Merge master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[cascardo/linux.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/init.h>
51
52 #include <asm/pgalloc.h>
53 #include <asm/uaccess.h>
54 #include <asm/tlb.h>
55 #include <asm/tlbflush.h>
56 #include <asm/pgtable.h>
57
58 #include <linux/swapops.h>
59 #include <linux/elf.h>
60
61 #ifndef CONFIG_NEED_MULTIPLE_NODES
62 /* use the per-pgdat data instead for discontigmem - mbligh */
63 unsigned long max_mapnr;
64 struct page *mem_map;
65
66 EXPORT_SYMBOL(max_mapnr);
67 EXPORT_SYMBOL(mem_map);
68 #endif
69
70 unsigned long num_physpages;
71 /*
72  * A number of key systems in x86 including ioremap() rely on the assumption
73  * that high_memory defines the upper bound on direct map memory, then end
74  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
75  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
76  * and ZONE_HIGHMEM.
77  */
78 void * high_memory;
79 unsigned long vmalloc_earlyreserve;
80
81 EXPORT_SYMBOL(num_physpages);
82 EXPORT_SYMBOL(high_memory);
83 EXPORT_SYMBOL(vmalloc_earlyreserve);
84
85 /*
86  * If a p?d_bad entry is found while walking page tables, report
87  * the error, before resetting entry to p?d_none.  Usually (but
88  * very seldom) called out from the p?d_none_or_clear_bad macros.
89  */
90
91 void pgd_clear_bad(pgd_t *pgd)
92 {
93         pgd_ERROR(*pgd);
94         pgd_clear(pgd);
95 }
96
97 void pud_clear_bad(pud_t *pud)
98 {
99         pud_ERROR(*pud);
100         pud_clear(pud);
101 }
102
103 void pmd_clear_bad(pmd_t *pmd)
104 {
105         pmd_ERROR(*pmd);
106         pmd_clear(pmd);
107 }
108
109 /*
110  * Note: this doesn't free the actual pages themselves. That
111  * has been handled earlier when unmapping all the memory regions.
112  */
113 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
114 {
115         struct page *page = pmd_page(*pmd);
116         pmd_clear(pmd);
117         pte_lock_deinit(page);
118         pte_free_tlb(tlb, page);
119         dec_page_state(nr_page_table_pages);
120         tlb->mm->nr_ptes--;
121 }
122
123 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
124                                 unsigned long addr, unsigned long end,
125                                 unsigned long floor, unsigned long ceiling)
126 {
127         pmd_t *pmd;
128         unsigned long next;
129         unsigned long start;
130
131         start = addr;
132         pmd = pmd_offset(pud, addr);
133         do {
134                 next = pmd_addr_end(addr, end);
135                 if (pmd_none_or_clear_bad(pmd))
136                         continue;
137                 free_pte_range(tlb, pmd);
138         } while (pmd++, addr = next, addr != end);
139
140         start &= PUD_MASK;
141         if (start < floor)
142                 return;
143         if (ceiling) {
144                 ceiling &= PUD_MASK;
145                 if (!ceiling)
146                         return;
147         }
148         if (end - 1 > ceiling - 1)
149                 return;
150
151         pmd = pmd_offset(pud, start);
152         pud_clear(pud);
153         pmd_free_tlb(tlb, pmd);
154 }
155
156 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
157                                 unsigned long addr, unsigned long end,
158                                 unsigned long floor, unsigned long ceiling)
159 {
160         pud_t *pud;
161         unsigned long next;
162         unsigned long start;
163
164         start = addr;
165         pud = pud_offset(pgd, addr);
166         do {
167                 next = pud_addr_end(addr, end);
168                 if (pud_none_or_clear_bad(pud))
169                         continue;
170                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
171         } while (pud++, addr = next, addr != end);
172
173         start &= PGDIR_MASK;
174         if (start < floor)
175                 return;
176         if (ceiling) {
177                 ceiling &= PGDIR_MASK;
178                 if (!ceiling)
179                         return;
180         }
181         if (end - 1 > ceiling - 1)
182                 return;
183
184         pud = pud_offset(pgd, start);
185         pgd_clear(pgd);
186         pud_free_tlb(tlb, pud);
187 }
188
189 /*
190  * This function frees user-level page tables of a process.
191  *
192  * Must be called with pagetable lock held.
193  */
194 void free_pgd_range(struct mmu_gather **tlb,
195                         unsigned long addr, unsigned long end,
196                         unsigned long floor, unsigned long ceiling)
197 {
198         pgd_t *pgd;
199         unsigned long next;
200         unsigned long start;
201
202         /*
203          * The next few lines have given us lots of grief...
204          *
205          * Why are we testing PMD* at this top level?  Because often
206          * there will be no work to do at all, and we'd prefer not to
207          * go all the way down to the bottom just to discover that.
208          *
209          * Why all these "- 1"s?  Because 0 represents both the bottom
210          * of the address space and the top of it (using -1 for the
211          * top wouldn't help much: the masks would do the wrong thing).
212          * The rule is that addr 0 and floor 0 refer to the bottom of
213          * the address space, but end 0 and ceiling 0 refer to the top
214          * Comparisons need to use "end - 1" and "ceiling - 1" (though
215          * that end 0 case should be mythical).
216          *
217          * Wherever addr is brought up or ceiling brought down, we must
218          * be careful to reject "the opposite 0" before it confuses the
219          * subsequent tests.  But what about where end is brought down
220          * by PMD_SIZE below? no, end can't go down to 0 there.
221          *
222          * Whereas we round start (addr) and ceiling down, by different
223          * masks at different levels, in order to test whether a table
224          * now has no other vmas using it, so can be freed, we don't
225          * bother to round floor or end up - the tests don't need that.
226          */
227
228         addr &= PMD_MASK;
229         if (addr < floor) {
230                 addr += PMD_SIZE;
231                 if (!addr)
232                         return;
233         }
234         if (ceiling) {
235                 ceiling &= PMD_MASK;
236                 if (!ceiling)
237                         return;
238         }
239         if (end - 1 > ceiling - 1)
240                 end -= PMD_SIZE;
241         if (addr > end - 1)
242                 return;
243
244         start = addr;
245         pgd = pgd_offset((*tlb)->mm, addr);
246         do {
247                 next = pgd_addr_end(addr, end);
248                 if (pgd_none_or_clear_bad(pgd))
249                         continue;
250                 free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
251         } while (pgd++, addr = next, addr != end);
252
253         if (!(*tlb)->fullmm)
254                 flush_tlb_pgtables((*tlb)->mm, start, end);
255 }
256
257 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
258                 unsigned long floor, unsigned long ceiling)
259 {
260         while (vma) {
261                 struct vm_area_struct *next = vma->vm_next;
262                 unsigned long addr = vma->vm_start;
263
264                 /*
265                  * Hide vma from rmap and vmtruncate before freeing pgtables
266                  */
267                 anon_vma_unlink(vma);
268                 unlink_file_vma(vma);
269
270                 if (is_hugepage_only_range(vma->vm_mm, addr, HPAGE_SIZE)) {
271                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
272                                 floor, next? next->vm_start: ceiling);
273                 } else {
274                         /*
275                          * Optimization: gather nearby vmas into one call down
276                          */
277                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
278                           && !is_hugepage_only_range(vma->vm_mm, next->vm_start,
279                                                         HPAGE_SIZE)) {
280                                 vma = next;
281                                 next = vma->vm_next;
282                                 anon_vma_unlink(vma);
283                                 unlink_file_vma(vma);
284                         }
285                         free_pgd_range(tlb, addr, vma->vm_end,
286                                 floor, next? next->vm_start: ceiling);
287                 }
288                 vma = next;
289         }
290 }
291
292 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
293 {
294         struct page *new = pte_alloc_one(mm, address);
295         if (!new)
296                 return -ENOMEM;
297
298         pte_lock_init(new);
299         spin_lock(&mm->page_table_lock);
300         if (pmd_present(*pmd)) {        /* Another has populated it */
301                 pte_lock_deinit(new);
302                 pte_free(new);
303         } else {
304                 mm->nr_ptes++;
305                 inc_page_state(nr_page_table_pages);
306                 pmd_populate(mm, pmd, new);
307         }
308         spin_unlock(&mm->page_table_lock);
309         return 0;
310 }
311
312 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
313 {
314         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
315         if (!new)
316                 return -ENOMEM;
317
318         spin_lock(&init_mm.page_table_lock);
319         if (pmd_present(*pmd))          /* Another has populated it */
320                 pte_free_kernel(new);
321         else
322                 pmd_populate_kernel(&init_mm, pmd, new);
323         spin_unlock(&init_mm.page_table_lock);
324         return 0;
325 }
326
327 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
328 {
329         if (file_rss)
330                 add_mm_counter(mm, file_rss, file_rss);
331         if (anon_rss)
332                 add_mm_counter(mm, anon_rss, anon_rss);
333 }
334
335 /*
336  * This function is called to print an error when a bad pte
337  * is found. For example, we might have a PFN-mapped pte in
338  * a region that doesn't allow it.
339  *
340  * The calling function must still handle the error.
341  */
342 void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
343 {
344         printk(KERN_ERR "Bad pte = %08llx, process = %s, "
345                         "vm_flags = %lx, vaddr = %lx\n",
346                 (long long)pte_val(pte),
347                 (vma->vm_mm == current->mm ? current->comm : "???"),
348                 vma->vm_flags, vaddr);
349         dump_stack();
350 }
351
352 /*
353  * This function gets the "struct page" associated with a pte.
354  *
355  * NOTE! Some mappings do not have "struct pages". A raw PFN mapping
356  * will have each page table entry just pointing to a raw page frame
357  * number, and as far as the VM layer is concerned, those do not have
358  * pages associated with them - even if the PFN might point to memory
359  * that otherwise is perfectly fine and has a "struct page".
360  *
361  * The way we recognize those mappings is through the rules set up
362  * by "remap_pfn_range()": the vma will have the VM_PFNMAP bit set,
363  * and the vm_pgoff will point to the first PFN mapped: thus every
364  * page that is a raw mapping will always honor the rule
365  *
366  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
367  *
368  * and if that isn't true, the page has been COW'ed (in which case it
369  * _does_ have a "struct page" associated with it even if it is in a
370  * VM_PFNMAP range).
371  */
372 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
373 {
374         unsigned long pfn = pte_pfn(pte);
375
376         if (vma->vm_flags & VM_PFNMAP) {
377                 unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT;
378                 if (pfn == vma->vm_pgoff + off)
379                         return NULL;
380                 if (vma->vm_flags & VM_SHARED)
381                         return NULL;
382         }
383
384         /*
385          * Add some anal sanity checks for now. Eventually,
386          * we should just do "return pfn_to_page(pfn)", but
387          * in the meantime we check that we get a valid pfn,
388          * and that the resulting page looks ok.
389          *
390          * Remove this test eventually!
391          */
392         if (unlikely(!pfn_valid(pfn))) {
393                 print_bad_pte(vma, pte, addr);
394                 return NULL;
395         }
396
397         /*
398          * NOTE! We still have PageReserved() pages in the page 
399          * tables. 
400          *
401          * The PAGE_ZERO() pages and various VDSO mappings can
402          * cause them to exist.
403          */
404         return pfn_to_page(pfn);
405 }
406
407 /*
408  * copy one vm_area from one task to the other. Assumes the page tables
409  * already present in the new task to be cleared in the whole range
410  * covered by this vma.
411  */
412
413 static inline void
414 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
415                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
416                 unsigned long addr, int *rss)
417 {
418         unsigned long vm_flags = vma->vm_flags;
419         pte_t pte = *src_pte;
420         struct page *page;
421
422         /* pte contains position in swap or file, so copy. */
423         if (unlikely(!pte_present(pte))) {
424                 if (!pte_file(pte)) {
425                         swap_duplicate(pte_to_swp_entry(pte));
426                         /* make sure dst_mm is on swapoff's mmlist. */
427                         if (unlikely(list_empty(&dst_mm->mmlist))) {
428                                 spin_lock(&mmlist_lock);
429                                 if (list_empty(&dst_mm->mmlist))
430                                         list_add(&dst_mm->mmlist,
431                                                  &src_mm->mmlist);
432                                 spin_unlock(&mmlist_lock);
433                         }
434                 }
435                 goto out_set_pte;
436         }
437
438         /*
439          * If it's a COW mapping, write protect it both
440          * in the parent and the child
441          */
442         if ((vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE) {
443                 ptep_set_wrprotect(src_mm, addr, src_pte);
444                 pte = *src_pte;
445         }
446
447         /*
448          * If it's a shared mapping, mark it clean in
449          * the child
450          */
451         if (vm_flags & VM_SHARED)
452                 pte = pte_mkclean(pte);
453         pte = pte_mkold(pte);
454
455         page = vm_normal_page(vma, addr, pte);
456         if (page) {
457                 get_page(page);
458                 page_dup_rmap(page);
459                 rss[!!PageAnon(page)]++;
460         }
461
462 out_set_pte:
463         set_pte_at(dst_mm, addr, dst_pte, pte);
464 }
465
466 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
467                 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
468                 unsigned long addr, unsigned long end)
469 {
470         pte_t *src_pte, *dst_pte;
471         spinlock_t *src_ptl, *dst_ptl;
472         int progress = 0;
473         int rss[2];
474
475 again:
476         rss[1] = rss[0] = 0;
477         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
478         if (!dst_pte)
479                 return -ENOMEM;
480         src_pte = pte_offset_map_nested(src_pmd, addr);
481         src_ptl = pte_lockptr(src_mm, src_pmd);
482         spin_lock(src_ptl);
483
484         do {
485                 /*
486                  * We are holding two locks at this point - either of them
487                  * could generate latencies in another task on another CPU.
488                  */
489                 if (progress >= 32) {
490                         progress = 0;
491                         if (need_resched() ||
492                             need_lockbreak(src_ptl) ||
493                             need_lockbreak(dst_ptl))
494                                 break;
495                 }
496                 if (pte_none(*src_pte)) {
497                         progress++;
498                         continue;
499                 }
500                 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
501                 progress += 8;
502         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
503
504         spin_unlock(src_ptl);
505         pte_unmap_nested(src_pte - 1);
506         add_mm_rss(dst_mm, rss[0], rss[1]);
507         pte_unmap_unlock(dst_pte - 1, dst_ptl);
508         cond_resched();
509         if (addr != end)
510                 goto again;
511         return 0;
512 }
513
514 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
515                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
516                 unsigned long addr, unsigned long end)
517 {
518         pmd_t *src_pmd, *dst_pmd;
519         unsigned long next;
520
521         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
522         if (!dst_pmd)
523                 return -ENOMEM;
524         src_pmd = pmd_offset(src_pud, addr);
525         do {
526                 next = pmd_addr_end(addr, end);
527                 if (pmd_none_or_clear_bad(src_pmd))
528                         continue;
529                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
530                                                 vma, addr, next))
531                         return -ENOMEM;
532         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
533         return 0;
534 }
535
536 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
537                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
538                 unsigned long addr, unsigned long end)
539 {
540         pud_t *src_pud, *dst_pud;
541         unsigned long next;
542
543         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
544         if (!dst_pud)
545                 return -ENOMEM;
546         src_pud = pud_offset(src_pgd, addr);
547         do {
548                 next = pud_addr_end(addr, end);
549                 if (pud_none_or_clear_bad(src_pud))
550                         continue;
551                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
552                                                 vma, addr, next))
553                         return -ENOMEM;
554         } while (dst_pud++, src_pud++, addr = next, addr != end);
555         return 0;
556 }
557
558 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
559                 struct vm_area_struct *vma)
560 {
561         pgd_t *src_pgd, *dst_pgd;
562         unsigned long next;
563         unsigned long addr = vma->vm_start;
564         unsigned long end = vma->vm_end;
565
566         /*
567          * Don't copy ptes where a page fault will fill them correctly.
568          * Fork becomes much lighter when there are big shared or private
569          * readonly mappings. The tradeoff is that copy_page_range is more
570          * efficient than faulting.
571          */
572         if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP))) {
573                 if (!vma->anon_vma)
574                         return 0;
575         }
576
577         if (is_vm_hugetlb_page(vma))
578                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
579
580         dst_pgd = pgd_offset(dst_mm, addr);
581         src_pgd = pgd_offset(src_mm, addr);
582         do {
583                 next = pgd_addr_end(addr, end);
584                 if (pgd_none_or_clear_bad(src_pgd))
585                         continue;
586                 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
587                                                 vma, addr, next))
588                         return -ENOMEM;
589         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
590         return 0;
591 }
592
593 static unsigned long zap_pte_range(struct mmu_gather *tlb,
594                                 struct vm_area_struct *vma, pmd_t *pmd,
595                                 unsigned long addr, unsigned long end,
596                                 long *zap_work, struct zap_details *details)
597 {
598         struct mm_struct *mm = tlb->mm;
599         pte_t *pte;
600         spinlock_t *ptl;
601         int file_rss = 0;
602         int anon_rss = 0;
603
604         pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
605         do {
606                 pte_t ptent = *pte;
607                 if (pte_none(ptent)) {
608                         (*zap_work)--;
609                         continue;
610                 }
611                 if (pte_present(ptent)) {
612                         struct page *page;
613
614                         (*zap_work) -= PAGE_SIZE;
615
616                         page = vm_normal_page(vma, addr, ptent);
617                         if (unlikely(details) && page) {
618                                 /*
619                                  * unmap_shared_mapping_pages() wants to
620                                  * invalidate cache without truncating:
621                                  * unmap shared but keep private pages.
622                                  */
623                                 if (details->check_mapping &&
624                                     details->check_mapping != page->mapping)
625                                         continue;
626                                 /*
627                                  * Each page->index must be checked when
628                                  * invalidating or truncating nonlinear.
629                                  */
630                                 if (details->nonlinear_vma &&
631                                     (page->index < details->first_index ||
632                                      page->index > details->last_index))
633                                         continue;
634                         }
635                         ptent = ptep_get_and_clear_full(mm, addr, pte,
636                                                         tlb->fullmm);
637                         tlb_remove_tlb_entry(tlb, pte, addr);
638                         if (unlikely(!page))
639                                 continue;
640                         if (unlikely(details) && details->nonlinear_vma
641                             && linear_page_index(details->nonlinear_vma,
642                                                 addr) != page->index)
643                                 set_pte_at(mm, addr, pte,
644                                            pgoff_to_pte(page->index));
645                         if (PageAnon(page))
646                                 anon_rss--;
647                         else {
648                                 if (pte_dirty(ptent))
649                                         set_page_dirty(page);
650                                 if (pte_young(ptent))
651                                         mark_page_accessed(page);
652                                 file_rss--;
653                         }
654                         page_remove_rmap(page);
655                         tlb_remove_page(tlb, page);
656                         continue;
657                 }
658                 /*
659                  * If details->check_mapping, we leave swap entries;
660                  * if details->nonlinear_vma, we leave file entries.
661                  */
662                 if (unlikely(details))
663                         continue;
664                 if (!pte_file(ptent))
665                         free_swap_and_cache(pte_to_swp_entry(ptent));
666                 pte_clear_full(mm, addr, pte, tlb->fullmm);
667         } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
668
669         add_mm_rss(mm, file_rss, anon_rss);
670         pte_unmap_unlock(pte - 1, ptl);
671
672         return addr;
673 }
674
675 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
676                                 struct vm_area_struct *vma, pud_t *pud,
677                                 unsigned long addr, unsigned long end,
678                                 long *zap_work, struct zap_details *details)
679 {
680         pmd_t *pmd;
681         unsigned long next;
682
683         pmd = pmd_offset(pud, addr);
684         do {
685                 next = pmd_addr_end(addr, end);
686                 if (pmd_none_or_clear_bad(pmd)) {
687                         (*zap_work)--;
688                         continue;
689                 }
690                 next = zap_pte_range(tlb, vma, pmd, addr, next,
691                                                 zap_work, details);
692         } while (pmd++, addr = next, (addr != end && *zap_work > 0));
693
694         return addr;
695 }
696
697 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
698                                 struct vm_area_struct *vma, pgd_t *pgd,
699                                 unsigned long addr, unsigned long end,
700                                 long *zap_work, struct zap_details *details)
701 {
702         pud_t *pud;
703         unsigned long next;
704
705         pud = pud_offset(pgd, addr);
706         do {
707                 next = pud_addr_end(addr, end);
708                 if (pud_none_or_clear_bad(pud)) {
709                         (*zap_work)--;
710                         continue;
711                 }
712                 next = zap_pmd_range(tlb, vma, pud, addr, next,
713                                                 zap_work, details);
714         } while (pud++, addr = next, (addr != end && *zap_work > 0));
715
716         return addr;
717 }
718
719 static unsigned long unmap_page_range(struct mmu_gather *tlb,
720                                 struct vm_area_struct *vma,
721                                 unsigned long addr, unsigned long end,
722                                 long *zap_work, struct zap_details *details)
723 {
724         pgd_t *pgd;
725         unsigned long next;
726
727         if (details && !details->check_mapping && !details->nonlinear_vma)
728                 details = NULL;
729
730         BUG_ON(addr >= end);
731         tlb_start_vma(tlb, vma);
732         pgd = pgd_offset(vma->vm_mm, addr);
733         do {
734                 next = pgd_addr_end(addr, end);
735                 if (pgd_none_or_clear_bad(pgd)) {
736                         (*zap_work)--;
737                         continue;
738                 }
739                 next = zap_pud_range(tlb, vma, pgd, addr, next,
740                                                 zap_work, details);
741         } while (pgd++, addr = next, (addr != end && *zap_work > 0));
742         tlb_end_vma(tlb, vma);
743
744         return addr;
745 }
746
747 #ifdef CONFIG_PREEMPT
748 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
749 #else
750 /* No preempt: go for improved straight-line efficiency */
751 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
752 #endif
753
754 /**
755  * unmap_vmas - unmap a range of memory covered by a list of vma's
756  * @tlbp: address of the caller's struct mmu_gather
757  * @vma: the starting vma
758  * @start_addr: virtual address at which to start unmapping
759  * @end_addr: virtual address at which to end unmapping
760  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
761  * @details: details of nonlinear truncation or shared cache invalidation
762  *
763  * Returns the end address of the unmapping (restart addr if interrupted).
764  *
765  * Unmap all pages in the vma list.
766  *
767  * We aim to not hold locks for too long (for scheduling latency reasons).
768  * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
769  * return the ending mmu_gather to the caller.
770  *
771  * Only addresses between `start' and `end' will be unmapped.
772  *
773  * The VMA list must be sorted in ascending virtual address order.
774  *
775  * unmap_vmas() assumes that the caller will flush the whole unmapped address
776  * range after unmap_vmas() returns.  So the only responsibility here is to
777  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
778  * drops the lock and schedules.
779  */
780 unsigned long unmap_vmas(struct mmu_gather **tlbp,
781                 struct vm_area_struct *vma, unsigned long start_addr,
782                 unsigned long end_addr, unsigned long *nr_accounted,
783                 struct zap_details *details)
784 {
785         long zap_work = ZAP_BLOCK_SIZE;
786         unsigned long tlb_start = 0;    /* For tlb_finish_mmu */
787         int tlb_start_valid = 0;
788         unsigned long start = start_addr;
789         spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
790         int fullmm = (*tlbp)->fullmm;
791
792         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
793                 unsigned long end;
794
795                 start = max(vma->vm_start, start_addr);
796                 if (start >= vma->vm_end)
797                         continue;
798                 end = min(vma->vm_end, end_addr);
799                 if (end <= vma->vm_start)
800                         continue;
801
802                 if (vma->vm_flags & VM_ACCOUNT)
803                         *nr_accounted += (end - start) >> PAGE_SHIFT;
804
805                 while (start != end) {
806                         if (!tlb_start_valid) {
807                                 tlb_start = start;
808                                 tlb_start_valid = 1;
809                         }
810
811                         if (unlikely(is_vm_hugetlb_page(vma))) {
812                                 unmap_hugepage_range(vma, start, end);
813                                 zap_work -= (end - start) /
814                                                 (HPAGE_SIZE / PAGE_SIZE);
815                                 start = end;
816                         } else
817                                 start = unmap_page_range(*tlbp, vma,
818                                                 start, end, &zap_work, details);
819
820                         if (zap_work > 0) {
821                                 BUG_ON(start != end);
822                                 break;
823                         }
824
825                         tlb_finish_mmu(*tlbp, tlb_start, start);
826
827                         if (need_resched() ||
828                                 (i_mmap_lock && need_lockbreak(i_mmap_lock))) {
829                                 if (i_mmap_lock) {
830                                         *tlbp = NULL;
831                                         goto out;
832                                 }
833                                 cond_resched();
834                         }
835
836                         *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
837                         tlb_start_valid = 0;
838                         zap_work = ZAP_BLOCK_SIZE;
839                 }
840         }
841 out:
842         return start;   /* which is now the end (or restart) address */
843 }
844
845 /**
846  * zap_page_range - remove user pages in a given range
847  * @vma: vm_area_struct holding the applicable pages
848  * @address: starting address of pages to zap
849  * @size: number of bytes to zap
850  * @details: details of nonlinear truncation or shared cache invalidation
851  */
852 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
853                 unsigned long size, struct zap_details *details)
854 {
855         struct mm_struct *mm = vma->vm_mm;
856         struct mmu_gather *tlb;
857         unsigned long end = address + size;
858         unsigned long nr_accounted = 0;
859
860         lru_add_drain();
861         tlb = tlb_gather_mmu(mm, 0);
862         update_hiwater_rss(mm);
863         end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
864         if (tlb)
865                 tlb_finish_mmu(tlb, address, end);
866         return end;
867 }
868
869 /*
870  * Do a quick page-table lookup for a single page.
871  */
872 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
873                         unsigned int flags)
874 {
875         pgd_t *pgd;
876         pud_t *pud;
877         pmd_t *pmd;
878         pte_t *ptep, pte;
879         spinlock_t *ptl;
880         struct page *page;
881         struct mm_struct *mm = vma->vm_mm;
882
883         page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
884         if (!IS_ERR(page)) {
885                 BUG_ON(flags & FOLL_GET);
886                 goto out;
887         }
888
889         page = NULL;
890         pgd = pgd_offset(mm, address);
891         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
892                 goto no_page_table;
893
894         pud = pud_offset(pgd, address);
895         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
896                 goto no_page_table;
897         
898         pmd = pmd_offset(pud, address);
899         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
900                 goto no_page_table;
901
902         if (pmd_huge(*pmd)) {
903                 BUG_ON(flags & FOLL_GET);
904                 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
905                 goto out;
906         }
907
908         ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
909         if (!ptep)
910                 goto out;
911
912         pte = *ptep;
913         if (!pte_present(pte))
914                 goto unlock;
915         if ((flags & FOLL_WRITE) && !pte_write(pte))
916                 goto unlock;
917         page = vm_normal_page(vma, address, pte);
918         if (unlikely(!page))
919                 goto unlock;
920
921         if (flags & FOLL_GET)
922                 get_page(page);
923         if (flags & FOLL_TOUCH) {
924                 if ((flags & FOLL_WRITE) &&
925                     !pte_dirty(pte) && !PageDirty(page))
926                         set_page_dirty(page);
927                 mark_page_accessed(page);
928         }
929 unlock:
930         pte_unmap_unlock(ptep, ptl);
931 out:
932         return page;
933
934 no_page_table:
935         /*
936          * When core dumping an enormous anonymous area that nobody
937          * has touched so far, we don't want to allocate page tables.
938          */
939         if (flags & FOLL_ANON) {
940                 page = ZERO_PAGE(address);
941                 if (flags & FOLL_GET)
942                         get_page(page);
943                 BUG_ON(flags & FOLL_WRITE);
944         }
945         return page;
946 }
947
948 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
949                 unsigned long start, int len, int write, int force,
950                 struct page **pages, struct vm_area_struct **vmas)
951 {
952         int i;
953         unsigned int vm_flags;
954
955         /* 
956          * Require read or write permissions.
957          * If 'force' is set, we only require the "MAY" flags.
958          */
959         vm_flags  = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
960         vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
961         i = 0;
962
963         do {
964                 struct vm_area_struct *vma;
965                 unsigned int foll_flags;
966
967                 vma = find_extend_vma(mm, start);
968                 if (!vma && in_gate_area(tsk, start)) {
969                         unsigned long pg = start & PAGE_MASK;
970                         struct vm_area_struct *gate_vma = get_gate_vma(tsk);
971                         pgd_t *pgd;
972                         pud_t *pud;
973                         pmd_t *pmd;
974                         pte_t *pte;
975                         if (write) /* user gate pages are read-only */
976                                 return i ? : -EFAULT;
977                         if (pg > TASK_SIZE)
978                                 pgd = pgd_offset_k(pg);
979                         else
980                                 pgd = pgd_offset_gate(mm, pg);
981                         BUG_ON(pgd_none(*pgd));
982                         pud = pud_offset(pgd, pg);
983                         BUG_ON(pud_none(*pud));
984                         pmd = pmd_offset(pud, pg);
985                         if (pmd_none(*pmd))
986                                 return i ? : -EFAULT;
987                         pte = pte_offset_map(pmd, pg);
988                         if (pte_none(*pte)) {
989                                 pte_unmap(pte);
990                                 return i ? : -EFAULT;
991                         }
992                         if (pages) {
993                                 struct page *page = vm_normal_page(gate_vma, start, *pte);
994                                 pages[i] = page;
995                                 if (page)
996                                         get_page(page);
997                         }
998                         pte_unmap(pte);
999                         if (vmas)
1000                                 vmas[i] = gate_vma;
1001                         i++;
1002                         start += PAGE_SIZE;
1003                         len--;
1004                         continue;
1005                 }
1006
1007                 if (!vma || (vma->vm_flags & VM_IO)
1008                                 || !(vm_flags & vma->vm_flags))
1009                         return i ? : -EFAULT;
1010
1011                 if (is_vm_hugetlb_page(vma)) {
1012                         i = follow_hugetlb_page(mm, vma, pages, vmas,
1013                                                 &start, &len, i);
1014                         continue;
1015                 }
1016
1017                 foll_flags = FOLL_TOUCH;
1018                 if (pages)
1019                         foll_flags |= FOLL_GET;
1020                 if (!write && !(vma->vm_flags & VM_LOCKED) &&
1021                     (!vma->vm_ops || !vma->vm_ops->nopage))
1022                         foll_flags |= FOLL_ANON;
1023
1024                 do {
1025                         struct page *page;
1026
1027                         if (write)
1028                                 foll_flags |= FOLL_WRITE;
1029
1030                         cond_resched();
1031                         while (!(page = follow_page(vma, start, foll_flags))) {
1032                                 int ret;
1033                                 ret = __handle_mm_fault(mm, vma, start,
1034                                                 foll_flags & FOLL_WRITE);
1035                                 /*
1036                                  * The VM_FAULT_WRITE bit tells us that do_wp_page has
1037                                  * broken COW when necessary, even if maybe_mkwrite
1038                                  * decided not to set pte_write. We can thus safely do
1039                                  * subsequent page lookups as if they were reads.
1040                                  */
1041                                 if (ret & VM_FAULT_WRITE)
1042                                         foll_flags &= ~FOLL_WRITE;
1043                                 
1044                                 switch (ret & ~VM_FAULT_WRITE) {
1045                                 case VM_FAULT_MINOR:
1046                                         tsk->min_flt++;
1047                                         break;
1048                                 case VM_FAULT_MAJOR:
1049                                         tsk->maj_flt++;
1050                                         break;
1051                                 case VM_FAULT_SIGBUS:
1052                                         return i ? i : -EFAULT;
1053                                 case VM_FAULT_OOM:
1054                                         return i ? i : -ENOMEM;
1055                                 default:
1056                                         BUG();
1057                                 }
1058                         }
1059                         if (pages) {
1060                                 pages[i] = page;
1061                                 flush_dcache_page(page);
1062                         }
1063                         if (vmas)
1064                                 vmas[i] = vma;
1065                         i++;
1066                         start += PAGE_SIZE;
1067                         len--;
1068                 } while (len && start < vma->vm_end);
1069         } while (len);
1070         return i;
1071 }
1072 EXPORT_SYMBOL(get_user_pages);
1073
1074 static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1075                         unsigned long addr, unsigned long end, pgprot_t prot)
1076 {
1077         pte_t *pte;
1078         spinlock_t *ptl;
1079
1080         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1081         if (!pte)
1082                 return -ENOMEM;
1083         do {
1084                 struct page *page = ZERO_PAGE(addr);
1085                 pte_t zero_pte = pte_wrprotect(mk_pte(page, prot));
1086                 page_cache_get(page);
1087                 page_add_file_rmap(page);
1088                 inc_mm_counter(mm, file_rss);
1089                 BUG_ON(!pte_none(*pte));
1090                 set_pte_at(mm, addr, pte, zero_pte);
1091         } while (pte++, addr += PAGE_SIZE, addr != end);
1092         pte_unmap_unlock(pte - 1, ptl);
1093         return 0;
1094 }
1095
1096 static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
1097                         unsigned long addr, unsigned long end, pgprot_t prot)
1098 {
1099         pmd_t *pmd;
1100         unsigned long next;
1101
1102         pmd = pmd_alloc(mm, pud, addr);
1103         if (!pmd)
1104                 return -ENOMEM;
1105         do {
1106                 next = pmd_addr_end(addr, end);
1107                 if (zeromap_pte_range(mm, pmd, addr, next, prot))
1108                         return -ENOMEM;
1109         } while (pmd++, addr = next, addr != end);
1110         return 0;
1111 }
1112
1113 static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1114                         unsigned long addr, unsigned long end, pgprot_t prot)
1115 {
1116         pud_t *pud;
1117         unsigned long next;
1118
1119         pud = pud_alloc(mm, pgd, addr);
1120         if (!pud)
1121                 return -ENOMEM;
1122         do {
1123                 next = pud_addr_end(addr, end);
1124                 if (zeromap_pmd_range(mm, pud, addr, next, prot))
1125                         return -ENOMEM;
1126         } while (pud++, addr = next, addr != end);
1127         return 0;
1128 }
1129
1130 int zeromap_page_range(struct vm_area_struct *vma,
1131                         unsigned long addr, unsigned long size, pgprot_t prot)
1132 {
1133         pgd_t *pgd;
1134         unsigned long next;
1135         unsigned long end = addr + size;
1136         struct mm_struct *mm = vma->vm_mm;
1137         int err;
1138
1139         BUG_ON(addr >= end);
1140         pgd = pgd_offset(mm, addr);
1141         flush_cache_range(vma, addr, end);
1142         do {
1143                 next = pgd_addr_end(addr, end);
1144                 err = zeromap_pud_range(mm, pgd, addr, next, prot);
1145                 if (err)
1146                         break;
1147         } while (pgd++, addr = next, addr != end);
1148         return err;
1149 }
1150
1151 pte_t * fastcall get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl)
1152 {
1153         pgd_t * pgd = pgd_offset(mm, addr);
1154         pud_t * pud = pud_alloc(mm, pgd, addr);
1155         if (pud) {
1156                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1157                 if (pmd)
1158                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1159         }
1160         return NULL;
1161 }
1162
1163 /*
1164  * This is the old fallback for page remapping.
1165  *
1166  * For historical reasons, it only allows reserved pages. Only
1167  * old drivers should use this, and they needed to mark their
1168  * pages reserved for the old functions anyway.
1169  */
1170 static int insert_page(struct mm_struct *mm, unsigned long addr, struct page *page, pgprot_t prot)
1171 {
1172         int retval;
1173         pte_t *pte;
1174         spinlock_t *ptl;  
1175
1176         retval = -EINVAL;
1177         if (PageAnon(page))
1178                 goto out;
1179         retval = -ENOMEM;
1180         flush_dcache_page(page);
1181         pte = get_locked_pte(mm, addr, &ptl);
1182         if (!pte)
1183                 goto out;
1184         retval = -EBUSY;
1185         if (!pte_none(*pte))
1186                 goto out_unlock;
1187
1188         /* Ok, finally just insert the thing.. */
1189         get_page(page);
1190         inc_mm_counter(mm, file_rss);
1191         page_add_file_rmap(page);
1192         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1193
1194         retval = 0;
1195 out_unlock:
1196         pte_unmap_unlock(pte, ptl);
1197 out:
1198         return retval;
1199 }
1200
1201 /*
1202  * This allows drivers to insert individual pages they've allocated
1203  * into a user vma.
1204  *
1205  * The page has to be a nice clean _individual_ kernel allocation.
1206  * If you allocate a compound page, you need to have marked it as
1207  * such (__GFP_COMP), or manually just split the page up yourself
1208  * (which is mainly an issue of doing "set_page_count(page, 1)" for
1209  * each sub-page, and then freeing them one by one when you free
1210  * them rather than freeing it as a compound page).
1211  *
1212  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1213  * took an arbitrary page protection parameter. This doesn't allow
1214  * that. Your vma protection will have to be set up correctly, which
1215  * means that if you want a shared writable mapping, you'd better
1216  * ask for a shared writable mapping!
1217  *
1218  * The page does not need to be reserved.
1219  */
1220 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page)
1221 {
1222         if (addr < vma->vm_start || addr >= vma->vm_end)
1223                 return -EFAULT;
1224         if (!page_count(page))
1225                 return -EINVAL;
1226         return insert_page(vma->vm_mm, addr, page, vma->vm_page_prot);
1227 }
1228 EXPORT_SYMBOL(vm_insert_page);
1229
1230 /*
1231  * maps a range of physical memory into the requested pages. the old
1232  * mappings are removed. any references to nonexistent pages results
1233  * in null mappings (currently treated as "copy-on-access")
1234  */
1235 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1236                         unsigned long addr, unsigned long end,
1237                         unsigned long pfn, pgprot_t prot)
1238 {
1239         pte_t *pte;
1240         spinlock_t *ptl;
1241
1242         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1243         if (!pte)
1244                 return -ENOMEM;
1245         do {
1246                 BUG_ON(!pte_none(*pte));
1247                 set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1248                 pfn++;
1249         } while (pte++, addr += PAGE_SIZE, addr != end);
1250         pte_unmap_unlock(pte - 1, ptl);
1251         return 0;
1252 }
1253
1254 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1255                         unsigned long addr, unsigned long end,
1256                         unsigned long pfn, pgprot_t prot)
1257 {
1258         pmd_t *pmd;
1259         unsigned long next;
1260
1261         pfn -= addr >> PAGE_SHIFT;
1262         pmd = pmd_alloc(mm, pud, addr);
1263         if (!pmd)
1264                 return -ENOMEM;
1265         do {
1266                 next = pmd_addr_end(addr, end);
1267                 if (remap_pte_range(mm, pmd, addr, next,
1268                                 pfn + (addr >> PAGE_SHIFT), prot))
1269                         return -ENOMEM;
1270         } while (pmd++, addr = next, addr != end);
1271         return 0;
1272 }
1273
1274 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1275                         unsigned long addr, unsigned long end,
1276                         unsigned long pfn, pgprot_t prot)
1277 {
1278         pud_t *pud;
1279         unsigned long next;
1280
1281         pfn -= addr >> PAGE_SHIFT;
1282         pud = pud_alloc(mm, pgd, addr);
1283         if (!pud)
1284                 return -ENOMEM;
1285         do {
1286                 next = pud_addr_end(addr, end);
1287                 if (remap_pmd_range(mm, pud, addr, next,
1288                                 pfn + (addr >> PAGE_SHIFT), prot))
1289                         return -ENOMEM;
1290         } while (pud++, addr = next, addr != end);
1291         return 0;
1292 }
1293
1294 /*  Note: this is only safe if the mm semaphore is held when called. */
1295 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1296                     unsigned long pfn, unsigned long size, pgprot_t prot)
1297 {
1298         pgd_t *pgd;
1299         unsigned long next;
1300         unsigned long end = addr + PAGE_ALIGN(size);
1301         struct mm_struct *mm = vma->vm_mm;
1302         int err;
1303
1304         /*
1305          * Physically remapped pages are special. Tell the
1306          * rest of the world about it:
1307          *   VM_IO tells people not to look at these pages
1308          *      (accesses can have side effects).
1309          *   VM_RESERVED is specified all over the place, because
1310          *      in 2.4 it kept swapout's vma scan off this vma; but
1311          *      in 2.6 the LRU scan won't even find its pages, so this
1312          *      flag means no more than count its pages in reserved_vm,
1313          *      and omit it from core dump, even when VM_IO turned off.
1314          *   VM_PFNMAP tells the core MM that the base pages are just
1315          *      raw PFN mappings, and do not have a "struct page" associated
1316          *      with them.
1317          *
1318          * There's a horrible special case to handle copy-on-write
1319          * behaviour that some programs depend on. We mark the "original"
1320          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1321          */
1322         if (!(vma->vm_flags & VM_SHARED)) {
1323                 if (addr != vma->vm_start || end != vma->vm_end)
1324                         return -EINVAL;
1325                 vma->vm_pgoff = pfn;
1326         }
1327
1328         vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1329
1330         BUG_ON(addr >= end);
1331         pfn -= addr >> PAGE_SHIFT;
1332         pgd = pgd_offset(mm, addr);
1333         flush_cache_range(vma, addr, end);
1334         do {
1335                 next = pgd_addr_end(addr, end);
1336                 err = remap_pud_range(mm, pgd, addr, next,
1337                                 pfn + (addr >> PAGE_SHIFT), prot);
1338                 if (err)
1339                         break;
1340         } while (pgd++, addr = next, addr != end);
1341         return err;
1342 }
1343 EXPORT_SYMBOL(remap_pfn_range);
1344
1345 /*
1346  * handle_pte_fault chooses page fault handler according to an entry
1347  * which was read non-atomically.  Before making any commitment, on
1348  * those architectures or configurations (e.g. i386 with PAE) which
1349  * might give a mix of unmatched parts, do_swap_page and do_file_page
1350  * must check under lock before unmapping the pte and proceeding
1351  * (but do_wp_page is only called after already making such a check;
1352  * and do_anonymous_page and do_no_page can safely check later on).
1353  */
1354 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1355                                 pte_t *page_table, pte_t orig_pte)
1356 {
1357         int same = 1;
1358 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1359         if (sizeof(pte_t) > sizeof(unsigned long)) {
1360                 spinlock_t *ptl = pte_lockptr(mm, pmd);
1361                 spin_lock(ptl);
1362                 same = pte_same(*page_table, orig_pte);
1363                 spin_unlock(ptl);
1364         }
1365 #endif
1366         pte_unmap(page_table);
1367         return same;
1368 }
1369
1370 /*
1371  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1372  * servicing faults for write access.  In the normal case, do always want
1373  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1374  * that do not have writing enabled, when used by access_process_vm.
1375  */
1376 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1377 {
1378         if (likely(vma->vm_flags & VM_WRITE))
1379                 pte = pte_mkwrite(pte);
1380         return pte;
1381 }
1382
1383 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va)
1384 {
1385         /*
1386          * If the source page was a PFN mapping, we don't have
1387          * a "struct page" for it. We do a best-effort copy by
1388          * just copying from the original user address. If that
1389          * fails, we just zero-fill it. Live with it.
1390          */
1391         if (unlikely(!src)) {
1392                 void *kaddr = kmap_atomic(dst, KM_USER0);
1393                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1394
1395                 /*
1396                  * This really shouldn't fail, because the page is there
1397                  * in the page tables. But it might just be unreadable,
1398                  * in which case we just give up and fill the result with
1399                  * zeroes.
1400                  */
1401                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1402                         memset(kaddr, 0, PAGE_SIZE);
1403                 kunmap_atomic(kaddr, KM_USER0);
1404                 return;
1405                 
1406         }
1407         copy_user_highpage(dst, src, va);
1408 }
1409
1410 /*
1411  * This routine handles present pages, when users try to write
1412  * to a shared page. It is done by copying the page to a new address
1413  * and decrementing the shared-page counter for the old page.
1414  *
1415  * Note that this routine assumes that the protection checks have been
1416  * done by the caller (the low-level page fault routine in most cases).
1417  * Thus we can safely just mark it writable once we've done any necessary
1418  * COW.
1419  *
1420  * We also mark the page dirty at this point even though the page will
1421  * change only once the write actually happens. This avoids a few races,
1422  * and potentially makes it more efficient.
1423  *
1424  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1425  * but allow concurrent faults), with pte both mapped and locked.
1426  * We return with mmap_sem still held, but pte unmapped and unlocked.
1427  */
1428 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1429                 unsigned long address, pte_t *page_table, pmd_t *pmd,
1430                 spinlock_t *ptl, pte_t orig_pte)
1431 {
1432         struct page *old_page, *new_page;
1433         pte_t entry;
1434         int ret = VM_FAULT_MINOR;
1435
1436         old_page = vm_normal_page(vma, address, orig_pte);
1437         if (!old_page)
1438                 goto gotten;
1439
1440         if (PageAnon(old_page) && !TestSetPageLocked(old_page)) {
1441                 int reuse = can_share_swap_page(old_page);
1442                 unlock_page(old_page);
1443                 if (reuse) {
1444                         flush_cache_page(vma, address, pte_pfn(orig_pte));
1445                         entry = pte_mkyoung(orig_pte);
1446                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1447                         ptep_set_access_flags(vma, address, page_table, entry, 1);
1448                         update_mmu_cache(vma, address, entry);
1449                         lazy_mmu_prot_update(entry);
1450                         ret |= VM_FAULT_WRITE;
1451                         goto unlock;
1452                 }
1453         }
1454
1455         /*
1456          * Ok, we need to copy. Oh, well..
1457          */
1458         page_cache_get(old_page);
1459 gotten:
1460         pte_unmap_unlock(page_table, ptl);
1461
1462         if (unlikely(anon_vma_prepare(vma)))
1463                 goto oom;
1464         if (old_page == ZERO_PAGE(address)) {
1465                 new_page = alloc_zeroed_user_highpage(vma, address);
1466                 if (!new_page)
1467                         goto oom;
1468         } else {
1469                 new_page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1470                 if (!new_page)
1471                         goto oom;
1472                 cow_user_page(new_page, old_page, address);
1473         }
1474
1475         /*
1476          * Re-check the pte - we dropped the lock
1477          */
1478         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1479         if (likely(pte_same(*page_table, orig_pte))) {
1480                 if (old_page) {
1481                         page_remove_rmap(old_page);
1482                         if (!PageAnon(old_page)) {
1483                                 dec_mm_counter(mm, file_rss);
1484                                 inc_mm_counter(mm, anon_rss);
1485                         }
1486                 } else
1487                         inc_mm_counter(mm, anon_rss);
1488                 flush_cache_page(vma, address, pte_pfn(orig_pte));
1489                 entry = mk_pte(new_page, vma->vm_page_prot);
1490                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1491                 ptep_establish(vma, address, page_table, entry);
1492                 update_mmu_cache(vma, address, entry);
1493                 lazy_mmu_prot_update(entry);
1494                 lru_cache_add_active(new_page);
1495                 page_add_anon_rmap(new_page, vma, address);
1496
1497                 /* Free the old page.. */
1498                 new_page = old_page;
1499                 ret |= VM_FAULT_WRITE;
1500         }
1501         if (new_page)
1502                 page_cache_release(new_page);
1503         if (old_page)
1504                 page_cache_release(old_page);
1505 unlock:
1506         pte_unmap_unlock(page_table, ptl);
1507         return ret;
1508 oom:
1509         if (old_page)
1510                 page_cache_release(old_page);
1511         return VM_FAULT_OOM;
1512 }
1513
1514 /*
1515  * Helper functions for unmap_mapping_range().
1516  *
1517  * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1518  *
1519  * We have to restart searching the prio_tree whenever we drop the lock,
1520  * since the iterator is only valid while the lock is held, and anyway
1521  * a later vma might be split and reinserted earlier while lock dropped.
1522  *
1523  * The list of nonlinear vmas could be handled more efficiently, using
1524  * a placeholder, but handle it in the same way until a need is shown.
1525  * It is important to search the prio_tree before nonlinear list: a vma
1526  * may become nonlinear and be shifted from prio_tree to nonlinear list
1527  * while the lock is dropped; but never shifted from list to prio_tree.
1528  *
1529  * In order to make forward progress despite restarting the search,
1530  * vm_truncate_count is used to mark a vma as now dealt with, so we can
1531  * quickly skip it next time around.  Since the prio_tree search only
1532  * shows us those vmas affected by unmapping the range in question, we
1533  * can't efficiently keep all vmas in step with mapping->truncate_count:
1534  * so instead reset them all whenever it wraps back to 0 (then go to 1).
1535  * mapping->truncate_count and vma->vm_truncate_count are protected by
1536  * i_mmap_lock.
1537  *
1538  * In order to make forward progress despite repeatedly restarting some
1539  * large vma, note the restart_addr from unmap_vmas when it breaks out:
1540  * and restart from that address when we reach that vma again.  It might
1541  * have been split or merged, shrunk or extended, but never shifted: so
1542  * restart_addr remains valid so long as it remains in the vma's range.
1543  * unmap_mapping_range forces truncate_count to leap over page-aligned
1544  * values so we can save vma's restart_addr in its truncate_count field.
1545  */
1546 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1547
1548 static void reset_vma_truncate_counts(struct address_space *mapping)
1549 {
1550         struct vm_area_struct *vma;
1551         struct prio_tree_iter iter;
1552
1553         vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1554                 vma->vm_truncate_count = 0;
1555         list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1556                 vma->vm_truncate_count = 0;
1557 }
1558
1559 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1560                 unsigned long start_addr, unsigned long end_addr,
1561                 struct zap_details *details)
1562 {
1563         unsigned long restart_addr;
1564         int need_break;
1565
1566 again:
1567         restart_addr = vma->vm_truncate_count;
1568         if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1569                 start_addr = restart_addr;
1570                 if (start_addr >= end_addr) {
1571                         /* Top of vma has been split off since last time */
1572                         vma->vm_truncate_count = details->truncate_count;
1573                         return 0;
1574                 }
1575         }
1576
1577         restart_addr = zap_page_range(vma, start_addr,
1578                                         end_addr - start_addr, details);
1579         need_break = need_resched() ||
1580                         need_lockbreak(details->i_mmap_lock);
1581
1582         if (restart_addr >= end_addr) {
1583                 /* We have now completed this vma: mark it so */
1584                 vma->vm_truncate_count = details->truncate_count;
1585                 if (!need_break)
1586                         return 0;
1587         } else {
1588                 /* Note restart_addr in vma's truncate_count field */
1589                 vma->vm_truncate_count = restart_addr;
1590                 if (!need_break)
1591                         goto again;
1592         }
1593
1594         spin_unlock(details->i_mmap_lock);
1595         cond_resched();
1596         spin_lock(details->i_mmap_lock);
1597         return -EINTR;
1598 }
1599
1600 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1601                                             struct zap_details *details)
1602 {
1603         struct vm_area_struct *vma;
1604         struct prio_tree_iter iter;
1605         pgoff_t vba, vea, zba, zea;
1606
1607 restart:
1608         vma_prio_tree_foreach(vma, &iter, root,
1609                         details->first_index, details->last_index) {
1610                 /* Skip quickly over those we have already dealt with */
1611                 if (vma->vm_truncate_count == details->truncate_count)
1612                         continue;
1613
1614                 vba = vma->vm_pgoff;
1615                 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1616                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1617                 zba = details->first_index;
1618                 if (zba < vba)
1619                         zba = vba;
1620                 zea = details->last_index;
1621                 if (zea > vea)
1622                         zea = vea;
1623
1624                 if (unmap_mapping_range_vma(vma,
1625                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1626                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1627                                 details) < 0)
1628                         goto restart;
1629         }
1630 }
1631
1632 static inline void unmap_mapping_range_list(struct list_head *head,
1633                                             struct zap_details *details)
1634 {
1635         struct vm_area_struct *vma;
1636
1637         /*
1638          * In nonlinear VMAs there is no correspondence between virtual address
1639          * offset and file offset.  So we must perform an exhaustive search
1640          * across *all* the pages in each nonlinear VMA, not just the pages
1641          * whose virtual address lies outside the file truncation point.
1642          */
1643 restart:
1644         list_for_each_entry(vma, head, shared.vm_set.list) {
1645                 /* Skip quickly over those we have already dealt with */
1646                 if (vma->vm_truncate_count == details->truncate_count)
1647                         continue;
1648                 details->nonlinear_vma = vma;
1649                 if (unmap_mapping_range_vma(vma, vma->vm_start,
1650                                         vma->vm_end, details) < 0)
1651                         goto restart;
1652         }
1653 }
1654
1655 /**
1656  * unmap_mapping_range - unmap the portion of all mmaps
1657  * in the specified address_space corresponding to the specified
1658  * page range in the underlying file.
1659  * @mapping: the address space containing mmaps to be unmapped.
1660  * @holebegin: byte in first page to unmap, relative to the start of
1661  * the underlying file.  This will be rounded down to a PAGE_SIZE
1662  * boundary.  Note that this is different from vmtruncate(), which
1663  * must keep the partial page.  In contrast, we must get rid of
1664  * partial pages.
1665  * @holelen: size of prospective hole in bytes.  This will be rounded
1666  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
1667  * end of the file.
1668  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1669  * but 0 when invalidating pagecache, don't throw away private data.
1670  */
1671 void unmap_mapping_range(struct address_space *mapping,
1672                 loff_t const holebegin, loff_t const holelen, int even_cows)
1673 {
1674         struct zap_details details;
1675         pgoff_t hba = holebegin >> PAGE_SHIFT;
1676         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1677
1678         /* Check for overflow. */
1679         if (sizeof(holelen) > sizeof(hlen)) {
1680                 long long holeend =
1681                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1682                 if (holeend & ~(long long)ULONG_MAX)
1683                         hlen = ULONG_MAX - hba + 1;
1684         }
1685
1686         details.check_mapping = even_cows? NULL: mapping;
1687         details.nonlinear_vma = NULL;
1688         details.first_index = hba;
1689         details.last_index = hba + hlen - 1;
1690         if (details.last_index < details.first_index)
1691                 details.last_index = ULONG_MAX;
1692         details.i_mmap_lock = &mapping->i_mmap_lock;
1693
1694         spin_lock(&mapping->i_mmap_lock);
1695
1696         /* serialize i_size write against truncate_count write */
1697         smp_wmb();
1698         /* Protect against page faults, and endless unmapping loops */
1699         mapping->truncate_count++;
1700         /*
1701          * For archs where spin_lock has inclusive semantics like ia64
1702          * this smp_mb() will prevent to read pagetable contents
1703          * before the truncate_count increment is visible to
1704          * other cpus.
1705          */
1706         smp_mb();
1707         if (unlikely(is_restart_addr(mapping->truncate_count))) {
1708                 if (mapping->truncate_count == 0)
1709                         reset_vma_truncate_counts(mapping);
1710                 mapping->truncate_count++;
1711         }
1712         details.truncate_count = mapping->truncate_count;
1713
1714         if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1715                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
1716         if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1717                 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1718         spin_unlock(&mapping->i_mmap_lock);
1719 }
1720 EXPORT_SYMBOL(unmap_mapping_range);
1721
1722 /*
1723  * Handle all mappings that got truncated by a "truncate()"
1724  * system call.
1725  *
1726  * NOTE! We have to be ready to update the memory sharing
1727  * between the file and the memory map for a potential last
1728  * incomplete page.  Ugly, but necessary.
1729  */
1730 int vmtruncate(struct inode * inode, loff_t offset)
1731 {
1732         struct address_space *mapping = inode->i_mapping;
1733         unsigned long limit;
1734
1735         if (inode->i_size < offset)
1736                 goto do_expand;
1737         /*
1738          * truncation of in-use swapfiles is disallowed - it would cause
1739          * subsequent swapout to scribble on the now-freed blocks.
1740          */
1741         if (IS_SWAPFILE(inode))
1742                 goto out_busy;
1743         i_size_write(inode, offset);
1744         unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1745         truncate_inode_pages(mapping, offset);
1746         goto out_truncate;
1747
1748 do_expand:
1749         limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1750         if (limit != RLIM_INFINITY && offset > limit)
1751                 goto out_sig;
1752         if (offset > inode->i_sb->s_maxbytes)
1753                 goto out_big;
1754         i_size_write(inode, offset);
1755
1756 out_truncate:
1757         if (inode->i_op && inode->i_op->truncate)
1758                 inode->i_op->truncate(inode);
1759         return 0;
1760 out_sig:
1761         send_sig(SIGXFSZ, current, 0);
1762 out_big:
1763         return -EFBIG;
1764 out_busy:
1765         return -ETXTBSY;
1766 }
1767
1768 EXPORT_SYMBOL(vmtruncate);
1769
1770 /* 
1771  * Primitive swap readahead code. We simply read an aligned block of
1772  * (1 << page_cluster) entries in the swap area. This method is chosen
1773  * because it doesn't cost us any seek time.  We also make sure to queue
1774  * the 'original' request together with the readahead ones...  
1775  *
1776  * This has been extended to use the NUMA policies from the mm triggering
1777  * the readahead.
1778  *
1779  * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
1780  */
1781 void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
1782 {
1783 #ifdef CONFIG_NUMA
1784         struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
1785 #endif
1786         int i, num;
1787         struct page *new_page;
1788         unsigned long offset;
1789
1790         /*
1791          * Get the number of handles we should do readahead io to.
1792          */
1793         num = valid_swaphandles(entry, &offset);
1794         for (i = 0; i < num; offset++, i++) {
1795                 /* Ok, do the async read-ahead now */
1796                 new_page = read_swap_cache_async(swp_entry(swp_type(entry),
1797                                                            offset), vma, addr);
1798                 if (!new_page)
1799                         break;
1800                 page_cache_release(new_page);
1801 #ifdef CONFIG_NUMA
1802                 /*
1803                  * Find the next applicable VMA for the NUMA policy.
1804                  */
1805                 addr += PAGE_SIZE;
1806                 if (addr == 0)
1807                         vma = NULL;
1808                 if (vma) {
1809                         if (addr >= vma->vm_end) {
1810                                 vma = next_vma;
1811                                 next_vma = vma ? vma->vm_next : NULL;
1812                         }
1813                         if (vma && addr < vma->vm_start)
1814                                 vma = NULL;
1815                 } else {
1816                         if (next_vma && addr >= next_vma->vm_start) {
1817                                 vma = next_vma;
1818                                 next_vma = vma->vm_next;
1819                         }
1820                 }
1821 #endif
1822         }
1823         lru_add_drain();        /* Push any new pages onto the LRU now */
1824 }
1825
1826 /*
1827  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1828  * but allow concurrent faults), and pte mapped but not yet locked.
1829  * We return with mmap_sem still held, but pte unmapped and unlocked.
1830  */
1831 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
1832                 unsigned long address, pte_t *page_table, pmd_t *pmd,
1833                 int write_access, pte_t orig_pte)
1834 {
1835         spinlock_t *ptl;
1836         struct page *page;
1837         swp_entry_t entry;
1838         pte_t pte;
1839         int ret = VM_FAULT_MINOR;
1840
1841         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
1842                 goto out;
1843
1844         entry = pte_to_swp_entry(orig_pte);
1845         page = lookup_swap_cache(entry);
1846         if (!page) {
1847                 swapin_readahead(entry, address, vma);
1848                 page = read_swap_cache_async(entry, vma, address);
1849                 if (!page) {
1850                         /*
1851                          * Back out if somebody else faulted in this pte
1852                          * while we released the pte lock.
1853                          */
1854                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1855                         if (likely(pte_same(*page_table, orig_pte)))
1856                                 ret = VM_FAULT_OOM;
1857                         goto unlock;
1858                 }
1859
1860                 /* Had to read the page from swap area: Major fault */
1861                 ret = VM_FAULT_MAJOR;
1862                 inc_page_state(pgmajfault);
1863                 grab_swap_token();
1864         }
1865
1866         mark_page_accessed(page);
1867         lock_page(page);
1868
1869         /*
1870          * Back out if somebody else already faulted in this pte.
1871          */
1872         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1873         if (unlikely(!pte_same(*page_table, orig_pte)))
1874                 goto out_nomap;
1875
1876         if (unlikely(!PageUptodate(page))) {
1877                 ret = VM_FAULT_SIGBUS;
1878                 goto out_nomap;
1879         }
1880
1881         /* The page isn't present yet, go ahead with the fault. */
1882
1883         inc_mm_counter(mm, anon_rss);
1884         pte = mk_pte(page, vma->vm_page_prot);
1885         if (write_access && can_share_swap_page(page)) {
1886                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
1887                 write_access = 0;
1888         }
1889
1890         flush_icache_page(vma, page);
1891         set_pte_at(mm, address, page_table, pte);
1892         page_add_anon_rmap(page, vma, address);
1893
1894         swap_free(entry);
1895         if (vm_swap_full())
1896                 remove_exclusive_swap_page(page);
1897         unlock_page(page);
1898
1899         if (write_access) {
1900                 if (do_wp_page(mm, vma, address,
1901                                 page_table, pmd, ptl, pte) == VM_FAULT_OOM)
1902                         ret = VM_FAULT_OOM;
1903                 goto out;
1904         }
1905
1906         /* No need to invalidate - it was non-present before */
1907         update_mmu_cache(vma, address, pte);
1908         lazy_mmu_prot_update(pte);
1909 unlock:
1910         pte_unmap_unlock(page_table, ptl);
1911 out:
1912         return ret;
1913 out_nomap:
1914         pte_unmap_unlock(page_table, ptl);
1915         unlock_page(page);
1916         page_cache_release(page);
1917         return ret;
1918 }
1919
1920 /*
1921  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1922  * but allow concurrent faults), and pte mapped but not yet locked.
1923  * We return with mmap_sem still held, but pte unmapped and unlocked.
1924  */
1925 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
1926                 unsigned long address, pte_t *page_table, pmd_t *pmd,
1927                 int write_access)
1928 {
1929         struct page *page;
1930         spinlock_t *ptl;
1931         pte_t entry;
1932
1933         if (write_access) {
1934                 /* Allocate our own private page. */
1935                 pte_unmap(page_table);
1936
1937                 if (unlikely(anon_vma_prepare(vma)))
1938                         goto oom;
1939                 page = alloc_zeroed_user_highpage(vma, address);
1940                 if (!page)
1941                         goto oom;
1942
1943                 entry = mk_pte(page, vma->vm_page_prot);
1944                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1945
1946                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1947                 if (!pte_none(*page_table))
1948                         goto release;
1949                 inc_mm_counter(mm, anon_rss);
1950                 lru_cache_add_active(page);
1951                 SetPageReferenced(page);
1952                 page_add_anon_rmap(page, vma, address);
1953         } else {
1954                 /* Map the ZERO_PAGE - vm_page_prot is readonly */
1955                 page = ZERO_PAGE(address);
1956                 page_cache_get(page);
1957                 entry = mk_pte(page, vma->vm_page_prot);
1958
1959                 ptl = pte_lockptr(mm, pmd);
1960                 spin_lock(ptl);
1961                 if (!pte_none(*page_table))
1962                         goto release;
1963                 inc_mm_counter(mm, file_rss);
1964                 page_add_file_rmap(page);
1965         }
1966
1967         set_pte_at(mm, address, page_table, entry);
1968
1969         /* No need to invalidate - it was non-present before */
1970         update_mmu_cache(vma, address, entry);
1971         lazy_mmu_prot_update(entry);
1972 unlock:
1973         pte_unmap_unlock(page_table, ptl);
1974         return VM_FAULT_MINOR;
1975 release:
1976         page_cache_release(page);
1977         goto unlock;
1978 oom:
1979         return VM_FAULT_OOM;
1980 }
1981
1982 /*
1983  * do_no_page() tries to create a new page mapping. It aggressively
1984  * tries to share with existing pages, but makes a separate copy if
1985  * the "write_access" parameter is true in order to avoid the next
1986  * page fault.
1987  *
1988  * As this is called only for pages that do not currently exist, we
1989  * do not need to flush old virtual caches or the TLB.
1990  *
1991  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1992  * but allow concurrent faults), and pte mapped but not yet locked.
1993  * We return with mmap_sem still held, but pte unmapped and unlocked.
1994  */
1995 static int do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1996                 unsigned long address, pte_t *page_table, pmd_t *pmd,
1997                 int write_access)
1998 {
1999         spinlock_t *ptl;
2000         struct page *new_page;
2001         struct address_space *mapping = NULL;
2002         pte_t entry;
2003         unsigned int sequence = 0;
2004         int ret = VM_FAULT_MINOR;
2005         int anon = 0;
2006
2007         pte_unmap(page_table);
2008         BUG_ON(vma->vm_flags & VM_PFNMAP);
2009
2010         if (vma->vm_file) {
2011                 mapping = vma->vm_file->f_mapping;
2012                 sequence = mapping->truncate_count;
2013                 smp_rmb(); /* serializes i_size against truncate_count */
2014         }
2015 retry:
2016         new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
2017         /*
2018          * No smp_rmb is needed here as long as there's a full
2019          * spin_lock/unlock sequence inside the ->nopage callback
2020          * (for the pagecache lookup) that acts as an implicit
2021          * smp_mb() and prevents the i_size read to happen
2022          * after the next truncate_count read.
2023          */
2024
2025         /* no page was available -- either SIGBUS or OOM */
2026         if (new_page == NOPAGE_SIGBUS)
2027                 return VM_FAULT_SIGBUS;
2028         if (new_page == NOPAGE_OOM)
2029                 return VM_FAULT_OOM;
2030
2031         /*
2032          * Should we do an early C-O-W break?
2033          */
2034         if (write_access && !(vma->vm_flags & VM_SHARED)) {
2035                 struct page *page;
2036
2037                 if (unlikely(anon_vma_prepare(vma)))
2038                         goto oom;
2039                 page = alloc_page_vma(GFP_HIGHUSER, vma, address);
2040                 if (!page)
2041                         goto oom;
2042                 copy_user_highpage(page, new_page, address);
2043                 page_cache_release(new_page);
2044                 new_page = page;
2045                 anon = 1;
2046         }
2047
2048         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2049         /*
2050          * For a file-backed vma, someone could have truncated or otherwise
2051          * invalidated this page.  If unmap_mapping_range got called,
2052          * retry getting the page.
2053          */
2054         if (mapping && unlikely(sequence != mapping->truncate_count)) {
2055                 pte_unmap_unlock(page_table, ptl);
2056                 page_cache_release(new_page);
2057                 cond_resched();
2058                 sequence = mapping->truncate_count;
2059                 smp_rmb();
2060                 goto retry;
2061         }
2062
2063         /*
2064          * This silly early PAGE_DIRTY setting removes a race
2065          * due to the bad i386 page protection. But it's valid
2066          * for other architectures too.
2067          *
2068          * Note that if write_access is true, we either now have
2069          * an exclusive copy of the page, or this is a shared mapping,
2070          * so we can make it writable and dirty to avoid having to
2071          * handle that later.
2072          */
2073         /* Only go through if we didn't race with anybody else... */
2074         if (pte_none(*page_table)) {
2075                 flush_icache_page(vma, new_page);
2076                 entry = mk_pte(new_page, vma->vm_page_prot);
2077                 if (write_access)
2078                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2079                 set_pte_at(mm, address, page_table, entry);
2080                 if (anon) {
2081                         inc_mm_counter(mm, anon_rss);
2082                         lru_cache_add_active(new_page);
2083                         page_add_anon_rmap(new_page, vma, address);
2084                 } else {
2085                         inc_mm_counter(mm, file_rss);
2086                         page_add_file_rmap(new_page);
2087                 }
2088         } else {
2089                 /* One of our sibling threads was faster, back out. */
2090                 page_cache_release(new_page);
2091                 goto unlock;
2092         }
2093
2094         /* no need to invalidate: a not-present page shouldn't be cached */
2095         update_mmu_cache(vma, address, entry);
2096         lazy_mmu_prot_update(entry);
2097 unlock:
2098         pte_unmap_unlock(page_table, ptl);
2099         return ret;
2100 oom:
2101         page_cache_release(new_page);
2102         return VM_FAULT_OOM;
2103 }
2104
2105 /*
2106  * Fault of a previously existing named mapping. Repopulate the pte
2107  * from the encoded file_pte if possible. This enables swappable
2108  * nonlinear vmas.
2109  *
2110  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2111  * but allow concurrent faults), and pte mapped but not yet locked.
2112  * We return with mmap_sem still held, but pte unmapped and unlocked.
2113  */
2114 static int do_file_page(struct mm_struct *mm, struct vm_area_struct *vma,
2115                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2116                 int write_access, pte_t orig_pte)
2117 {
2118         pgoff_t pgoff;
2119         int err;
2120
2121         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2122                 return VM_FAULT_MINOR;
2123
2124         if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
2125                 /*
2126                  * Page table corrupted: show pte and kill process.
2127                  */
2128                 print_bad_pte(vma, orig_pte, address);
2129                 return VM_FAULT_OOM;
2130         }
2131         /* We can then assume vm->vm_ops && vma->vm_ops->populate */
2132
2133         pgoff = pte_to_pgoff(orig_pte);
2134         err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE,
2135                                         vma->vm_page_prot, pgoff, 0);
2136         if (err == -ENOMEM)
2137                 return VM_FAULT_OOM;
2138         if (err)
2139                 return VM_FAULT_SIGBUS;
2140         return VM_FAULT_MAJOR;
2141 }
2142
2143 /*
2144  * These routines also need to handle stuff like marking pages dirty
2145  * and/or accessed for architectures that don't do it in hardware (most
2146  * RISC architectures).  The early dirtying is also good on the i386.
2147  *
2148  * There is also a hook called "update_mmu_cache()" that architectures
2149  * with external mmu caches can use to update those (ie the Sparc or
2150  * PowerPC hashed page tables that act as extended TLBs).
2151  *
2152  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2153  * but allow concurrent faults), and pte mapped but not yet locked.
2154  * We return with mmap_sem still held, but pte unmapped and unlocked.
2155  */
2156 static inline int handle_pte_fault(struct mm_struct *mm,
2157                 struct vm_area_struct *vma, unsigned long address,
2158                 pte_t *pte, pmd_t *pmd, int write_access)
2159 {
2160         pte_t entry;
2161         pte_t old_entry;
2162         spinlock_t *ptl;
2163
2164         old_entry = entry = *pte;
2165         if (!pte_present(entry)) {
2166                 if (pte_none(entry)) {
2167                         if (!vma->vm_ops || !vma->vm_ops->nopage)
2168                                 return do_anonymous_page(mm, vma, address,
2169                                         pte, pmd, write_access);
2170                         return do_no_page(mm, vma, address,
2171                                         pte, pmd, write_access);
2172                 }
2173                 if (pte_file(entry))
2174                         return do_file_page(mm, vma, address,
2175                                         pte, pmd, write_access, entry);
2176                 return do_swap_page(mm, vma, address,
2177                                         pte, pmd, write_access, entry);
2178         }
2179
2180         ptl = pte_lockptr(mm, pmd);
2181         spin_lock(ptl);
2182         if (unlikely(!pte_same(*pte, entry)))
2183                 goto unlock;
2184         if (write_access) {
2185                 if (!pte_write(entry))
2186                         return do_wp_page(mm, vma, address,
2187                                         pte, pmd, ptl, entry);
2188                 entry = pte_mkdirty(entry);
2189         }
2190         entry = pte_mkyoung(entry);
2191         if (!pte_same(old_entry, entry)) {
2192                 ptep_set_access_flags(vma, address, pte, entry, write_access);
2193                 update_mmu_cache(vma, address, entry);
2194                 lazy_mmu_prot_update(entry);
2195         } else {
2196                 /*
2197                  * This is needed only for protection faults but the arch code
2198                  * is not yet telling us if this is a protection fault or not.
2199                  * This still avoids useless tlb flushes for .text page faults
2200                  * with threads.
2201                  */
2202                 if (write_access)
2203                         flush_tlb_page(vma, address);
2204         }
2205 unlock:
2206         pte_unmap_unlock(pte, ptl);
2207         return VM_FAULT_MINOR;
2208 }
2209
2210 /*
2211  * By the time we get here, we already hold the mm semaphore
2212  */
2213 int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2214                 unsigned long address, int write_access)
2215 {
2216         pgd_t *pgd;
2217         pud_t *pud;
2218         pmd_t *pmd;
2219         pte_t *pte;
2220
2221         __set_current_state(TASK_RUNNING);
2222
2223         inc_page_state(pgfault);
2224
2225         if (unlikely(is_vm_hugetlb_page(vma)))
2226                 return hugetlb_fault(mm, vma, address, write_access);
2227
2228         pgd = pgd_offset(mm, address);
2229         pud = pud_alloc(mm, pgd, address);
2230         if (!pud)
2231                 return VM_FAULT_OOM;
2232         pmd = pmd_alloc(mm, pud, address);
2233         if (!pmd)
2234                 return VM_FAULT_OOM;
2235         pte = pte_alloc_map(mm, pmd, address);
2236         if (!pte)
2237                 return VM_FAULT_OOM;
2238
2239         return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2240 }
2241
2242 #ifndef __PAGETABLE_PUD_FOLDED
2243 /*
2244  * Allocate page upper directory.
2245  * We've already handled the fast-path in-line.
2246  */
2247 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2248 {
2249         pud_t *new = pud_alloc_one(mm, address);
2250         if (!new)
2251                 return -ENOMEM;
2252
2253         spin_lock(&mm->page_table_lock);
2254         if (pgd_present(*pgd))          /* Another has populated it */
2255                 pud_free(new);
2256         else
2257                 pgd_populate(mm, pgd, new);
2258         spin_unlock(&mm->page_table_lock);
2259         return 0;
2260 }
2261 #else
2262 /* Workaround for gcc 2.96 */
2263 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2264 {
2265         return 0;
2266 }
2267 #endif /* __PAGETABLE_PUD_FOLDED */
2268
2269 #ifndef __PAGETABLE_PMD_FOLDED
2270 /*
2271  * Allocate page middle directory.
2272  * We've already handled the fast-path in-line.
2273  */
2274 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2275 {
2276         pmd_t *new = pmd_alloc_one(mm, address);
2277         if (!new)
2278                 return -ENOMEM;
2279
2280         spin_lock(&mm->page_table_lock);
2281 #ifndef __ARCH_HAS_4LEVEL_HACK
2282         if (pud_present(*pud))          /* Another has populated it */
2283                 pmd_free(new);
2284         else
2285                 pud_populate(mm, pud, new);
2286 #else
2287         if (pgd_present(*pud))          /* Another has populated it */
2288                 pmd_free(new);
2289         else
2290                 pgd_populate(mm, pud, new);
2291 #endif /* __ARCH_HAS_4LEVEL_HACK */
2292         spin_unlock(&mm->page_table_lock);
2293         return 0;
2294 }
2295 #else
2296 /* Workaround for gcc 2.96 */
2297 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2298 {
2299         return 0;
2300 }
2301 #endif /* __PAGETABLE_PMD_FOLDED */
2302
2303 int make_pages_present(unsigned long addr, unsigned long end)
2304 {
2305         int ret, len, write;
2306         struct vm_area_struct * vma;
2307
2308         vma = find_vma(current->mm, addr);
2309         if (!vma)
2310                 return -1;
2311         write = (vma->vm_flags & VM_WRITE) != 0;
2312         if (addr >= end)
2313                 BUG();
2314         if (end > vma->vm_end)
2315                 BUG();
2316         len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
2317         ret = get_user_pages(current, current->mm, addr,
2318                         len, write, 0, NULL, NULL);
2319         if (ret < 0)
2320                 return ret;
2321         return ret == len ? 0 : -1;
2322 }
2323
2324 /* 
2325  * Map a vmalloc()-space virtual address to the physical page.
2326  */
2327 struct page * vmalloc_to_page(void * vmalloc_addr)
2328 {
2329         unsigned long addr = (unsigned long) vmalloc_addr;
2330         struct page *page = NULL;
2331         pgd_t *pgd = pgd_offset_k(addr);
2332         pud_t *pud;
2333         pmd_t *pmd;
2334         pte_t *ptep, pte;
2335   
2336         if (!pgd_none(*pgd)) {
2337                 pud = pud_offset(pgd, addr);
2338                 if (!pud_none(*pud)) {
2339                         pmd = pmd_offset(pud, addr);
2340                         if (!pmd_none(*pmd)) {
2341                                 ptep = pte_offset_map(pmd, addr);
2342                                 pte = *ptep;
2343                                 if (pte_present(pte))
2344                                         page = pte_page(pte);
2345                                 pte_unmap(ptep);
2346                         }
2347                 }
2348         }
2349         return page;
2350 }
2351
2352 EXPORT_SYMBOL(vmalloc_to_page);
2353
2354 /*
2355  * Map a vmalloc()-space virtual address to the physical page frame number.
2356  */
2357 unsigned long vmalloc_to_pfn(void * vmalloc_addr)
2358 {
2359         return page_to_pfn(vmalloc_to_page(vmalloc_addr));
2360 }
2361
2362 EXPORT_SYMBOL(vmalloc_to_pfn);
2363
2364 #if !defined(__HAVE_ARCH_GATE_AREA)
2365
2366 #if defined(AT_SYSINFO_EHDR)
2367 static struct vm_area_struct gate_vma;
2368
2369 static int __init gate_vma_init(void)
2370 {
2371         gate_vma.vm_mm = NULL;
2372         gate_vma.vm_start = FIXADDR_USER_START;
2373         gate_vma.vm_end = FIXADDR_USER_END;
2374         gate_vma.vm_page_prot = PAGE_READONLY;
2375         gate_vma.vm_flags = 0;
2376         return 0;
2377 }
2378 __initcall(gate_vma_init);
2379 #endif
2380
2381 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2382 {
2383 #ifdef AT_SYSINFO_EHDR
2384         return &gate_vma;
2385 #else
2386         return NULL;
2387 #endif
2388 }
2389
2390 int in_gate_area_no_task(unsigned long addr)
2391 {
2392 #ifdef AT_SYSINFO_EHDR
2393         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2394                 return 1;
2395 #endif
2396         return 0;
2397 }
2398
2399 #endif  /* __HAVE_ARCH_GATE_AREA */