(memcg, nr_pages);
3009                         break;
3010                 case _TCP:
3011                         ret = memcg_update_tcp_limit(memcg, nr_pages);
3012                         break;
3013                 }
3014                 break;
3015         case RES_SOFT_LIMIT:
3016                 memcg->soft_limit = nr_pages;
3017                 ret = 0;
3018                 break;
3019         }
3020         return ret ?: nbytes;
3021 }
3022
3023 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3024                                 size_t nbytes, loff_t off)
3025 {
3026         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3027         struct page_counter *counter;
3028
3029         switch (MEMFILE_TYPE(of_cft(of)->private)) {
3030         case _MEM:
3031                 counter = &memcg->memory;
3032                 break;
3033         case _MEMSWAP:
3034                 counter = &memcg->memsw;
3035                 break;
3036         case _KMEM:
3037                 counter = &memcg->kmem;
3038                 break;
3039         case _TCP:
3040                 counter = &memcg->tcpmem;
3041                 break;
3042         default:
3043                 BUG();
3044         }
3045
3046         switch (MEMFILE_ATTR(of_cft(of)->private)) {
3047         case RES_MAX_USAGE:
3048                 page_counter_reset_watermark(counter);
3049                 break;
3050         case RES_FAILCNT:
3051                 counter->failcnt = 0;
3052                 break;
3053         default:
3054                 BUG();
3055         }
3056
3057         return nbytes;
3058 }
3059
3060 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3061                                         struct cftype *cft)
3062 {
3063         return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3064 }
3065
3066 #ifdef CONFIG_MMU
3067 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3068                                         struct cftype *cft, u64 val)
3069 {
3070         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3071
3072         if (val & ~MOVE_MASK)
3073                 return -EINVAL;
3074
3075         /*
3076          * No kind of locking is needed in here, because ->can_attach() will
3077          * check this value once in the beginning of the process, and then carry
3078          * on with stale data. This means that changes to this value will only
3079          * affect task migrations starting after the change.
3080          */
3081         memcg->move_charge_at_immigrate = val;
3082         return 0;
3083 }
3084 #else
3085 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3086                                         struct cftype *cft, u64 val)
3087 {
3088         return -ENOSYS;
3089 }
3090 #endif
3091
3092 #ifdef CONFIG_NUMA
3093 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3094 {
3095         struct numa_stat {
3096                 const char *name;
3097                 unsigned int lru_mask;
3098         };
3099
3100         static const struct numa_stat stats[] = {
3101                 { "total", LRU_ALL },
3102                 { "file", LRU_ALL_FILE },
3103                 { "anon", LRU_ALL_ANON },
3104                 { "unevictable", BIT(LRU_UNEVICTABLE) },
3105         };
3106         const struct numa_stat *stat;
3107         int nid;
3108         unsigned long nr;
3109         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3110
3111         for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3112                 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3113                 seq_printf(m, "%s=%lu", stat->name, nr);
3114                 for_each_node_state(nid, N_MEMORY) {
3115                         nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3116                                                           stat->lru_mask);
3117                         seq_printf(m, " N%d=%lu", nid, nr);
3118                 }
3119                 seq_putc(m, '\n');
3120         }
3121
3122         for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3123                 struct mem_cgroup *iter;
3124
3125                 nr = 0;
3126                 for_each_mem_cgroup_tree(iter, memcg)
3127                         nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3128                 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3129                 for_each_node_state(nid, N_MEMORY) {
3130                         nr = 0;
3131                         for_each_mem_cgroup_tree(iter, memcg)
3132                                 nr += mem_cgroup_node_nr_lru_pages(
3133                                         iter, nid, stat->lru_mask);
3134                         seq_printf(m, " N%d=%lu", nid, nr);
3135                 }
3136                 seq_putc(m, '\n');
3137         }
3138
3139         return 0;
3140 }
3141 #endif /* CONFIG_NUMA */
3142
3143 static int memcg_stat_show(struct seq_file *m, void *v)
3144 {
3145         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3146         unsigned long memory, memsw;
3147         struct mem_cgroup *mi;
3148         unsigned int i;
3149
3150         BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3151                      MEM_CGROUP_STAT_NSTATS);
3152         BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3153                      MEM_CGROUP_EVENTS_NSTATS);
3154         BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3155
3156         for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3157                 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3158                         continue;
3159                 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3160                            mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3161         }
3162
3163         for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3164                 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3165                            mem_cgroup_read_events(memcg, i));
3166
3167         for (i = 0; i < NR_LRU_LISTS; i++)
3168                 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3169                            mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3170
3171         /* Hierarchical information */
3172         memory = memsw = PAGE_COUNTER_MAX;
3173         for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3174                 memory = min(memory, mi->memory.limit);
3175                 memsw = min(memsw, mi->memsw.limit);
3176         }
3177         seq_printf(m, "hierarchical_memory_limit %llu\n",
3178                    (u64)memory * PAGE_SIZE);
3179         if (do_memsw_account())
3180                 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3181                            (u64)memsw * PAGE_SIZE);
3182
3183         for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3184                 unsigned long long val = 0;
3185
3186                 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3187                         continue;
3188                 for_each_mem_cgroup_tree(mi, memcg)
3189                         val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3190                 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3191         }
3192
3193         for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3194                 unsigned long long val = 0;
3195
3196                 for_each_mem_cgroup_tree(mi, memcg)
3197                         val += mem_cgroup_read_events(mi, i);
3198                 seq_printf(m, "total_%s %llu\n",
3199                            mem_cgroup_events_names[i], val);
3200         }
3201
3202         for (i = 0; i < NR_LRU_LISTS; i++) {
3203                 unsigned long long val = 0;
3204
3205                 for_each_mem_cgroup_tree(mi, memcg)
3206                         val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3207                 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3208         }
3209
3210 #ifdef CONFIG_DEBUG_VM
3211         {
3212                 int nid, zid;
3213                 struct mem_cgroup_per_zone *mz;
3214                 struct zone_reclaim_stat *rstat;
3215                 unsigned long recent_rotated[2] = {0, 0};
3216                 unsigned long recent_scanned[2] = {0, 0};
3217
3218                 for_each_online_node(nid)
3219                         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3220                                 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3221                                 rstat = &mz->lruvec.reclaim_stat;
3222
3223                                 recent_rotated[0] += rstat->recent_rotated[0];
3224                                 recent_rotated[1] += rstat->recent_rotated[1];
3225                                 recent_scanned[0] += rstat->recent_scanned[0];
3226                                 recent_scanned[1] += rstat->recent_scanned[1];
3227                         }
3228                 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3229                 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3230                 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3231                 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3232         }
3233 #endif
3234
3235         return 0;
3236 }
3237
3238 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3239                                       struct cftype *cft)
3240 {
3241         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3242
3243         return mem_cgroup_swappiness(memcg);
3244 }
3245
3246 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3247                                        struct cftype *cft, u64 val)
3248 {
3249         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3250
3251         if (val > 100)
3252                 return -EINVAL;
3253
3254         if (css->parent)
3255                 memcg->swappiness = val;
3256         else
3257                 vm_swappiness = val;
3258
3259         return 0;
3260 }
3261
3262 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3263 {
3264         struct mem_cgroup_threshold_ary *t;
3265         unsigned long usage;
3266         int i;
3267
3268         rcu_read_lock();
3269         if (!swap)
3270                 t = rcu_dereference(memcg->thresholds.primary);
3271         else
3272                 t = rcu_dereference(memcg->memsw_thresholds.primary);
3273
3274         if (!t)
3275                 goto unlock;
3276
3277         usage = mem_cgroup_usage(memcg, swap);
3278
3279         /*
3280          * current_threshold points to threshold just below or equal to usage.
3281          * If it's not true, a threshold was crossed after last
3282          * call of __mem_cgroup_threshold().
3283          */
3284         i = t->current_threshold;
3285
3286         /*
3287          * Iterate backward over array of thresholds starting from
3288          * current_threshold and check if a threshold is crossed.
3289          * If none of thresholds below usage is crossed, we read
3290          * only one element of the array here.
3291          */
3292         for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3293                 eventfd_signal(t->entries[i].eventfd, 1);
3294
3295         /* i = current_threshold + 1 */
3296         i++;
3297
3298         /*
3299          * Iterate forward over array of thresholds starting from
3300          * current_threshold+1 and check if a threshold is crossed.
3301          * If none of thresholds above usage is crossed, we read
3302          * only one element of the array here.
3303          */
3304         for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3305                 eventfd_signal(t->entries[i].eventfd, 1);
3306
3307         /* Update current_threshold */
3308         t->current_threshold = i - 1;
3309 unlock:
3310         rcu_read_unlock();
3311 }
3312
3313 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3314 {
3315         while (memcg) {
3316                 __mem_cgroup_threshold(memcg, false);
3317                 if (do_memsw_account())
3318                         __mem_cgroup_threshold(memcg, true);
3319
3320                 memcg = parent_mem_cgroup(memcg);
3321         }
3322 }
3323
3324 static int compare_thresholds(const void *a, const void *b)
3325 {
3326         const struct mem_cgroup_threshold *_a = a;
3327         const struct mem_cgroup_threshold *_b = b;
3328
3329         if (_a->threshold > _b->threshold)
3330                 return 1;
3331
3332         if (_a->threshold < _b->threshold)
3333                 return -1;
3334
3335         return 0;
3336 }
3337
3338 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3339 {
3340         struct mem_cgroup_eventfd_list *ev;
3341
3342         spin_lock(&memcg_oom_lock);
3343
3344         list_for_each_entry(ev, &memcg->oom_notify, list)
3345                 eventfd_signal(ev->eventfd, 1);
3346
3347         spin_unlock(&memcg_oom_lock);
3348         return 0;
3349 }
3350
3351 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3352 {
3353         struct mem_cgroup *iter;
3354
3355         for_each_mem_cgroup_tree(iter, memcg)
3356                 mem_cgroup_oom_notify_cb(iter);
3357 }
3358
3359 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3360         struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3361 {
3362         struct mem_cgroup_thresholds *thresholds;
3363         struct mem_cgroup_threshold_ary *new;
3364         unsigned long threshold;
3365         unsigned long usage;
3366         int i, size, ret;
3367
3368         ret = page_counter_memparse(args, "-1", &threshold);
3369         if (ret)
3370                 return ret;
3371
3372         mutex_lock(&memcg->thresholds_lock);
3373
3374         if (type == _MEM) {
3375                 thresholds = &memcg->thresholds;
3376                 usage = mem_cgroup_usage(memcg, false);
3377         } else if (type == _MEMSWAP) {
3378                 thresholds = &memcg->memsw_thresholds;
3379                 usage = mem_cgroup_usage(memcg, true);
3380         } else
3381                 BUG();
3382
3383         /* Check if a threshold crossed before adding a new one */
3384         if (thresholds->primary)
3385                 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3386
3387         size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3388
3389         /* Allocate memory for new array of thresholds */
3390         new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3391                         GFP_KERNEL);
3392         if (!new) {
3393                 ret = -ENOMEM;
3394                 goto unlock;
3395         }
3396         new->size = size;
3397
3398         /* Copy thresholds (if any) to new array */
3399         if (thresholds->primary) {
3400                 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3401                                 sizeof(struct mem_cgroup_threshold));
3402         }
3403
3404         /* Add new threshold */
3405         new->entries[size - 1].eventfd = eventfd;
3406         new->entries[size - 1].threshold = threshold;
3407
3408         /* Sort thresholds. Registering of new threshold isn't time-critical */
3409         sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3410                         compare_thresholds, NULL);
3411
3412         /* Find current threshold */
3413         new->current_threshold = -1;
3414         for (i = 0; i < size; i++) {
3415                 if (new->entries[i].threshold <= usage) {
3416                         /*
3417                          * new->current_threshold will not be used until
3418                          * rcu_assign_pointer(), so it's safe to increment
3419                          * it here.
3420                          */
3421                         ++new->current_threshold;
3422                 } else
3423                         break;
3424         }
3425
3426         /* Free old spare buffer and save old primary buffer as spare */
3427         kfree(thresholds->spare);
3428         thresholds->spare = thresholds->primary;
3429
3430         rcu_assign_pointer(thresholds->primary, new);
3431
3432         /* To be sure that nobody uses thresholds */
3433         synchronize_rcu();
3434
3435 unlock:
3436         mutex_unlock(&memcg->thresholds_lock);
3437
3438         return ret;
3439 }
3440
3441 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3442         struct eventfd_ctx *eventfd, const char *args)
3443 {
3444         return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3445 }
3446
3447 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3448         struct eventfd_ctx *eventfd, const char *args)
3449 {
3450         return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3451 }
3452
3453 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3454         struct eventfd_ctx *eventfd, enum res_type type)
3455 {
3456         struct mem_cgroup_thresholds *thresholds;
3457         struct mem_cgroup_threshold_ary *new;
3458         unsigned long usage;
3459         int i, j, size;
3460
3461         mutex_lock(&memcg->thresholds_lock);
3462
3463         if (type == _MEM) {
3464                 thresholds = &memcg->thresholds;
3465                 usage = mem_cgroup_usage(memcg, false);
3466         } else if (type == _MEMSWAP) {
3467                 thresholds = &memcg->memsw_thresholds;
3468                 usage = mem_cgroup_usage(memcg, true);
3469         } else
3470                 BUG();
3471
3472         if (!thresholds->primary)
3473                 goto unlock;
3474
3475         /* Check if a threshold crossed before removing */
3476         __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3477
3478         /* Calculate new number of threshold */
3479         size = 0;
3480         for (i = 0; i < thresholds->primary->size; i++) {
3481                 if (thresholds->primary->entries[i].eventfd != eventfd)
3482                         size++;
3483         }
3484
3485         new = thresholds->spare;
3486
3487         /* Set thresholds array to NULL if we don't have thresholds */
3488         if (!size) {
3489                 kfree(new);
3490                 new = NULL;
3491                 goto swap_buffers;
3492         }
3493
3494         new->size = size;
3495
3496         /* Copy thresholds and find current threshold */
3497         new->current_threshold = -1;
3498         for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3499                 if (thresholds->primary->entries[i].eventfd == eventfd)
3500                         continue;
3501
3502                 new->entries[j] = thresholds->primary->entries[i];
3503                 if (new->entries[j].threshold <= usage) {
3504                         /*
3505                          * new->current_threshold will not be used
3506                          * until rcu_assign_pointer(), so it's safe to increment
3507                          * it here.
3508                          */
3509                         ++new->current_threshold;
3510                 }
3511                 j++;
3512         }
3513
3514 swap_buffers:
3515         /* Swap primary and spare array */
3516         thresholds->spare = thresholds->primary;
3517
3518         rcu_assign_pointer(thresholds->primary, new);
3519
3520         /* To be sure that nobody uses thresholds */
3521         synchronize_rcu();
3522
3523         /* If all events are unregistered, free the spare array */
3524         if (!new) {
3525                 kfree(thresholds->spare);
3526                 thresholds->spare = NULL;
3527         }
3528 unlock:
3529         mutex_unlock(&memcg->thresholds_lock);
3530 }
3531
3532 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3533         struct eventfd_ctx *eventfd)
3534 {
3535         return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3536 }
3537
3538 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3539         struct eventfd_ctx *eventfd)
3540 {
3541         return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3542 }
3543
3544 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3545         struct eventfd_ctx *eventfd, const char *args)
3546 {
3547         struct mem_cgroup_eventfd_list *event;
3548
3549         event = kmalloc(sizeof(*event), GFP_KERNEL);
3550         if (!event)
3551                 return -ENOMEM;
3552
3553         spin_lock(&memcg_oom_lock);
3554
3555         event->eventfd = eventfd;
3556         list_add(&event->list, &memcg->oom_notify);
3557
3558         /* already in OOM ? */
3559         if (memcg->under_oom)
3560                 eventfd_signal(eventfd, 1);
3561         spin_unlock(&memcg_oom_lock);
3562
3563         return 0;
3564 }
3565
3566 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3567         struct eventfd_ctx *eventfd)
3568 {
3569         struct mem_cgroup_eventfd_list *ev, *tmp;
3570
3571         spin_lock(&memcg_oom_lock);
3572
3573         list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3574                 if (ev->eventfd == eventfd) {
3575                         list_del(&ev->list);
3576                         kfree(ev);
3577                 }
3578         }
3579
3580         spin_unlock(&memcg_oom_lock);
3581 }
3582
3583 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3584 {
3585         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3586
3587         seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3588         seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3589         return 0;
3590 }
3591
3592 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3593         struct cftype *cft, u64 val)
3594 {
3595         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3596
3597         /* cannot set to root cgroup and only 0 and 1 are allowed */
3598         if (!css->parent || !((val == 0) || (val == 1)))
3599                 return -EINVAL;
3600
3601         memcg->oom_kill_disable = val;
3602         if (!val)
3603                 memcg_oom_recover(memcg);
3604
3605         return 0;
3606 }
3607
3608 #ifdef CONFIG_CGROUP_WRITEBACK
3609
3610 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3611 {
3612         return &memcg->cgwb_list;
3613 }
3614
3615 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3616 {
3617         return wb_domain_init(&memcg->cgwb_domain, gfp);
3618 }
3619
3620 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3621 {
3622         wb_domain_exit(&memcg->cgwb_domain);
3623 }
3624
3625 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3626 {
3627         wb_domain_size_changed(&memcg->cgwb_domain);
3628 }
3629
3630 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3631 {
3632         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3633
3634         if (!memcg->css.parent)
3635                 return NULL;
3636
3637         return &memcg->cgwb_domain;
3638 }
3639
3640 /**
3641  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3642  * @wb: bdi_writeback in question
3643  * @pfilepages: out parameter for number of file pages
3644  * @pheadroom: out parameter for number of allocatable pages according to memcg
3645  * @pdirty: out parameter for number of dirty pages
3646  * @pwriteback: out parameter for number of pages under writeback
3647  *
3648  * Determine the numbers of file, headroom, dirty, and writeback pages in
3649  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
3650  * is a bit more involved.
3651  *
3652  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
3653  * headroom is calculated as the lowest headroom of itself and the
3654  * ancestors.  Note that this doesn't consider the actual amount of
3655  * available memory in the system.  The caller should further cap
3656  * *@pheadroom accordingly.
3657  */
3658 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3659                          unsigned long *pheadroom, unsigned long *pdirty,
3660                          unsigned long *pwriteback)
3661 {
3662         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3663         struct mem_cgroup *parent;
3664
3665         *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3666
3667         /* this should eventually include NR_UNSTABLE_NFS */
3668         *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3669         *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3670                                                      (1 << LRU_ACTIVE_FILE));
3671         *pheadroom = PAGE_COUNTER_MAX;
3672
3673         while ((parent = parent_mem_cgroup(memcg))) {
3674                 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3675                 unsigned long used = page_counter_read(&memcg->memory);
3676
3677                 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3678                 memcg = parent;
3679         }
3680 }
3681
3682 #else   /* CONFIG_CGROUP_WRITEBACK */
3683
3684 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3685 {
3686         return 0;
3687 }
3688
3689 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3690 {
3691 }
3692
3693 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3694 {
3695 }
3696
3697 #endif  /* CONFIG_CGROUP_WRITEBACK */
3698
3699 /*
3700  * DO NOT USE IN NEW FILES.
3701  *
3702  * "cgroup.event_control" implementation.
3703  *
3704  * This is way over-engineered.  It tries to support fully configurable
3705  * events for each user.  Such level of flexibility is completely
3706  * unnecessary especially in the light of the planned unified hierarchy.
3707  *
3708  * Please deprecate this and replace with something simpler if at all
3709  * possible.
3710  */
3711
3712 /*
3713  * Unregister event and free resources.
3714  *
3715  * Gets called from workqueue.
3716  */
3717 static void memcg_event_remove(struct work_struct *work)
3718 {
3719         struct mem_cgroup_event *event =
3720                 container_of(work, struct mem_cgroup_event, remove);
3721         struct mem_cgroup *memcg = event->memcg;
3722
3723         remove_wait_queue(event->wqh, &event->wait);
3724
3725         event->unregister_event(memcg, event->eventfd);
3726
3727         /* Notify userspace the event is going away. */
3728         eventfd_signal(event->eventfd, 1);
3729
3730         eventfd_ctx_put(event->eventfd);
3731         kfree(event);
3732         css_put(&memcg->css);
3733 }
3734
3735 /*
3736  * Gets called on POLLHUP on eventfd when user closes it.
3737  *
3738  * Called with wqh->lock held and interrupts disabled.
3739  */
3740 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3741                             int sync, void *key)
3742 {
3743         struct mem_cgroup_event *event =
3744                 container_of(wait, struct mem_cgroup_event, wait);
3745         struct mem_cgroup *memcg = event->memcg;
3746         unsigned long flags = (unsigned long)key;
3747
3748         if (flags & POLLHUP) {
3749                 /*
3750                  * If the event has been detached at cgroup removal, we
3751                  * can simply return knowing the other side will cleanup
3752                  * for us.
3753                  *
3754                  * We can't race against event freeing since the other
3755                  * side will require wqh->lock via remove_wait_queue(),
3756                  * which we hold.
3757                  */
3758                 spin_lock(&memcg->event_list_lock);
3759                 if (!list_empty(&event->list)) {
3760                         list_del_init(&event->list);
3761                         /*
3762                          * We are in atomic context, but cgroup_event_remove()
3763                          * may sleep, so we have to call it in workqueue.
3764                          */
3765                         schedule_work(&event->remove);
3766                 }
3767                 spin_unlock(&memcg->event_list_lock);
3768         }
3769
3770         return 0;
3771 }
3772
3773 static void memcg_event_ptable_queue_proc(struct file *file,
3774                 wait_queue_head_t *wqh, poll_table *pt)
3775 {
3776         struct mem_cgroup_event *event =
3777                 container_of(pt, struct mem_cgroup_event, pt);
3778
3779         event->wqh = wqh;
3780         add_wait_queue(wqh, &event->wait);
3781 }
3782
3783 /*
3784  * DO NOT USE IN NEW FILES.
3785  *
3786  * Parse input and register new cgroup event handler.
3787  *
3788  * Input must be in format '<event_fd> <control_fd> <args>'.
3789  * Interpretation of args is defined by control file implementation.
3790  */
3791 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3792                                          char *buf, size_t nbytes, loff_t off)
3793 {
3794         struct cgroup_subsys_state *css = of_css(of);
3795         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3796         struct mem_cgroup_event *event;
3797         struct cgroup_subsys_state *cfile_css;
3798         unsigned int efd, cfd;
3799         struct fd efile;
3800         struct fd cfile;
3801         const char *name;
3802         char *endp;
3803         int ret;
3804
3805         buf = strstrip(buf);
3806
3807         efd = simple_strtoul(buf, &endp, 10);
3808         if (*endp != ' ')
3809                 return -EINVAL;
3810         buf = endp + 1;
3811
3812         cfd = simple_strtoul(buf, &endp, 10);
3813         if ((*endp != ' ') && (*endp != '\0'))
3814                 return -EINVAL;
3815         buf = endp + 1;
3816
3817         event = kzalloc(sizeof(*event), GFP_KERNEL);
3818         if (!event)
3819                 return -ENOMEM;
3820
3821         event->memcg = memcg;
3822         INIT_LIST_HEAD(&event->list);
3823         init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3824         init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3825         INIT_WORK(&event->remove, memcg_event_remove);
3826
3827         efile = fdget(efd);
3828         if (!efile.file) {
3829                 ret = -EBADF;
3830                 goto out_kfree;
3831         }
3832
3833         event->eventfd = eventfd_ctx_fileget(efile.file);
3834         if (IS_ERR(event->eventfd)) {
3835                 ret = PTR_ERR(event->eventfd);
3836                 goto out_put_efile;
3837         }
3838
3839         cfile = fdget(cfd);
3840         if (!cfile.file) {
3841                 ret = -EBADF;
3842                 goto out_put_eventfd;
3843         }
3844
3845         /* the process need read permission on control file */
3846         /* AV: shouldn't we check that it's been opened for read instead? */
3847         ret = inode_permission(file_inode(cfile.file), MAY_READ);
3848         if (ret < 0)
3849                 goto out_put_cfile;
3850
3851         /*
3852          * Determine the event callbacks and set them in @event.  This used
3853          * to be done via struct cftype but cgroup core no longer knows
3854          * about these events.  The following is crude but the whole thing
3855          * is for compatibility anyway.
3856          *
3857          * DO NOT ADD NEW FILES.
3858          */
3859         name = cfile.file->f_path.dentry->d_name.name;
3860
3861         if (!strcmp(name, "memory.usage_in_bytes")) {
3862                 event->register_event = mem_cgroup_usage_register_event;
3863                 event->unregister_event = mem_cgroup_usage_unregister_event;
3864         } else if (!strcmp(name, "memory.oom_control")) {
3865                 event->register_event = mem_cgroup_oom_register_event;
3866                 event->unregister_event = mem_cgroup_oom_unregister_event;
3867         } else if (!strcmp(name, "memory.pressure_level")) {
3868                 event->register_event = vmpressure_register_event;
3869                 event->unregister_event = vmpressure_unregister_event;
3870         } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3871                 event->register_event = memsw_cgroup_usage_register_event;
3872                 event->unregister_event = memsw_cgroup_usage_unregister_event;
3873         } else {
3874                 ret = -EINVAL;
3875                 goto out_put_cfile;
3876         }
3877
3878         /*
3879          * Verify @cfile should belong to @css.  Also, remaining events are
3880          * automatically removed on cgroup destruction but the removal is
3881          * asynchronous, so take an extra ref on @css.
3882          */
3883         cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3884                                                &memory_cgrp_subsys);
3885         ret = -EINVAL;
3886         if (IS_ERR(cfile_css))
3887                 goto out_put_cfile;
3888         if (cfile_css != css) {
3889                 css_put(cfile_css);
3890                 goto out_put_cfile;
3891         }
3892
3893         ret = event->register_event(memcg, event->eventfd, buf);
3894         if (ret)
3895                 goto out_put_css;
3896
3897         efile.file->f_op->poll(efile.file, &event->pt);
3898
3899         spin_lock(&memcg->event_list_lock);
3900         list_add(&event->list, &memcg->event_list);
3901         spin_unlock(&memcg->event_list_lock);
3902
3903         fdput(cfile);
3904         fdput(efile);
3905
3906         return nbytes;
3907
3908 out_put_css:
3909         css_put(css);
3910 out_put_cfile:
3911         fdput(cfile);
3912 out_put_eventfd:
3913         eventfd_ctx_put(event->eventfd);
3914 out_put_efile:
3915         fdput(efile);
3916 out_kfree:
3917         kfree(event);
3918
3919         return ret;
3920 }
3921
3922 static struct cftype mem_cgroup_legacy_files[] = {
3923         {
3924                 .name = "usage_in_bytes",
3925                 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3926                 .read_u64 = mem_cgroup_read_u64,
3927         },
3928         {
3929                 .name = "max_usage_in_bytes",
3930                 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3931                 .write = mem_cgroup_reset,
3932                 .read_u64 = mem_cgroup_read_u64,
3933         },
3934         {
3935                 .name = "limit_in_bytes",
3936                 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3937                 .write = mem_cgroup_write,
3938                 .read_u64 = mem_cgroup_read_u64,
3939         },
3940         {
3941                 .name = "soft_limit_in_bytes",
3942                 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3943                 .write = mem_cgroup_write,
3944                 .read_u64 = mem_cgroup_read_u64,
3945         },
3946         {
3947                 .name = "failcnt",
3948                 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3949                 .write = mem_cgroup_reset,
3950                 .read_u64 = mem_cgroup_read_u64,
3951         },
3952         {
3953                 .name = "stat",
3954                 .seq_show = memcg_stat_show,
3955         },
3956         {
3957                 .name = "force_empty",
3958                 .write = mem_cgroup_force_empty_write,
3959         },
3960         {
3961                 .name = "use_hierarchy",
3962                 .write_u64 = mem_cgroup_hierarchy_write,
3963                 .read_u64 = mem_cgroup_hierarchy_read,
3964         },
3965         {
3966                 .name = "cgroup.event_control",         /* XXX: for compat */
3967                 .write = memcg_write_event_control,
3968                 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3969         },
3970         {
3971                 .name = "swappiness",
3972                 .read_u64 = mem_cgroup_swappiness_read,
3973                 .write_u64 = mem_cgroup_swappiness_write,
3974         },
3975         {
3976                 .name = "move_charge_at_immigrate",
3977                 .read_u64 = mem_cgroup_move_charge_read,
3978                 .write_u64 = mem_cgroup_move_charge_write,
3979         },
3980         {
3981                 .name = "oom_control",
3982                 .seq_show = mem_cgroup_oom_control_read,
3983                 .write_u64 = mem_cgroup_oom_control_write,
3984                 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3985         },
3986         {
3987                 .name = "pressure_level",
3988         },
3989 #ifdef CONFIG_NUMA
3990         {
3991                 .name = "numa_stat",
3992                 .seq_show = memcg_numa_stat_show,
3993         },
3994 #endif
3995         {
3996                 .name = "kmem.limit_in_bytes",
3997                 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3998                 .write = mem_cgroup_write,
3999                 .read_u64 = mem_cgroup_read_u64,
4000         },
4001         {
4002                 .name = "kmem.usage_in_bytes",
4003                 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4004                 .read_u64 = mem_cgroup_read_u64,
4005         },
4006         {
4007                 .name = "kmem.failcnt",
4008                 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4009                 .write = mem_cgroup_reset,
4010                 .read_u64 = mem_cgroup_read_u64,
4011         },
4012         {
4013                 .name = "kmem.max_usage_in_bytes",
4014                 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4015                 .write = mem_cgroup_reset,
4016                 .read_u64 = mem_cgroup_read_u64,
4017         },
4018 #ifdef CONFIG_SLABINFO
4019         {
4020                 .name = "kmem.slabinfo",
4021                 .seq_start = slab_start,
4022                 .seq_next = slab_next,
4023                 .seq_stop = slab_stop,
4024                 .seq_show = memcg_slab_show,
4025         },
4026 #endif
4027         {
4028                 .name = "kmem.tcp.limit_in_bytes",
4029                 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4030                 .write = mem_cgroup_write,
4031                 .read_u64 = mem_cgroup_read_u64,
4032         },
4033         {
4034                 .name = "kmem.tcp.usage_in_bytes",
4035                 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4036                 .read_u64 = mem_cgroup_read_u64,
4037         },
4038         {
4039                 .name = "kmem.tcp.failcnt",
4040                 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4041                 .write = mem_cgroup_reset,
4042                 .read_u64 = mem_cgroup_read_u64,
4043         },
4044         {
4045                 .name = "kmem.tcp.max_usage_in_bytes",
4046                 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4047                 .write = mem_cgroup_reset,
4048                 .read_u64 = mem_cgroup_read_u64,
4049         },
4050         { },    /* terminate */
4051 };
4052
4053 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4054 {
4055         struct mem_cgroup_per_node *pn;
4056         struct mem_cgroup_per_zone *mz;
4057         int zone, tmp = node;
4058         /*
4059          * This routine is called against possible nodes.
4060          * But it's BUG to call kmalloc() against offline node.
4061          *
4062          * TODO: this routine can waste much memory for nodes which will
4063          *       never be onlined. It's better to use memory hotplug callback
4064          *       function.
4065          */
4066         if (!node_state(node, N_NORMAL_MEMORY))
4067                 tmp = -1;
4068         pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4069         if (!pn)
4070                 return 1;
4071
4072         for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4073                 mz = &pn->zoneinfo[zone];
4074                 lruvec_init(&mz->lruvec);
4075                 mz->usage_in_excess = 0;
4076                 mz->on_tree = false;
4077                 mz->memcg = memcg;
4078         }
4079         memcg->nodeinfo[node] = pn;
4080         return 0;
4081 }
4082
4083 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4084 {
4085         kfree(memcg->nodeinfo[node]);
4086 }
4087
4088 static void mem_cgroup_free(struct mem_cgroup *memcg)
4089 {
4090         int node;
4091
4092         memcg_wb_domain_exit(memcg);
4093         for_each_node(node)
4094                 free_mem_cgroup_per_zone_info(memcg, node);
4095         free_percpu(memcg->stat);
4096         kfree(memcg);
4097 }
4098
4099 static struct mem_cgroup *mem_cgroup_alloc(void)
4100 {
4101         struct mem_cgroup *memcg;
4102         size_t size;
4103         int node;
4104
4105         size = sizeof(struct mem_cgroup);
4106         size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4107
4108         memcg = kzalloc(size, GFP_KERNEL);
4109         if (!memcg)
4110                 return NULL;
4111
4112         memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4113         if (!memcg->stat)
4114                 goto fail;
4115
4116         for_each_node(node)
4117                 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4118                         goto fail;
4119
4120         if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4121                 goto fail;
4122
4123         INIT_WORK(&memcg->high_work, high_work_func);
4124         memcg->last_scanned_node = MAX_NUMNODES;
4125         INIT_LIST_HEAD(&memcg->oom_notify);
4126         mutex_init(&memcg->thresholds_lock);
4127         spin_lock_init(&memcg->move_lock);
4128         vmpressure_init(&memcg->vmpressure);
4129         INIT_LIST_HEAD(&memcg->event_list);
4130         spin_lock_init(&memcg->event_list_lock);
4131         memcg->socket_pressure = jiffies;
4132 #ifndef CONFIG_SLOB
4133         memcg->kmemcg_id = -1;
4134 #endif
4135 #ifdef CONFIG_CGROUP_WRITEBACK
4136         INIT_LIST_HEAD(&memcg->cgwb_list);
4137 #endif
4138         return memcg;
4139 fail:
4140         mem_cgroup_free(memcg);
4141         return NULL;
4142 }
4143
4144 static struct cgroup_subsys_state * __ref
4145 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4146 {
4147         struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4148         struct mem_cgroup *memcg;
4149         long error = -ENOMEM;
4150
4151         memcg = mem_cgroup_alloc();
4152         if (!memcg)
4153                 return ERR_PTR(error);
4154
4155         memcg->high = PAGE_COUNTER_MAX;
4156         memcg->soft_limit = PAGE_COUNTER_MAX;
4157         if (parent) {
4158                 memcg->swappiness = mem_cgroup_swappiness(parent);
4159                 memcg->oom_kill_disable = parent->oom_kill_disable;
4160         }
4161         if (parent && parent->use_hierarchy) {
4162                 memcg->use_hierarchy = true;
4163                 page_counter_init(&memcg->memory, &parent->memory);
4164                 page_counter_init(&memcg->swap, &parent->swap);
4165                 page_counter_init(&memcg->memsw, &parent->memsw);
4166                 page_counter_init(&memcg->kmem, &parent->kmem);
4167                 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4168         } else {
4169                 page_counter_init(&memcg->memory, NULL);
4170                 page_counter_init(&memcg->swap, NULL);
4171                 page_counter_init(&memcg->memsw, NULL);
4172                 page_counter_init(&memcg->kmem, NULL);
4173                 page_counter_init(&memcg->tcpmem, NULL);
4174                 /*
4175                  * Deeper hierachy with use_hierarchy == false doesn't make
4176                  * much sense so let cgroup subsystem know about this
4177                  * unfortunate state in our controller.
4178                  */
4179                 if (parent != root_mem_cgroup)
4180                         memory_cgrp_subsys.broken_hierarchy = true;
4181         }
4182
4183         /* The following stuff does not apply to the root */
4184         if (!parent) {
4185                 root_mem_cgroup = memcg;
4186                 return &memcg->css;
4187         }
4188
4189         error = memcg_online_kmem(memcg);
4190         if (error)
4191                 goto fail;
4192
4193         if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4194                 static_branch_inc(&memcg_sockets_enabled_key);
4195
4196         return &memcg->css;
4197 fail:
4198         mem_cgroup_free(memcg);
4199         return NULL;
4200 }
4201
4202 static int
4203 mem_cgroup_css_online(struct cgroup_subsys_state *css)
4204 {
4205         if (css->id > MEM_CGROUP_ID_MAX)
4206                 return -ENOSPC;
4207
4208         return 0;
4209 }
4210
4211 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4212 {
4213         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4214         struct mem_cgroup_event *event, *tmp;
4215
4216         /*
4217          * Unregister events and notify userspace.
4218          * Notify userspace about cgroup removing only after rmdir of cgroup
4219          * directory to avoid race between userspace and kernelspace.
4220          */
4221         spin_lock(&memcg->event_list_lock);
4222         list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4223                 list_del_init(&event->list);
4224                 schedule_work(&event->remove);
4225         }
4226         spin_unlock(&memcg->event_list_lock);
4227
4228         memcg_offline_kmem(memcg);
4229         wb_memcg_offline(memcg);
4230 }
4231
4232 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4233 {
4234         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4235
4236         invalidate_reclaim_iterators(memcg);
4237 }
4238
4239 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4240 {
4241         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4242
4243         if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4244                 static_branch_dec(&memcg_sockets_enabled_key);
4245
4246         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4247                 static_branch_dec(&memcg_sockets_enabled_key);
4248
4249         vmpressure_cleanup(&memcg->vmpressure);
4250         cancel_work_sync(&memcg->high_work);
4251         mem_cgroup_remove_from_trees(memcg);
4252         memcg_free_kmem(memcg);
4253         mem_cgroup_free(memcg);
4254 }
4255
4256 /**
4257  * mem_cgroup_css_reset - reset the states of a mem_cgroup
4258  * @css: the target css
4259  *
4260  * Reset the states of the mem_cgroup associated with @css.  This is
4261  * invoked when the userland requests disabling on the default hierarchy
4262  * but the memcg is pinned through dependency.  The memcg should stop
4263  * applying policies and should revert to the vanilla state as it may be
4264  * made visible again.
4265  *
4266  * The current implementation only resets the essential configurations.
4267  * This needs to be expanded to cover all the visible parts.
4268  */
4269 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4270 {
4271         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4272
4273         page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4274         page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4275         page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4276         page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4277         page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4278         memcg->low = 0;
4279         memcg->high = PAGE_COUNTER_MAX;
4280         memcg->soft_limit = PAGE_COUNTER_MAX;
4281         memcg_wb_domain_size_changed(memcg);
4282 }
4283
4284 #ifdef CONFIG_MMU
4285 /* Handlers for move charge at task migration. */
4286 static int mem_cgroup_do_precharge(unsigned long count)
4287 {
4288         int ret;
4289
4290         /* Try a single bulk charge without reclaim first, kswapd may wake */
4291         ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4292         if (!ret) {
4293                 mc.precharge += count;
4294                 return ret;
4295         }
4296
4297         /* Try charges one by one with reclaim */
4298         while (count--) {
4299                 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4300                 if (ret)
4301                         return ret;
4302                 mc.precharge++;
4303                 cond_resched();
4304         }
4305         return 0;
4306 }
4307
4308 /**
4309  * get_mctgt_type - get target type of moving charge
4310  * @vma: the vma the pte to be checked belongs
4311  * @addr: the address corresponding to the pte to be checked
4312  * @ptent: the pte to be checked
4313  * @target: the pointer the target page or swap ent will be stored(can be NULL)
4314  *
4315  * Returns
4316  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4317  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4318  *     move charge. if @target is not NULL, the page is stored in target->page
4319  *     with extra refcnt got(Callers should handle it).
4320  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4321  *     target for charge migration. if @target is not NULL, the entry is stored
4322  *     in target->ent.
4323  *
4324  * Called with pte lock held.
4325  */
4326 union mc_target {
4327         struct page     *page;
4328         swp_entry_t     ent;
4329 };
4330
4331 enum mc_target_type {
4332         MC_TARGET_NONE = 0,
4333         MC_TARGET_PAGE,
4334         MC_TARGET_SWAP,
4335 };
4336
4337 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4338                                                 unsigned long addr, pte_t ptent)
4339 {
4340         struct page *page = vm_normal_page(vma, addr, ptent);
4341
4342         if (!page || !page_mapped(page))
4343                 return NULL;
4344         if (PageAnon(page)) {
4345                 if (!(mc.flags & MOVE_ANON))
4346                         return NULL;
4347         } else {
4348                 if (!(mc.flags & MOVE_FILE))
4349                         return NULL;
4350         }
4351         if (!get_page_unless_zero(page))
4352                 return NULL;
4353
4354         return page;
4355 }
4356
4357 #ifdef CONFIG_SWAP
4358 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4359                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
4360 {
4361         struct page *page = NULL;
4362         swp_entry_t ent = pte_to_swp_entry(ptent);
4363
4364         if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4365                 return NULL;
4366         /*
4367          * Because lookup_swap_cache() updates some statistics counter,
4368          * we call find_get_page() with swapper_space directly.
4369          */
4370         page = find_get_page(swap_address_space(ent), ent.val);
4371         if (do_memsw_account())
4372                 entry->val = ent.val;
4373
4374         return page;
4375 }
4376 #else
4377 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4378                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
4379 {
4380         return NULL;
4381 }
4382 #endif
4383
4384 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4385                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
4386 {
4387         struct page *page = NULL;
4388         struct address_space *mapping;
4389         pgoff_t pgoff;
4390
4391         if (!vma->vm_file) /* anonymous vma */
4392                 return NULL;
4393         if (!(mc.flags & MOVE_FILE))
4394                 return NULL;
4395
4396         mapping = vma->vm_file->f_mapping;
4397         pgoff = linear_page_index(vma, addr);
4398
4399         /* page is moved even if it's not RSS of this task(page-faulted). */
4400 #ifdef CONFIG_SWAP
4401         /* shmem/tmpfs may report page out on swap: account for that too. */
4402         if (shmem_mapping(mapping)) {
4403                 page = find_get_entry(mapping, pgoff);
4404                 if (radix_tree_exceptional_entry(page)) {
4405                         swp_entry_t swp = radix_to_swp_entry(page);
4406                         if (do_memsw_account())
4407                                 *entry = swp;
4408                         page = find_get_page(swap_address_space(swp), swp.val);
4409                 }
4410         } else
4411                 page = find_get_page(mapping, pgoff);
4412 #else
4413         page = find_get_page(mapping, pgoff);
4414 #endif
4415         return page;
4416 }
4417
4418 /**
4419  * mem_cgroup_move_account - move account of the page
4420  * @page: the page
4421  * @nr_pages: number of regular pages (>1 for huge pages)
4422  * @from: mem_cgroup which the page is moved from.
4423  * @to: mem_cgroup which the page is moved to. @from != @to.
4424  *
4425  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4426  *
4427  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4428  * from old cgroup.
4429  */
4430 static int mem_cgroup_move_account(struct page *page,
4431                                    bool compound,
4432                                    struct mem_cgroup *from,
4433                                    struct mem_cgroup *to)
4434 {
4435         unsigned long flags;
4436         unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4437         int ret;
4438         bool anon;
4439
4440         VM_BUG_ON(from == to);
4441         VM_BUG_ON_PAGE(PageLRU(page), page);
4442         VM_BUG_ON(compound && !PageTransHuge(page));
4443
4444         /*
4445          * Prevent mem_cgroup_migrate() from looking at
4446          * page->mem_cgroup of its source page while we change it.
4447          */
4448         ret = -EBUSY;
4449         if (!trylock_page(page))
4450                 goto out;
4451
4452         ret = -EINVAL;
4453         if (page->mem_cgroup != from)
4454                 goto out_unlock;
4455
4456         anon = PageAnon(page);
4457
4458         spin_lock_irqsave(&from->move_lock, flags);
4459
4460         if (!anon && page_mapped(page)) {
4461                 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4462                                nr_pages);
4463                 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4464                                nr_pages);
4465         }
4466
4467         /*
4468          * move_lock grabbed above and caller set from->moving_account, so
4469          * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4470          * So mapping should be stable for dirty pages.
4471          */
4472         if (!anon && PageDirty(page)) {
4473                 struct address_space *mapping = page_mapping(page);
4474
4475                 if (mapping_cap_account_dirty(mapping)) {
4476                         __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4477                                        nr_pages);
4478                         __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4479                                        nr_pages);
4480                 }
4481         }
4482
4483         if (PageWriteback(page)) {
4484                 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4485                                nr_pages);
4486                 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4487                                nr_pages);
4488         }
4489
4490         /*
4491          * It is safe to change page->mem_cgroup here because the page
4492          * is referenced, charged, and isolated - we can't race with
4493          * uncharging, charging, migration, or LRU putback.
4494          */
4495
4496         /* caller should have done css_get */
4497         page->mem_cgroup = to;
4498         spin_unlock_irqrestore(&from->move_lock, flags);
4499
4500         ret = 0;
4501
4502         local_irq_disable();
4503         mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4504         memcg_check_events(to, page);
4505         mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4506         memcg_check_events(from, page);
4507         local_irq_enable();
4508 out_unlock:
4509         unlock_page(page);
4510 out:
4511         return ret;
4512 }
4513
4514 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4515                 unsigned long addr, pte_t ptent, union mc_target *target)
4516 {
4517         struct page *page = NULL;
4518         enum mc_target_type ret = MC_TARGET_NONE;
4519         swp_entry_t ent = { .val = 0 };
4520
4521         if (pte_present(ptent))
4522                 page = mc_handle_present_pte(vma, addr, ptent);
4523         else if (is_swap_pte(ptent))
4524                 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4525         else if (pte_none(ptent))
4526                 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4527
4528         if (!page && !ent.val)
4529                 return ret;
4530         if (page) {
4531                 /*
4532                  * Do only loose check w/o serialization.
4533                  * mem_cgroup_move_account() checks the page is valid or
4534                  * not under LRU exclusion.
4535                  */
4536                 if (page->mem_cgroup == mc.from) {
4537                         ret = MC_TARGET_PAGE;
4538                         if (target)
4539                                 target->page = page;
4540                 }
4541                 if (!ret || !target)
4542                         put_page(page);
4543         }
4544         /* There is a swap entry and a page doesn't exist or isn't charged */
4545         if (ent.val && !ret &&
4546             mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4547                 ret = MC_TARGET_SWAP;
4548                 if (target)
4549                         target->ent = ent;
4550         }
4551         return ret;
4552 }
4553
4554 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4555 /*
4556  * We don't consider swapping or file mapped pages because THP does not
4557  * support them for now.
4558  * Caller should make sure that pmd_trans_huge(pmd) is true.
4559  */
4560 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4561                 unsigned long addr, pmd_t pmd, union mc_target *target)
4562 {
4563         struct page *page = NULL;
4564         enum mc_target_type ret = MC_TARGET_NONE;
4565
4566         page = pmd_page(pmd);
4567         VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4568         if (!(mc.flags & MOVE_ANON))
4569                 return ret;
4570         if (page->mem_cgroup == mc.from) {
4571                 ret = MC_TARGET_PAGE;
4572                 if (target) {
4573                         get_page(page);
4574                         target->page = page;
4575                 }
4576         }
4577         return ret;
4578 }
4579 #else
4580 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4581                 unsigned long addr, pmd_t pmd, union mc_target *target)
4582 {
4583         return MC_TARGET_NONE;
4584 }
4585 #endif
4586
4587 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4588                                         unsigned long addr, unsigned long end,
4589                                         struct mm_walk *walk)
4590 {
4591         struct vm_area_struct *vma = walk->vma;
4592         pte_t *pte;
4593         spinlock_t *ptl;
4594
4595         ptl = pmd_trans_huge_lock(pmd, vma);
4596         if (ptl) {
4597                 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4598                         mc.precharge += HPAGE_PMD_NR;
4599                 spin_unlock(ptl);
4600                 return 0;
4601         }
4602
4603         if (pmd_trans_unstable(pmd))
4604                 return 0;
4605         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4606         for (; addr != end; pte++, addr += PAGE_SIZE)
4607                 if (get_mctgt_type(vma, addr, *pte, NULL))
4608                         mc.precharge++; /* increment precharge temporarily */
4609         pte_unmap_unlock(pte - 1, ptl);
4610         cond_resched();
4611
4612         return 0;
4613 }
4614
4615 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4616 {
4617         unsigned long precharge;
4618
4619         struct mm_walk mem_cgroup_count_precharge_walk = {
4620                 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4621                 .mm = mm,
4622         };
4623         down_read(&mm->mmap_sem);
4624         walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4625         up_read(&mm->mmap_sem);
4626
4627         precharge = mc.precharge;
4628         mc.precharge = 0;
4629
4630         return precharge;
4631 }
4632
4633 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4634 {
4635         unsigned long precharge = mem_cgroup_count_precharge(mm);
4636
4637         VM_BUG_ON(mc.moving_task);
4638         mc.moving_task = current;
4639         return mem_cgroup_do_precharge(precharge);
4640 }
4641
4642 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4643 static void __mem_cgroup_clear_mc(void)
4644 {
4645         struct mem_cgroup *from = mc.from;
4646         struct mem_cgroup *to = mc.to;
4647
4648         /* we must uncharge all the leftover precharges from mc.to */
4649         if (mc.precharge) {
4650                 cancel_charge(mc.to, mc.precharge);
4651                 mc.precharge = 0;
4652         }
4653         /*
4654          * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4655          * we must uncharge here.
4656          */
4657         if (mc.moved_charge) {
4658                 cancel_charge(mc.from, mc.moved_charge);
4659                 mc.moved_charge = 0;
4660         }
4661         /* we must fixup refcnts and charges */
4662         if (mc.moved_swap) {
4663                 /* uncharge swap account from the old cgroup */
4664                 if (!mem_cgroup_is_root(mc.from))
4665                         page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4666
4667                 /*
4668                  * we charged both to->memory and to->memsw, so we
4669                  * should uncharge to->memory.
4670                  */
4671                 if (!mem_cgroup_is_root(mc.to))
4672                         page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4673
4674                 css_put_many(&mc.from->css, mc.moved_swap);
4675
4676                 /* we've already done css_get(mc.to) */
4677                 mc.moved_swap = 0;
4678         }
4679         memcg_oom_recover(from);
4680         memcg_oom_recover(to);
4681         wake_up_all(&mc.waitq);
4682 }
4683
4684 static void mem_cgroup_clear_mc(void)
4685 {
4686         struct mm_struct *mm = mc.mm;
4687
4688         /*
4689          * we must clear moving_task before waking up waiters at the end of
4690          * task migration.
4691          */
4692         mc.moving_task = NULL;
4693         __mem_cgroup_clear_mc();
4694         spin_lock(&mc.lock);
4695         mc.from = NULL;
4696         mc.to = NULL;
4697         mc.mm = NULL;
4698         spin_unlock(&mc.lock);
4699
4700         mmput(mm);
4701 }
4702
4703 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4704 {
4705         struct cgroup_subsys_state *css;
4706         struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4707         struct mem_cgroup *from;
4708         struct task_struct *leader, *p;
4709         struct mm_struct *mm;
4710         unsigned long move_flags;
4711         int ret = 0;
4712
4713         /* charge immigration isn't supported on the default hierarchy */
4714         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4715                 return 0;
4716
4717         /*
4718          * Multi-process migrations only happen on the default hierarchy
4719          * where charge immigration is not used.  Perform charge
4720          * immigration if @tset contains a leader and whine if there are
4721          * multiple.
4722          */
4723         p = NULL;
4724         cgroup_taskset_for_each_leader(leader, css, tset) {
4725                 WARN_ON_ONCE(p);
4726                 p = leader;
4727                 memcg = mem_cgroup_from_css(css);
4728         }
4729         if (!p)
4730                 return 0;
4731
4732         /*
4733          * We are now commited to this value whatever it is. Changes in this
4734          * tunable will only affect upcoming migrations, not the current one.
4735          * So we need to save it, and keep it going.
4736          */
4737         move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4738         if (!move_flags)
4739                 return 0;
4740
4741         from = mem_cgroup_from_task(p);
4742
4743         VM_BUG_ON(from == memcg);
4744
4745         mm = get_task_mm(p);
4746         if (!mm)
4747                 return 0;
4748         /* We move charges only when we move a owner of the mm */
4749         if (mm->owner == p) {
4750                 VM_BUG_ON(mc.from);
4751                 VM_BUG_ON(mc.to);
4752                 VM_BUG_ON(mc.precharge);
4753                 VM_BUG_ON(mc.moved_charge);
4754                 VM_BUG_ON(mc.moved_swap);
4755
4756                 spin_lock(&mc.lock);
4757                 mc.mm = mm;
4758                 mc.from = from;
4759                 mc.to = memcg;
4760                 mc.flags = move_flags;
4761                 spin_unlock(&mc.lock);
4762                 /* We set mc.moving_task later */
4763
4764                 ret = mem_cgroup_precharge_mc(mm);
4765                 if (ret)
4766                         mem_cgroup_clear_mc();
4767         } else {
4768                 mmput(mm);
4769         }
4770         return ret;
4771 }
4772
4773 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4774 {
4775         if (mc.to)
4776                 mem_cgroup_clear_mc();
4777 }
4778
4779 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4780                                 unsigned long addr, unsigned long end,
4781                                 struct mm_walk *walk)
4782 {
4783         int ret = 0;
4784         struct vm_area_struct *vma = walk->vma;
4785         pte_t *pte;
4786         spinlock_t *ptl;
4787         enum mc_target_type target_type;
4788         union mc_target target;
4789         struct page *page;
4790
4791         ptl = pmd_trans_huge_lock(pmd, vma);
4792         if (ptl) {
4793                 if (mc.precharge < HPAGE_PMD_NR) {
4794                         spin_unlock(ptl);
4795                         return 0;
4796                 }
4797                 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4798                 if (target_type == MC_TARGET_PAGE) {
4799                         page = target.page;
4800                         if (!isolate_lru_page(page)) {
4801                                 if (!mem_cgroup_move_account(page, true,
4802                                                              mc.from, mc.to)) {
4803                                         mc.precharge -= HPAGE_PMD_NR;
4804                                         mc.moved_charge += HPAGE_PMD_NR;
4805                                 }
4806                                 putback_lru_page(page);
4807                         }
4808                         put_page(page);
4809                 }
4810                 spin_unlock(ptl);
4811                 return 0;
4812         }
4813
4814         if (pmd_trans_unstable(pmd))
4815                 return 0;
4816 retry:
4817         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4818         for (; addr != end; addr += PAGE_SIZE) {
4819                 pte_t ptent = *(pte++);
4820                 swp_entry_t ent;
4821
4822                 if (!mc.precharge)
4823                         break;
4824
4825                 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4826                 case MC_TARGET_PAGE:
4827                         page = target.page;
4828                         /*
4829                          * We can have a part of the split pmd here. Moving it
4830                          * can be done but it would be too convoluted so simply
4831                          * ignore such a partial THP and keep it in original
4832                          * memcg. There should be somebody mapping the head.
4833                          */
4834                         if (PageTransCompound(page))
4835                                 goto put;
4836                         if (isolate_lru_page(page))
4837                                 goto put;
4838                         if (!mem_cgroup_move_account(page, false,
4839                                                 mc.from, mc.to)) {
4840                                 mc.precharge--;
4841                                 /* we uncharge from mc.from later. */
4842                                 mc.moved_charge++;
4843                         }
4844                         putback_lru_page(page);
4845 put:                    /* get_mctgt_type() gets the page */
4846                         put_page(page);
4847                         break;
4848                 case MC_TARGET_SWAP:
4849                         ent = target.ent;
4850                         if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4851                                 mc.precharge--;
4852                                 /* we fixup refcnts and charges later. */
4853                                 mc.moved_swap++;
4854                         }
4855                         break;
4856                 default:
4857                         break;
4858                 }
4859         }
4860         pte_unmap_unlock(pte - 1, ptl);
4861         cond_resched();
4862
4863         if (addr != end) {
4864                 /*
4865                  * We have consumed all precharges we got in can_attach().
4866                  * We try charge one by one, but don't do any additional
4867                  * charges to mc.to if we have failed in charge once in attach()
4868                  * phase.
4869                  */
4870                 ret = mem_cgroup_do_precharge(1);
4871                 if (!ret)
4872                         goto retry;
4873         }
4874
4875         return ret;
4876 }
4877
4878 static void mem_cgroup_move_charge(void)
4879 {
4880         struct mm_walk mem_cgroup_move_charge_walk = {
4881                 .pmd_entry = mem_cgroup_move_charge_pte_range,
4882                 .mm = mc.mm,
4883         };
4884
4885         lru_add_drain_all();
4886         /*
4887          * Signal lock_page_memcg() to take the memcg's move_lock
4888          * while we're moving its pages to another memcg. Then wait
4889          * for already started RCU-only updates to finish.
4890          */
4891         atomic_inc(&mc.from->moving_account);
4892         synchronize_rcu();
4893 retry:
4894         if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4895                 /*
4896                  * Someone who are holding the mmap_sem might be waiting in
4897                  * waitq. So we cancel all extra charges, wake up all waiters,
4898                  * and retry. Because we cancel precharges, we might not be able
4899                  * to move enough charges, but moving charge is a best-effort
4900                  * feature anyway, so it wouldn't be a big problem.
4901                  */
4902                 __mem_cgroup_clear_mc();
4903                 cond_resched();
4904                 goto retry;
4905         }
4906         /*
4907          * When we have consumed all precharges and failed in doing
4908          * additional charge, the page walk just aborts.
4909          */
4910         walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4911         up_read(&mc.mm->mmap_sem);
4912         atomic_dec(&mc.from->moving_account);
4913 }
4914
4915 static void mem_cgroup_move_task(void)
4916 {
4917         if (mc.to) {
4918                 mem_cgroup_move_charge();
4919                 mem_cgroup_clear_mc();
4920         }
4921 }
4922 #else   /* !CONFIG_MMU */
4923 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4924 {
4925         return 0;
4926 }
4927 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4928 {
4929 }
4930 static void mem_cgroup_move_task(void)
4931 {
4932 }
4933 #endif
4934
4935 /*
4936  * Cgroup retains root cgroups across [un]mount cycles making it necessary
4937  * to verify whether we're attached to the default hierarchy on each mount
4938  * attempt.
4939  */
4940 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
4941 {
4942         /*
4943          * use_hierarchy is forced on the default hierarchy.  cgroup core
4944          * guarantees that @root doesn't have any children, so turning it
4945          * on for the root memcg is enough.
4946          */
4947         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4948                 root_mem_cgroup->use_hierarchy = true;
4949         else
4950                 root_mem_cgroup->use_hierarchy = false;
4951 }
4952
4953 static u64 memory_current_read(struct cgroup_subsys_state *css,
4954                                struct cftype *cft)
4955 {
4956         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4957
4958         return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
4959 }
4960
4961 static int memory_low_show(struct seq_file *m, void *v)
4962 {
4963         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4964         unsigned long low = READ_ONCE(memcg->low);
4965
4966         if (low == PAGE_COUNTER_MAX)
4967                 seq_puts(m, "max\n");
4968         else
4969                 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
4970
4971         return 0;
4972 }
4973
4974 static ssize_t memory_low_write(struct kernfs_open_file *of,
4975                                 char *buf, size_t nbytes, loff_t off)
4976 {
4977         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4978         unsigned long low;
4979         int err;
4980
4981         buf = strstrip(buf);
4982         err = page_counter_memparse(buf, "max", &low);
4983         if (err)
4984                 return err;
4985
4986         memcg->low = low;
4987
4988         return nbytes;
4989 }
4990
4991 static int memory_high_show(struct seq_file *m, void *v)
4992 {
4993         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4994         unsigned long high = READ_ONCE(memcg->high);
4995
4996         if (high == PAGE_COUNTER_MAX)
4997                 seq_puts(m, "max\n");
4998         else
4999                 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5000
5001         return 0;
5002 }
5003
5004 static ssize_t memory_high_write(struct kernfs_open_file *of,
5005                                  char *buf, size_t nbytes, loff_t off)
5006 {
5007         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5008         unsigned long nr_pages;
5009         unsigned long high;
5010         int err;
5011
5012         buf = strstrip(buf);
5013         err = page_counter_memparse(buf, "max", &high);
5014         if (err)
5015                 return err;
5016
5017         memcg->high = high;
5018
5019         nr_pages = page_counter_read(&memcg->memory);
5020         if (nr_pages > high)
5021                 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5022                                              GFP_KERNEL, true);
5023
5024         memcg_wb_domain_size_changed(memcg);
5025         return nbytes;
5026 }
5027
5028 static int memory_max_show(struct seq_file *m, void *v)
5029 {
5030         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5031         unsigned long max = READ_ONCE(memcg->memory.limit);
5032
5033         if (max == PAGE_COUNTER_MAX)
5034                 seq_puts(m, "max\n");
5035         else
5036                 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5037
5038         return 0;
5039 }
5040
5041 static ssize_t memory_max_write(struct kernfs_open_file *of,
5042                                 char *buf, size_t nbytes, loff_t off)
5043 {
5044         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5045         unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5046         bool drained = false;
5047         unsigned long max;
5048         int err;
5049
5050         buf = strstrip(buf);
5051         err = page_counter_memparse(buf, "max", &max);
5052         if (err)
5053                 return err;
5054
5055         xchg(&memcg->memory.limit, max);
5056
5057         for (;;) {
5058                 unsigned long nr_pages = page_counter_read(&memcg->memory);
5059
5060                 if (nr_pages <= max)
5061                         break;
5062
5063                 if (signal_pending(current)) {
5064                         err = -EINTR;
5065                         break;
5066                 }
5067
5068                 if (!drained) {
5069                         drain_all_stock(memcg);
5070                         drained = true;
5071                         continue;
5072                 }
5073
5074                 if (nr_reclaims) {
5075                         if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5076                                                           GFP_KERNEL, true))
5077                                 nr_reclaims--;
5078                         continue;
5079                 }
5080
5081                 mem_cgroup_events(memcg, MEMCG_OOM, 1);
5082                 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5083                         break;
5084         }
5085
5086         memcg_wb_domain_size_changed(memcg);
5087         return nbytes;
5088 }
5089
5090 static int memory_events_show(struct seq_file *m, void *v)
5091 {
5092         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5093
5094         seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5095         seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5096         seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5097         seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5098
5099         return 0;
5100 }
5101
5102 static int memory_stat_show(struct seq_file *m, void *v)
5103 {
5104         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5105         unsigned long stat[MEMCG_NR_STAT];
5106         unsigned long events[MEMCG_NR_EVENTS];
5107         int i;
5108
5109         /*
5110          * Provide statistics on the state of the memory subsystem as
5111          * well as cumulative event counters that show past behavior.
5112          *
5113          * This list is ordered following a combination of these gradients:
5114          * 1) generic big picture -> specifics and details
5115          * 2) reflecting userspace activity -> reflecting kernel heuristics
5116          *
5117          * Current memory state:
5118          */
5119
5120         tree_stat(memcg, stat);
5121         tree_events(memcg, events);
5122
5123         seq_printf(m, "anon %llu\n",
5124                    (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5125         seq_printf(m, "file %llu\n",
5126                    (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5127         seq_printf(m, "kernel_stack %llu\n",
5128                    (u64)stat[MEMCG_KERNEL_STACK] * PAGE_SIZE);
5129         seq_printf(m, "slab %llu\n",
5130                    (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5131                          stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5132         seq_printf(m, "sock %llu\n",
5133                    (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5134
5135         seq_printf(m, "file_mapped %llu\n",
5136                    (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5137         seq_printf(m, "file_dirty %llu\n",
5138                    (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5139         seq_printf(m, "file_writeback %llu\n",
5140                    (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5141
5142         for (i = 0; i < NR_LRU_LISTS; i++) {
5143                 struct mem_cgroup *mi;
5144                 unsigned long val = 0;
5145
5146                 for_each_mem_cgroup_tree(mi, memcg)
5147                         val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5148                 seq_printf(m, "%s %llu\n",
5149                            mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5150         }
5151
5152         seq_printf(m, "slab_reclaimable %llu\n",
5153                    (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5154         seq_printf(m, "slab_unreclaimable %llu\n",
5155                    (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5156
5157         /* Accumulated memory events */
5158
5159         seq_printf(m, "pgfault %lu\n",
5160                    events[MEM_CGROUP_EVENTS_PGFAULT]);
5161         seq_printf(m, "pgmajfault %lu\n",
5162                    events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5163
5164         return 0;
5165 }
5166
5167 static struct cftype memory_files[] = {
5168         {
5169                 .name = "current",
5170                 .flags = CFTYPE_NOT_ON_ROOT,
5171                 .read_u64 = memory_current_read,
5172         },
5173         {
5174                 .name = "low",
5175                 .flags = CFTYPE_NOT_ON_ROOT,
5176                 .seq_show = memory_low_show,
5177                 .write = memory_low_write,
5178         },
5179         {
5180                 .name = "high",
5181                 .flags = CFTYPE_NOT_ON_ROOT,
5182                 .seq_show = memory_high_show,
5183                 .write = memory_high_write,
5184         },
5185         {
5186                 .name = "max",
5187                 .flags = CFTYPE_NOT_ON_ROOT,
5188                 .seq_show = memory_max_show,
5189                 .write = memory_max_write,
5190         },
5191         {
5192                 .name = "events",
5193                 .flags = CFTYPE_NOT_ON_ROOT,
5194                 .file_offset = offsetof(struct mem_cgroup, events_file),
5195                 .seq_show = memory_events_show,
5196         },
5197         {
5198                 .name = "stat",
5199                 .flags = CFTYPE_NOT_ON_ROOT,
5200                 .seq_show = memory_stat_show,
5201         },
5202         { }     /* terminate */
5203 };
5204
5205 struct cgroup_subsys memory_cgrp_subsys = {
5206         .css_alloc = mem_cgroup_css_alloc,
5207         .css_online = mem_cgroup_css_online,
5208         .css_offline = mem_cgroup_css_offline,
5209         .css_released = mem_cgroup_css_released,
5210         .css_free = mem_cgroup_css_free,
5211         .css_reset = mem_cgroup_css_reset,
5212         .can_attach = mem_cgroup_can_attach,
5213         .cancel_attach = mem_cgroup_cancel_attach,
5214         .post_attach = mem_cgroup_move_task,
5215         .bind = mem_cgroup_bind,
5216         .dfl_cftypes = memory_files,
5217         .legacy_cftypes = mem_cgroup_legacy_files,
5218         .early_init = 0,
5219 };
5220
5221 /**
5222  * mem_cgroup_low - check if memory consumption is below the normal range
5223  * @root: the highest ancestor to consider
5224  * @memcg: the memory cgroup to check
5225  *
5226  * Returns %true if memory consumption of @memcg, and that of all
5227  * configurable ancestors up to @root, is below the normal range.
5228  */
5229 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5230 {
5231         if (mem_cgroup_disabled())
5232                 return false;
5233
5234         /*
5235          * The toplevel group doesn't have a configurable range, so
5236          * it's never low when looked at directly, and it is not
5237          * considered an ancestor when assessing the hierarchy.
5238          */
5239
5240         if (memcg == root_mem_cgroup)
5241                 return false;
5242
5243         if (page_counter_read(&memcg->memory) >= memcg->low)
5244                 return false;
5245
5246         while (memcg != root) {
5247                 memcg = parent_mem_cgroup(memcg);
5248
5249                 if (memcg == root_mem_cgroup)
5250                         break;
5251
5252                 if (page_counter_read(&memcg->memory) >= memcg->low)
5253                         return false;
5254         }
5255         return true;
5256 }
5257
5258 /**
5259  * mem_cgroup_try_charge - try charging a page
5260  * @page: page to charge
5261  * @mm: mm context of the victim
5262  * @gfp_mask: reclaim mode
5263  * @memcgp: charged memcg return
5264  *
5265  * Try to charge @page to the memcg that @mm belongs to, reclaiming
5266  * pages according to @gfp_mask if necessary.
5267  *
5268  * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5269  * Otherwise, an error code is returned.
5270  *
5271  * After page->mapping has been set up, the caller must finalize the
5272  * charge with mem_cgroup_commit_charge().  Or abort the transaction
5273  * with mem_cgroup_cancel_charge() in case page instantiation fails.
5274  */
5275 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5276                           gfp_t gfp_mask, struct mem_cgroup **memcgp,
5277                           bool compound)
5278 {
5279         struct mem_cgroup *memcg = NULL;
5280         unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5281         int ret = 0;
5282
5283         if (mem_cgroup_disabled())
5284                 goto out;
5285
5286         if (PageSwapCache(page)) {
5287                 /*
5288                  * Every swap fault against a single page tries to charge the
5289                  * page, bail as early as possible.  shmem_unuse() encounters
5290                  * already charged pages, too.  The USED bit is protected by
5291                  * the page lock, which serializes swap cache removal, which
5292                  * in turn serializes uncharging.
5293                  */
5294                 VM_BUG_ON_PAGE(!PageLocked(page), page);
5295                 if (page->mem_cgroup)
5296                         goto out;
5297
5298                 if (do_swap_account) {
5299                         swp_entry_t ent = { .val = page_private(page), };
5300                         unsigned short id = lookup_swap_cgroup_id(ent);
5301
5302                         rcu_read_lock();
5303                         memcg = mem_cgroup_from_id(id);
5304                         if (memcg && !css_tryget_online(&memcg->css))
5305                                 memcg = NULL;
5306                         rcu_read_unlock();
5307                 }
5308         }
5309
5310         if (!memcg)
5311                 memcg = get_mem_cgroup_from_mm(mm);
5312
5313         ret = try_charge(memcg, gfp_mask, nr_pages);
5314
5315         css_put(&memcg->css);
5316 out:
5317         *memcgp = memcg;
5318         return ret;
5319 }
5320
5321 /**
5322  * mem_cgroup_commit_charge - commit a page charge
5323  * @page: page to charge
5324  * @memcg: memcg to charge the page to
5325  * @lrucare: page might be on LRU already
5326  *
5327  * Finalize a charge transaction started by mem_cgroup_try_charge(),
5328  * after page->mapping has been set up.  This must happen atomically
5329  * as part of the page instantiation, i.e. under the page table lock
5330  * for anonymous pages, under the page lock for page and swap cache.
5331  *
5332  * In addition, the page must not be on the LRU during the commit, to
5333  * prevent racing with task migration.  If it might be, use @lrucare.
5334  *
5335  * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5336  */
5337 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5338                               bool lrucare, bool compound)
5339 {
5340         unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5341
5342         VM_BUG_ON_PAGE(!page->mapping, page);
5343         VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5344
5345         if (mem_cgroup_disabled())
5346                 return;
5347         /*
5348          * Swap faults will attempt to charge the same page multiple
5349          * times.  But reuse_swap_page() might have removed the page
5350          * from swapcache already, so we can't check PageSwapCache().
5351          */
5352         if (!memcg)
5353                 return;
5354
5355         commit_charge(page, memcg, lrucare);
5356
5357         local_irq_disable();
5358         mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5359         memcg_check_events(memcg, page);
5360         local_irq_enable();
5361
5362         if (do_memsw_account() && PageSwapCache(page)) {
5363                 swp_entry_t entry = { .val = page_private(page) };
5364                 /*
5365                  * The swap entry might not get freed for a long time,
5366                  * let's not wait for it.  The page already received a
5367                  * memory+swap charge, drop the swap entry duplicate.
5368                  */
5369                 mem_cgroup_uncharge_swap(entry);
5370         }
5371 }
5372
5373 /**
5374  * mem_cgroup_cancel_charge - cancel a page charge
5375  * @page: page to charge
5376  * @memcg: memcg to charge the page to
5377  *
5378  * Cancel a charge transaction started by mem_cgroup_try_charge().
5379  */
5380 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5381                 bool compound)
5382 {
5383         unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5384
5385         if (mem_cgroup_disabled())
5386                 return;
5387         /*
5388          * Swap faults will attempt to charge the same page multiple
5389          * times.  But reuse_swap_page() might have removed the page
5390          * from swapcache already, so we can't check PageSwapCache().
5391          */
5392         if (!memcg)
5393                 return;
5394
5395         cancel_charge(memcg, nr_pages);
5396 }
5397
5398 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5399                            unsigned long nr_anon, unsigned long nr_file,
5400                            unsigned long nr_huge, struct page *dummy_page)
5401 {
5402         unsigned long nr_pages = nr_anon + nr_file;
5403         unsigned long flags;
5404
5405         if (!mem_cgroup_is_root(memcg)) {
5406                 page_counter_uncharge(&memcg->memory, nr_pages);
5407                 if (do_memsw_account())
5408                         page_counter_uncharge(&memcg->memsw, nr_pages);
5409                 memcg_oom_recover(memcg);
5410         }
5411
5412         local_irq_save(flags);
5413         __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5414         __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5415         __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5416         __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5417         __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5418         memcg_check_events(memcg, dummy_page);
5419         local_irq_restore(flags);
5420
5421         if (!mem_cgroup_is_root(memcg))
5422                 css_put_many(&memcg->css, nr_pages);
5423 }
5424
5425 static void uncharge_list(struct list_head *page_list)
5426 {
5427         struct mem_cgroup *memcg = NULL;
5428         unsigned long nr_anon = 0;
5429         unsigned long nr_file = 0;
5430         unsigned long nr_huge = 0;
5431         unsigned long pgpgout = 0;
5432         struct list_head *next;
5433         struct page *page;
5434
5435         /*
5436          * Note that the list can be a single page->lru; hence the
5437          * do-while loop instead of a simple list_for_each_entry().
5438          */
5439         next = page_list->next;
5440         do {
5441                 unsigned int nr_pages = 1;
5442
5443                 page = list_entry(next, struct page, lru);
5444                 next = page->lru.next;
5445
5446                 VM_BUG_ON_PAGE(PageLRU(page), page);
5447                 VM_BUG_ON_PAGE(page_count(page), page);
5448
5449                 if (!page->mem_cgroup)
5450                         continue;
5451
5452                 /*
5453                  * Nobody should be changing or seriously looking at
5454                  * page->mem_cgroup at this point, we have fully
5455                  * exclusive access to the page.
5456                  */
5457
5458                 if (memcg != page->mem_cgroup) {
5459                         if (memcg) {
5460                                 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5461                                                nr_huge, page);
5462                                 pgpgout = nr_anon = nr_file = nr_huge = 0;
5463                         }
5464                         memcg = page->mem_cgroup;
5465                 }
5466
5467                 if (PageTransHuge(page)) {
5468                         nr_pages <<= compound_order(page);
5469                         VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5470                         nr_huge += nr_pages;
5471                 }
5472
5473                 if (PageAnon(page))
5474                         nr_anon += nr_pages;
5475                 else
5476                         nr_file += nr_pages;
5477
5478                 page->mem_cgroup = NULL;
5479
5480                 pgpgout++;
5481         } while (next != page_list);
5482
5483         if (memcg)
5484                 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5485                                nr_huge, page);
5486 }
5487
5488 /**
5489  * mem_cgroup_uncharge - uncharge a page
5490  * @page: page to uncharge
5491  *
5492  * Uncharge a page previously charged with mem_cgroup_try_charge() and
5493  * mem_cgroup_commit_charge().
5494  */
5495 void mem_cgroup_uncharge(struct page *page)
5496 {
5497         if (mem_cgroup_disabled())
5498                 return;
5499
5500         /* Don't touch page->lru of any random page, pre-check: */
5501         if (!page->mem_cgroup)
5502                 return;
5503
5504         INIT_LIST_HEAD(&page->lru);
5505         uncharge_list(&page->lru);
5506 }
5507
5508 /**
5509  * mem_cgroup_uncharge_list - uncharge a list of page
5510  * @page_list: list of pages to uncharge
5511  *
5512  * Uncharge a list of pages previously charged with
5513  * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5514  */
5515 void mem_cgroup_uncharge_list(struct list_head *page_list)
5516 {
5517         if (mem_cgroup_disabled())
5518                 return;
5519
5520         if (!list_empty(page_list))
5521                 uncharge_list(page_list);
5522 }
5523
5524 /**
5525  * mem_cgroup_migrate - charge a page's replacement
5526  * @oldpage: currently circulating page
5527  * @newpage: replacement page
5528  *
5529  * Charge @newpage as a replacement page for @oldpage. @oldpage will
5530  * be uncharged upon free.
5531  *
5532  * Both pages must be locked, @newpage->mapping must be set up.
5533  */
5534 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5535 {
5536         struct mem_cgroup *memcg;
5537         unsigned int nr_pages;
5538         bool compound;
5539
5540         VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5541         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5542         VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5543         VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5544                        newpage);
5545
5546         if (mem_cgroup_disabled())
5547                 return;
5548
5549         /* Page cache replacement: new page already charged? */
5550         if (newpage->mem_cgroup)
5551                 return;
5552
5553         /* Swapcache readahead pages can get replaced before being charged */
5554         memcg = oldpage->mem_cgroup;
5555         if (!memcg)
5556                 return;
5557
5558         /* Force-charge the new page. The old one will be freed soon */
5559         compound = PageTransHuge(newpage);
5560         nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5561
5562         page_counter_charge(&memcg->memory, nr_pages);
5563         if (do_memsw_account())
5564                 page_counter_charge(&memcg->memsw, nr_pages);
5565         css_get_many(&memcg->css, nr_pages);
5566
5567         commit_charge(newpage, memcg, false);
5568
5569         local_irq_disable();
5570         mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5571         memcg_check_events(memcg, newpage);
5572         local_irq_enable();
5573 }
5574
5575 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5576 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5577
5578 void sock_update_memcg(struct sock *sk)
5579 {
5580         struct mem_cgroup *memcg;
5581
5582         /* Socket cloning can throw us here with sk_cgrp already
5583          * filled. It won't however, necessarily happen from
5584          * process context. So the test for root memcg given
5585          * the current task's memcg won't help us in this case.
5586          *
5587          * Respecting the original socket's memcg is a better
5588          * decision in this case.
5589          */
5590         if (sk->sk_memcg) {
5591                 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5592                 css_get(&sk->sk_memcg->css);
5593                 return;
5594         }
5595
5596         rcu_read_lock();
5597         memcg = mem_cgroup_from_task(current);
5598         if (memcg == root_mem_cgroup)
5599                 goto out;
5600         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5601                 goto out;
5602         if (css_tryget_online(&memcg->css))
5603                 sk->sk_memcg = memcg;
5604 out:
5605         rcu_read_unlock();
5606 }
5607 EXPORT_SYMBOL(sock_update_memcg);
5608
5609 void sock_release_memcg(struct sock *sk)
5610 {
5611         WARN_ON(!sk->sk_memcg);
5612         css_put(&sk->sk_memcg->css);
5613 }
5614
5615 /**
5616  * mem_cgroup_charge_skmem - charge socket memory
5617  * @memcg: memcg to charge
5618  * @nr_pages: number of pages to charge
5619  *
5620  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5621  * @memcg's configured limit, %false if the charge had to be forced.
5622  */
5623 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5624 {
5625         gfp_t gfp_mask = GFP_KERNEL;
5626
5627         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5628                 struct page_counter *fail;
5629
5630                 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5631                         memcg->tcpmem_pressure = 0;
5632                         return true;
5633                 }
5634                 page_counter_charge(&memcg->tcpmem, nr_pages);
5635                 memcg->tcpmem_pressure = 1;
5636                 return false;
5637         }
5638
5639         /* Don't block in the packet receive path */
5640         if (in_softirq())
5641                 gfp_mask = GFP_NOWAIT;
5642
5643         this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5644
5645         if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5646                 return true;
5647
5648         try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5649         return false;
5650 }
5651
5652 /**
5653  * mem_cgroup_uncharge_skmem - uncharge socket memory
5654  * @memcg - memcg to uncharge
5655  * @nr_pages - number of pages to uncharge
5656  */
5657 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5658 {
5659         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5660                 page_counter_uncharge(&memcg->tcpmem, nr_pages);
5661                 return;
5662         }
5663
5664         this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5665
5666         page_counter_uncharge(&memcg->memory, nr_pages);
5667         css_put_many(&memcg->css, nr_pages);
5668 }
5669
5670 static int __init cgroup_memory(char *s)
5671 {
5672         char *token;
5673
5674         while ((token = strsep(&s, ",")) != NULL) {
5675                 if (!*token)
5676                         continue;
5677                 if (!strcmp(token, "nosocket"))
5678                         cgroup_memory_nosocket = true;
5679                 if (!strcmp(token, "nokmem"))
5680                         cgroup_memory_nokmem = true;
5681         }
5682         return 0;
5683 }
5684 __setup("cgroup.memory=", cgroup_memory);
5685
5686 /*
5687  * subsys_initcall() for memory controller.
5688  *
5689  * Some parts like hotcpu_notifier() have to be initialized from this context
5690  * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5691  * everything that doesn't depend on a specific mem_cgroup structure should
5692  * be initialized from here.
5693  */
5694 static int __init mem_cgroup_init(void)
5695 {
5696         int cpu, node;
5697
5698         hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5699
5700         for_each_possible_cpu(cpu)
5701                 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5702                           drain_local_stock);
5703
5704         for_each_node(node) {
5705                 struct mem_cgroup_tree_per_node *rtpn;
5706                 int zone;
5707
5708                 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5709                                     node_online(node) ? node : NUMA_NO_NODE);
5710
5711                 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5712                         struct mem_cgroup_tree_per_zone *rtpz;
5713
5714                         rtpz = &rtpn->rb_tree_per_zone[zone];
5715                         rtpz->rb_root = RB_ROOT;
5716                         spin_lock_init(&rtpz->lock);
5717                 }
5718                 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5719         }
5720
5721         return 0;
5722 }
5723 subsys_initcall(mem_cgroup_init);
5724
5725 #ifdef CONFIG_MEMCG_SWAP
5726 /**
5727  * mem_cgroup_swapout - transfer a memsw charge to swap
5728  * @page: page whose memsw charge to transfer
5729  * @entry: swap entry to move the charge to
5730  *
5731  * Transfer the memsw charge of @page to @entry.
5732  */
5733 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5734 {
5735         struct mem_cgroup *memcg;
5736         unsigned short oldid;
5737
5738         VM_BUG_ON_PAGE(PageLRU(page), page);
5739         VM_BUG_ON_PAGE(page_count(page), page);
5740
5741         if (!do_memsw_account())
5742                 return;
5743
5744         memcg = page->mem_cgroup;
5745
5746         /* Readahead page, never charged */
5747         if (!memcg)
5748                 return;
5749
5750         oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5751         VM_BUG_ON_PAGE(oldid, page);
5752         mem_cgroup_swap_statistics(memcg, true);
5753
5754         page->mem_cgroup = NULL;
5755
5756         if (!mem_cgroup_is_root(memcg))
5757                 page_counter_uncharge(&memcg->memory, 1);
5758
5759         /*
5760          * Interrupts should be disabled here because the caller holds the
5761          * mapping->tree_lock lock which is taken with interrupts-off. It is
5762          * important here to have the interrupts disabled because it is the
5763          * only synchronisation we have for udpating the per-CPU variables.
5764          */
5765         VM_BUG_ON(!irqs_disabled());
5766         mem_cgroup_charge_statistics(memcg, page, false, -1);
5767         memcg_check_events(memcg, page);
5768 }
5769
5770 /*
5771  * mem_cgroup_try_charge_swap - try charging a swap entry
5772  * @page: page being added to swap
5773  * @entry: swap entry to charge
5774  *
5775  * Try to charge @entry to the memcg that @page belongs to.
5776  *
5777  * Returns 0 on success, -ENOMEM on failure.
5778  */
5779 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5780 {
5781         struct mem_cgroup *memcg;
5782         struct page_counter *counter;
5783         unsigned short oldid;
5784
5785         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5786                 return 0;
5787
5788         memcg = page->mem_cgroup;
5789
5790         /* Readahead page, never charged */
5791         if (!memcg)
5792                 return 0;
5793
5794         if (!mem_cgroup_is_root(memcg) &&
5795             !page_counter_try_charge(&memcg->swap, 1, &counter))
5796                 return -ENOMEM;
5797
5798         oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5799         VM_BUG_ON_PAGE(oldid, page);
5800         mem_cgroup_swap_statistics(memcg, true);
5801
5802         css_get(&memcg->css);
5803         return 0;
5804 }
5805
5806 /**
5807  * mem_cgroup_uncharge_swap - uncharge a swap entry
5808  * @entry: swap entry to uncharge
5809  *
5810  * Drop the swap charge associated with @entry.
5811  */
5812 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5813 {
5814         struct mem_cgroup *memcg;
5815         unsigned short id;
5816
5817         if (!do_swap_account)
5818                 return;
5819
5820         id = swap_cgroup_record(entry, 0);
5821         rcu_read_lock();
5822         memcg = mem_cgroup_from_id(id);
5823         if (memcg) {
5824                 if (!mem_cgroup_is_root(memcg)) {
5825                         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5826                                 page_counter_uncharge(&memcg->swap, 1);
5827                         else
5828                                 page_counter_uncharge(&memcg->memsw, 1);
5829                 }
5830                 mem_cgroup_swap_statistics(memcg, false);
5831                 css_put(&memcg->css);
5832         }
5833         rcu_read_unlock();
5834 }
5835
5836 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5837 {
5838         long nr_swap_pages = get_nr_swap_pages();
5839
5840         if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5841                 return nr_swap_pages;
5842         for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5843                 nr_swap_pages = min_t(long, nr_swap_pages,
5844                                       READ_ONCE(memcg->swap.limit) -
5845                                       page_counter_read(&memcg->swap));
5846         return nr_swap_pages;
5847 }
5848
5849 bool mem_cgroup_swap_full(struct page *page)
5850 {
5851         struct mem_cgroup *memcg;
5852
5853         VM_BUG_ON_PAGE(!PageLocked(page), page);
5854
5855         if (vm_swap_full())
5856                 return true;
5857         if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5858                 return false;
5859
5860         memcg = page->mem_cgroup;
5861         if (!memcg)
5862                 return false;
5863
5864         for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5865                 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5866                         return true;
5867
5868         return false;
5869 }
5870
5871 /* for remember boot option*/
5872 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5873 static int really_do_swap_account __initdata = 1;
5874 #else
5875 static int really_do_swap_account __initdata;
5876 #endif
5877
5878 static int __init enable_swap_account(char *s)
5879 {
5880         if (!strcmp(s, "1"))
5881                 really_do_swap_account = 1;
5882         else if (!strcmp(s, "0"))
5883                 really_do_swap_account = 0;
5884         return 1;
5885 }
5886 __setup("swapaccount=", enable_swap_account);
5887
5888 static u64 swap_current_read(struct cgroup_subsys_state *css,
5889                              struct cftype *cft)
5890 {
5891         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5892
5893         return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5894 }
5895
5896 static int swap_max_show(struct seq_file *m, void *v)
5897 {
5898         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5899         unsigned long max = READ_ONCE(memcg->swap.limit);
5900
5901         if (max == PAGE_COUNTER_MAX)
5902                 seq_puts(m, "max\n");
5903         else
5904                 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5905
5906         return 0;
5907 }
5908
5909 static ssize_t swap_max_write(struct kernfs_open_file *of,
5910                               char *buf, size_t nbytes, loff_t off)
5911 {
5912         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5913         unsigned long max;
5914         int err;
5915
5916         buf = strstrip(buf);
5917         err = page_counter_memparse(buf, "max", &max);
5918         if (err)
5919                 return err;
5920
5921         mutex_lock(&memcg_limit_mutex);
5922         err = page_counter_limit(&memcg->swap, max);
5923         mutex_unlock(&memcg_limit_mutex);
5924         if (err)
5925                 return err;
5926
5927         return nbytes;
5928 }
5929
5930 static struct cftype swap_files[] = {
5931         {
5932                 .name = "swap.current",
5933                 .flags = CFTYPE_NOT_ON_ROOT,
5934                 .read_u64 = swap_current_read,
5935         },
5936         {
5937                 .name = "swap.max",
5938                 .flags = CFTYPE_NOT_ON_ROOT,
5939                 .seq_show = swap_max_show,
5940                 .write = swap_max_write,
5941         },
5942         { }     /* terminate */
5943 };
5944
5945 static struct cftype memsw_cgroup_files[] = {
5946         {
5947                 .name = "memsw.usage_in_bytes",
5948                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5949                 .read_u64 = mem_cgroup_read_u64,
5950         },
5951         {
5952                 .name = "memsw.max_usage_in_bytes",
5953                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5954                 .write = mem_cgroup_reset,
5955                 .read_u64 = mem_cgroup_read_u64,
5956         },
5957         {
5958                 .name = "memsw.limit_in_bytes",
5959                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5960                 .write = mem_cgroup_write,
5961                 .read_u64 = mem_cgroup_read_u64,
5962         },
5963         {
5964                 .name = "memsw.failcnt",
5965                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5966                 .write = mem_cgroup_reset,
5967                 .read_u64 = mem_cgroup_read_u64,
5968         },
5969         { },    /* terminate */
5970 };
5971
5972 static int __init mem_cgroup_swap_init(void)
5973 {
5974         if (!mem_cgroup_disabled() && really_do_swap_account) {
5975                 do_swap_account = 1;
5976                 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
5977                                                swap_files));
5978                 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5979                                                   memsw_cgroup_files));
5980         }
5981         return 0;
5982 }
5983 subsys_initcall(mem_cgroup_swap_init);
5984
5985 #endif /* CONFIG_MEMCG_SWAP */