mm/memblock.c: use PFN_DOWN
[cascardo/linux.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62 #include <linux/dma-debug.h>
63 #include <linux/debugfs.h>
64
65 #include <asm/io.h>
66 #include <asm/pgalloc.h>
67 #include <asm/uaccess.h>
68 #include <asm/tlb.h>
69 #include <asm/tlbflush.h>
70 #include <asm/pgtable.h>
71
72 #include "internal.h"
73
74 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
75 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
76 #endif
77
78 #ifndef CONFIG_NEED_MULTIPLE_NODES
79 /* use the per-pgdat data instead for discontigmem - mbligh */
80 unsigned long max_mapnr;
81 struct page *mem_map;
82
83 EXPORT_SYMBOL(max_mapnr);
84 EXPORT_SYMBOL(mem_map);
85 #endif
86
87 /*
88  * A number of key systems in x86 including ioremap() rely on the assumption
89  * that high_memory defines the upper bound on direct map memory, then end
90  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
91  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
92  * and ZONE_HIGHMEM.
93  */
94 void * high_memory;
95
96 EXPORT_SYMBOL(high_memory);
97
98 /*
99  * Randomize the address space (stacks, mmaps, brk, etc.).
100  *
101  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
102  *   as ancient (libc5 based) binaries can segfault. )
103  */
104 int randomize_va_space __read_mostly =
105 #ifdef CONFIG_COMPAT_BRK
106                                         1;
107 #else
108                                         2;
109 #endif
110
111 static int __init disable_randmaps(char *s)
112 {
113         randomize_va_space = 0;
114         return 1;
115 }
116 __setup("norandmaps", disable_randmaps);
117
118 unsigned long zero_pfn __read_mostly;
119 unsigned long highest_memmap_pfn __read_mostly;
120
121 /*
122  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
123  */
124 static int __init init_zero_pfn(void)
125 {
126         zero_pfn = page_to_pfn(ZERO_PAGE(0));
127         return 0;
128 }
129 core_initcall(init_zero_pfn);
130
131
132 #if defined(SPLIT_RSS_COUNTING)
133
134 void sync_mm_rss(struct mm_struct *mm)
135 {
136         int i;
137
138         for (i = 0; i < NR_MM_COUNTERS; i++) {
139                 if (current->rss_stat.count[i]) {
140                         add_mm_counter(mm, i, current->rss_stat.count[i]);
141                         current->rss_stat.count[i] = 0;
142                 }
143         }
144         current->rss_stat.events = 0;
145 }
146
147 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
148 {
149         struct task_struct *task = current;
150
151         if (likely(task->mm == mm))
152                 task->rss_stat.count[member] += val;
153         else
154                 add_mm_counter(mm, member, val);
155 }
156 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
157 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
158
159 /* sync counter once per 64 page faults */
160 #define TASK_RSS_EVENTS_THRESH  (64)
161 static void check_sync_rss_stat(struct task_struct *task)
162 {
163         if (unlikely(task != current))
164                 return;
165         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
166                 sync_mm_rss(task->mm);
167 }
168 #else /* SPLIT_RSS_COUNTING */
169
170 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
171 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
172
173 static void check_sync_rss_stat(struct task_struct *task)
174 {
175 }
176
177 #endif /* SPLIT_RSS_COUNTING */
178
179 #ifdef HAVE_GENERIC_MMU_GATHER
180
181 static int tlb_next_batch(struct mmu_gather *tlb)
182 {
183         struct mmu_gather_batch *batch;
184
185         batch = tlb->active;
186         if (batch->next) {
187                 tlb->active = batch->next;
188                 return 1;
189         }
190
191         if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
192                 return 0;
193
194         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
195         if (!batch)
196                 return 0;
197
198         tlb->batch_count++;
199         batch->next = NULL;
200         batch->nr   = 0;
201         batch->max  = MAX_GATHER_BATCH;
202
203         tlb->active->next = batch;
204         tlb->active = batch;
205
206         return 1;
207 }
208
209 /* tlb_gather_mmu
210  *      Called to initialize an (on-stack) mmu_gather structure for page-table
211  *      tear-down from @mm. The @fullmm argument is used when @mm is without
212  *      users and we're going to destroy the full address space (exit/execve).
213  */
214 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
215 {
216         tlb->mm = mm;
217
218         /* Is it from 0 to ~0? */
219         tlb->fullmm     = !(start | (end+1));
220         tlb->need_flush_all = 0;
221         tlb->start      = start;
222         tlb->end        = end;
223         tlb->need_flush = 0;
224         tlb->local.next = NULL;
225         tlb->local.nr   = 0;
226         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
227         tlb->active     = &tlb->local;
228         tlb->batch_count = 0;
229
230 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
231         tlb->batch = NULL;
232 #endif
233 }
234
235 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
236 {
237         tlb->need_flush = 0;
238         tlb_flush(tlb);
239 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
240         tlb_table_flush(tlb);
241 #endif
242 }
243
244 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
245 {
246         struct mmu_gather_batch *batch;
247
248         for (batch = &tlb->local; batch; batch = batch->next) {
249                 free_pages_and_swap_cache(batch->pages, batch->nr);
250                 batch->nr = 0;
251         }
252         tlb->active = &tlb->local;
253 }
254
255 void tlb_flush_mmu(struct mmu_gather *tlb)
256 {
257         if (!tlb->need_flush)
258                 return;
259         tlb_flush_mmu_tlbonly(tlb);
260         tlb_flush_mmu_free(tlb);
261 }
262
263 /* tlb_finish_mmu
264  *      Called at the end of the shootdown operation to free up any resources
265  *      that were required.
266  */
267 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
268 {
269         struct mmu_gather_batch *batch, *next;
270
271         tlb_flush_mmu(tlb);
272
273         /* keep the page table cache within bounds */
274         check_pgt_cache();
275
276         for (batch = tlb->local.next; batch; batch = next) {
277                 next = batch->next;
278                 free_pages((unsigned long)batch, 0);
279         }
280         tlb->local.next = NULL;
281 }
282
283 /* __tlb_remove_page
284  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
285  *      handling the additional races in SMP caused by other CPUs caching valid
286  *      mappings in their TLBs. Returns the number of free page slots left.
287  *      When out of page slots we must call tlb_flush_mmu().
288  */
289 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
290 {
291         struct mmu_gather_batch *batch;
292
293         VM_BUG_ON(!tlb->need_flush);
294
295         batch = tlb->active;
296         batch->pages[batch->nr++] = page;
297         if (batch->nr == batch->max) {
298                 if (!tlb_next_batch(tlb))
299                         return 0;
300                 batch = tlb->active;
301         }
302         VM_BUG_ON_PAGE(batch->nr > batch->max, page);
303
304         return batch->max - batch->nr;
305 }
306
307 #endif /* HAVE_GENERIC_MMU_GATHER */
308
309 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
310
311 /*
312  * See the comment near struct mmu_table_batch.
313  */
314
315 static void tlb_remove_table_smp_sync(void *arg)
316 {
317         /* Simply deliver the interrupt */
318 }
319
320 static void tlb_remove_table_one(void *table)
321 {
322         /*
323          * This isn't an RCU grace period and hence the page-tables cannot be
324          * assumed to be actually RCU-freed.
325          *
326          * It is however sufficient for software page-table walkers that rely on
327          * IRQ disabling. See the comment near struct mmu_table_batch.
328          */
329         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
330         __tlb_remove_table(table);
331 }
332
333 static void tlb_remove_table_rcu(struct rcu_head *head)
334 {
335         struct mmu_table_batch *batch;
336         int i;
337
338         batch = container_of(head, struct mmu_table_batch, rcu);
339
340         for (i = 0; i < batch->nr; i++)
341                 __tlb_remove_table(batch->tables[i]);
342
343         free_page((unsigned long)batch);
344 }
345
346 void tlb_table_flush(struct mmu_gather *tlb)
347 {
348         struct mmu_table_batch **batch = &tlb->batch;
349
350         if (*batch) {
351                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
352                 *batch = NULL;
353         }
354 }
355
356 void tlb_remove_table(struct mmu_gather *tlb, void *table)
357 {
358         struct mmu_table_batch **batch = &tlb->batch;
359
360         tlb->need_flush = 1;
361
362         /*
363          * When there's less then two users of this mm there cannot be a
364          * concurrent page-table walk.
365          */
366         if (atomic_read(&tlb->mm->mm_users) < 2) {
367                 __tlb_remove_table(table);
368                 return;
369         }
370
371         if (*batch == NULL) {
372                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
373                 if (*batch == NULL) {
374                         tlb_remove_table_one(table);
375                         return;
376                 }
377                 (*batch)->nr = 0;
378         }
379         (*batch)->tables[(*batch)->nr++] = table;
380         if ((*batch)->nr == MAX_TABLE_BATCH)
381                 tlb_table_flush(tlb);
382 }
383
384 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
385
386 /*
387  * Note: this doesn't free the actual pages themselves. That
388  * has been handled earlier when unmapping all the memory regions.
389  */
390 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
391                            unsigned long addr)
392 {
393         pgtable_t token = pmd_pgtable(*pmd);
394         pmd_clear(pmd);
395         pte_free_tlb(tlb, token, addr);
396         atomic_long_dec(&tlb->mm->nr_ptes);
397 }
398
399 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
400                                 unsigned long addr, unsigned long end,
401                                 unsigned long floor, unsigned long ceiling)
402 {
403         pmd_t *pmd;
404         unsigned long next;
405         unsigned long start;
406
407         start = addr;
408         pmd = pmd_offset(pud, addr);
409         do {
410                 next = pmd_addr_end(addr, end);
411                 if (pmd_none_or_clear_bad(pmd))
412                         continue;
413                 free_pte_range(tlb, pmd, addr);
414         } while (pmd++, addr = next, addr != end);
415
416         start &= PUD_MASK;
417         if (start < floor)
418                 return;
419         if (ceiling) {
420                 ceiling &= PUD_MASK;
421                 if (!ceiling)
422                         return;
423         }
424         if (end - 1 > ceiling - 1)
425                 return;
426
427         pmd = pmd_offset(pud, start);
428         pud_clear(pud);
429         pmd_free_tlb(tlb, pmd, start);
430 }
431
432 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
433                                 unsigned long addr, unsigned long end,
434                                 unsigned long floor, unsigned long ceiling)
435 {
436         pud_t *pud;
437         unsigned long next;
438         unsigned long start;
439
440         start = addr;
441         pud = pud_offset(pgd, addr);
442         do {
443                 next = pud_addr_end(addr, end);
444                 if (pud_none_or_clear_bad(pud))
445                         continue;
446                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
447         } while (pud++, addr = next, addr != end);
448
449         start &= PGDIR_MASK;
450         if (start < floor)
451                 return;
452         if (ceiling) {
453                 ceiling &= PGDIR_MASK;
454                 if (!ceiling)
455                         return;
456         }
457         if (end - 1 > ceiling - 1)
458                 return;
459
460         pud = pud_offset(pgd, start);
461         pgd_clear(pgd);
462         pud_free_tlb(tlb, pud, start);
463 }
464
465 /*
466  * This function frees user-level page tables of a process.
467  */
468 void free_pgd_range(struct mmu_gather *tlb,
469                         unsigned long addr, unsigned long end,
470                         unsigned long floor, unsigned long ceiling)
471 {
472         pgd_t *pgd;
473         unsigned long next;
474
475         /*
476          * The next few lines have given us lots of grief...
477          *
478          * Why are we testing PMD* at this top level?  Because often
479          * there will be no work to do at all, and we'd prefer not to
480          * go all the way down to the bottom just to discover that.
481          *
482          * Why all these "- 1"s?  Because 0 represents both the bottom
483          * of the address space and the top of it (using -1 for the
484          * top wouldn't help much: the masks would do the wrong thing).
485          * The rule is that addr 0 and floor 0 refer to the bottom of
486          * the address space, but end 0 and ceiling 0 refer to the top
487          * Comparisons need to use "end - 1" and "ceiling - 1" (though
488          * that end 0 case should be mythical).
489          *
490          * Wherever addr is brought up or ceiling brought down, we must
491          * be careful to reject "the opposite 0" before it confuses the
492          * subsequent tests.  But what about where end is brought down
493          * by PMD_SIZE below? no, end can't go down to 0 there.
494          *
495          * Whereas we round start (addr) and ceiling down, by different
496          * masks at different levels, in order to test whether a table
497          * now has no other vmas using it, so can be freed, we don't
498          * bother to round floor or end up - the tests don't need that.
499          */
500
501         addr &= PMD_MASK;
502         if (addr < floor) {
503                 addr += PMD_SIZE;
504                 if (!addr)
505                         return;
506         }
507         if (ceiling) {
508                 ceiling &= PMD_MASK;
509                 if (!ceiling)
510                         return;
511         }
512         if (end - 1 > ceiling - 1)
513                 end -= PMD_SIZE;
514         if (addr > end - 1)
515                 return;
516
517         pgd = pgd_offset(tlb->mm, addr);
518         do {
519                 next = pgd_addr_end(addr, end);
520                 if (pgd_none_or_clear_bad(pgd))
521                         continue;
522                 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
523         } while (pgd++, addr = next, addr != end);
524 }
525
526 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
527                 unsigned long floor, unsigned long ceiling)
528 {
529         while (vma) {
530                 struct vm_area_struct *next = vma->vm_next;
531                 unsigned long addr = vma->vm_start;
532
533                 /*
534                  * Hide vma from rmap and truncate_pagecache before freeing
535                  * pgtables
536                  */
537                 unlink_anon_vmas(vma);
538                 unlink_file_vma(vma);
539
540                 if (is_vm_hugetlb_page(vma)) {
541                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
542                                 floor, next? next->vm_start: ceiling);
543                 } else {
544                         /*
545                          * Optimization: gather nearby vmas into one call down
546                          */
547                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
548                                && !is_vm_hugetlb_page(next)) {
549                                 vma = next;
550                                 next = vma->vm_next;
551                                 unlink_anon_vmas(vma);
552                                 unlink_file_vma(vma);
553                         }
554                         free_pgd_range(tlb, addr, vma->vm_end,
555                                 floor, next? next->vm_start: ceiling);
556                 }
557                 vma = next;
558         }
559 }
560
561 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
562                 pmd_t *pmd, unsigned long address)
563 {
564         spinlock_t *ptl;
565         pgtable_t new = pte_alloc_one(mm, address);
566         int wait_split_huge_page;
567         if (!new)
568                 return -ENOMEM;
569
570         /*
571          * Ensure all pte setup (eg. pte page lock and page clearing) are
572          * visible before the pte is made visible to other CPUs by being
573          * put into page tables.
574          *
575          * The other side of the story is the pointer chasing in the page
576          * table walking code (when walking the page table without locking;
577          * ie. most of the time). Fortunately, these data accesses consist
578          * of a chain of data-dependent loads, meaning most CPUs (alpha
579          * being the notable exception) will already guarantee loads are
580          * seen in-order. See the alpha page table accessors for the
581          * smp_read_barrier_depends() barriers in page table walking code.
582          */
583         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
584
585         ptl = pmd_lock(mm, pmd);
586         wait_split_huge_page = 0;
587         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
588                 atomic_long_inc(&mm->nr_ptes);
589                 pmd_populate(mm, pmd, new);
590                 new = NULL;
591         } else if (unlikely(pmd_trans_splitting(*pmd)))
592                 wait_split_huge_page = 1;
593         spin_unlock(ptl);
594         if (new)
595                 pte_free(mm, new);
596         if (wait_split_huge_page)
597                 wait_split_huge_page(vma->anon_vma, pmd);
598         return 0;
599 }
600
601 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
602 {
603         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
604         if (!new)
605                 return -ENOMEM;
606
607         smp_wmb(); /* See comment in __pte_alloc */
608
609         spin_lock(&init_mm.page_table_lock);
610         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
611                 pmd_populate_kernel(&init_mm, pmd, new);
612                 new = NULL;
613         } else
614                 VM_BUG_ON(pmd_trans_splitting(*pmd));
615         spin_unlock(&init_mm.page_table_lock);
616         if (new)
617                 pte_free_kernel(&init_mm, new);
618         return 0;
619 }
620
621 static inline void init_rss_vec(int *rss)
622 {
623         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
624 }
625
626 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
627 {
628         int i;
629
630         if (current->mm == mm)
631                 sync_mm_rss(mm);
632         for (i = 0; i < NR_MM_COUNTERS; i++)
633                 if (rss[i])
634                         add_mm_counter(mm, i, rss[i]);
635 }
636
637 /*
638  * This function is called to print an error when a bad pte
639  * is found. For example, we might have a PFN-mapped pte in
640  * a region that doesn't allow it.
641  *
642  * The calling function must still handle the error.
643  */
644 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
645                           pte_t pte, struct page *page)
646 {
647         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
648         pud_t *pud = pud_offset(pgd, addr);
649         pmd_t *pmd = pmd_offset(pud, addr);
650         struct address_space *mapping;
651         pgoff_t index;
652         static unsigned long resume;
653         static unsigned long nr_shown;
654         static unsigned long nr_unshown;
655
656         /*
657          * Allow a burst of 60 reports, then keep quiet for that minute;
658          * or allow a steady drip of one report per second.
659          */
660         if (nr_shown == 60) {
661                 if (time_before(jiffies, resume)) {
662                         nr_unshown++;
663                         return;
664                 }
665                 if (nr_unshown) {
666                         printk(KERN_ALERT
667                                 "BUG: Bad page map: %lu messages suppressed\n",
668                                 nr_unshown);
669                         nr_unshown = 0;
670                 }
671                 nr_shown = 0;
672         }
673         if (nr_shown++ == 0)
674                 resume = jiffies + 60 * HZ;
675
676         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
677         index = linear_page_index(vma, addr);
678
679         printk(KERN_ALERT
680                 "BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
681                 current->comm,
682                 (long long)pte_val(pte), (long long)pmd_val(*pmd));
683         if (page)
684                 dump_page(page, "bad pte");
685         printk(KERN_ALERT
686                 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
687                 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
688         /*
689          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
690          */
691         if (vma->vm_ops)
692                 printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
693                        vma->vm_ops->fault);
694         if (vma->vm_file)
695                 printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
696                        vma->vm_file->f_op->mmap);
697         dump_stack();
698         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
699 }
700
701 static inline bool is_cow_mapping(vm_flags_t flags)
702 {
703         return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
704 }
705
706 /*
707  * vm_normal_page -- This function gets the "struct page" associated with a pte.
708  *
709  * "Special" mappings do not wish to be associated with a "struct page" (either
710  * it doesn't exist, or it exists but they don't want to touch it). In this
711  * case, NULL is returned here. "Normal" mappings do have a struct page.
712  *
713  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
714  * pte bit, in which case this function is trivial. Secondly, an architecture
715  * may not have a spare pte bit, which requires a more complicated scheme,
716  * described below.
717  *
718  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
719  * special mapping (even if there are underlying and valid "struct pages").
720  * COWed pages of a VM_PFNMAP are always normal.
721  *
722  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
723  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
724  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
725  * mapping will always honor the rule
726  *
727  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
728  *
729  * And for normal mappings this is false.
730  *
731  * This restricts such mappings to be a linear translation from virtual address
732  * to pfn. To get around this restriction, we allow arbitrary mappings so long
733  * as the vma is not a COW mapping; in that case, we know that all ptes are
734  * special (because none can have been COWed).
735  *
736  *
737  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
738  *
739  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
740  * page" backing, however the difference is that _all_ pages with a struct
741  * page (that is, those where pfn_valid is true) are refcounted and considered
742  * normal pages by the VM. The disadvantage is that pages are refcounted
743  * (which can be slower and simply not an option for some PFNMAP users). The
744  * advantage is that we don't have to follow the strict linearity rule of
745  * PFNMAP mappings in order to support COWable mappings.
746  *
747  */
748 #ifdef __HAVE_ARCH_PTE_SPECIAL
749 # define HAVE_PTE_SPECIAL 1
750 #else
751 # define HAVE_PTE_SPECIAL 0
752 #endif
753 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
754                                 pte_t pte)
755 {
756         unsigned long pfn = pte_pfn(pte);
757
758         if (HAVE_PTE_SPECIAL) {
759                 if (likely(!pte_special(pte) || pte_numa(pte)))
760                         goto check_pfn;
761                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
762                         return NULL;
763                 if (!is_zero_pfn(pfn))
764                         print_bad_pte(vma, addr, pte, NULL);
765                 return NULL;
766         }
767
768         /* !HAVE_PTE_SPECIAL case follows: */
769
770         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
771                 if (vma->vm_flags & VM_MIXEDMAP) {
772                         if (!pfn_valid(pfn))
773                                 return NULL;
774                         goto out;
775                 } else {
776                         unsigned long off;
777                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
778                         if (pfn == vma->vm_pgoff + off)
779                                 return NULL;
780                         if (!is_cow_mapping(vma->vm_flags))
781                                 return NULL;
782                 }
783         }
784
785 check_pfn:
786         if (unlikely(pfn > highest_memmap_pfn)) {
787                 print_bad_pte(vma, addr, pte, NULL);
788                 return NULL;
789         }
790
791         if (is_zero_pfn(pfn))
792                 return NULL;
793
794         /*
795          * NOTE! We still have PageReserved() pages in the page tables.
796          * eg. VDSO mappings can cause them to exist.
797          */
798 out:
799         return pfn_to_page(pfn);
800 }
801
802 /*
803  * copy one vm_area from one task to the other. Assumes the page tables
804  * already present in the new task to be cleared in the whole range
805  * covered by this vma.
806  */
807
808 static inline unsigned long
809 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
810                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
811                 unsigned long addr, int *rss)
812 {
813         unsigned long vm_flags = vma->vm_flags;
814         pte_t pte = *src_pte;
815         struct page *page;
816
817         /* pte contains position in swap or file, so copy. */
818         if (unlikely(!pte_present(pte))) {
819                 if (!pte_file(pte)) {
820                         swp_entry_t entry = pte_to_swp_entry(pte);
821
822                         if (swap_duplicate(entry) < 0)
823                                 return entry.val;
824
825                         /* make sure dst_mm is on swapoff's mmlist. */
826                         if (unlikely(list_empty(&dst_mm->mmlist))) {
827                                 spin_lock(&mmlist_lock);
828                                 if (list_empty(&dst_mm->mmlist))
829                                         list_add(&dst_mm->mmlist,
830                                                  &src_mm->mmlist);
831                                 spin_unlock(&mmlist_lock);
832                         }
833                         if (likely(!non_swap_entry(entry)))
834                                 rss[MM_SWAPENTS]++;
835                         else if (is_migration_entry(entry)) {
836                                 page = migration_entry_to_page(entry);
837
838                                 if (PageAnon(page))
839                                         rss[MM_ANONPAGES]++;
840                                 else
841                                         rss[MM_FILEPAGES]++;
842
843                                 if (is_write_migration_entry(entry) &&
844                                     is_cow_mapping(vm_flags)) {
845                                         /*
846                                          * COW mappings require pages in both
847                                          * parent and child to be set to read.
848                                          */
849                                         make_migration_entry_read(&entry);
850                                         pte = swp_entry_to_pte(entry);
851                                         if (pte_swp_soft_dirty(*src_pte))
852                                                 pte = pte_swp_mksoft_dirty(pte);
853                                         set_pte_at(src_mm, addr, src_pte, pte);
854                                 }
855                         }
856                 }
857                 goto out_set_pte;
858         }
859
860         /*
861          * If it's a COW mapping, write protect it both
862          * in the parent and the child
863          */
864         if (is_cow_mapping(vm_flags)) {
865                 ptep_set_wrprotect(src_mm, addr, src_pte);
866                 pte = pte_wrprotect(pte);
867         }
868
869         /*
870          * If it's a shared mapping, mark it clean in
871          * the child
872          */
873         if (vm_flags & VM_SHARED)
874                 pte = pte_mkclean(pte);
875         pte = pte_mkold(pte);
876
877         page = vm_normal_page(vma, addr, pte);
878         if (page) {
879                 get_page(page);
880                 page_dup_rmap(page);
881                 if (PageAnon(page))
882                         rss[MM_ANONPAGES]++;
883                 else
884                         rss[MM_FILEPAGES]++;
885         }
886
887 out_set_pte:
888         set_pte_at(dst_mm, addr, dst_pte, pte);
889         return 0;
890 }
891
892 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
893                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
894                    unsigned long addr, unsigned long end)
895 {
896         pte_t *orig_src_pte, *orig_dst_pte;
897         pte_t *src_pte, *dst_pte;
898         spinlock_t *src_ptl, *dst_ptl;
899         int progress = 0;
900         int rss[NR_MM_COUNTERS];
901         swp_entry_t entry = (swp_entry_t){0};
902
903 again:
904         init_rss_vec(rss);
905
906         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
907         if (!dst_pte)
908                 return -ENOMEM;
909         src_pte = pte_offset_map(src_pmd, addr);
910         src_ptl = pte_lockptr(src_mm, src_pmd);
911         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
912         orig_src_pte = src_pte;
913         orig_dst_pte = dst_pte;
914         arch_enter_lazy_mmu_mode();
915
916         do {
917                 /*
918                  * We are holding two locks at this point - either of them
919                  * could generate latencies in another task on another CPU.
920                  */
921                 if (progress >= 32) {
922                         progress = 0;
923                         if (need_resched() ||
924                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
925                                 break;
926                 }
927                 if (pte_none(*src_pte)) {
928                         progress++;
929                         continue;
930                 }
931                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
932                                                         vma, addr, rss);
933                 if (entry.val)
934                         break;
935                 progress += 8;
936         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
937
938         arch_leave_lazy_mmu_mode();
939         spin_unlock(src_ptl);
940         pte_unmap(orig_src_pte);
941         add_mm_rss_vec(dst_mm, rss);
942         pte_unmap_unlock(orig_dst_pte, dst_ptl);
943         cond_resched();
944
945         if (entry.val) {
946                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
947                         return -ENOMEM;
948                 progress = 0;
949         }
950         if (addr != end)
951                 goto again;
952         return 0;
953 }
954
955 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
956                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
957                 unsigned long addr, unsigned long end)
958 {
959         pmd_t *src_pmd, *dst_pmd;
960         unsigned long next;
961
962         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
963         if (!dst_pmd)
964                 return -ENOMEM;
965         src_pmd = pmd_offset(src_pud, addr);
966         do {
967                 next = pmd_addr_end(addr, end);
968                 if (pmd_trans_huge(*src_pmd)) {
969                         int err;
970                         VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
971                         err = copy_huge_pmd(dst_mm, src_mm,
972                                             dst_pmd, src_pmd, addr, vma);
973                         if (err == -ENOMEM)
974                                 return -ENOMEM;
975                         if (!err)
976                                 continue;
977                         /* fall through */
978                 }
979                 if (pmd_none_or_clear_bad(src_pmd))
980                         continue;
981                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
982                                                 vma, addr, next))
983                         return -ENOMEM;
984         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
985         return 0;
986 }
987
988 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
989                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
990                 unsigned long addr, unsigned long end)
991 {
992         pud_t *src_pud, *dst_pud;
993         unsigned long next;
994
995         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
996         if (!dst_pud)
997                 return -ENOMEM;
998         src_pud = pud_offset(src_pgd, addr);
999         do {
1000                 next = pud_addr_end(addr, end);
1001                 if (pud_none_or_clear_bad(src_pud))
1002                         continue;
1003                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1004                                                 vma, addr, next))
1005                         return -ENOMEM;
1006         } while (dst_pud++, src_pud++, addr = next, addr != end);
1007         return 0;
1008 }
1009
1010 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1011                 struct vm_area_struct *vma)
1012 {
1013         pgd_t *src_pgd, *dst_pgd;
1014         unsigned long next;
1015         unsigned long addr = vma->vm_start;
1016         unsigned long end = vma->vm_end;
1017         unsigned long mmun_start;       /* For mmu_notifiers */
1018         unsigned long mmun_end;         /* For mmu_notifiers */
1019         bool is_cow;
1020         int ret;
1021
1022         /*
1023          * Don't copy ptes where a page fault will fill them correctly.
1024          * Fork becomes much lighter when there are big shared or private
1025          * readonly mappings. The tradeoff is that copy_page_range is more
1026          * efficient than faulting.
1027          */
1028         if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1029                                VM_PFNMAP | VM_MIXEDMAP))) {
1030                 if (!vma->anon_vma)
1031                         return 0;
1032         }
1033
1034         if (is_vm_hugetlb_page(vma))
1035                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1036
1037         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1038                 /*
1039                  * We do not free on error cases below as remove_vma
1040                  * gets called on error from higher level routine
1041                  */
1042                 ret = track_pfn_copy(vma);
1043                 if (ret)
1044                         return ret;
1045         }
1046
1047         /*
1048          * We need to invalidate the secondary MMU mappings only when
1049          * there could be a permission downgrade on the ptes of the
1050          * parent mm. And a permission downgrade will only happen if
1051          * is_cow_mapping() returns true.
1052          */
1053         is_cow = is_cow_mapping(vma->vm_flags);
1054         mmun_start = addr;
1055         mmun_end   = end;
1056         if (is_cow)
1057                 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1058                                                     mmun_end);
1059
1060         ret = 0;
1061         dst_pgd = pgd_offset(dst_mm, addr);
1062         src_pgd = pgd_offset(src_mm, addr);
1063         do {
1064                 next = pgd_addr_end(addr, end);
1065                 if (pgd_none_or_clear_bad(src_pgd))
1066                         continue;
1067                 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1068                                             vma, addr, next))) {
1069                         ret = -ENOMEM;
1070                         break;
1071                 }
1072         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1073
1074         if (is_cow)
1075                 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1076         return ret;
1077 }
1078
1079 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1080                                 struct vm_area_struct *vma, pmd_t *pmd,
1081                                 unsigned long addr, unsigned long end,
1082                                 struct zap_details *details)
1083 {
1084         struct mm_struct *mm = tlb->mm;
1085         int force_flush = 0;
1086         int rss[NR_MM_COUNTERS];
1087         spinlock_t *ptl;
1088         pte_t *start_pte;
1089         pte_t *pte;
1090
1091 again:
1092         init_rss_vec(rss);
1093         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1094         pte = start_pte;
1095         arch_enter_lazy_mmu_mode();
1096         do {
1097                 pte_t ptent = *pte;
1098                 if (pte_none(ptent)) {
1099                         continue;
1100                 }
1101
1102                 if (pte_present(ptent)) {
1103                         struct page *page;
1104
1105                         page = vm_normal_page(vma, addr, ptent);
1106                         if (unlikely(details) && page) {
1107                                 /*
1108                                  * unmap_shared_mapping_pages() wants to
1109                                  * invalidate cache without truncating:
1110                                  * unmap shared but keep private pages.
1111                                  */
1112                                 if (details->check_mapping &&
1113                                     details->check_mapping != page->mapping)
1114                                         continue;
1115                                 /*
1116                                  * Each page->index must be checked when
1117                                  * invalidating or truncating nonlinear.
1118                                  */
1119                                 if (details->nonlinear_vma &&
1120                                     (page->index < details->first_index ||
1121                                      page->index > details->last_index))
1122                                         continue;
1123                         }
1124                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1125                                                         tlb->fullmm);
1126                         tlb_remove_tlb_entry(tlb, pte, addr);
1127                         if (unlikely(!page))
1128                                 continue;
1129                         if (unlikely(details) && details->nonlinear_vma
1130                             && linear_page_index(details->nonlinear_vma,
1131                                                 addr) != page->index) {
1132                                 pte_t ptfile = pgoff_to_pte(page->index);
1133                                 if (pte_soft_dirty(ptent))
1134                                         pte_file_mksoft_dirty(ptfile);
1135                                 set_pte_at(mm, addr, pte, ptfile);
1136                         }
1137                         if (PageAnon(page))
1138                                 rss[MM_ANONPAGES]--;
1139                         else {
1140                                 if (pte_dirty(ptent)) {
1141                                         force_flush = 1;
1142                                         set_page_dirty(page);
1143                                 }
1144                                 if (pte_young(ptent) &&
1145                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1146                                         mark_page_accessed(page);
1147                                 rss[MM_FILEPAGES]--;
1148                         }
1149                         page_remove_rmap(page);
1150                         if (unlikely(page_mapcount(page) < 0))
1151                                 print_bad_pte(vma, addr, ptent, page);
1152                         if (unlikely(!__tlb_remove_page(tlb, page))) {
1153                                 force_flush = 1;
1154                                 break;
1155                         }
1156                         continue;
1157                 }
1158                 /*
1159                  * If details->check_mapping, we leave swap entries;
1160                  * if details->nonlinear_vma, we leave file entries.
1161                  */
1162                 if (unlikely(details))
1163                         continue;
1164                 if (pte_file(ptent)) {
1165                         if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1166                                 print_bad_pte(vma, addr, ptent, NULL);
1167                 } else {
1168                         swp_entry_t entry = pte_to_swp_entry(ptent);
1169
1170                         if (!non_swap_entry(entry))
1171                                 rss[MM_SWAPENTS]--;
1172                         else if (is_migration_entry(entry)) {
1173                                 struct page *page;
1174
1175                                 page = migration_entry_to_page(entry);
1176
1177                                 if (PageAnon(page))
1178                                         rss[MM_ANONPAGES]--;
1179                                 else
1180                                         rss[MM_FILEPAGES]--;
1181                         }
1182                         if (unlikely(!free_swap_and_cache(entry)))
1183                                 print_bad_pte(vma, addr, ptent, NULL);
1184                 }
1185                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1186         } while (pte++, addr += PAGE_SIZE, addr != end);
1187
1188         add_mm_rss_vec(mm, rss);
1189         arch_leave_lazy_mmu_mode();
1190
1191         /* Do the actual TLB flush before dropping ptl */
1192         if (force_flush) {
1193                 unsigned long old_end;
1194
1195                 /*
1196                  * Flush the TLB just for the previous segment,
1197                  * then update the range to be the remaining
1198                  * TLB range.
1199                  */
1200                 old_end = tlb->end;
1201                 tlb->end = addr;
1202                 tlb_flush_mmu_tlbonly(tlb);
1203                 tlb->start = addr;
1204                 tlb->end = old_end;
1205         }
1206         pte_unmap_unlock(start_pte, ptl);
1207
1208         /*
1209          * If we forced a TLB flush (either due to running out of
1210          * batch buffers or because we needed to flush dirty TLB
1211          * entries before releasing the ptl), free the batched
1212          * memory too. Restart if we didn't do everything.
1213          */
1214         if (force_flush) {
1215                 force_flush = 0;
1216                 tlb_flush_mmu_free(tlb);
1217
1218                 if (addr != end)
1219                         goto again;
1220         }
1221
1222         return addr;
1223 }
1224
1225 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1226                                 struct vm_area_struct *vma, pud_t *pud,
1227                                 unsigned long addr, unsigned long end,
1228                                 struct zap_details *details)
1229 {
1230         pmd_t *pmd;
1231         unsigned long next;
1232
1233         pmd = pmd_offset(pud, addr);
1234         do {
1235                 next = pmd_addr_end(addr, end);
1236                 if (pmd_trans_huge(*pmd)) {
1237                         if (next - addr != HPAGE_PMD_SIZE) {
1238 #ifdef CONFIG_DEBUG_VM
1239                                 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1240                                         pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1241                                                 __func__, addr, end,
1242                                                 vma->vm_start,
1243                                                 vma->vm_end);
1244                                         BUG();
1245                                 }
1246 #endif
1247                                 split_huge_page_pmd(vma, addr, pmd);
1248                         } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1249                                 goto next;
1250                         /* fall through */
1251                 }
1252                 /*
1253                  * Here there can be other concurrent MADV_DONTNEED or
1254                  * trans huge page faults running, and if the pmd is
1255                  * none or trans huge it can change under us. This is
1256                  * because MADV_DONTNEED holds the mmap_sem in read
1257                  * mode.
1258                  */
1259                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1260                         goto next;
1261                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1262 next:
1263                 cond_resched();
1264         } while (pmd++, addr = next, addr != end);
1265
1266         return addr;
1267 }
1268
1269 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1270                                 struct vm_area_struct *vma, pgd_t *pgd,
1271                                 unsigned long addr, unsigned long end,
1272                                 struct zap_details *details)
1273 {
1274         pud_t *pud;
1275         unsigned long next;
1276
1277         pud = pud_offset(pgd, addr);
1278         do {
1279                 next = pud_addr_end(addr, end);
1280                 if (pud_none_or_clear_bad(pud))
1281                         continue;
1282                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1283         } while (pud++, addr = next, addr != end);
1284
1285         return addr;
1286 }
1287
1288 static void unmap_page_range(struct mmu_gather *tlb,
1289                              struct vm_area_struct *vma,
1290                              unsigned long addr, unsigned long end,
1291                              struct zap_details *details)
1292 {
1293         pgd_t *pgd;
1294         unsigned long next;
1295
1296         if (details && !details->check_mapping && !details->nonlinear_vma)
1297                 details = NULL;
1298
1299         BUG_ON(addr >= end);
1300         mem_cgroup_uncharge_start();
1301         tlb_start_vma(tlb, vma);
1302         pgd = pgd_offset(vma->vm_mm, addr);
1303         do {
1304                 next = pgd_addr_end(addr, end);
1305                 if (pgd_none_or_clear_bad(pgd))
1306                         continue;
1307                 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1308         } while (pgd++, addr = next, addr != end);
1309         tlb_end_vma(tlb, vma);
1310         mem_cgroup_uncharge_end();
1311 }
1312
1313
1314 static void unmap_single_vma(struct mmu_gather *tlb,
1315                 struct vm_area_struct *vma, unsigned long start_addr,
1316                 unsigned long end_addr,
1317                 struct zap_details *details)
1318 {
1319         unsigned long start = max(vma->vm_start, start_addr);
1320         unsigned long end;
1321
1322         if (start >= vma->vm_end)
1323                 return;
1324         end = min(vma->vm_end, end_addr);
1325         if (end <= vma->vm_start)
1326                 return;
1327
1328         if (vma->vm_file)
1329                 uprobe_munmap(vma, start, end);
1330
1331         if (unlikely(vma->vm_flags & VM_PFNMAP))
1332                 untrack_pfn(vma, 0, 0);
1333
1334         if (start != end) {
1335                 if (unlikely(is_vm_hugetlb_page(vma))) {
1336                         /*
1337                          * It is undesirable to test vma->vm_file as it
1338                          * should be non-null for valid hugetlb area.
1339                          * However, vm_file will be NULL in the error
1340                          * cleanup path of mmap_region. When
1341                          * hugetlbfs ->mmap method fails,
1342                          * mmap_region() nullifies vma->vm_file
1343                          * before calling this function to clean up.
1344                          * Since no pte has actually been setup, it is
1345                          * safe to do nothing in this case.
1346                          */
1347                         if (vma->vm_file) {
1348                                 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1349                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1350                                 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1351                         }
1352                 } else
1353                         unmap_page_range(tlb, vma, start, end, details);
1354         }
1355 }
1356
1357 /**
1358  * unmap_vmas - unmap a range of memory covered by a list of vma's
1359  * @tlb: address of the caller's struct mmu_gather
1360  * @vma: the starting vma
1361  * @start_addr: virtual address at which to start unmapping
1362  * @end_addr: virtual address at which to end unmapping
1363  *
1364  * Unmap all pages in the vma list.
1365  *
1366  * Only addresses between `start' and `end' will be unmapped.
1367  *
1368  * The VMA list must be sorted in ascending virtual address order.
1369  *
1370  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1371  * range after unmap_vmas() returns.  So the only responsibility here is to
1372  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1373  * drops the lock and schedules.
1374  */
1375 void unmap_vmas(struct mmu_gather *tlb,
1376                 struct vm_area_struct *vma, unsigned long start_addr,
1377                 unsigned long end_addr)
1378 {
1379         struct mm_struct *mm = vma->vm_mm;
1380
1381         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1382         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1383                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1384         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1385 }
1386
1387 /**
1388  * zap_page_range - remove user pages in a given range
1389  * @vma: vm_area_struct holding the applicable pages
1390  * @start: starting address of pages to zap
1391  * @size: number of bytes to zap
1392  * @details: details of nonlinear truncation or shared cache invalidation
1393  *
1394  * Caller must protect the VMA list
1395  */
1396 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1397                 unsigned long size, struct zap_details *details)
1398 {
1399         struct mm_struct *mm = vma->vm_mm;
1400         struct mmu_gather tlb;
1401         unsigned long end = start + size;
1402
1403         lru_add_drain();
1404         tlb_gather_mmu(&tlb, mm, start, end);
1405         update_hiwater_rss(mm);
1406         mmu_notifier_invalidate_range_start(mm, start, end);
1407         for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1408                 unmap_single_vma(&tlb, vma, start, end, details);
1409         mmu_notifier_invalidate_range_end(mm, start, end);
1410         tlb_finish_mmu(&tlb, start, end);
1411 }
1412
1413 /**
1414  * zap_page_range_single - remove user pages in a given range
1415  * @vma: vm_area_struct holding the applicable pages
1416  * @address: starting address of pages to zap
1417  * @size: number of bytes to zap
1418  * @details: details of nonlinear truncation or shared cache invalidation
1419  *
1420  * The range must fit into one VMA.
1421  */
1422 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1423                 unsigned long size, struct zap_details *details)
1424 {
1425         struct mm_struct *mm = vma->vm_mm;
1426         struct mmu_gather tlb;
1427         unsigned long end = address + size;
1428
1429         lru_add_drain();
1430         tlb_gather_mmu(&tlb, mm, address, end);
1431         update_hiwater_rss(mm);
1432         mmu_notifier_invalidate_range_start(mm, address, end);
1433         unmap_single_vma(&tlb, vma, address, end, details);
1434         mmu_notifier_invalidate_range_end(mm, address, end);
1435         tlb_finish_mmu(&tlb, address, end);
1436 }
1437
1438 /**
1439  * zap_vma_ptes - remove ptes mapping the vma
1440  * @vma: vm_area_struct holding ptes to be zapped
1441  * @address: starting address of pages to zap
1442  * @size: number of bytes to zap
1443  *
1444  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1445  *
1446  * The entire address range must be fully contained within the vma.
1447  *
1448  * Returns 0 if successful.
1449  */
1450 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1451                 unsigned long size)
1452 {
1453         if (address < vma->vm_start || address + size > vma->vm_end ||
1454                         !(vma->vm_flags & VM_PFNMAP))
1455                 return -1;
1456         zap_page_range_single(vma, address, size, NULL);
1457         return 0;
1458 }
1459 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1460
1461 /**
1462  * follow_page_mask - look up a page descriptor from a user-virtual address
1463  * @vma: vm_area_struct mapping @address
1464  * @address: virtual address to look up
1465  * @flags: flags modifying lookup behaviour
1466  * @page_mask: on output, *page_mask is set according to the size of the page
1467  *
1468  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1469  *
1470  * Returns the mapped (struct page *), %NULL if no mapping exists, or
1471  * an error pointer if there is a mapping to something not represented
1472  * by a page descriptor (see also vm_normal_page()).
1473  */
1474 struct page *follow_page_mask(struct vm_area_struct *vma,
1475                               unsigned long address, unsigned int flags,
1476                               unsigned int *page_mask)
1477 {
1478         pgd_t *pgd;
1479         pud_t *pud;
1480         pmd_t *pmd;
1481         pte_t *ptep, pte;
1482         spinlock_t *ptl;
1483         struct page *page;
1484         struct mm_struct *mm = vma->vm_mm;
1485
1486         *page_mask = 0;
1487
1488         page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1489         if (!IS_ERR(page)) {
1490                 BUG_ON(flags & FOLL_GET);
1491                 goto out;
1492         }
1493
1494         page = NULL;
1495         pgd = pgd_offset(mm, address);
1496         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1497                 goto no_page_table;
1498
1499         pud = pud_offset(pgd, address);
1500         if (pud_none(*pud))
1501                 goto no_page_table;
1502         if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1503                 if (flags & FOLL_GET)
1504                         goto out;
1505                 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1506                 goto out;
1507         }
1508         if (unlikely(pud_bad(*pud)))
1509                 goto no_page_table;
1510
1511         pmd = pmd_offset(pud, address);
1512         if (pmd_none(*pmd))
1513                 goto no_page_table;
1514         if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1515                 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1516                 if (flags & FOLL_GET) {
1517                         /*
1518                          * Refcount on tail pages are not well-defined and
1519                          * shouldn't be taken. The caller should handle a NULL
1520                          * return when trying to follow tail pages.
1521                          */
1522                         if (PageHead(page))
1523                                 get_page(page);
1524                         else {
1525                                 page = NULL;
1526                                 goto out;
1527                         }
1528                 }
1529                 goto out;
1530         }
1531         if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1532                 goto no_page_table;
1533         if (pmd_trans_huge(*pmd)) {
1534                 if (flags & FOLL_SPLIT) {
1535                         split_huge_page_pmd(vma, address, pmd);
1536                         goto split_fallthrough;
1537                 }
1538                 ptl = pmd_lock(mm, pmd);
1539                 if (likely(pmd_trans_huge(*pmd))) {
1540                         if (unlikely(pmd_trans_splitting(*pmd))) {
1541                                 spin_unlock(ptl);
1542                                 wait_split_huge_page(vma->anon_vma, pmd);
1543                         } else {
1544                                 page = follow_trans_huge_pmd(vma, address,
1545                                                              pmd, flags);
1546                                 spin_unlock(ptl);
1547                                 *page_mask = HPAGE_PMD_NR - 1;
1548                                 goto out;
1549                         }
1550                 } else
1551                         spin_unlock(ptl);
1552                 /* fall through */
1553         }
1554 split_fallthrough:
1555         if (unlikely(pmd_bad(*pmd)))
1556                 goto no_page_table;
1557
1558         ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1559
1560         pte = *ptep;
1561         if (!pte_present(pte)) {
1562                 swp_entry_t entry;
1563                 /*
1564                  * KSM's break_ksm() relies upon recognizing a ksm page
1565                  * even while it is being migrated, so for that case we
1566                  * need migration_entry_wait().
1567                  */
1568                 if (likely(!(flags & FOLL_MIGRATION)))
1569                         goto no_page;
1570                 if (pte_none(pte) || pte_file(pte))
1571                         goto no_page;
1572                 entry = pte_to_swp_entry(pte);
1573                 if (!is_migration_entry(entry))
1574                         goto no_page;
1575                 pte_unmap_unlock(ptep, ptl);
1576                 migration_entry_wait(mm, pmd, address);
1577                 goto split_fallthrough;
1578         }
1579         if ((flags & FOLL_NUMA) && pte_numa(pte))
1580                 goto no_page;
1581         if ((flags & FOLL_WRITE) && !pte_write(pte))
1582                 goto unlock;
1583
1584         page = vm_normal_page(vma, address, pte);
1585         if (unlikely(!page)) {
1586                 if ((flags & FOLL_DUMP) ||
1587                     !is_zero_pfn(pte_pfn(pte)))
1588                         goto bad_page;
1589                 page = pte_page(pte);
1590         }
1591
1592         if (flags & FOLL_GET)
1593                 get_page_foll(page);
1594         if (flags & FOLL_TOUCH) {
1595                 if ((flags & FOLL_WRITE) &&
1596                     !pte_dirty(pte) && !PageDirty(page))
1597                         set_page_dirty(page);
1598                 /*
1599                  * pte_mkyoung() would be more correct here, but atomic care
1600                  * is needed to avoid losing the dirty bit: it is easier to use
1601                  * mark_page_accessed().
1602                  */
1603                 mark_page_accessed(page);
1604         }
1605         if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1606                 /*
1607                  * The preliminary mapping check is mainly to avoid the
1608                  * pointless overhead of lock_page on the ZERO_PAGE
1609                  * which might bounce very badly if there is contention.
1610                  *
1611                  * If the page is already locked, we don't need to
1612                  * handle it now - vmscan will handle it later if and
1613                  * when it attempts to reclaim the page.
1614                  */
1615                 if (page->mapping && trylock_page(page)) {
1616                         lru_add_drain();  /* push cached pages to LRU */
1617                         /*
1618                          * Because we lock page here, and migration is
1619                          * blocked by the pte's page reference, and we
1620                          * know the page is still mapped, we don't even
1621                          * need to check for file-cache page truncation.
1622                          */
1623                         mlock_vma_page(page);
1624                         unlock_page(page);
1625                 }
1626         }
1627 unlock:
1628         pte_unmap_unlock(ptep, ptl);
1629 out:
1630         return page;
1631
1632 bad_page:
1633         pte_unmap_unlock(ptep, ptl);
1634         return ERR_PTR(-EFAULT);
1635
1636 no_page:
1637         pte_unmap_unlock(ptep, ptl);
1638         if (!pte_none(pte))
1639                 return page;
1640
1641 no_page_table:
1642         /*
1643          * When core dumping an enormous anonymous area that nobody
1644          * has touched so far, we don't want to allocate unnecessary pages or
1645          * page tables.  Return error instead of NULL to skip handle_mm_fault,
1646          * then get_dump_page() will return NULL to leave a hole in the dump.
1647          * But we can only make this optimization where a hole would surely
1648          * be zero-filled if handle_mm_fault() actually did handle it.
1649          */
1650         if ((flags & FOLL_DUMP) &&
1651             (!vma->vm_ops || !vma->vm_ops->fault))
1652                 return ERR_PTR(-EFAULT);
1653         return page;
1654 }
1655
1656 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1657 {
1658         return stack_guard_page_start(vma, addr) ||
1659                stack_guard_page_end(vma, addr+PAGE_SIZE);
1660 }
1661
1662 /**
1663  * __get_user_pages() - pin user pages in memory
1664  * @tsk:        task_struct of target task
1665  * @mm:         mm_struct of target mm
1666  * @start:      starting user address
1667  * @nr_pages:   number of pages from start to pin
1668  * @gup_flags:  flags modifying pin behaviour
1669  * @pages:      array that receives pointers to the pages pinned.
1670  *              Should be at least nr_pages long. Or NULL, if caller
1671  *              only intends to ensure the pages are faulted in.
1672  * @vmas:       array of pointers to vmas corresponding to each page.
1673  *              Or NULL if the caller does not require them.
1674  * @nonblocking: whether waiting for disk IO or mmap_sem contention
1675  *
1676  * Returns number of pages pinned. This may be fewer than the number
1677  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1678  * were pinned, returns -errno. Each page returned must be released
1679  * with a put_page() call when it is finished with. vmas will only
1680  * remain valid while mmap_sem is held.
1681  *
1682  * Must be called with mmap_sem held for read or write.
1683  *
1684  * __get_user_pages walks a process's page tables and takes a reference to
1685  * each struct page that each user address corresponds to at a given
1686  * instant. That is, it takes the page that would be accessed if a user
1687  * thread accesses the given user virtual address at that instant.
1688  *
1689  * This does not guarantee that the page exists in the user mappings when
1690  * __get_user_pages returns, and there may even be a completely different
1691  * page there in some cases (eg. if mmapped pagecache has been invalidated
1692  * and subsequently re faulted). However it does guarantee that the page
1693  * won't be freed completely. And mostly callers simply care that the page
1694  * contains data that was valid *at some point in time*. Typically, an IO
1695  * or similar operation cannot guarantee anything stronger anyway because
1696  * locks can't be held over the syscall boundary.
1697  *
1698  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1699  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1700  * appropriate) must be called after the page is finished with, and
1701  * before put_page is called.
1702  *
1703  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1704  * or mmap_sem contention, and if waiting is needed to pin all pages,
1705  * *@nonblocking will be set to 0.
1706  *
1707  * In most cases, get_user_pages or get_user_pages_fast should be used
1708  * instead of __get_user_pages. __get_user_pages should be used only if
1709  * you need some special @gup_flags.
1710  */
1711 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1712                 unsigned long start, unsigned long nr_pages,
1713                 unsigned int gup_flags, struct page **pages,
1714                 struct vm_area_struct **vmas, int *nonblocking)
1715 {
1716         long i;
1717         unsigned long vm_flags;
1718         unsigned int page_mask;
1719
1720         if (!nr_pages)
1721                 return 0;
1722
1723         VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1724
1725         /*
1726          * If FOLL_FORCE is set then do not force a full fault as the hinting
1727          * fault information is unrelated to the reference behaviour of a task
1728          * using the address space
1729          */
1730         if (!(gup_flags & FOLL_FORCE))
1731                 gup_flags |= FOLL_NUMA;
1732
1733         i = 0;
1734
1735         do {
1736                 struct vm_area_struct *vma;
1737
1738                 vma = find_extend_vma(mm, start);
1739                 if (!vma && in_gate_area(mm, start)) {
1740                         unsigned long pg = start & PAGE_MASK;
1741                         pgd_t *pgd;
1742                         pud_t *pud;
1743                         pmd_t *pmd;
1744                         pte_t *pte;
1745
1746                         /* user gate pages are read-only */
1747                         if (gup_flags & FOLL_WRITE)
1748                                 goto efault;
1749                         if (pg > TASK_SIZE)
1750                                 pgd = pgd_offset_k(pg);
1751                         else
1752                                 pgd = pgd_offset_gate(mm, pg);
1753                         BUG_ON(pgd_none(*pgd));
1754                         pud = pud_offset(pgd, pg);
1755                         BUG_ON(pud_none(*pud));
1756                         pmd = pmd_offset(pud, pg);
1757                         if (pmd_none(*pmd))
1758                                 goto efault;
1759                         VM_BUG_ON(pmd_trans_huge(*pmd));
1760                         pte = pte_offset_map(pmd, pg);
1761                         if (pte_none(*pte)) {
1762                                 pte_unmap(pte);
1763                                 goto efault;
1764                         }
1765                         vma = get_gate_vma(mm);
1766                         if (pages) {
1767                                 struct page *page;
1768
1769                                 page = vm_normal_page(vma, start, *pte);
1770                                 if (!page) {
1771                                         if (!(gup_flags & FOLL_DUMP) &&
1772                                              is_zero_pfn(pte_pfn(*pte)))
1773                                                 page = pte_page(*pte);
1774                                         else {
1775                                                 pte_unmap(pte);
1776                                                 goto efault;
1777                                         }
1778                                 }
1779                                 pages[i] = page;
1780                                 get_page(page);
1781                         }
1782                         pte_unmap(pte);
1783                         page_mask = 0;
1784                         goto next_page;
1785                 }
1786
1787                 if (!vma)
1788                         goto efault;
1789                 vm_flags = vma->vm_flags;
1790                 if (vm_flags & (VM_IO | VM_PFNMAP))
1791                         goto efault;
1792
1793                 if (gup_flags & FOLL_WRITE) {
1794                         if (!(vm_flags & VM_WRITE)) {
1795                                 if (!(gup_flags & FOLL_FORCE))
1796                                         goto efault;
1797                                 /*
1798                                  * We used to let the write,force case do COW
1799                                  * in a VM_MAYWRITE VM_SHARED !VM_WRITE vma, so
1800                                  * ptrace could set a breakpoint in a read-only
1801                                  * mapping of an executable, without corrupting
1802                                  * the file (yet only when that file had been
1803                                  * opened for writing!).  Anon pages in shared
1804                                  * mappings are surprising: now just reject it.
1805                                  */
1806                                 if (!is_cow_mapping(vm_flags)) {
1807                                         WARN_ON_ONCE(vm_flags & VM_MAYWRITE);
1808                                         goto efault;
1809                                 }
1810                         }
1811                 } else {
1812                         if (!(vm_flags & VM_READ)) {
1813                                 if (!(gup_flags & FOLL_FORCE))
1814                                         goto efault;
1815                                 /*
1816                                  * Is there actually any vma we can reach here
1817                                  * which does not have VM_MAYREAD set?
1818                                  */
1819                                 if (!(vm_flags & VM_MAYREAD))
1820                                         goto efault;
1821                         }
1822                 }
1823
1824                 if (is_vm_hugetlb_page(vma)) {
1825                         i = follow_hugetlb_page(mm, vma, pages, vmas,
1826                                         &start, &nr_pages, i, gup_flags);
1827                         continue;
1828                 }
1829
1830                 do {
1831                         struct page *page;
1832                         unsigned int foll_flags = gup_flags;
1833                         unsigned int page_increm;
1834
1835                         /*
1836                          * If we have a pending SIGKILL, don't keep faulting
1837                          * pages and potentially allocating memory.
1838                          */
1839                         if (unlikely(fatal_signal_pending(current)))
1840                                 return i ? i : -ERESTARTSYS;
1841
1842                         cond_resched();
1843                         while (!(page = follow_page_mask(vma, start,
1844                                                 foll_flags, &page_mask))) {
1845                                 int ret;
1846                                 unsigned int fault_flags = 0;
1847
1848                                 /* For mlock, just skip the stack guard page. */
1849                                 if (foll_flags & FOLL_MLOCK) {
1850                                         if (stack_guard_page(vma, start))
1851                                                 goto next_page;
1852                                 }
1853                                 if (foll_flags & FOLL_WRITE)
1854                                         fault_flags |= FAULT_FLAG_WRITE;
1855                                 if (nonblocking)
1856                                         fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1857                                 if (foll_flags & FOLL_NOWAIT)
1858                                         fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1859
1860                                 ret = handle_mm_fault(mm, vma, start,
1861                                                         fault_flags);
1862
1863                                 if (ret & VM_FAULT_ERROR) {
1864                                         if (ret & VM_FAULT_OOM)
1865                                                 return i ? i : -ENOMEM;
1866                                         if (ret & (VM_FAULT_HWPOISON |
1867                                                    VM_FAULT_HWPOISON_LARGE)) {
1868                                                 if (i)
1869                                                         return i;
1870                                                 else if (gup_flags & FOLL_HWPOISON)
1871                                                         return -EHWPOISON;
1872                                                 else
1873                                                         return -EFAULT;
1874                                         }
1875                                         if (ret & VM_FAULT_SIGBUS)
1876                                                 goto efault;
1877                                         BUG();
1878                                 }
1879
1880                                 if (tsk) {
1881                                         if (ret & VM_FAULT_MAJOR)
1882                                                 tsk->maj_flt++;
1883                                         else
1884                                                 tsk->min_flt++;
1885                                 }
1886
1887                                 if (ret & VM_FAULT_RETRY) {
1888                                         if (nonblocking)
1889                                                 *nonblocking = 0;
1890                                         return i;
1891                                 }
1892
1893                                 /*
1894                                  * The VM_FAULT_WRITE bit tells us that
1895                                  * do_wp_page has broken COW when necessary,
1896                                  * even if maybe_mkwrite decided not to set
1897                                  * pte_write. We can thus safely do subsequent
1898                                  * page lookups as if they were reads. But only
1899                                  * do so when looping for pte_write is futile:
1900                                  * in some cases userspace may also be wanting
1901                                  * to write to the gotten user page, which a
1902                                  * read fault here might prevent (a readonly
1903                                  * page might get reCOWed by userspace write).
1904                                  */
1905                                 if ((ret & VM_FAULT_WRITE) &&
1906                                     !(vma->vm_flags & VM_WRITE))
1907                                         foll_flags &= ~FOLL_WRITE;
1908
1909                                 cond_resched();
1910                         }
1911                         if (IS_ERR(page))
1912                                 return i ? i : PTR_ERR(page);
1913                         if (pages) {
1914                                 pages[i] = page;
1915
1916                                 flush_anon_page(vma, page, start);
1917                                 flush_dcache_page(page);
1918                                 page_mask = 0;
1919                         }
1920 next_page:
1921                         if (vmas) {
1922                                 vmas[i] = vma;
1923                                 page_mask = 0;
1924                         }
1925                         page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
1926                         if (page_increm > nr_pages)
1927                                 page_increm = nr_pages;
1928                         i += page_increm;
1929                         start += page_increm * PAGE_SIZE;
1930                         nr_pages -= page_increm;
1931                 } while (nr_pages && start < vma->vm_end);
1932         } while (nr_pages);
1933         return i;
1934 efault:
1935         return i ? : -EFAULT;
1936 }
1937 EXPORT_SYMBOL(__get_user_pages);
1938
1939 /*
1940  * fixup_user_fault() - manually resolve a user page fault
1941  * @tsk:        the task_struct to use for page fault accounting, or
1942  *              NULL if faults are not to be recorded.
1943  * @mm:         mm_struct of target mm
1944  * @address:    user address
1945  * @fault_flags:flags to pass down to handle_mm_fault()
1946  *
1947  * This is meant to be called in the specific scenario where for locking reasons
1948  * we try to access user memory in atomic context (within a pagefault_disable()
1949  * section), this returns -EFAULT, and we want to resolve the user fault before
1950  * trying again.
1951  *
1952  * Typically this is meant to be used by the futex code.
1953  *
1954  * The main difference with get_user_pages() is that this function will
1955  * unconditionally call handle_mm_fault() which will in turn perform all the
1956  * necessary SW fixup of the dirty and young bits in the PTE, while
1957  * handle_mm_fault() only guarantees to update these in the struct page.
1958  *
1959  * This is important for some architectures where those bits also gate the
1960  * access permission to the page because they are maintained in software.  On
1961  * such architectures, gup() will not be enough to make a subsequent access
1962  * succeed.
1963  *
1964  * This should be called with the mm_sem held for read.
1965  */
1966 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1967                      unsigned long address, unsigned int fault_flags)
1968 {
1969         struct vm_area_struct *vma;
1970         vm_flags_t vm_flags;
1971         int ret;
1972
1973         vma = find_extend_vma(mm, address);
1974         if (!vma || address < vma->vm_start)
1975                 return -EFAULT;
1976
1977         vm_flags = (fault_flags & FAULT_FLAG_WRITE) ? VM_WRITE : VM_READ;
1978         if (!(vm_flags & vma->vm_flags))
1979                 return -EFAULT;
1980
1981         ret = handle_mm_fault(mm, vma, address, fault_flags);
1982         if (ret & VM_FAULT_ERROR) {
1983                 if (ret & VM_FAULT_OOM)
1984                         return -ENOMEM;
1985                 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1986                         return -EHWPOISON;
1987                 if (ret & VM_FAULT_SIGBUS)
1988                         return -EFAULT;
1989                 BUG();
1990         }
1991         if (tsk) {
1992                 if (ret & VM_FAULT_MAJOR)
1993                         tsk->maj_flt++;
1994                 else
1995                         tsk->min_flt++;
1996         }
1997         return 0;
1998 }
1999
2000 /*
2001  * get_user_pages() - pin user pages in memory
2002  * @tsk:        the task_struct to use for page fault accounting, or
2003  *              NULL if faults are not to be recorded.
2004  * @mm:         mm_struct of target mm
2005  * @start:      starting user address
2006  * @nr_pages:   number of pages from start to pin
2007  * @write:      whether pages will be written to by the caller
2008  * @force:      whether to force access even when user mapping is currently
2009  *              protected (but never forces write access to shared mapping).
2010  * @pages:      array that receives pointers to the pages pinned.
2011  *              Should be at least nr_pages long. Or NULL, if caller
2012  *              only intends to ensure the pages are faulted in.
2013  * @vmas:       array of pointers to vmas corresponding to each page.
2014  *              Or NULL if the caller does not require them.
2015  *
2016  * Returns number of pages pinned. This may be fewer than the number
2017  * requested. If nr_pages is 0 or negative, returns 0. If no pages
2018  * were pinned, returns -errno. Each page returned must be released
2019  * with a put_page() call when it is finished with. vmas will only
2020  * remain valid while mmap_sem is held.
2021  *
2022  * Must be called with mmap_sem held for read or write.
2023  *
2024  * get_user_pages walks a process's page tables and takes a reference to
2025  * each struct page that each user address corresponds to at a given
2026  * instant. That is, it takes the page that would be accessed if a user
2027  * thread accesses the given user virtual address at that instant.
2028  *
2029  * This does not guarantee that the page exists in the user mappings when
2030  * get_user_pages returns, and there may even be a completely different
2031  * page there in some cases (eg. if mmapped pagecache has been invalidated
2032  * and subsequently re faulted). However it does guarantee that the page
2033  * won't be freed completely. And mostly callers simply care that the page
2034  * contains data that was valid *at some point in time*. Typically, an IO
2035  * or similar operation cannot guarantee anything stronger anyway because
2036  * locks can't be held over the syscall boundary.
2037  *
2038  * If write=0, the page must not be written to. If the page is written to,
2039  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
2040  * after the page is finished with, and before put_page is called.
2041  *
2042  * get_user_pages is typically used for fewer-copy IO operations, to get a
2043  * handle on the memory by some means other than accesses via the user virtual
2044  * addresses. The pages may be submitted for DMA to devices or accessed via
2045  * their kernel linear mapping (via the kmap APIs). Care should be taken to
2046  * use the correct cache flushing APIs.
2047  *
2048  * See also get_user_pages_fast, for performance critical applications.
2049  */
2050 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
2051                 unsigned long start, unsigned long nr_pages, int write,
2052                 int force, struct page **pages, struct vm_area_struct **vmas)
2053 {
2054         int flags = FOLL_TOUCH;
2055
2056         if (pages)
2057                 flags |= FOLL_GET;
2058         if (write)
2059                 flags |= FOLL_WRITE;
2060         if (force)
2061                 flags |= FOLL_FORCE;
2062
2063         return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
2064                                 NULL);
2065 }
2066 EXPORT_SYMBOL(get_user_pages);
2067
2068 /**
2069  * get_dump_page() - pin user page in memory while writing it to core dump
2070  * @addr: user address
2071  *
2072  * Returns struct page pointer of user page pinned for dump,
2073  * to be freed afterwards by page_cache_release() or put_page().
2074  *
2075  * Returns NULL on any kind of failure - a hole must then be inserted into
2076  * the corefile, to preserve alignment with its headers; and also returns
2077  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2078  * allowing a hole to be left in the corefile to save diskspace.
2079  *
2080  * Called without mmap_sem, but after all other threads have been killed.
2081  */
2082 #ifdef CONFIG_ELF_CORE
2083 struct page *get_dump_page(unsigned long addr)
2084 {
2085         struct vm_area_struct *vma;
2086         struct page *page;
2087
2088         if (__get_user_pages(current, current->mm, addr, 1,
2089                              FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
2090                              NULL) < 1)
2091                 return NULL;
2092         flush_cache_page(vma, addr, page_to_pfn(page));
2093         return page;
2094 }
2095 #endif /* CONFIG_ELF_CORE */
2096
2097 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2098                         spinlock_t **ptl)
2099 {
2100         pgd_t * pgd = pgd_offset(mm, addr);
2101         pud_t * pud = pud_alloc(mm, pgd, addr);
2102         if (pud) {
2103                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
2104                 if (pmd) {
2105                         VM_BUG_ON(pmd_trans_huge(*pmd));
2106                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
2107                 }
2108         }
2109         return NULL;
2110 }
2111
2112 /*
2113  * This is the old fallback for page remapping.
2114  *
2115  * For historical reasons, it only allows reserved pages. Only
2116  * old drivers should use this, and they needed to mark their
2117  * pages reserved for the old functions anyway.
2118  */
2119 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2120                         struct page *page, pgprot_t prot)
2121 {
2122         struct mm_struct *mm = vma->vm_mm;
2123         int retval;
2124         pte_t *pte;
2125         spinlock_t *ptl;
2126
2127         retval = -EINVAL;
2128         if (PageAnon(page))
2129                 goto out;
2130         retval = -ENOMEM;
2131         flush_dcache_page(page);
2132         pte = get_locked_pte(mm, addr, &ptl);
2133         if (!pte)
2134                 goto out;
2135         retval = -EBUSY;
2136         if (!pte_none(*pte))
2137                 goto out_unlock;
2138
2139         /* Ok, finally just insert the thing.. */
2140         get_page(page);
2141         inc_mm_counter_fast(mm, MM_FILEPAGES);
2142         page_add_file_rmap(page);
2143         set_pte_at(mm, addr, pte, mk_pte(page, prot));
2144
2145         retval = 0;
2146         pte_unmap_unlock(pte, ptl);
2147         return retval;
2148 out_unlock:
2149         pte_unmap_unlock(pte, ptl);
2150 out:
2151         return retval;
2152 }
2153
2154 /**
2155  * vm_insert_page - insert single page into user vma
2156  * @vma: user vma to map to
2157  * @addr: target user address of this page
2158  * @page: source kernel page
2159  *
2160  * This allows drivers to insert individual pages they've allocated
2161  * into a user vma.
2162  *
2163  * The page has to be a nice clean _individual_ kernel allocation.
2164  * If you allocate a compound page, you need to have marked it as
2165  * such (__GFP_COMP), or manually just split the page up yourself
2166  * (see split_page()).
2167  *
2168  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2169  * took an arbitrary page protection parameter. This doesn't allow
2170  * that. Your vma protection will have to be set up correctly, which
2171  * means that if you want a shared writable mapping, you'd better
2172  * ask for a shared writable mapping!
2173  *
2174  * The page does not need to be reserved.
2175  *
2176  * Usually this function is called from f_op->mmap() handler
2177  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
2178  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2179  * function from other places, for example from page-fault handler.
2180  */
2181 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2182                         struct page *page)
2183 {
2184         if (addr < vma->vm_start || addr >= vma->vm_end)
2185                 return -EFAULT;
2186         if (!page_count(page))
2187                 return -EINVAL;
2188         if (!(vma->vm_flags & VM_MIXEDMAP)) {
2189                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
2190                 BUG_ON(vma->vm_flags & VM_PFNMAP);
2191                 vma->vm_flags |= VM_MIXEDMAP;
2192         }
2193         return insert_page(vma, addr, page, vma->vm_page_prot);
2194 }
2195 EXPORT_SYMBOL(vm_insert_page);
2196
2197 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2198                         unsigned long pfn, pgprot_t prot)
2199 {
2200         struct mm_struct *mm = vma->vm_mm;
2201         int retval;
2202         pte_t *pte, entry;
2203         spinlock_t *ptl;
2204
2205         retval = -ENOMEM;
2206         pte = get_locked_pte(mm, addr, &ptl);
2207         if (!pte)
2208                 goto out;
2209         retval = -EBUSY;
2210         if (!pte_none(*pte))
2211                 goto out_unlock;
2212
2213         /* Ok, finally just insert the thing.. */
2214         entry = pte_mkspecial(pfn_pte(pfn, prot));
2215         set_pte_at(mm, addr, pte, entry);
2216         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2217
2218         retval = 0;
2219 out_unlock:
2220         pte_unmap_unlock(pte, ptl);
2221 out:
2222         return retval;
2223 }
2224
2225 /**
2226  * vm_insert_pfn - insert single pfn into user vma
2227  * @vma: user vma to map to
2228  * @addr: target user address of this page
2229  * @pfn: source kernel pfn
2230  *
2231  * Similar to vm_insert_page, this allows drivers to insert individual pages
2232  * they've allocated into a user vma. Same comments apply.
2233  *
2234  * This function should only be called from a vm_ops->fault handler, and
2235  * in that case the handler should return NULL.
2236  *
2237  * vma cannot be a COW mapping.
2238  *
2239  * As this is called only for pages that do not currently exist, we
2240  * do not need to flush old virtual caches or the TLB.
2241  */
2242 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2243                         unsigned long pfn)
2244 {
2245         int ret;
2246         pgprot_t pgprot = vma->vm_page_prot;
2247         /*
2248          * Technically, architectures with pte_special can avoid all these
2249          * restrictions (same for remap_pfn_range).  However we would like
2250          * consistency in testing and feature parity among all, so we should
2251          * try to keep these invariants in place for everybody.
2252          */
2253         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2254         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2255                                                 (VM_PFNMAP|VM_MIXEDMAP));
2256         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2257         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2258
2259         if (addr < vma->vm_start || addr >= vma->vm_end)
2260                 return -EFAULT;
2261         if (track_pfn_insert(vma, &pgprot, pfn))
2262                 return -EINVAL;
2263
2264         ret = insert_pfn(vma, addr, pfn, pgprot);
2265
2266         return ret;
2267 }
2268 EXPORT_SYMBOL(vm_insert_pfn);
2269
2270 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2271                         unsigned long pfn)
2272 {
2273         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2274
2275         if (addr < vma->vm_start || addr >= vma->vm_end)
2276                 return -EFAULT;
2277
2278         /*
2279          * If we don't have pte special, then we have to use the pfn_valid()
2280          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2281          * refcount the page if pfn_valid is true (hence insert_page rather
2282          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2283          * without pte special, it would there be refcounted as a normal page.
2284          */
2285         if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2286                 struct page *page;
2287
2288                 page = pfn_to_page(pfn);
2289                 return insert_page(vma, addr, page, vma->vm_page_prot);
2290         }
2291         return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2292 }
2293 EXPORT_SYMBOL(vm_insert_mixed);
2294
2295 /*
2296  * maps a range of physical memory into the requested pages. the old
2297  * mappings are removed. any references to nonexistent pages results
2298  * in null mappings (currently treated as "copy-on-access")
2299  */
2300 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2301                         unsigned long addr, unsigned long end,
2302                         unsigned long pfn, pgprot_t prot)
2303 {
2304         pte_t *pte;
2305         spinlock_t *ptl;
2306
2307         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2308         if (!pte)
2309                 return -ENOMEM;
2310         arch_enter_lazy_mmu_mode();
2311         do {
2312                 BUG_ON(!pte_none(*pte));
2313                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2314                 pfn++;
2315         } while (pte++, addr += PAGE_SIZE, addr != end);
2316         arch_leave_lazy_mmu_mode();
2317         pte_unmap_unlock(pte - 1, ptl);
2318         return 0;
2319 }
2320
2321 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2322                         unsigned long addr, unsigned long end,
2323                         unsigned long pfn, pgprot_t prot)
2324 {
2325         pmd_t *pmd;
2326         unsigned long next;
2327
2328         pfn -= addr >> PAGE_SHIFT;
2329         pmd = pmd_alloc(mm, pud, addr);
2330         if (!pmd)
2331                 return -ENOMEM;
2332         VM_BUG_ON(pmd_trans_huge(*pmd));
2333         do {
2334                 next = pmd_addr_end(addr, end);
2335                 if (remap_pte_range(mm, pmd, addr, next,
2336                                 pfn + (addr >> PAGE_SHIFT), prot))
2337                         return -ENOMEM;
2338         } while (pmd++, addr = next, addr != end);
2339         return 0;
2340 }
2341
2342 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2343                         unsigned long addr, unsigned long end,
2344                         unsigned long pfn, pgprot_t prot)
2345 {
2346         pud_t *pud;
2347         unsigned long next;
2348
2349         pfn -= addr >> PAGE_SHIFT;
2350         pud = pud_alloc(mm, pgd, addr);
2351         if (!pud)
2352                 return -ENOMEM;
2353         do {
2354                 next = pud_addr_end(addr, end);
2355                 if (remap_pmd_range(mm, pud, addr, next,
2356                                 pfn + (addr >> PAGE_SHIFT), prot))
2357                         return -ENOMEM;
2358         } while (pud++, addr = next, addr != end);
2359         return 0;
2360 }
2361
2362 /**
2363  * remap_pfn_range - remap kernel memory to userspace
2364  * @vma: user vma to map to
2365  * @addr: target user address to start at
2366  * @pfn: physical address of kernel memory
2367  * @size: size of map area
2368  * @prot: page protection flags for this mapping
2369  *
2370  *  Note: this is only safe if the mm semaphore is held when called.
2371  */
2372 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2373                     unsigned long pfn, unsigned long size, pgprot_t prot)
2374 {
2375         pgd_t *pgd;
2376         unsigned long next;
2377         unsigned long end = addr + PAGE_ALIGN(size);
2378         struct mm_struct *mm = vma->vm_mm;
2379         int err;
2380
2381         /*
2382          * Physically remapped pages are special. Tell the
2383          * rest of the world about it:
2384          *   VM_IO tells people not to look at these pages
2385          *      (accesses can have side effects).
2386          *   VM_PFNMAP tells the core MM that the base pages are just
2387          *      raw PFN mappings, and do not have a "struct page" associated
2388          *      with them.
2389          *   VM_DONTEXPAND
2390          *      Disable vma merging and expanding with mremap().
2391          *   VM_DONTDUMP
2392          *      Omit vma from core dump, even when VM_IO turned off.
2393          *
2394          * There's a horrible special case to handle copy-on-write
2395          * behaviour that some programs depend on. We mark the "original"
2396          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2397          * See vm_normal_page() for details.
2398          */
2399         if (is_cow_mapping(vma->vm_flags)) {
2400                 if (addr != vma->vm_start || end != vma->vm_end)
2401                         return -EINVAL;
2402                 vma->vm_pgoff = pfn;
2403         }
2404
2405         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2406         if (err)
2407                 return -EINVAL;
2408
2409         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2410
2411         BUG_ON(addr >= end);
2412         pfn -= addr >> PAGE_SHIFT;
2413         pgd = pgd_offset(mm, addr);
2414         flush_cache_range(vma, addr, end);
2415         do {
2416                 next = pgd_addr_end(addr, end);
2417                 err = remap_pud_range(mm, pgd, addr, next,
2418                                 pfn + (addr >> PAGE_SHIFT), prot);
2419                 if (err)
2420                         break;
2421         } while (pgd++, addr = next, addr != end);
2422
2423         if (err)
2424                 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2425
2426         return err;
2427 }
2428 EXPORT_SYMBOL(remap_pfn_range);
2429
2430 /**
2431  * vm_iomap_memory - remap memory to userspace
2432  * @vma: user vma to map to
2433  * @start: start of area
2434  * @len: size of area
2435  *
2436  * This is a simplified io_remap_pfn_range() for common driver use. The
2437  * driver just needs to give us the physical memory range to be mapped,
2438  * we'll figure out the rest from the vma information.
2439  *
2440  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2441  * whatever write-combining details or similar.
2442  */
2443 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2444 {
2445         unsigned long vm_len, pfn, pages;
2446
2447         /* Check that the physical memory area passed in looks valid */
2448         if (start + len < start)
2449                 return -EINVAL;
2450         /*
2451          * You *really* shouldn't map things that aren't page-aligned,
2452          * but we've historically allowed it because IO memory might
2453          * just have smaller alignment.
2454          */
2455         len += start & ~PAGE_MASK;
2456         pfn = start >> PAGE_SHIFT;
2457         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2458         if (pfn + pages < pfn)
2459                 return -EINVAL;
2460
2461         /* We start the mapping 'vm_pgoff' pages into the area */
2462         if (vma->vm_pgoff > pages)
2463                 return -EINVAL;
2464         pfn += vma->vm_pgoff;
2465         pages -= vma->vm_pgoff;
2466
2467         /* Can we fit all of the mapping? */
2468         vm_len = vma->vm_end - vma->vm_start;
2469         if (vm_len >> PAGE_SHIFT > pages)
2470                 return -EINVAL;
2471
2472         /* Ok, let it rip */
2473         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2474 }
2475 EXPORT_SYMBOL(vm_iomap_memory);
2476
2477 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2478                                      unsigned long addr, unsigned long end,
2479                                      pte_fn_t fn, void *data)
2480 {
2481         pte_t *pte;
2482         int err;
2483         pgtable_t token;
2484         spinlock_t *uninitialized_var(ptl);
2485
2486         pte = (mm == &init_mm) ?
2487                 pte_alloc_kernel(pmd, addr) :
2488                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2489         if (!pte)
2490                 return -ENOMEM;
2491
2492         BUG_ON(pmd_huge(*pmd));
2493
2494         arch_enter_lazy_mmu_mode();
2495
2496         token = pmd_pgtable(*pmd);
2497
2498         do {
2499                 err = fn(pte++, token, addr, data);
2500                 if (err)
2501                         break;
2502         } while (addr += PAGE_SIZE, addr != end);
2503
2504         arch_leave_lazy_mmu_mode();
2505
2506         if (mm != &init_mm)
2507                 pte_unmap_unlock(pte-1, ptl);
2508         return err;
2509 }
2510
2511 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2512                                      unsigned long addr, unsigned long end,
2513                                      pte_fn_t fn, void *data)
2514 {
2515         pmd_t *pmd;
2516         unsigned long next;
2517         int err;
2518
2519         BUG_ON(pud_huge(*pud));
2520
2521         pmd = pmd_alloc(mm, pud, addr);
2522         if (!pmd)
2523                 return -ENOMEM;
2524         do {
2525                 next = pmd_addr_end(addr, end);
2526                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2527                 if (err)
2528                         break;
2529         } while (pmd++, addr = next, addr != end);
2530         return err;
2531 }
2532
2533 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2534                                      unsigned long addr, unsigned long end,
2535                                      pte_fn_t fn, void *data)
2536 {
2537         pud_t *pud;
2538         unsigned long next;
2539         int err;
2540
2541         pud = pud_alloc(mm, pgd, addr);
2542         if (!pud)
2543                 return -ENOMEM;
2544         do {
2545                 next = pud_addr_end(addr, end);
2546                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2547                 if (err)
2548                         break;
2549         } while (pud++, addr = next, addr != end);
2550         return err;
2551 }
2552
2553 /*
2554  * Scan a region of virtual memory, filling in page tables as necessary
2555  * and calling a provided function on each leaf page table.
2556  */
2557 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2558                         unsigned long size, pte_fn_t fn, void *data)
2559 {
2560         pgd_t *pgd;
2561         unsigned long next;
2562         unsigned long end = addr + size;
2563         int err;
2564
2565         BUG_ON(addr >= end);
2566         pgd = pgd_offset(mm, addr);
2567         do {
2568                 next = pgd_addr_end(addr, end);
2569                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2570                 if (err)
2571                         break;
2572         } while (pgd++, addr = next, addr != end);
2573
2574         return err;
2575 }
2576 EXPORT_SYMBOL_GPL(apply_to_page_range);
2577
2578 /*
2579  * handle_pte_fault chooses page fault handler according to an entry
2580  * which was read non-atomically.  Before making any commitment, on
2581  * those architectures or configurations (e.g. i386 with PAE) which
2582  * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2583  * must check under lock before unmapping the pte and proceeding
2584  * (but do_wp_page is only called after already making such a check;
2585  * and do_anonymous_page can safely check later on).
2586  */
2587 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2588                                 pte_t *page_table, pte_t orig_pte)
2589 {
2590         int same = 1;
2591 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2592         if (sizeof(pte_t) > sizeof(unsigned long)) {
2593                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2594                 spin_lock(ptl);
2595                 same = pte_same(*page_table, orig_pte);
2596                 spin_unlock(ptl);
2597         }
2598 #endif
2599         pte_unmap(page_table);
2600         return same;
2601 }
2602
2603 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2604 {
2605         debug_dma_assert_idle(src);
2606
2607         /*
2608          * If the source page was a PFN mapping, we don't have
2609          * a "struct page" for it. We do a best-effort copy by
2610          * just copying from the original user address. If that
2611          * fails, we just zero-fill it. Live with it.
2612          */
2613         if (unlikely(!src)) {
2614                 void *kaddr = kmap_atomic(dst);
2615                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2616
2617                 /*
2618                  * This really shouldn't fail, because the page is there
2619                  * in the page tables. But it might just be unreadable,
2620                  * in which case we just give up and fill the result with
2621                  * zeroes.
2622                  */
2623                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2624                         clear_page(kaddr);
2625                 kunmap_atomic(kaddr);
2626                 flush_dcache_page(dst);
2627         } else
2628                 copy_user_highpage(dst, src, va, vma);
2629 }
2630
2631 /*
2632  * Notify the address space that the page is about to become writable so that
2633  * it can prohibit this or wait for the page to get into an appropriate state.
2634  *
2635  * We do this without the lock held, so that it can sleep if it needs to.
2636  */
2637 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
2638                unsigned long address)
2639 {
2640         struct vm_fault vmf;
2641         int ret;
2642
2643         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2644         vmf.pgoff = page->index;
2645         vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2646         vmf.page = page;
2647
2648         ret = vma->vm_ops->page_mkwrite(vma, &vmf);
2649         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2650                 return ret;
2651         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2652                 lock_page(page);
2653                 if (!page->mapping) {
2654                         unlock_page(page);
2655                         return 0; /* retry */
2656                 }
2657                 ret |= VM_FAULT_LOCKED;
2658         } else
2659                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2660         return ret;
2661 }
2662
2663 /*
2664  * This routine handles present pages, when users try to write
2665  * to a shared page. It is done by copying the page to a new address
2666  * and decrementing the shared-page counter for the old page.
2667  *
2668  * Note that this routine assumes that the protection checks have been
2669  * done by the caller (the low-level page fault routine in most cases).
2670  * Thus we can safely just mark it writable once we've done any necessary
2671  * COW.
2672  *
2673  * We also mark the page dirty at this point even though the page will
2674  * change only once the write actually happens. This avoids a few races,
2675  * and potentially makes it more efficient.
2676  *
2677  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2678  * but allow concurrent faults), with pte both mapped and locked.
2679  * We return with mmap_sem still held, but pte unmapped and unlocked.
2680  */
2681 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2682                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2683                 spinlock_t *ptl, pte_t orig_pte)
2684         __releases(ptl)
2685 {
2686         struct page *old_page, *new_page = NULL;
2687         pte_t entry;
2688         int ret = 0;
2689         int page_mkwrite = 0;
2690         struct page *dirty_page = NULL;
2691         unsigned long mmun_start = 0;   /* For mmu_notifiers */
2692         unsigned long mmun_end = 0;     /* For mmu_notifiers */
2693
2694         old_page = vm_normal_page(vma, address, orig_pte);
2695         if (!old_page) {
2696                 /*
2697                  * VM_MIXEDMAP !pfn_valid() case
2698                  *
2699                  * We should not cow pages in a shared writeable mapping.
2700                  * Just mark the pages writable as we can't do any dirty
2701                  * accounting on raw pfn maps.
2702                  */
2703                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2704                                      (VM_WRITE|VM_SHARED))
2705                         goto reuse;
2706                 goto gotten;
2707         }
2708
2709         /*
2710          * Take out anonymous pages first, anonymous shared vmas are
2711          * not dirty accountable.
2712          */
2713         if (PageAnon(old_page) && !PageKsm(old_page)) {
2714                 if (!trylock_page(old_page)) {
2715                         page_cache_get(old_page);
2716                         pte_unmap_unlock(page_table, ptl);
2717                         lock_page(old_page);
2718                         page_table = pte_offset_map_lock(mm, pmd, address,
2719                                                          &ptl);
2720                         if (!pte_same(*page_table, orig_pte)) {
2721                                 unlock_page(old_page);
2722                                 goto unlock;
2723                         }
2724                         page_cache_release(old_page);
2725                 }
2726                 if (reuse_swap_page(old_page)) {
2727                         /*
2728                          * The page is all ours.  Move it to our anon_vma so
2729                          * the rmap code will not search our parent or siblings.
2730                          * Protected against the rmap code by the page lock.
2731                          */
2732                         page_move_anon_rmap(old_page, vma, address);
2733                         unlock_page(old_page);
2734                         goto reuse;
2735                 }
2736                 unlock_page(old_page);
2737         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2738                                         (VM_WRITE|VM_SHARED))) {
2739                 /*
2740                  * Only catch write-faults on shared writable pages,
2741                  * read-only shared pages can get COWed by
2742                  * get_user_pages(.write=1, .force=1).
2743                  */
2744                 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2745                         int tmp;
2746                         page_cache_get(old_page);
2747                         pte_unmap_unlock(page_table, ptl);
2748                         tmp = do_page_mkwrite(vma, old_page, address);
2749                         if (unlikely(!tmp || (tmp &
2750                                         (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2751                                 page_cache_release(old_page);
2752                                 return tmp;
2753                         }
2754                         /*
2755                          * Since we dropped the lock we need to revalidate
2756                          * the PTE as someone else may have changed it.  If
2757                          * they did, we just return, as we can count on the
2758                          * MMU to tell us if they didn't also make it writable.
2759                          */
2760                         page_table = pte_offset_map_lock(mm, pmd, address,
2761                                                          &ptl);
2762                         if (!pte_same(*page_table, orig_pte)) {
2763                                 unlock_page(old_page);
2764                                 goto unlock;
2765                         }
2766
2767                         page_mkwrite = 1;
2768                 }
2769                 dirty_page = old_page;
2770                 get_page(dirty_page);
2771
2772 reuse:
2773                 /*
2774                  * Clear the pages cpupid information as the existing
2775                  * information potentially belongs to a now completely
2776                  * unrelated process.
2777                  */
2778                 if (old_page)
2779                         page_cpupid_xchg_last(old_page, (1 << LAST_CPUPID_SHIFT) - 1);
2780
2781                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2782                 entry = pte_mkyoung(orig_pte);
2783                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2784                 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2785                         update_mmu_cache(vma, address, page_table);
2786                 pte_unmap_unlock(page_table, ptl);
2787                 ret |= VM_FAULT_WRITE;
2788
2789                 if (!dirty_page)
2790                         return ret;
2791
2792                 /*
2793                  * Yes, Virginia, this is actually required to prevent a race
2794                  * with clear_page_dirty_for_io() from clearing the page dirty
2795                  * bit after it clear all dirty ptes, but before a racing
2796                  * do_wp_page installs a dirty pte.
2797                  *
2798                  * do_shared_fault is protected similarly.
2799                  */
2800                 if (!page_mkwrite) {
2801                         wait_on_page_locked(dirty_page);
2802                         set_page_dirty_balance(dirty_page);
2803                         /* file_update_time outside page_lock */
2804                         if (vma->vm_file)
2805                                 file_update_time(vma->vm_file);
2806                 }
2807                 put_page(dirty_page);
2808                 if (page_mkwrite) {
2809                         struct address_space *mapping = dirty_page->mapping;
2810
2811                         set_page_dirty(dirty_page);
2812                         unlock_page(dirty_page);
2813                         page_cache_release(dirty_page);
2814                         if (mapping)    {
2815                                 /*
2816                                  * Some device drivers do not set page.mapping
2817                                  * but still dirty their pages
2818                                  */
2819                                 balance_dirty_pages_ratelimited(mapping);
2820                         }
2821                 }
2822
2823                 return ret;
2824         }
2825
2826         /*
2827          * Ok, we need to copy. Oh, well..
2828          */
2829         page_cache_get(old_page);
2830 gotten:
2831         pte_unmap_unlock(page_table, ptl);
2832
2833         if (unlikely(anon_vma_prepare(vma)))
2834                 goto oom;
2835
2836         if (is_zero_pfn(pte_pfn(orig_pte))) {
2837                 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2838                 if (!new_page)
2839                         goto oom;
2840         } else {
2841                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2842                 if (!new_page)
2843                         goto oom;
2844                 cow_user_page(new_page, old_page, address, vma);
2845         }
2846         __SetPageUptodate(new_page);
2847
2848         if (mem_cgroup_charge_anon(new_page, mm, GFP_KERNEL))
2849                 goto oom_free_new;
2850
2851         mmun_start  = address & PAGE_MASK;
2852         mmun_end    = mmun_start + PAGE_SIZE;
2853         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2854
2855         /*
2856          * Re-check the pte - we dropped the lock
2857          */
2858         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2859         if (likely(pte_same(*page_table, orig_pte))) {
2860                 if (old_page) {
2861                         if (!PageAnon(old_page)) {
2862                                 dec_mm_counter_fast(mm, MM_FILEPAGES);
2863                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2864                         }
2865                 } else
2866                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2867                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2868                 entry = mk_pte(new_page, vma->vm_page_prot);
2869                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2870                 /*
2871                  * Clear the pte entry and flush it first, before updating the
2872                  * pte with the new entry. This will avoid a race condition
2873                  * seen in the presence of one thread doing SMC and another
2874                  * thread doing COW.
2875                  */
2876                 ptep_clear_flush(vma, address, page_table);
2877                 page_add_new_anon_rmap(new_page, vma, address);
2878                 /*
2879                  * We call the notify macro here because, when using secondary
2880                  * mmu page tables (such as kvm shadow page tables), we want the
2881                  * new page to be mapped directly into the secondary page table.
2882                  */
2883                 set_pte_at_notify(mm, address, page_table, entry);
2884                 update_mmu_cache(vma, address, page_table);
2885                 if (old_page) {
2886                         /*
2887                          * Only after switching the pte to the new page may
2888                          * we remove the mapcount here. Otherwise another
2889                          * process may come and find the rmap count decremented
2890                          * before the pte is switched to the new page, and
2891                          * "reuse" the old page writing into it while our pte
2892                          * here still points into it and can be read by other
2893                          * threads.
2894                          *
2895                          * The critical issue is to order this
2896                          * page_remove_rmap with the ptp_clear_flush above.
2897                          * Those stores are ordered by (if nothing else,)
2898                          * the barrier present in the atomic_add_negative
2899                          * in page_remove_rmap.
2900                          *
2901                          * Then the TLB flush in ptep_clear_flush ensures that
2902                          * no process can access the old page before the
2903                          * decremented mapcount is visible. And the old page
2904                          * cannot be reused until after the decremented
2905                          * mapcount is visible. So transitively, TLBs to
2906                          * old page will be flushed before it can be reused.
2907                          */
2908                         page_remove_rmap(old_page);
2909                 }
2910
2911                 /* Free the old page.. */
2912                 new_page = old_page;
2913                 ret |= VM_FAULT_WRITE;
2914         } else
2915                 mem_cgroup_uncharge_page(new_page);
2916
2917         if (new_page)
2918                 page_cache_release(new_page);
2919 unlock:
2920         pte_unmap_unlock(page_table, ptl);
2921         if (mmun_end > mmun_start)
2922                 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2923         if (old_page) {
2924                 /*
2925                  * Don't let another task, with possibly unlocked vma,
2926                  * keep the mlocked page.
2927                  */
2928                 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2929                         lock_page(old_page);    /* LRU manipulation */
2930                         munlock_vma_page(old_page);
2931                         unlock_page(old_page);
2932                 }
2933                 page_cache_release(old_page);
2934         }
2935         return ret;
2936 oom_free_new:
2937         page_cache_release(new_page);
2938 oom:
2939         if (old_page)
2940                 page_cache_release(old_page);
2941         return VM_FAULT_OOM;
2942 }
2943
2944 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2945                 unsigned long start_addr, unsigned long end_addr,
2946                 struct zap_details *details)
2947 {
2948         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2949 }
2950
2951 static inline void unmap_mapping_range_tree(struct rb_root *root,
2952                                             struct zap_details *details)
2953 {
2954         struct vm_area_struct *vma;
2955         pgoff_t vba, vea, zba, zea;
2956
2957         vma_interval_tree_foreach(vma, root,
2958                         details->first_index, details->last_index) {
2959
2960                 vba = vma->vm_pgoff;
2961                 vea = vba + vma_pages(vma) - 1;
2962                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2963                 zba = details->first_index;
2964                 if (zba < vba)
2965                         zba = vba;
2966                 zea = details->last_index;
2967                 if (zea > vea)
2968                         zea = vea;
2969
2970                 unmap_mapping_range_vma(vma,
2971                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2972                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2973                                 details);
2974         }
2975 }
2976
2977 static inline void unmap_mapping_range_list(struct list_head *head,
2978                                             struct zap_details *details)
2979 {
2980         struct vm_area_struct *vma;
2981
2982         /*
2983          * In nonlinear VMAs there is no correspondence between virtual address
2984          * offset and file offset.  So we must perform an exhaustive search
2985          * across *all* the pages in each nonlinear VMA, not just the pages
2986          * whose virtual address lies outside the file truncation point.
2987          */
2988         list_for_each_entry(vma, head, shared.nonlinear) {
2989                 details->nonlinear_vma = vma;
2990                 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2991         }
2992 }
2993
2994 /**
2995  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2996  * @mapping: the address space containing mmaps to be unmapped.
2997  * @holebegin: byte in first page to unmap, relative to the start of
2998  * the underlying file.  This will be rounded down to a PAGE_SIZE
2999  * boundary.  Note that this is different from truncate_pagecache(), which
3000  * must keep the partial page.  In contrast, we must get rid of
3001  * partial pages.
3002  * @holelen: size of prospective hole in bytes.  This will be rounded
3003  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3004  * end of the file.
3005  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3006  * but 0 when invalidating pagecache, don't throw away private data.
3007  */
3008 void unmap_mapping_range(struct address_space *mapping,
3009                 loff_t const holebegin, loff_t const holelen, int even_cows)
3010 {
3011         struct zap_details details;
3012         pgoff_t hba = holebegin >> PAGE_SHIFT;
3013         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3014
3015         /* Check for overflow. */
3016         if (sizeof(holelen) > sizeof(hlen)) {
3017                 long long holeend =
3018                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3019                 if (holeend & ~(long long)ULONG_MAX)
3020                         hlen = ULONG_MAX - hba + 1;
3021         }
3022
3023         details.check_mapping = even_cows? NULL: mapping;
3024         details.nonlinear_vma = NULL;
3025         details.first_index = hba;
3026         details.last_index = hba + hlen - 1;
3027         if (details.last_index < details.first_index)
3028                 details.last_index = ULONG_MAX;
3029
3030
3031         mutex_lock(&mapping->i_mmap_mutex);
3032         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
3033                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3034         if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
3035                 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
3036         mutex_unlock(&mapping->i_mmap_mutex);
3037 }
3038 EXPORT_SYMBOL(unmap_mapping_range);
3039
3040 /*
3041  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3042  * but allow concurrent faults), and pte mapped but not yet locked.
3043  * We return with mmap_sem still held, but pte unmapped and unlocked.
3044  */
3045 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
3046                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3047                 unsigned int flags, pte_t orig_pte)
3048 {
3049         spinlock_t *ptl;
3050         struct page *page, *swapcache;
3051         swp_entry_t entry;
3052         pte_t pte;
3053         int locked;
3054         struct mem_cgroup *ptr;
3055         int exclusive = 0;
3056         int ret = 0;
3057
3058         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3059                 goto out;
3060
3061         entry = pte_to_swp_entry(orig_pte);
3062         if (unlikely(non_swap_entry(entry))) {
3063                 if (is_migration_entry(entry)) {
3064                         migration_entry_wait(mm, pmd, address);
3065                 } else if (is_hwpoison_entry(entry)) {
3066                         ret = VM_FAULT_HWPOISON;
3067                 } else {
3068                         print_bad_pte(vma, address, orig_pte, NULL);
3069                         ret = VM_FAULT_SIGBUS;
3070                 }
3071                 goto out;
3072         }
3073         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3074         page = lookup_swap_cache(entry);
3075         if (!page) {
3076                 page = swapin_readahead(entry,
3077                                         GFP_HIGHUSER_MOVABLE, vma, address);
3078                 if (!page) {
3079                         /*
3080                          * Back out if somebody else faulted in this pte
3081                          * while we released the pte lock.
3082                          */
3083                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3084                         if (likely(pte_same(*page_table, orig_pte)))
3085                                 ret = VM_FAULT_OOM;
3086                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3087                         goto unlock;
3088                 }
3089
3090                 /* Had to read the page from swap area: Major fault */
3091                 ret = VM_FAULT_MAJOR;
3092                 count_vm_event(PGMAJFAULT);
3093                 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
3094         } else if (PageHWPoison(page)) {
3095                 /*
3096                  * hwpoisoned dirty swapcache pages are kept for killing
3097                  * owner processes (which may be unknown at hwpoison time)
3098                  */
3099                 ret = VM_FAULT_HWPOISON;
3100                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3101                 swapcache = page;
3102                 goto out_release;
3103         }
3104
3105         swapcache = page;
3106         locked = lock_page_or_retry(page, mm, flags);
3107
3108         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3109         if (!locked) {
3110                 ret |= VM_FAULT_RETRY;
3111                 goto out_release;
3112         }
3113
3114         /*
3115          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3116          * release the swapcache from under us.  The page pin, and pte_same
3117          * test below, are not enough to exclude that.  Even if it is still
3118          * swapcache, we need to check that the page's swap has not changed.
3119          */
3120         if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
3121                 goto out_page;
3122
3123         page = ksm_might_need_to_copy(page, vma, address);
3124         if (unlikely(!page)) {
3125                 ret = VM_FAULT_OOM;
3126                 page = swapcache;
3127                 goto out_page;
3128         }
3129
3130         if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
3131                 ret = VM_FAULT_OOM;
3132                 goto out_page;
3133         }
3134
3135         /*
3136          * Back out if somebody else already faulted in this pte.
3137          */
3138         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3139         if (unlikely(!pte_same(*page_table, orig_pte)))
3140                 goto out_nomap;
3141
3142         if (unlikely(!PageUptodate(page))) {
3143                 ret = VM_FAULT_SIGBUS;
3144                 goto out_nomap;
3145         }
3146
3147         /*
3148          * The page isn't present yet, go ahead with the fault.
3149          *
3150          * Be careful about the sequence of operations here.
3151          * To get its accounting right, reuse_swap_page() must be called
3152          * while the page is counted on swap but not yet in mapcount i.e.
3153          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3154          * must be called after the swap_free(), or it will never succeed.
3155          * Because delete_from_swap_page() may be called by reuse_swap_page(),
3156          * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3157          * in page->private. In this case, a record in swap_cgroup  is silently
3158          * discarded at swap_free().
3159          */
3160
3161         inc_mm_counter_fast(mm, MM_ANONPAGES);
3162         dec_mm_counter_fast(mm, MM_SWAPENTS);
3163         pte = mk_pte(page, vma->vm_page_prot);
3164         if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3165                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3166                 flags &= ~FAULT_FLAG_WRITE;
3167                 ret |= VM_FAULT_WRITE;
3168                 exclusive = 1;
3169         }
3170         flush_icache_page(vma, page);
3171         if (pte_swp_soft_dirty(orig_pte))
3172                 pte = pte_mksoft_dirty(pte);
3173         set_pte_at(mm, address, page_table, pte);
3174         if (page == swapcache)
3175                 do_page_add_anon_rmap(page, vma, address, exclusive);
3176         else /* ksm created a completely new copy */
3177                 page_add_new_anon_rmap(page, vma, address);
3178         /* It's better to call commit-charge after rmap is established */
3179         mem_cgroup_commit_charge_swapin(page, ptr);
3180
3181         swap_free(entry);
3182         if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3183                 try_to_free_swap(page);
3184         unlock_page(page);
3185         if (page != swapcache) {
3186                 /*
3187                  * Hold the lock to avoid the swap entry to be reused
3188                  * until we take the PT lock for the pte_same() check
3189                  * (to avoid false positives from pte_same). For
3190                  * further safety release the lock after the swap_free
3191                  * so that the swap count won't change under a
3192                  * parallel locked swapcache.
3193                  */
3194                 unlock_page(swapcache);
3195                 page_cache_release(swapcache);
3196         }
3197
3198         if (flags & FAULT_FLAG_WRITE) {
3199                 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3200                 if (ret & VM_FAULT_ERROR)
3201                         ret &= VM_FAULT_ERROR;
3202                 goto out;
3203         }
3204
3205         /* No need to invalidate - it was non-present before */
3206         update_mmu_cache(vma, address, page_table);
3207 unlock:
3208         pte_unmap_unlock(page_table, ptl);
3209 out:
3210         return ret;
3211 out_nomap:
3212         mem_cgroup_cancel_charge_swapin(ptr);
3213         pte_unmap_unlock(page_table, ptl);
3214 out_page:
3215         unlock_page(page);
3216 out_release:
3217         page_cache_release(page);
3218         if (page != swapcache) {
3219                 unlock_page(swapcache);
3220                 page_cache_release(swapcache);
3221         }
3222         return ret;
3223 }
3224
3225 /*
3226  * This is like a special single-page "expand_{down|up}wards()",
3227  * except we must first make sure that 'address{-|+}PAGE_SIZE'
3228  * doesn't hit another vma.
3229  */
3230 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3231 {
3232         address &= PAGE_MASK;
3233         if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3234                 struct vm_area_struct *prev = vma->vm_prev;
3235
3236                 /*
3237                  * Is there a mapping abutting this one below?
3238                  *
3239                  * That's only ok if it's the same stack mapping
3240                  * that has gotten split..
3241                  */
3242                 if (prev && prev->vm_end == address)
3243                         return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3244
3245                 expand_downwards(vma, address - PAGE_SIZE);
3246         }
3247         if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3248                 struct vm_area_struct *next = vma->vm_next;
3249
3250                 /* As VM_GROWSDOWN but s/below/above/ */
3251                 if (next && next->vm_start == address + PAGE_SIZE)
3252                         return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3253
3254                 expand_upwards(vma, address + PAGE_SIZE);
3255         }
3256         return 0;
3257 }
3258
3259 /*
3260  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3261  * but allow concurrent faults), and pte mapped but not yet locked.
3262  * We return with mmap_sem still held, but pte unmapped and unlocked.
3263  */
3264 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3265                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3266                 unsigned int flags)
3267 {
3268         struct page *page;
3269         spinlock_t *ptl;
3270         pte_t entry;
3271
3272         pte_unmap(page_table);
3273
3274         /* Check if we need to add a guard page to the stack */
3275         if (check_stack_guard_page(vma, address) < 0)
3276                 return VM_FAULT_SIGBUS;
3277
3278         /* Use the zero-page for reads */
3279         if (!(flags & FAULT_FLAG_WRITE)) {
3280                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3281                                                 vma->vm_page_prot));
3282                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3283                 if (!pte_none(*page_table))
3284                         goto unlock;
3285                 goto setpte;
3286         }
3287
3288         /* Allocate our own private page. */
3289         if (unlikely(anon_vma_prepare(vma)))
3290                 goto oom;
3291         page = alloc_zeroed_user_highpage_movable(vma, address);
3292         if (!page)
3293                 goto oom;
3294         /*
3295          * The memory barrier inside __SetPageUptodate makes sure that
3296          * preceeding stores to the page contents become visible before
3297          * the set_pte_at() write.
3298          */
3299         __SetPageUptodate(page);
3300
3301         if (mem_cgroup_charge_anon(page, mm, GFP_KERNEL))
3302                 goto oom_free_page;
3303
3304         entry = mk_pte(page, vma->vm_page_prot);
3305         if (vma->vm_flags & VM_WRITE)
3306                 entry = pte_mkwrite(pte_mkdirty(entry));
3307
3308         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3309         if (!pte_none(*page_table))
3310                 goto release;
3311
3312         inc_mm_counter_fast(mm, MM_ANONPAGES);
3313         page_add_new_anon_rmap(page, vma, address);
3314 setpte:
3315         set_pte_at(mm, address, page_table, entry);
3316
3317         /* No need to invalidate - it was non-present before */
3318         update_mmu_cache(vma, address, page_table);
3319 unlock:
3320         pte_unmap_unlock(page_table, ptl);
3321         return 0;
3322 release:
3323         mem_cgroup_uncharge_page(page);
3324         page_cache_release(page);
3325         goto unlock;
3326 oom_free_page:
3327         page_cache_release(page);
3328 oom:
3329         return VM_FAULT_OOM;
3330 }
3331
3332 static int __do_fault(struct vm_area_struct *vma, unsigned long address,
3333                 pgoff_t pgoff, unsigned int flags, struct page **page)
3334 {
3335         struct vm_fault vmf;
3336         int ret;
3337
3338         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3339         vmf.pgoff = pgoff;
3340         vmf.flags = flags;
3341         vmf.page = NULL;
3342
3343         ret = vma->vm_ops->fault(vma, &vmf);
3344         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3345                 return ret;
3346
3347         if (unlikely(PageHWPoison(vmf.page))) {
3348                 if (ret & VM_FAULT_LOCKED)
3349                         unlock_page(vmf.page);
3350                 page_cache_release(vmf.page);
3351                 return VM_FAULT_HWPOISON;
3352         }
3353
3354         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3355                 lock_page(vmf.page);
3356         else
3357                 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
3358
3359         *page = vmf.page;
3360         return ret;
3361 }
3362
3363 /**
3364  * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
3365  *
3366  * @vma: virtual memory area
3367  * @address: user virtual address
3368  * @page: page to map
3369  * @pte: pointer to target page table entry
3370  * @write: true, if new entry is writable
3371  * @anon: true, if it's anonymous page
3372  *
3373  * Caller must hold page table lock relevant for @pte.
3374  *
3375  * Target users are page handler itself and implementations of
3376  * vm_ops->map_pages.
3377  */
3378 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
3379                 struct page *page, pte_t *pte, bool write, bool anon)
3380 {
3381         pte_t entry;
3382
3383         flush_icache_page(vma, page);
3384         entry = mk_pte(page, vma->vm_page_prot);
3385         if (write)
3386                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3387         else if (pte_file(*pte) && pte_file_soft_dirty(*pte))
3388                 pte_mksoft_dirty(entry);
3389         if (anon) {
3390                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3391                 page_add_new_anon_rmap(page, vma, address);
3392         } else {
3393                 inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES);
3394                 page_add_file_rmap(page);
3395         }
3396         set_pte_at(vma->vm_mm, address, pte, entry);
3397
3398         /* no need to invalidate: a not-present page won't be cached */
3399         update_mmu_cache(vma, address, pte);
3400 }
3401
3402 #define FAULT_AROUND_ORDER 4
3403
3404 #ifdef CONFIG_DEBUG_FS
3405 static unsigned int fault_around_order = FAULT_AROUND_ORDER;
3406
3407 static int fault_around_order_get(void *data, u64 *val)
3408 {
3409         *val = fault_around_order;
3410         return 0;
3411 }
3412
3413 static int fault_around_order_set(void *data, u64 val)
3414 {
3415         BUILD_BUG_ON((1UL << FAULT_AROUND_ORDER) > PTRS_PER_PTE);
3416         if (1UL << val > PTRS_PER_PTE)
3417                 return -EINVAL;
3418         fault_around_order = val;
3419         return 0;
3420 }
3421 DEFINE_SIMPLE_ATTRIBUTE(fault_around_order_fops,
3422                 fault_around_order_get, fault_around_order_set, "%llu\n");
3423
3424 static int __init fault_around_debugfs(void)
3425 {
3426         void *ret;
3427
3428         ret = debugfs_create_file("fault_around_order", 0644, NULL, NULL,
3429                         &fault_around_order_fops);
3430         if (!ret)
3431                 pr_warn("Failed to create fault_around_order in debugfs");
3432         return 0;
3433 }
3434 late_initcall(fault_around_debugfs);
3435
3436 static inline unsigned long fault_around_pages(void)
3437 {
3438         return 1UL << fault_around_order;
3439 }
3440
3441 static inline unsigned long fault_around_mask(void)
3442 {
3443         return ~((1UL << (PAGE_SHIFT + fault_around_order)) - 1);
3444 }
3445 #else
3446 static inline unsigned long fault_around_pages(void)
3447 {
3448         unsigned long nr_pages;
3449
3450         nr_pages = 1UL << FAULT_AROUND_ORDER;
3451         BUILD_BUG_ON(nr_pages > PTRS_PER_PTE);
3452         return nr_pages;
3453 }
3454
3455 static inline unsigned long fault_around_mask(void)
3456 {
3457         return ~((1UL << (PAGE_SHIFT + FAULT_AROUND_ORDER)) - 1);
3458 }
3459 #endif
3460
3461 static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
3462                 pte_t *pte, pgoff_t pgoff, unsigned int flags)
3463 {
3464         unsigned long start_addr;
3465         pgoff_t max_pgoff;
3466         struct vm_fault vmf;
3467         int off;
3468
3469         start_addr = max(address & fault_around_mask(), vma->vm_start);
3470         off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3471         pte -= off;
3472         pgoff -= off;
3473
3474         /*
3475          *  max_pgoff is either end of page table or end of vma
3476          *  or fault_around_pages() from pgoff, depending what is neast.
3477          */
3478         max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3479                 PTRS_PER_PTE - 1;
3480         max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
3481                         pgoff + fault_around_pages() - 1);
3482
3483         /* Check if it makes any sense to call ->map_pages */
3484         while (!pte_none(*pte)) {
3485                 if (++pgoff > max_pgoff)
3486                         return;
3487                 start_addr += PAGE_SIZE;
3488                 if (start_addr >= vma->vm_end)
3489                         return;
3490                 pte++;
3491         }
3492
3493         vmf.virtual_address = (void __user *) start_addr;
3494         vmf.pte = pte;
3495         vmf.pgoff = pgoff;
3496         vmf.max_pgoff = max_pgoff;
3497         vmf.flags = flags;
3498         vma->vm_ops->map_pages(vma, &vmf);
3499 }
3500
3501 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3502                 unsigned long address, pmd_t *pmd,
3503                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3504 {
3505         struct page *fault_page;
3506         spinlock_t *ptl;
3507         pte_t *pte;
3508         int ret = 0;
3509
3510         /*
3511          * Let's call ->map_pages() first and use ->fault() as fallback
3512          * if page by the offset is not ready to be mapped (cold cache or
3513          * something).
3514          */
3515         if (vma->vm_ops->map_pages) {
3516                 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3517                 do_fault_around(vma, address, pte, pgoff, flags);
3518                 if (!pte_same(*pte, orig_pte))
3519                         goto unlock_out;
3520                 pte_unmap_unlock(pte, ptl);
3521         }
3522
3523         ret = __do_fault(vma, address, pgoff, flags, &fault_page);
3524         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3525                 return ret;
3526
3527         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3528         if (unlikely(!pte_same(*pte, orig_pte))) {
3529                 pte_unmap_unlock(pte, ptl);
3530                 unlock_page(fault_page);
3531                 page_cache_release(fault_page);
3532                 return ret;
3533         }
3534         do_set_pte(vma, address, fault_page, pte, false, false);
3535         unlock_page(fault_page);
3536 unlock_out:
3537         pte_unmap_unlock(pte, ptl);
3538         return ret;
3539 }
3540
3541 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3542                 unsigned long address, pmd_t *pmd,
3543                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3544 {
3545         struct page *fault_page, *new_page;
3546         spinlock_t *ptl;
3547         pte_t *pte;
3548         int ret;
3549
3550         if (unlikely(anon_vma_prepare(vma)))
3551                 return VM_FAULT_OOM;
3552
3553         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3554         if (!new_page)
3555                 return VM_FAULT_OOM;
3556
3557         if (mem_cgroup_charge_anon(new_page, mm, GFP_KERNEL)) {
3558                 page_cache_release(new_page);
3559                 return VM_FAULT_OOM;
3560         }
3561
3562         ret = __do_fault(vma, address, pgoff, flags, &fault_page);
3563         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3564                 goto uncharge_out;
3565
3566         copy_user_highpage(new_page, fault_page, address, vma);
3567         __SetPageUptodate(new_page);
3568
3569         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3570         if (unlikely(!pte_same(*pte, orig_pte))) {
3571                 pte_unmap_unlock(pte, ptl);
3572                 unlock_page(fault_page);
3573                 page_cache_release(fault_page);
3574                 goto uncharge_out;
3575         }
3576         do_set_pte(vma, address, new_page, pte, true, true);
3577         pte_unmap_unlock(pte, ptl);
3578         unlock_page(fault_page);
3579         page_cache_release(fault_page);
3580         return ret;
3581 uncharge_out:
3582         mem_cgroup_uncharge_page(new_page);
3583         page_cache_release(new_page);
3584         return ret;
3585 }
3586
3587 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3588                 unsigned long address, pmd_t *pmd,
3589                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3590 {
3591         struct page *fault_page;
3592         struct address_space *mapping;
3593         spinlock_t *ptl;
3594         pte_t *pte;
3595         int dirtied = 0;
3596         int ret, tmp;
3597
3598         ret = __do_fault(vma, address, pgoff, flags, &fault_page);
3599         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3600                 return ret;
3601
3602         /*
3603          * Check if the backing address space wants to know that the page is
3604          * about to become writable
3605          */
3606         if (vma->vm_ops->page_mkwrite) {
3607                 unlock_page(fault_page);
3608                 tmp = do_page_mkwrite(vma, fault_page, address);
3609                 if (unlikely(!tmp ||
3610                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3611                         page_cache_release(fault_page);
3612                         return tmp;
3613                 }
3614         }
3615
3616         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3617         if (unlikely(!pte_same(*pte, orig_pte))) {
3618                 pte_unmap_unlock(pte, ptl);
3619                 unlock_page(fault_page);
3620                 page_cache_release(fault_page);
3621                 return ret;
3622         }
3623         do_set_pte(vma, address, fault_page, pte, true, false);
3624         pte_unmap_unlock(pte, ptl);
3625
3626         if (set_page_dirty(fault_page))
3627                 dirtied = 1;
3628         mapping = fault_page->mapping;
3629         unlock_page(fault_page);
3630         if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3631                 /*
3632                  * Some device drivers do not set page.mapping but still
3633                  * dirty their pages
3634                  */
3635                 balance_dirty_pages_ratelimited(mapping);
3636         }
3637
3638         /* file_update_time outside page_lock */
3639         if (vma->vm_file && !vma->vm_ops->page_mkwrite)
3640                 file_update_time(vma->vm_file);
3641
3642         return ret;
3643 }
3644
3645 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3646                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3647                 unsigned int flags, pte_t orig_pte)
3648 {
3649         pgoff_t pgoff = (((address & PAGE_MASK)
3650                         - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3651
3652         pte_unmap(page_table);
3653         if (!(flags & FAULT_FLAG_WRITE))
3654                 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3655                                 orig_pte);
3656         if (!(vma->vm_flags & VM_SHARED))
3657                 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3658                                 orig_pte);
3659         return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3660 }
3661
3662 /*
3663  * Fault of a previously existing named mapping. Repopulate the pte
3664  * from the encoded file_pte if possible. This enables swappable
3665  * nonlinear vmas.
3666  *
3667  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3668  * but allow concurrent faults), and pte mapped but not yet locked.
3669  * We return with mmap_sem still held, but pte unmapped and unlocked.
3670  */
3671 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3672                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3673                 unsigned int flags, pte_t orig_pte)
3674 {
3675         pgoff_t pgoff;
3676
3677         flags |= FAULT_FLAG_NONLINEAR;
3678
3679         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3680                 return 0;
3681
3682         if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3683                 /*
3684                  * Page table corrupted: show pte and kill process.
3685                  */
3686                 print_bad_pte(vma, address, orig_pte, NULL);
3687                 return VM_FAULT_SIGBUS;
3688         }
3689
3690         pgoff = pte_to_pgoff(orig_pte);
3691         if (!(flags & FAULT_FLAG_WRITE))
3692                 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3693                                 orig_pte);
3694         if (!(vma->vm_flags & VM_SHARED))
3695                 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3696                                 orig_pte);
3697         return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3698 }
3699
3700 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3701                                 unsigned long addr, int page_nid,
3702                                 int *flags)
3703 {
3704         get_page(page);
3705
3706         count_vm_numa_event(NUMA_HINT_FAULTS);
3707         if (page_nid == numa_node_id()) {
3708                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3709                 *flags |= TNF_FAULT_LOCAL;
3710         }
3711
3712         return mpol_misplaced(page, vma, addr);
3713 }
3714
3715 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3716                    unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3717 {
3718         struct page *page = NULL;
3719         spinlock_t *ptl;
3720         int page_nid = -1;
3721         int last_cpupid;
3722         int target_nid;
3723         bool migrated = false;
3724         int flags = 0;
3725
3726         /*
3727         * The "pte" at this point cannot be used safely without
3728         * validation through pte_unmap_same(). It's of NUMA type but
3729         * the pfn may be screwed if the read is non atomic.
3730         *
3731         * ptep_modify_prot_start is not called as this is clearing
3732         * the _PAGE_NUMA bit and it is not really expected that there
3733         * would be concurrent hardware modifications to the PTE.
3734         */
3735         ptl = pte_lockptr(mm, pmd);
3736         spin_lock(ptl);
3737         if (unlikely(!pte_same(*ptep, pte))) {
3738                 pte_unmap_unlock(ptep, ptl);
3739                 goto out;
3740         }
3741
3742         pte = pte_mknonnuma(pte);
3743         set_pte_at(mm, addr, ptep, pte);
3744         update_mmu_cache(vma, addr, ptep);
3745
3746         page = vm_normal_page(vma, addr, pte);
3747         if (!page) {
3748                 pte_unmap_unlock(ptep, ptl);
3749                 return 0;
3750         }
3751         BUG_ON(is_zero_pfn(page_to_pfn(page)));
3752
3753         /*
3754          * Avoid grouping on DSO/COW pages in specific and RO pages
3755          * in general, RO pages shouldn't hurt as much anyway since
3756          * they can be in shared cache state.
3757          */
3758         if (!pte_write(pte))
3759                 flags |= TNF_NO_GROUP;
3760
3761         /*
3762          * Flag if the page is shared between multiple address spaces. This
3763          * is later used when determining whether to group tasks together
3764          */
3765         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3766                 flags |= TNF_SHARED;
3767
3768         last_cpupid = page_cpupid_last(page);
3769         page_nid = page_to_nid(page);
3770         target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3771         pte_unmap_unlock(ptep, ptl);
3772         if (target_nid == -1) {
3773                 put_page(page);
3774                 goto out;
3775         }
3776
3777         /* Migrate to the requested node */
3778         migrated = migrate_misplaced_page(page, vma, target_nid);
3779         if (migrated) {
3780                 page_nid = target_nid;
3781                 flags |= TNF_MIGRATED;
3782         }
3783
3784 out:
3785         if (page_nid != -1)
3786                 task_numa_fault(last_cpupid, page_nid, 1, flags);
3787         return 0;
3788 }
3789
3790 /*
3791  * These routines also need to handle stuff like marking pages dirty
3792  * and/or accessed for architectures that don't do it in hardware (most
3793  * RISC architectures).  The early dirtying is also good on the i386.
3794  *
3795  * There is also a hook called "update_mmu_cache()" that architectures
3796  * with external mmu caches can use to update those (ie the Sparc or
3797  * PowerPC hashed page tables that act as extended TLBs).
3798  *
3799  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3800  * but allow concurrent faults), and pte mapped but not yet locked.
3801  * We return with mmap_sem still held, but pte unmapped and unlocked.
3802  */
3803 static int handle_pte_fault(struct mm_struct *mm,
3804                      struct vm_area_struct *vma, unsigned long address,
3805                      pte_t *pte, pmd_t *pmd, unsigned int flags)
3806 {
3807         pte_t entry;
3808         spinlock_t *ptl;
3809
3810         entry = *pte;
3811         if (!pte_present(entry)) {
3812                 if (pte_none(entry)) {
3813                         if (vma->vm_ops) {
3814                                 if (likely(vma->vm_ops->fault))
3815                                         return do_linear_fault(mm, vma, address,
3816                                                 pte, pmd, flags, entry);
3817                         }
3818                         return do_anonymous_page(mm, vma, address,
3819                                                  pte, pmd, flags);
3820                 }
3821                 if (pte_file(entry))
3822                         return do_nonlinear_fault(mm, vma, address,
3823                                         pte, pmd, flags, entry);
3824                 return do_swap_page(mm, vma, address,
3825                                         pte, pmd, flags, entry);
3826         }
3827
3828         if (pte_numa(entry))
3829                 return do_numa_page(mm, vma, address, entry, pte, pmd);
3830
3831         ptl = pte_lockptr(mm, pmd);
3832         spin_lock(ptl);
3833         if (unlikely(!pte_same(*pte, entry)))
3834                 goto unlock;
3835         if (flags & FAULT_FLAG_WRITE) {
3836                 if (!pte_write(entry))
3837                         return do_wp_page(mm, vma, address,
3838                                         pte, pmd, ptl, entry);
3839                 entry = pte_mkdirty(entry);
3840         }
3841         entry = pte_mkyoung(entry);
3842         if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3843                 update_mmu_cache(vma, address, pte);
3844         } else {
3845                 /*
3846                  * This is needed only for protection faults but the arch code
3847                  * is not yet telling us if this is a protection fault or not.
3848                  * This still avoids useless tlb flushes for .text page faults
3849                  * with threads.
3850                  */
3851                 if (flags & FAULT_FLAG_WRITE)
3852                         flush_tlb_fix_spurious_fault(vma, address);
3853         }
3854 unlock:
3855         pte_unmap_unlock(pte, ptl);
3856         return 0;
3857 }
3858
3859 /*
3860  * By the time we get here, we already hold the mm semaphore
3861  */
3862 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3863                              unsigned long address, unsigned int flags)
3864 {
3865         pgd_t *pgd;
3866         pud_t *pud;
3867         pmd_t *pmd;
3868         pte_t *pte;
3869
3870         if (unlikely(is_vm_hugetlb_page(vma)))
3871                 return hugetlb_fault(mm, vma, address, flags);
3872
3873         pgd = pgd_offset(mm, address);
3874         pud = pud_alloc(mm, pgd, address);
3875         if (!pud)
3876                 return VM_FAULT_OOM;
3877         pmd = pmd_alloc(mm, pud, address);
3878         if (!pmd)
3879                 return VM_FAULT_OOM;
3880         if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3881                 int ret = VM_FAULT_FALLBACK;
3882                 if (!vma->vm_ops)
3883                         ret = do_huge_pmd_anonymous_page(mm, vma, address,
3884                                         pmd, flags);
3885                 if (!(ret & VM_FAULT_FALLBACK))
3886                         return ret;
3887         } else {
3888                 pmd_t orig_pmd = *pmd;
3889                 int ret;
3890
3891                 barrier();
3892                 if (pmd_trans_huge(orig_pmd)) {
3893                         unsigned int dirty = flags & FAULT_FLAG_WRITE;
3894
3895                         /*
3896                          * If the pmd is splitting, return and retry the
3897                          * the fault.  Alternative: wait until the split
3898                          * is done, and goto retry.
3899                          */
3900                         if (pmd_trans_splitting(orig_pmd))
3901                                 return 0;
3902
3903                         if (pmd_numa(orig_pmd))
3904                                 return do_huge_pmd_numa_page(mm, vma, address,
3905                                                              orig_pmd, pmd);
3906
3907                         if (dirty && !pmd_write(orig_pmd)) {
3908                                 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3909                                                           orig_pmd);
3910                                 if (!(ret & VM_FAULT_FALLBACK))
3911                                         return ret;
3912                         } else {
3913                                 huge_pmd_set_accessed(mm, vma, address, pmd,
3914                                                       orig_pmd, dirty);
3915                                 return 0;
3916                         }
3917                 }
3918         }
3919
3920         /*
3921          * Use __pte_alloc instead of pte_alloc_map, because we can't
3922          * run pte_offset_map on the pmd, if an huge pmd could
3923          * materialize from under us from a different thread.
3924          */
3925         if (unlikely(pmd_none(*pmd)) &&
3926             unlikely(__pte_alloc(mm, vma, pmd, address)))
3927                 return VM_FAULT_OOM;
3928         /* if an huge pmd materialized from under us just retry later */
3929         if (unlikely(pmd_trans_huge(*pmd)))
3930                 return 0;
3931         /*
3932          * A regular pmd is established and it can't morph into a huge pmd
3933          * from under us anymore at this point because we hold the mmap_sem
3934          * read mode and khugepaged takes it in write mode. So now it's
3935          * safe to run pte_offset_map().
3936          */
3937         pte = pte_offset_map(pmd, address);
3938
3939         return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3940 }
3941
3942 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3943                     unsigned long address, unsigned int flags)
3944 {
3945         int ret;
3946
3947         __set_current_state(TASK_RUNNING);
3948
3949         count_vm_event(PGFAULT);
3950         mem_cgroup_count_vm_event(mm, PGFAULT);
3951
3952         /* do counter updates before entering really critical section. */
3953         check_sync_rss_stat(current);
3954
3955         /*
3956          * Enable the memcg OOM handling for faults triggered in user
3957          * space.  Kernel faults are handled more gracefully.
3958          */
3959         if (flags & FAULT_FLAG_USER)
3960                 mem_cgroup_oom_enable();
3961
3962         ret = __handle_mm_fault(mm, vma, address, flags);
3963
3964         if (flags & FAULT_FLAG_USER) {
3965                 mem_cgroup_oom_disable();
3966                 /*
3967                  * The task may have entered a memcg OOM situation but
3968                  * if the allocation error was handled gracefully (no
3969                  * VM_FAULT_OOM), there is no need to kill anything.
3970                  * Just clean up the OOM state peacefully.
3971                  */
3972                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3973                         mem_cgroup_oom_synchronize(false);
3974         }
3975
3976         return ret;
3977 }
3978
3979 #ifndef __PAGETABLE_PUD_FOLDED
3980 /*
3981  * Allocate page upper directory.
3982  * We've already handled the fast-path in-line.
3983  */
3984 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3985 {
3986         pud_t *new = pud_alloc_one(mm, address);
3987         if (!new)
3988                 return -ENOMEM;
3989
3990         smp_wmb(); /* See comment in __pte_alloc */
3991
3992         spin_lock(&mm->page_table_lock);
3993         if (pgd_present(*pgd))          /* Another has populated it */
3994                 pud_free(mm, new);
3995         else
3996                 pgd_populate(mm, pgd, new);
3997         spin_unlock(&mm->page_table_lock);
3998         return 0;
3999 }
4000 #endif /* __PAGETABLE_PUD_FOLDED */
4001
4002 #ifndef __PAGETABLE_PMD_FOLDED
4003 /*
4004  * Allocate page middle directory.
4005  * We've already handled the fast-path in-line.
4006  */
4007 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4008 {
4009         pmd_t *new = pmd_alloc_one(mm, address);
4010         if (!new)
4011                 return -ENOMEM;
4012
4013         smp_wmb(); /* See comment in __pte_alloc */
4014
4015         spin_lock(&mm->page_table_lock);
4016 #ifndef __ARCH_HAS_4LEVEL_HACK
4017         if (pud_present(*pud))          /* Another has populated it */
4018                 pmd_free(mm, new);
4019         else
4020                 pud_populate(mm, pud, new);
4021 #else
4022         if (pgd_present(*pud))          /* Another has populated it */
4023                 pmd_free(mm, new);
4024         else
4025                 pgd_populate(mm, pud, new);
4026 #endif /* __ARCH_HAS_4LEVEL_HACK */
4027         spin_unlock(&mm->page_table_lock);
4028         return 0;
4029 }
4030 #endif /* __PAGETABLE_PMD_FOLDED */
4031
4032 #if !defined(__HAVE_ARCH_GATE_AREA)
4033
4034 #if defined(AT_SYSINFO_EHDR)
4035 static struct vm_area_struct gate_vma;
4036
4037 static int __init gate_vma_init(void)
4038 {
4039         gate_vma.vm_mm = NULL;
4040         gate_vma.vm_start = FIXADDR_USER_START;
4041         gate_vma.vm_end = FIXADDR_USER_END;
4042         gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
4043         gate_vma.vm_page_prot = __P101;
4044
4045         return 0;
4046 }
4047 __initcall(gate_vma_init);
4048 #endif
4049
4050 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
4051 {
4052 #ifdef AT_SYSINFO_EHDR
4053         return &gate_vma;
4054 #else
4055         return NULL;
4056 #endif
4057 }
4058
4059 int in_gate_area_no_mm(unsigned long addr)
4060 {
4061 #ifdef AT_SYSINFO_EHDR
4062         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
4063                 return 1;
4064 #endif
4065         return 0;
4066 }
4067
4068 #endif  /* __HAVE_ARCH_GATE_AREA */
4069
4070 static int __follow_pte(struct mm_struct *mm, unsigned long address,
4071                 pte_t **ptepp, spinlock_t **ptlp)
4072 {
4073         pgd_t *pgd;
4074         pud_t *pud;
4075         pmd_t *pmd;
4076         pte_t *ptep;
4077
4078         pgd = pgd_offset(mm, address);
4079         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4080                 goto out;
4081
4082         pud = pud_offset(pgd, address);
4083         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4084                 goto out;
4085
4086         pmd = pmd_offset(pud, address);
4087         VM_BUG_ON(pmd_trans_huge(*pmd));
4088         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4089                 goto out;
4090
4091         /* We cannot handle huge page PFN maps. Luckily they don't exist. */
4092         if (pmd_huge(*pmd))
4093                 goto out;
4094
4095         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4096         if (!ptep)
4097                 goto out;
4098         if (!pte_present(*ptep))
4099                 goto unlock;
4100         *ptepp = ptep;
4101         return 0;
4102 unlock:
4103         pte_unmap_unlock(ptep, *ptlp);
4104 out:
4105         return -EINVAL;
4106 }
4107
4108 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4109                              pte_t **ptepp, spinlock_t **ptlp)
4110 {
4111         int res;
4112
4113         /* (void) is needed to make gcc happy */
4114         (void) __cond_lock(*ptlp,
4115                            !(res = __follow_pte(mm, address, ptepp, ptlp)));
4116         return res;
4117 }
4118
4119 /**
4120  * follow_pfn - look up PFN at a user virtual address
4121  * @vma: memory mapping
4122  * @address: user virtual address
4123  * @pfn: location to store found PFN
4124  *
4125  * Only IO mappings and raw PFN mappings are allowed.
4126  *
4127  * Returns zero and the pfn at @pfn on success, -ve otherwise.
4128  */
4129 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4130         unsigned long *pfn)
4131 {
4132         int ret = -EINVAL;
4133         spinlock_t *ptl;
4134         pte_t *ptep;
4135
4136         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4137                 return ret;
4138
4139         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4140         if (ret)
4141                 return ret;
4142         *pfn = pte_pfn(*ptep);
4143         pte_unmap_unlock(ptep, ptl);
4144         return 0;
4145 }
4146 EXPORT_SYMBOL(follow_pfn);
4147
4148 #ifdef CONFIG_HAVE_IOREMAP_PROT
4149 int follow_phys(struct vm_area_struct *vma,
4150                 unsigned long address, unsigned int flags,
4151                 unsigned long *prot, resource_size_t *phys)
4152 {
4153         int ret = -EINVAL;
4154         pte_t *ptep, pte;
4155         spinlock_t *ptl;
4156
4157         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4158                 goto out;
4159
4160         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4161                 goto out;
4162         pte = *ptep;
4163
4164         if ((flags & FOLL_WRITE) && !pte_write(pte))
4165                 goto unlock;
4166
4167         *prot = pgprot_val(pte_pgprot(pte));
4168         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4169
4170         ret = 0;
4171 unlock:
4172         pte_unmap_unlock(ptep, ptl);
4173 out:
4174         return ret;
4175 }
4176
4177 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4178                         void *buf, int len, int write)
4179 {
4180         resource_size_t phys_addr;
4181         unsigned long prot = 0;
4182         void __iomem *maddr;
4183         int offset = addr & (PAGE_SIZE-1);
4184
4185         if (follow_phys(vma, addr, write, &prot, &phys_addr))
4186                 return -EINVAL;
4187
4188         maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
4189         if (write)
4190                 memcpy_toio(maddr + offset, buf, len);
4191         else
4192                 memcpy_fromio(buf, maddr + offset, len);
4193         iounmap(maddr);
4194
4195         return len;
4196 }
4197 EXPORT_SYMBOL_GPL(generic_access_phys);
4198 #endif
4199
4200 /*
4201  * Access another process' address space as given in mm.  If non-NULL, use the
4202  * given task for page fault accounting.
4203  */
4204 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4205                 unsigned long addr, void *buf, int len, int write)
4206 {
4207         struct vm_area_struct *vma;
4208         void *old_buf = buf;
4209
4210         down_read(&mm->mmap_sem);
4211         /* ignore errors, just check how much was successfully transferred */
4212         while (len) {
4213                 int bytes, ret, offset;
4214                 void *maddr;
4215                 struct page *page = NULL;
4216
4217                 ret = get_user_pages(tsk, mm, addr, 1,
4218                                 write, 1, &page, &vma);
4219                 if (ret <= 0) {
4220                         /*
4221                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4222                          * we can access using slightly different code.
4223                          */
4224 #ifdef CONFIG_HAVE_IOREMAP_PROT
4225                         vma = find_vma(mm, addr);
4226                         if (!vma || vma->vm_start > addr)
4227                                 break;
4228                         if (vma->vm_ops && vma->vm_ops->access)
4229                                 ret = vma->vm_ops->access(vma, addr, buf,
4230                                                           len, write);
4231                         if (ret <= 0)
4232 #endif
4233                                 break;
4234                         bytes = ret;
4235                 } else {
4236                         bytes = len;
4237                         offset = addr & (PAGE_SIZE-1);
4238                         if (bytes > PAGE_SIZE-offset)
4239                                 bytes = PAGE_SIZE-offset;
4240
4241                         maddr = kmap(page);
4242                         if (write) {
4243                                 copy_to_user_page(vma, page, addr,
4244                                                   maddr + offset, buf, bytes);
4245                                 set_page_dirty_lock(page);
4246                         } else {
4247                                 copy_from_user_page(vma, page, addr,
4248                                                     buf, maddr + offset, bytes);
4249                         }
4250                         kunmap(page);
4251                         page_cache_release(page);
4252                 }
4253                 len -= bytes;
4254                 buf += bytes;
4255                 addr += bytes;
4256         }
4257         up_read(&mm->mmap_sem);
4258
4259         return buf - old_buf;
4260 }
4261
4262 /**
4263  * access_remote_vm - access another process' address space
4264  * @mm:         the mm_struct of the target address space
4265  * @addr:       start address to access
4266  * @buf:        source or destination buffer
4267  * @len:        number of bytes to transfer
4268  * @write:      whether the access is a write
4269  *
4270  * The caller must hold a reference on @mm.
4271  */
4272 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4273                 void *buf, int len, int write)
4274 {
4275         return __access_remote_vm(NULL, mm, addr, buf, len, write);
4276 }
4277
4278 /*
4279  * Access another process' address space.
4280  * Source/target buffer must be kernel space,
4281  * Do not walk the page table directly, use get_user_pages
4282  */
4283 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4284                 void *buf, int len, int write)
4285 {
4286         struct mm_struct *mm;
4287         int ret;
4288
4289         mm = get_task_mm(tsk);
4290         if (!mm)
4291                 return 0;
4292
4293         ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
4294         mmput(mm);
4295
4296         return ret;
4297 }
4298
4299 /*
4300  * Print the name of a VMA.
4301  */
4302 void print_vma_addr(char *prefix, unsigned long ip)
4303 {
4304         struct mm_struct *mm = current->mm;
4305         struct vm_area_struct *vma;
4306
4307         /*
4308          * Do not print if we are in atomic
4309          * contexts (in exception stacks, etc.):
4310          */
4311         if (preempt_count())
4312                 return;
4313
4314         down_read(&mm->mmap_sem);
4315         vma = find_vma(mm, ip);
4316         if (vma && vma->vm_file) {
4317                 struct file *f = vma->vm_file;
4318                 char *buf = (char *)__get_free_page(GFP_KERNEL);
4319                 if (buf) {
4320                         char *p;
4321
4322                         p = d_path(&f->f_path, buf, PAGE_SIZE);
4323                         if (IS_ERR(p))
4324                                 p = "?";
4325                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4326                                         vma->vm_start,
4327                                         vma->vm_end - vma->vm_start);
4328                         free_page((unsigned long)buf);
4329                 }
4330         }
4331         up_read(&mm->mmap_sem);
4332 }
4333
4334 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4335 void might_fault(void)
4336 {
4337         /*
4338          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4339          * holding the mmap_sem, this is safe because kernel memory doesn't
4340          * get paged out, therefore we'll never actually fault, and the
4341          * below annotations will generate false positives.
4342          */
4343         if (segment_eq(get_fs(), KERNEL_DS))
4344                 return;
4345
4346         /*
4347          * it would be nicer only to annotate paths which are not under
4348          * pagefault_disable, however that requires a larger audit and
4349          * providing helpers like get_user_atomic.
4350          */
4351         if (in_atomic())
4352                 return;
4353
4354         __might_sleep(__FILE__, __LINE__, 0);
4355
4356         if (current->mm)
4357                 might_lock_read(&current->mm->mmap_sem);
4358 }
4359 EXPORT_SYMBOL(might_fault);
4360 #endif
4361
4362 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4363 static void clear_gigantic_page(struct page *page,
4364                                 unsigned long addr,
4365                                 unsigned int pages_per_huge_page)
4366 {
4367         int i;
4368         struct page *p = page;
4369
4370         might_sleep();
4371         for (i = 0; i < pages_per_huge_page;
4372              i++, p = mem_map_next(p, page, i)) {
4373                 cond_resched();
4374                 clear_user_highpage(p, addr + i * PAGE_SIZE);
4375         }
4376 }
4377 void clear_huge_page(struct page *page,
4378                      unsigned long addr, unsigned int pages_per_huge_page)
4379 {
4380         int i;
4381
4382         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4383                 clear_gigantic_page(page, addr, pages_per_huge_page);
4384                 return;
4385         }
4386
4387         might_sleep();
4388         for (i = 0; i < pages_per_huge_page; i++) {
4389                 cond_resched();
4390                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4391         }
4392 }
4393
4394 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4395                                     unsigned long addr,
4396                                     struct vm_area_struct *vma,
4397                                     unsigned int pages_per_huge_page)
4398 {
4399         int i;
4400         struct page *dst_base = dst;
4401         struct page *src_base = src;
4402
4403         for (i = 0; i < pages_per_huge_page; ) {
4404                 cond_resched();
4405                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4406
4407                 i++;
4408                 dst = mem_map_next(dst, dst_base, i);
4409                 src = mem_map_next(src, src_base, i);
4410         }
4411 }
4412
4413 void copy_user_huge_page(struct page *dst, struct page *src,
4414                          unsigned long addr, struct vm_area_struct *vma,
4415                          unsigned int pages_per_huge_page)
4416 {
4417         int i;
4418
4419         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4420                 copy_user_gigantic_page(dst, src, addr, vma,
4421                                         pages_per_huge_page);
4422                 return;
4423         }
4424
4425         might_sleep();
4426         for (i = 0; i < pages_per_huge_page; i++) {
4427                 cond_resched();
4428                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4429         }
4430 }
4431 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4432
4433 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4434
4435 static struct kmem_cache *page_ptl_cachep;
4436
4437 void __init ptlock_cache_init(void)
4438 {
4439         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4440                         SLAB_PANIC, NULL);
4441 }
4442
4443 bool ptlock_alloc(struct page *page)
4444 {
4445         spinlock_t *ptl;
4446
4447         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4448         if (!ptl)
4449                 return false;
4450         page->ptl = ptl;
4451         return true;
4452 }
4453
4454 void ptlock_free(struct page *page)
4455 {
4456         kmem_cache_free(page_ptl_cachep, page->ptl);
4457 }
4458 #endif