mm: fix the TLB range flushed when __tlb_remove_page() runs out of slots
[cascardo/linux.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62
63 #include <asm/io.h>
64 #include <asm/pgalloc.h>
65 #include <asm/uaccess.h>
66 #include <asm/tlb.h>
67 #include <asm/tlbflush.h>
68 #include <asm/pgtable.h>
69
70 #include "internal.h"
71
72 #ifdef LAST_NID_NOT_IN_PAGE_FLAGS
73 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_nid.
74 #endif
75
76 #ifndef CONFIG_NEED_MULTIPLE_NODES
77 /* use the per-pgdat data instead for discontigmem - mbligh */
78 unsigned long max_mapnr;
79 struct page *mem_map;
80
81 EXPORT_SYMBOL(max_mapnr);
82 EXPORT_SYMBOL(mem_map);
83 #endif
84
85 unsigned long num_physpages;
86 /*
87  * A number of key systems in x86 including ioremap() rely on the assumption
88  * that high_memory defines the upper bound on direct map memory, then end
89  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
90  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
91  * and ZONE_HIGHMEM.
92  */
93 void * high_memory;
94
95 EXPORT_SYMBOL(num_physpages);
96 EXPORT_SYMBOL(high_memory);
97
98 /*
99  * Randomize the address space (stacks, mmaps, brk, etc.).
100  *
101  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
102  *   as ancient (libc5 based) binaries can segfault. )
103  */
104 int randomize_va_space __read_mostly =
105 #ifdef CONFIG_COMPAT_BRK
106                                         1;
107 #else
108                                         2;
109 #endif
110
111 static int __init disable_randmaps(char *s)
112 {
113         randomize_va_space = 0;
114         return 1;
115 }
116 __setup("norandmaps", disable_randmaps);
117
118 unsigned long zero_pfn __read_mostly;
119 unsigned long highest_memmap_pfn __read_mostly;
120
121 /*
122  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
123  */
124 static int __init init_zero_pfn(void)
125 {
126         zero_pfn = page_to_pfn(ZERO_PAGE(0));
127         return 0;
128 }
129 core_initcall(init_zero_pfn);
130
131
132 #if defined(SPLIT_RSS_COUNTING)
133
134 void sync_mm_rss(struct mm_struct *mm)
135 {
136         int i;
137
138         for (i = 0; i < NR_MM_COUNTERS; i++) {
139                 if (current->rss_stat.count[i]) {
140                         add_mm_counter(mm, i, current->rss_stat.count[i]);
141                         current->rss_stat.count[i] = 0;
142                 }
143         }
144         current->rss_stat.events = 0;
145 }
146
147 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
148 {
149         struct task_struct *task = current;
150
151         if (likely(task->mm == mm))
152                 task->rss_stat.count[member] += val;
153         else
154                 add_mm_counter(mm, member, val);
155 }
156 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
157 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
158
159 /* sync counter once per 64 page faults */
160 #define TASK_RSS_EVENTS_THRESH  (64)
161 static void check_sync_rss_stat(struct task_struct *task)
162 {
163         if (unlikely(task != current))
164                 return;
165         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
166                 sync_mm_rss(task->mm);
167 }
168 #else /* SPLIT_RSS_COUNTING */
169
170 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
171 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
172
173 static void check_sync_rss_stat(struct task_struct *task)
174 {
175 }
176
177 #endif /* SPLIT_RSS_COUNTING */
178
179 #ifdef HAVE_GENERIC_MMU_GATHER
180
181 static int tlb_next_batch(struct mmu_gather *tlb)
182 {
183         struct mmu_gather_batch *batch;
184
185         batch = tlb->active;
186         if (batch->next) {
187                 tlb->active = batch->next;
188                 return 1;
189         }
190
191         if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
192                 return 0;
193
194         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
195         if (!batch)
196                 return 0;
197
198         tlb->batch_count++;
199         batch->next = NULL;
200         batch->nr   = 0;
201         batch->max  = MAX_GATHER_BATCH;
202
203         tlb->active->next = batch;
204         tlb->active = batch;
205
206         return 1;
207 }
208
209 /* tlb_gather_mmu
210  *      Called to initialize an (on-stack) mmu_gather structure for page-table
211  *      tear-down from @mm. The @fullmm argument is used when @mm is without
212  *      users and we're going to destroy the full address space (exit/execve).
213  */
214 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
215 {
216         tlb->mm = mm;
217
218         tlb->fullmm     = fullmm;
219         tlb->need_flush_all = 0;
220         tlb->start      = -1UL;
221         tlb->end        = 0;
222         tlb->need_flush = 0;
223         tlb->local.next = NULL;
224         tlb->local.nr   = 0;
225         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
226         tlb->active     = &tlb->local;
227         tlb->batch_count = 0;
228
229 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
230         tlb->batch = NULL;
231 #endif
232 }
233
234 void tlb_flush_mmu(struct mmu_gather *tlb)
235 {
236         struct mmu_gather_batch *batch;
237
238         if (!tlb->need_flush)
239                 return;
240         tlb->need_flush = 0;
241         tlb_flush(tlb);
242 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
243         tlb_table_flush(tlb);
244 #endif
245
246         for (batch = &tlb->local; batch; batch = batch->next) {
247                 free_pages_and_swap_cache(batch->pages, batch->nr);
248                 batch->nr = 0;
249         }
250         tlb->active = &tlb->local;
251 }
252
253 /* tlb_finish_mmu
254  *      Called at the end of the shootdown operation to free up any resources
255  *      that were required.
256  */
257 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
258 {
259         struct mmu_gather_batch *batch, *next;
260
261         tlb->start = start;
262         tlb->end   = end;
263         tlb_flush_mmu(tlb);
264
265         /* keep the page table cache within bounds */
266         check_pgt_cache();
267
268         for (batch = tlb->local.next; batch; batch = next) {
269                 next = batch->next;
270                 free_pages((unsigned long)batch, 0);
271         }
272         tlb->local.next = NULL;
273 }
274
275 /* __tlb_remove_page
276  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
277  *      handling the additional races in SMP caused by other CPUs caching valid
278  *      mappings in their TLBs. Returns the number of free page slots left.
279  *      When out of page slots we must call tlb_flush_mmu().
280  */
281 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
282 {
283         struct mmu_gather_batch *batch;
284
285         VM_BUG_ON(!tlb->need_flush);
286
287         batch = tlb->active;
288         batch->pages[batch->nr++] = page;
289         if (batch->nr == batch->max) {
290                 if (!tlb_next_batch(tlb))
291                         return 0;
292                 batch = tlb->active;
293         }
294         VM_BUG_ON(batch->nr > batch->max);
295
296         return batch->max - batch->nr;
297 }
298
299 #endif /* HAVE_GENERIC_MMU_GATHER */
300
301 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
302
303 /*
304  * See the comment near struct mmu_table_batch.
305  */
306
307 static void tlb_remove_table_smp_sync(void *arg)
308 {
309         /* Simply deliver the interrupt */
310 }
311
312 static void tlb_remove_table_one(void *table)
313 {
314         /*
315          * This isn't an RCU grace period and hence the page-tables cannot be
316          * assumed to be actually RCU-freed.
317          *
318          * It is however sufficient for software page-table walkers that rely on
319          * IRQ disabling. See the comment near struct mmu_table_batch.
320          */
321         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
322         __tlb_remove_table(table);
323 }
324
325 static void tlb_remove_table_rcu(struct rcu_head *head)
326 {
327         struct mmu_table_batch *batch;
328         int i;
329
330         batch = container_of(head, struct mmu_table_batch, rcu);
331
332         for (i = 0; i < batch->nr; i++)
333                 __tlb_remove_table(batch->tables[i]);
334
335         free_page((unsigned long)batch);
336 }
337
338 void tlb_table_flush(struct mmu_gather *tlb)
339 {
340         struct mmu_table_batch **batch = &tlb->batch;
341
342         if (*batch) {
343                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
344                 *batch = NULL;
345         }
346 }
347
348 void tlb_remove_table(struct mmu_gather *tlb, void *table)
349 {
350         struct mmu_table_batch **batch = &tlb->batch;
351
352         tlb->need_flush = 1;
353
354         /*
355          * When there's less then two users of this mm there cannot be a
356          * concurrent page-table walk.
357          */
358         if (atomic_read(&tlb->mm->mm_users) < 2) {
359                 __tlb_remove_table(table);
360                 return;
361         }
362
363         if (*batch == NULL) {
364                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
365                 if (*batch == NULL) {
366                         tlb_remove_table_one(table);
367                         return;
368                 }
369                 (*batch)->nr = 0;
370         }
371         (*batch)->tables[(*batch)->nr++] = table;
372         if ((*batch)->nr == MAX_TABLE_BATCH)
373                 tlb_table_flush(tlb);
374 }
375
376 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
377
378 /*
379  * If a p?d_bad entry is found while walking page tables, report
380  * the error, before resetting entry to p?d_none.  Usually (but
381  * very seldom) called out from the p?d_none_or_clear_bad macros.
382  */
383
384 void pgd_clear_bad(pgd_t *pgd)
385 {
386         pgd_ERROR(*pgd);
387         pgd_clear(pgd);
388 }
389
390 void pud_clear_bad(pud_t *pud)
391 {
392         pud_ERROR(*pud);
393         pud_clear(pud);
394 }
395
396 void pmd_clear_bad(pmd_t *pmd)
397 {
398         pmd_ERROR(*pmd);
399         pmd_clear(pmd);
400 }
401
402 /*
403  * Note: this doesn't free the actual pages themselves. That
404  * has been handled earlier when unmapping all the memory regions.
405  */
406 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
407                            unsigned long addr)
408 {
409         pgtable_t token = pmd_pgtable(*pmd);
410         pmd_clear(pmd);
411         pte_free_tlb(tlb, token, addr);
412         tlb->mm->nr_ptes--;
413 }
414
415 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
416                                 unsigned long addr, unsigned long end,
417                                 unsigned long floor, unsigned long ceiling)
418 {
419         pmd_t *pmd;
420         unsigned long next;
421         unsigned long start;
422
423         start = addr;
424         pmd = pmd_offset(pud, addr);
425         do {
426                 next = pmd_addr_end(addr, end);
427                 if (pmd_none_or_clear_bad(pmd))
428                         continue;
429                 free_pte_range(tlb, pmd, addr);
430         } while (pmd++, addr = next, addr != end);
431
432         start &= PUD_MASK;
433         if (start < floor)
434                 return;
435         if (ceiling) {
436                 ceiling &= PUD_MASK;
437                 if (!ceiling)
438                         return;
439         }
440         if (end - 1 > ceiling - 1)
441                 return;
442
443         pmd = pmd_offset(pud, start);
444         pud_clear(pud);
445         pmd_free_tlb(tlb, pmd, start);
446 }
447
448 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
449                                 unsigned long addr, unsigned long end,
450                                 unsigned long floor, unsigned long ceiling)
451 {
452         pud_t *pud;
453         unsigned long next;
454         unsigned long start;
455
456         start = addr;
457         pud = pud_offset(pgd, addr);
458         do {
459                 next = pud_addr_end(addr, end);
460                 if (pud_none_or_clear_bad(pud))
461                         continue;
462                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
463         } while (pud++, addr = next, addr != end);
464
465         start &= PGDIR_MASK;
466         if (start < floor)
467                 return;
468         if (ceiling) {
469                 ceiling &= PGDIR_MASK;
470                 if (!ceiling)
471                         return;
472         }
473         if (end - 1 > ceiling - 1)
474                 return;
475
476         pud = pud_offset(pgd, start);
477         pgd_clear(pgd);
478         pud_free_tlb(tlb, pud, start);
479 }
480
481 /*
482  * This function frees user-level page tables of a process.
483  *
484  * Must be called with pagetable lock held.
485  */
486 void free_pgd_range(struct mmu_gather *tlb,
487                         unsigned long addr, unsigned long end,
488                         unsigned long floor, unsigned long ceiling)
489 {
490         pgd_t *pgd;
491         unsigned long next;
492
493         /*
494          * The next few lines have given us lots of grief...
495          *
496          * Why are we testing PMD* at this top level?  Because often
497          * there will be no work to do at all, and we'd prefer not to
498          * go all the way down to the bottom just to discover that.
499          *
500          * Why all these "- 1"s?  Because 0 represents both the bottom
501          * of the address space and the top of it (using -1 for the
502          * top wouldn't help much: the masks would do the wrong thing).
503          * The rule is that addr 0 and floor 0 refer to the bottom of
504          * the address space, but end 0 and ceiling 0 refer to the top
505          * Comparisons need to use "end - 1" and "ceiling - 1" (though
506          * that end 0 case should be mythical).
507          *
508          * Wherever addr is brought up or ceiling brought down, we must
509          * be careful to reject "the opposite 0" before it confuses the
510          * subsequent tests.  But what about where end is brought down
511          * by PMD_SIZE below? no, end can't go down to 0 there.
512          *
513          * Whereas we round start (addr) and ceiling down, by different
514          * masks at different levels, in order to test whether a table
515          * now has no other vmas using it, so can be freed, we don't
516          * bother to round floor or end up - the tests don't need that.
517          */
518
519         addr &= PMD_MASK;
520         if (addr < floor) {
521                 addr += PMD_SIZE;
522                 if (!addr)
523                         return;
524         }
525         if (ceiling) {
526                 ceiling &= PMD_MASK;
527                 if (!ceiling)
528                         return;
529         }
530         if (end - 1 > ceiling - 1)
531                 end -= PMD_SIZE;
532         if (addr > end - 1)
533                 return;
534
535         pgd = pgd_offset(tlb->mm, addr);
536         do {
537                 next = pgd_addr_end(addr, end);
538                 if (pgd_none_or_clear_bad(pgd))
539                         continue;
540                 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
541         } while (pgd++, addr = next, addr != end);
542 }
543
544 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
545                 unsigned long floor, unsigned long ceiling)
546 {
547         while (vma) {
548                 struct vm_area_struct *next = vma->vm_next;
549                 unsigned long addr = vma->vm_start;
550
551                 /*
552                  * Hide vma from rmap and truncate_pagecache before freeing
553                  * pgtables
554                  */
555                 unlink_anon_vmas(vma);
556                 unlink_file_vma(vma);
557
558                 if (is_vm_hugetlb_page(vma)) {
559                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
560                                 floor, next? next->vm_start: ceiling);
561                 } else {
562                         /*
563                          * Optimization: gather nearby vmas into one call down
564                          */
565                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
566                                && !is_vm_hugetlb_page(next)) {
567                                 vma = next;
568                                 next = vma->vm_next;
569                                 unlink_anon_vmas(vma);
570                                 unlink_file_vma(vma);
571                         }
572                         free_pgd_range(tlb, addr, vma->vm_end,
573                                 floor, next? next->vm_start: ceiling);
574                 }
575                 vma = next;
576         }
577 }
578
579 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
580                 pmd_t *pmd, unsigned long address)
581 {
582         pgtable_t new = pte_alloc_one(mm, address);
583         int wait_split_huge_page;
584         if (!new)
585                 return -ENOMEM;
586
587         /*
588          * Ensure all pte setup (eg. pte page lock and page clearing) are
589          * visible before the pte is made visible to other CPUs by being
590          * put into page tables.
591          *
592          * The other side of the story is the pointer chasing in the page
593          * table walking code (when walking the page table without locking;
594          * ie. most of the time). Fortunately, these data accesses consist
595          * of a chain of data-dependent loads, meaning most CPUs (alpha
596          * being the notable exception) will already guarantee loads are
597          * seen in-order. See the alpha page table accessors for the
598          * smp_read_barrier_depends() barriers in page table walking code.
599          */
600         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
601
602         spin_lock(&mm->page_table_lock);
603         wait_split_huge_page = 0;
604         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
605                 mm->nr_ptes++;
606                 pmd_populate(mm, pmd, new);
607                 new = NULL;
608         } else if (unlikely(pmd_trans_splitting(*pmd)))
609                 wait_split_huge_page = 1;
610         spin_unlock(&mm->page_table_lock);
611         if (new)
612                 pte_free(mm, new);
613         if (wait_split_huge_page)
614                 wait_split_huge_page(vma->anon_vma, pmd);
615         return 0;
616 }
617
618 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
619 {
620         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
621         if (!new)
622                 return -ENOMEM;
623
624         smp_wmb(); /* See comment in __pte_alloc */
625
626         spin_lock(&init_mm.page_table_lock);
627         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
628                 pmd_populate_kernel(&init_mm, pmd, new);
629                 new = NULL;
630         } else
631                 VM_BUG_ON(pmd_trans_splitting(*pmd));
632         spin_unlock(&init_mm.page_table_lock);
633         if (new)
634                 pte_free_kernel(&init_mm, new);
635         return 0;
636 }
637
638 static inline void init_rss_vec(int *rss)
639 {
640         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
641 }
642
643 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
644 {
645         int i;
646
647         if (current->mm == mm)
648                 sync_mm_rss(mm);
649         for (i = 0; i < NR_MM_COUNTERS; i++)
650                 if (rss[i])
651                         add_mm_counter(mm, i, rss[i]);
652 }
653
654 /*
655  * This function is called to print an error when a bad pte
656  * is found. For example, we might have a PFN-mapped pte in
657  * a region that doesn't allow it.
658  *
659  * The calling function must still handle the error.
660  */
661 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
662                           pte_t pte, struct page *page)
663 {
664         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
665         pud_t *pud = pud_offset(pgd, addr);
666         pmd_t *pmd = pmd_offset(pud, addr);
667         struct address_space *mapping;
668         pgoff_t index;
669         static unsigned long resume;
670         static unsigned long nr_shown;
671         static unsigned long nr_unshown;
672
673         /*
674          * Allow a burst of 60 reports, then keep quiet for that minute;
675          * or allow a steady drip of one report per second.
676          */
677         if (nr_shown == 60) {
678                 if (time_before(jiffies, resume)) {
679                         nr_unshown++;
680                         return;
681                 }
682                 if (nr_unshown) {
683                         printk(KERN_ALERT
684                                 "BUG: Bad page map: %lu messages suppressed\n",
685                                 nr_unshown);
686                         nr_unshown = 0;
687                 }
688                 nr_shown = 0;
689         }
690         if (nr_shown++ == 0)
691                 resume = jiffies + 60 * HZ;
692
693         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
694         index = linear_page_index(vma, addr);
695
696         printk(KERN_ALERT
697                 "BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
698                 current->comm,
699                 (long long)pte_val(pte), (long long)pmd_val(*pmd));
700         if (page)
701                 dump_page(page);
702         printk(KERN_ALERT
703                 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
704                 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
705         /*
706          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
707          */
708         if (vma->vm_ops)
709                 printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
710                        vma->vm_ops->fault);
711         if (vma->vm_file && vma->vm_file->f_op)
712                 printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
713                        vma->vm_file->f_op->mmap);
714         dump_stack();
715         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
716 }
717
718 static inline bool is_cow_mapping(vm_flags_t flags)
719 {
720         return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
721 }
722
723 /*
724  * vm_normal_page -- This function gets the "struct page" associated with a pte.
725  *
726  * "Special" mappings do not wish to be associated with a "struct page" (either
727  * it doesn't exist, or it exists but they don't want to touch it). In this
728  * case, NULL is returned here. "Normal" mappings do have a struct page.
729  *
730  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
731  * pte bit, in which case this function is trivial. Secondly, an architecture
732  * may not have a spare pte bit, which requires a more complicated scheme,
733  * described below.
734  *
735  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
736  * special mapping (even if there are underlying and valid "struct pages").
737  * COWed pages of a VM_PFNMAP are always normal.
738  *
739  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
740  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
741  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
742  * mapping will always honor the rule
743  *
744  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
745  *
746  * And for normal mappings this is false.
747  *
748  * This restricts such mappings to be a linear translation from virtual address
749  * to pfn. To get around this restriction, we allow arbitrary mappings so long
750  * as the vma is not a COW mapping; in that case, we know that all ptes are
751  * special (because none can have been COWed).
752  *
753  *
754  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
755  *
756  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
757  * page" backing, however the difference is that _all_ pages with a struct
758  * page (that is, those where pfn_valid is true) are refcounted and considered
759  * normal pages by the VM. The disadvantage is that pages are refcounted
760  * (which can be slower and simply not an option for some PFNMAP users). The
761  * advantage is that we don't have to follow the strict linearity rule of
762  * PFNMAP mappings in order to support COWable mappings.
763  *
764  */
765 #ifdef __HAVE_ARCH_PTE_SPECIAL
766 # define HAVE_PTE_SPECIAL 1
767 #else
768 # define HAVE_PTE_SPECIAL 0
769 #endif
770 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
771                                 pte_t pte)
772 {
773         unsigned long pfn = pte_pfn(pte);
774
775         if (HAVE_PTE_SPECIAL) {
776                 if (likely(!pte_special(pte)))
777                         goto check_pfn;
778                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
779                         return NULL;
780                 if (!is_zero_pfn(pfn))
781                         print_bad_pte(vma, addr, pte, NULL);
782                 return NULL;
783         }
784
785         /* !HAVE_PTE_SPECIAL case follows: */
786
787         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
788                 if (vma->vm_flags & VM_MIXEDMAP) {
789                         if (!pfn_valid(pfn))
790                                 return NULL;
791                         goto out;
792                 } else {
793                         unsigned long off;
794                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
795                         if (pfn == vma->vm_pgoff + off)
796                                 return NULL;
797                         if (!is_cow_mapping(vma->vm_flags))
798                                 return NULL;
799                 }
800         }
801
802         if (is_zero_pfn(pfn))
803                 return NULL;
804 check_pfn:
805         if (unlikely(pfn > highest_memmap_pfn)) {
806                 print_bad_pte(vma, addr, pte, NULL);
807                 return NULL;
808         }
809
810         /*
811          * NOTE! We still have PageReserved() pages in the page tables.
812          * eg. VDSO mappings can cause them to exist.
813          */
814 out:
815         return pfn_to_page(pfn);
816 }
817
818 /*
819  * copy one vm_area from one task to the other. Assumes the page tables
820  * already present in the new task to be cleared in the whole range
821  * covered by this vma.
822  */
823
824 static inline unsigned long
825 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
826                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
827                 unsigned long addr, int *rss)
828 {
829         unsigned long vm_flags = vma->vm_flags;
830         pte_t pte = *src_pte;
831         struct page *page;
832
833         /* pte contains position in swap or file, so copy. */
834         if (unlikely(!pte_present(pte))) {
835                 if (!pte_file(pte)) {
836                         swp_entry_t entry = pte_to_swp_entry(pte);
837
838                         if (swap_duplicate(entry) < 0)
839                                 return entry.val;
840
841                         /* make sure dst_mm is on swapoff's mmlist. */
842                         if (unlikely(list_empty(&dst_mm->mmlist))) {
843                                 spin_lock(&mmlist_lock);
844                                 if (list_empty(&dst_mm->mmlist))
845                                         list_add(&dst_mm->mmlist,
846                                                  &src_mm->mmlist);
847                                 spin_unlock(&mmlist_lock);
848                         }
849                         if (likely(!non_swap_entry(entry)))
850                                 rss[MM_SWAPENTS]++;
851                         else if (is_migration_entry(entry)) {
852                                 page = migration_entry_to_page(entry);
853
854                                 if (PageAnon(page))
855                                         rss[MM_ANONPAGES]++;
856                                 else
857                                         rss[MM_FILEPAGES]++;
858
859                                 if (is_write_migration_entry(entry) &&
860                                     is_cow_mapping(vm_flags)) {
861                                         /*
862                                          * COW mappings require pages in both
863                                          * parent and child to be set to read.
864                                          */
865                                         make_migration_entry_read(&entry);
866                                         pte = swp_entry_to_pte(entry);
867                                         set_pte_at(src_mm, addr, src_pte, pte);
868                                 }
869                         }
870                 }
871                 goto out_set_pte;
872         }
873
874         /*
875          * If it's a COW mapping, write protect it both
876          * in the parent and the child
877          */
878         if (is_cow_mapping(vm_flags)) {
879                 ptep_set_wrprotect(src_mm, addr, src_pte);
880                 pte = pte_wrprotect(pte);
881         }
882
883         /*
884          * If it's a shared mapping, mark it clean in
885          * the child
886          */
887         if (vm_flags & VM_SHARED)
888                 pte = pte_mkclean(pte);
889         pte = pte_mkold(pte);
890
891         page = vm_normal_page(vma, addr, pte);
892         if (page) {
893                 get_page(page);
894                 page_dup_rmap(page);
895                 if (PageAnon(page))
896                         rss[MM_ANONPAGES]++;
897                 else
898                         rss[MM_FILEPAGES]++;
899         }
900
901 out_set_pte:
902         set_pte_at(dst_mm, addr, dst_pte, pte);
903         return 0;
904 }
905
906 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
907                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
908                    unsigned long addr, unsigned long end)
909 {
910         pte_t *orig_src_pte, *orig_dst_pte;
911         pte_t *src_pte, *dst_pte;
912         spinlock_t *src_ptl, *dst_ptl;
913         int progress = 0;
914         int rss[NR_MM_COUNTERS];
915         swp_entry_t entry = (swp_entry_t){0};
916
917 again:
918         init_rss_vec(rss);
919
920         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
921         if (!dst_pte)
922                 return -ENOMEM;
923         src_pte = pte_offset_map(src_pmd, addr);
924         src_ptl = pte_lockptr(src_mm, src_pmd);
925         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
926         orig_src_pte = src_pte;
927         orig_dst_pte = dst_pte;
928         arch_enter_lazy_mmu_mode();
929
930         do {
931                 /*
932                  * We are holding two locks at this point - either of them
933                  * could generate latencies in another task on another CPU.
934                  */
935                 if (progress >= 32) {
936                         progress = 0;
937                         if (need_resched() ||
938                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
939                                 break;
940                 }
941                 if (pte_none(*src_pte)) {
942                         progress++;
943                         continue;
944                 }
945                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
946                                                         vma, addr, rss);
947                 if (entry.val)
948                         break;
949                 progress += 8;
950         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
951
952         arch_leave_lazy_mmu_mode();
953         spin_unlock(src_ptl);
954         pte_unmap(orig_src_pte);
955         add_mm_rss_vec(dst_mm, rss);
956         pte_unmap_unlock(orig_dst_pte, dst_ptl);
957         cond_resched();
958
959         if (entry.val) {
960                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
961                         return -ENOMEM;
962                 progress = 0;
963         }
964         if (addr != end)
965                 goto again;
966         return 0;
967 }
968
969 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
970                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
971                 unsigned long addr, unsigned long end)
972 {
973         pmd_t *src_pmd, *dst_pmd;
974         unsigned long next;
975
976         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
977         if (!dst_pmd)
978                 return -ENOMEM;
979         src_pmd = pmd_offset(src_pud, addr);
980         do {
981                 next = pmd_addr_end(addr, end);
982                 if (pmd_trans_huge(*src_pmd)) {
983                         int err;
984                         VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
985                         err = copy_huge_pmd(dst_mm, src_mm,
986                                             dst_pmd, src_pmd, addr, vma);
987                         if (err == -ENOMEM)
988                                 return -ENOMEM;
989                         if (!err)
990                                 continue;
991                         /* fall through */
992                 }
993                 if (pmd_none_or_clear_bad(src_pmd))
994                         continue;
995                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
996                                                 vma, addr, next))
997                         return -ENOMEM;
998         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
999         return 0;
1000 }
1001
1002 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1003                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1004                 unsigned long addr, unsigned long end)
1005 {
1006         pud_t *src_pud, *dst_pud;
1007         unsigned long next;
1008
1009         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1010         if (!dst_pud)
1011                 return -ENOMEM;
1012         src_pud = pud_offset(src_pgd, addr);
1013         do {
1014                 next = pud_addr_end(addr, end);
1015                 if (pud_none_or_clear_bad(src_pud))
1016                         continue;
1017                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1018                                                 vma, addr, next))
1019                         return -ENOMEM;
1020         } while (dst_pud++, src_pud++, addr = next, addr != end);
1021         return 0;
1022 }
1023
1024 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1025                 struct vm_area_struct *vma)
1026 {
1027         pgd_t *src_pgd, *dst_pgd;
1028         unsigned long next;
1029         unsigned long addr = vma->vm_start;
1030         unsigned long end = vma->vm_end;
1031         unsigned long mmun_start;       /* For mmu_notifiers */
1032         unsigned long mmun_end;         /* For mmu_notifiers */
1033         bool is_cow;
1034         int ret;
1035
1036         /*
1037          * Don't copy ptes where a page fault will fill them correctly.
1038          * Fork becomes much lighter when there are big shared or private
1039          * readonly mappings. The tradeoff is that copy_page_range is more
1040          * efficient than faulting.
1041          */
1042         if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1043                                VM_PFNMAP | VM_MIXEDMAP))) {
1044                 if (!vma->anon_vma)
1045                         return 0;
1046         }
1047
1048         if (is_vm_hugetlb_page(vma))
1049                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1050
1051         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1052                 /*
1053                  * We do not free on error cases below as remove_vma
1054                  * gets called on error from higher level routine
1055                  */
1056                 ret = track_pfn_copy(vma);
1057                 if (ret)
1058                         return ret;
1059         }
1060
1061         /*
1062          * We need to invalidate the secondary MMU mappings only when
1063          * there could be a permission downgrade on the ptes of the
1064          * parent mm. And a permission downgrade will only happen if
1065          * is_cow_mapping() returns true.
1066          */
1067         is_cow = is_cow_mapping(vma->vm_flags);
1068         mmun_start = addr;
1069         mmun_end   = end;
1070         if (is_cow)
1071                 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1072                                                     mmun_end);
1073
1074         ret = 0;
1075         dst_pgd = pgd_offset(dst_mm, addr);
1076         src_pgd = pgd_offset(src_mm, addr);
1077         do {
1078                 next = pgd_addr_end(addr, end);
1079                 if (pgd_none_or_clear_bad(src_pgd))
1080                         continue;
1081                 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1082                                             vma, addr, next))) {
1083                         ret = -ENOMEM;
1084                         break;
1085                 }
1086         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1087
1088         if (is_cow)
1089                 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1090         return ret;
1091 }
1092
1093 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1094                                 struct vm_area_struct *vma, pmd_t *pmd,
1095                                 unsigned long addr, unsigned long end,
1096                                 struct zap_details *details)
1097 {
1098         struct mm_struct *mm = tlb->mm;
1099         int force_flush = 0;
1100         int rss[NR_MM_COUNTERS];
1101         spinlock_t *ptl;
1102         pte_t *start_pte;
1103         pte_t *pte;
1104         unsigned long range_start = addr;
1105
1106 again:
1107         init_rss_vec(rss);
1108         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1109         pte = start_pte;
1110         arch_enter_lazy_mmu_mode();
1111         do {
1112                 pte_t ptent = *pte;
1113                 if (pte_none(ptent)) {
1114                         continue;
1115                 }
1116
1117                 if (pte_present(ptent)) {
1118                         struct page *page;
1119
1120                         page = vm_normal_page(vma, addr, ptent);
1121                         if (unlikely(details) && page) {
1122                                 /*
1123                                  * unmap_shared_mapping_pages() wants to
1124                                  * invalidate cache without truncating:
1125                                  * unmap shared but keep private pages.
1126                                  */
1127                                 if (details->check_mapping &&
1128                                     details->check_mapping != page->mapping)
1129                                         continue;
1130                                 /*
1131                                  * Each page->index must be checked when
1132                                  * invalidating or truncating nonlinear.
1133                                  */
1134                                 if (details->nonlinear_vma &&
1135                                     (page->index < details->first_index ||
1136                                      page->index > details->last_index))
1137                                         continue;
1138                         }
1139                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1140                                                         tlb->fullmm);
1141                         tlb_remove_tlb_entry(tlb, pte, addr);
1142                         if (unlikely(!page))
1143                                 continue;
1144                         if (unlikely(details) && details->nonlinear_vma
1145                             && linear_page_index(details->nonlinear_vma,
1146                                                 addr) != page->index)
1147                                 set_pte_at(mm, addr, pte,
1148                                            pgoff_to_pte(page->index));
1149                         if (PageAnon(page))
1150                                 rss[MM_ANONPAGES]--;
1151                         else {
1152                                 if (pte_dirty(ptent))
1153                                         set_page_dirty(page);
1154                                 if (pte_young(ptent) &&
1155                                     likely(!VM_SequentialReadHint(vma)))
1156                                         mark_page_accessed(page);
1157                                 rss[MM_FILEPAGES]--;
1158                         }
1159                         page_remove_rmap(page);
1160                         if (unlikely(page_mapcount(page) < 0))
1161                                 print_bad_pte(vma, addr, ptent, page);
1162                         force_flush = !__tlb_remove_page(tlb, page);
1163                         if (force_flush)
1164                                 break;
1165                         continue;
1166                 }
1167                 /*
1168                  * If details->check_mapping, we leave swap entries;
1169                  * if details->nonlinear_vma, we leave file entries.
1170                  */
1171                 if (unlikely(details))
1172                         continue;
1173                 if (pte_file(ptent)) {
1174                         if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1175                                 print_bad_pte(vma, addr, ptent, NULL);
1176                 } else {
1177                         swp_entry_t entry = pte_to_swp_entry(ptent);
1178
1179                         if (!non_swap_entry(entry))
1180                                 rss[MM_SWAPENTS]--;
1181                         else if (is_migration_entry(entry)) {
1182                                 struct page *page;
1183
1184                                 page = migration_entry_to_page(entry);
1185
1186                                 if (PageAnon(page))
1187                                         rss[MM_ANONPAGES]--;
1188                                 else
1189                                         rss[MM_FILEPAGES]--;
1190                         }
1191                         if (unlikely(!free_swap_and_cache(entry)))
1192                                 print_bad_pte(vma, addr, ptent, NULL);
1193                 }
1194                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1195         } while (pte++, addr += PAGE_SIZE, addr != end);
1196
1197         add_mm_rss_vec(mm, rss);
1198         arch_leave_lazy_mmu_mode();
1199         pte_unmap_unlock(start_pte, ptl);
1200
1201         /*
1202          * mmu_gather ran out of room to batch pages, we break out of
1203          * the PTE lock to avoid doing the potential expensive TLB invalidate
1204          * and page-free while holding it.
1205          */
1206         if (force_flush) {
1207                 force_flush = 0;
1208
1209 #ifdef HAVE_GENERIC_MMU_GATHER
1210                 tlb->start = range_start;
1211                 tlb->end = addr;
1212 #endif
1213                 tlb_flush_mmu(tlb);
1214                 if (addr != end) {
1215                         range_start = addr;
1216                         goto again;
1217                 }
1218         }
1219
1220         return addr;
1221 }
1222
1223 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1224                                 struct vm_area_struct *vma, pud_t *pud,
1225                                 unsigned long addr, unsigned long end,
1226                                 struct zap_details *details)
1227 {
1228         pmd_t *pmd;
1229         unsigned long next;
1230
1231         pmd = pmd_offset(pud, addr);
1232         do {
1233                 next = pmd_addr_end(addr, end);
1234                 if (pmd_trans_huge(*pmd)) {
1235                         if (next - addr != HPAGE_PMD_SIZE) {
1236 #ifdef CONFIG_DEBUG_VM
1237                                 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1238                                         pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1239                                                 __func__, addr, end,
1240                                                 vma->vm_start,
1241                                                 vma->vm_end);
1242                                         BUG();
1243                                 }
1244 #endif
1245                                 split_huge_page_pmd(vma, addr, pmd);
1246                         } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1247                                 goto next;
1248                         /* fall through */
1249                 }
1250                 /*
1251                  * Here there can be other concurrent MADV_DONTNEED or
1252                  * trans huge page faults running, and if the pmd is
1253                  * none or trans huge it can change under us. This is
1254                  * because MADV_DONTNEED holds the mmap_sem in read
1255                  * mode.
1256                  */
1257                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1258                         goto next;
1259                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1260 next:
1261                 cond_resched();
1262         } while (pmd++, addr = next, addr != end);
1263
1264         return addr;
1265 }
1266
1267 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1268                                 struct vm_area_struct *vma, pgd_t *pgd,
1269                                 unsigned long addr, unsigned long end,
1270                                 struct zap_details *details)
1271 {
1272         pud_t *pud;
1273         unsigned long next;
1274
1275         pud = pud_offset(pgd, addr);
1276         do {
1277                 next = pud_addr_end(addr, end);
1278                 if (pud_none_or_clear_bad(pud))
1279                         continue;
1280                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1281         } while (pud++, addr = next, addr != end);
1282
1283         return addr;
1284 }
1285
1286 static void unmap_page_range(struct mmu_gather *tlb,
1287                              struct vm_area_struct *vma,
1288                              unsigned long addr, unsigned long end,
1289                              struct zap_details *details)
1290 {
1291         pgd_t *pgd;
1292         unsigned long next;
1293
1294         if (details && !details->check_mapping && !details->nonlinear_vma)
1295                 details = NULL;
1296
1297         BUG_ON(addr >= end);
1298         mem_cgroup_uncharge_start();
1299         tlb_start_vma(tlb, vma);
1300         pgd = pgd_offset(vma->vm_mm, addr);
1301         do {
1302                 next = pgd_addr_end(addr, end);
1303                 if (pgd_none_or_clear_bad(pgd))
1304                         continue;
1305                 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1306         } while (pgd++, addr = next, addr != end);
1307         tlb_end_vma(tlb, vma);
1308         mem_cgroup_uncharge_end();
1309 }
1310
1311
1312 static void unmap_single_vma(struct mmu_gather *tlb,
1313                 struct vm_area_struct *vma, unsigned long start_addr,
1314                 unsigned long end_addr,
1315                 struct zap_details *details)
1316 {
1317         unsigned long start = max(vma->vm_start, start_addr);
1318         unsigned long end;
1319
1320         if (start >= vma->vm_end)
1321                 return;
1322         end = min(vma->vm_end, end_addr);
1323         if (end <= vma->vm_start)
1324                 return;
1325
1326         if (vma->vm_file)
1327                 uprobe_munmap(vma, start, end);
1328
1329         if (unlikely(vma->vm_flags & VM_PFNMAP))
1330                 untrack_pfn(vma, 0, 0);
1331
1332         if (start != end) {
1333                 if (unlikely(is_vm_hugetlb_page(vma))) {
1334                         /*
1335                          * It is undesirable to test vma->vm_file as it
1336                          * should be non-null for valid hugetlb area.
1337                          * However, vm_file will be NULL in the error
1338                          * cleanup path of do_mmap_pgoff. When
1339                          * hugetlbfs ->mmap method fails,
1340                          * do_mmap_pgoff() nullifies vma->vm_file
1341                          * before calling this function to clean up.
1342                          * Since no pte has actually been setup, it is
1343                          * safe to do nothing in this case.
1344                          */
1345                         if (vma->vm_file) {
1346                                 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1347                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1348                                 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1349                         }
1350                 } else
1351                         unmap_page_range(tlb, vma, start, end, details);
1352         }
1353 }
1354
1355 /**
1356  * unmap_vmas - unmap a range of memory covered by a list of vma's
1357  * @tlb: address of the caller's struct mmu_gather
1358  * @vma: the starting vma
1359  * @start_addr: virtual address at which to start unmapping
1360  * @end_addr: virtual address at which to end unmapping
1361  *
1362  * Unmap all pages in the vma list.
1363  *
1364  * Only addresses between `start' and `end' will be unmapped.
1365  *
1366  * The VMA list must be sorted in ascending virtual address order.
1367  *
1368  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1369  * range after unmap_vmas() returns.  So the only responsibility here is to
1370  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1371  * drops the lock and schedules.
1372  */
1373 void unmap_vmas(struct mmu_gather *tlb,
1374                 struct vm_area_struct *vma, unsigned long start_addr,
1375                 unsigned long end_addr)
1376 {
1377         struct mm_struct *mm = vma->vm_mm;
1378
1379         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1380         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1381                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1382         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1383 }
1384
1385 /**
1386  * zap_page_range - remove user pages in a given range
1387  * @vma: vm_area_struct holding the applicable pages
1388  * @start: starting address of pages to zap
1389  * @size: number of bytes to zap
1390  * @details: details of nonlinear truncation or shared cache invalidation
1391  *
1392  * Caller must protect the VMA list
1393  */
1394 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1395                 unsigned long size, struct zap_details *details)
1396 {
1397         struct mm_struct *mm = vma->vm_mm;
1398         struct mmu_gather tlb;
1399         unsigned long end = start + size;
1400
1401         lru_add_drain();
1402         tlb_gather_mmu(&tlb, mm, 0);
1403         update_hiwater_rss(mm);
1404         mmu_notifier_invalidate_range_start(mm, start, end);
1405         for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1406                 unmap_single_vma(&tlb, vma, start, end, details);
1407         mmu_notifier_invalidate_range_end(mm, start, end);
1408         tlb_finish_mmu(&tlb, start, end);
1409 }
1410
1411 /**
1412  * zap_page_range_single - remove user pages in a given range
1413  * @vma: vm_area_struct holding the applicable pages
1414  * @address: starting address of pages to zap
1415  * @size: number of bytes to zap
1416  * @details: details of nonlinear truncation or shared cache invalidation
1417  *
1418  * The range must fit into one VMA.
1419  */
1420 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1421                 unsigned long size, struct zap_details *details)
1422 {
1423         struct mm_struct *mm = vma->vm_mm;
1424         struct mmu_gather tlb;
1425         unsigned long end = address + size;
1426
1427         lru_add_drain();
1428         tlb_gather_mmu(&tlb, mm, 0);
1429         update_hiwater_rss(mm);
1430         mmu_notifier_invalidate_range_start(mm, address, end);
1431         unmap_single_vma(&tlb, vma, address, end, details);
1432         mmu_notifier_invalidate_range_end(mm, address, end);
1433         tlb_finish_mmu(&tlb, address, end);
1434 }
1435
1436 /**
1437  * zap_vma_ptes - remove ptes mapping the vma
1438  * @vma: vm_area_struct holding ptes to be zapped
1439  * @address: starting address of pages to zap
1440  * @size: number of bytes to zap
1441  *
1442  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1443  *
1444  * The entire address range must be fully contained within the vma.
1445  *
1446  * Returns 0 if successful.
1447  */
1448 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1449                 unsigned long size)
1450 {
1451         if (address < vma->vm_start || address + size > vma->vm_end ||
1452                         !(vma->vm_flags & VM_PFNMAP))
1453                 return -1;
1454         zap_page_range_single(vma, address, size, NULL);
1455         return 0;
1456 }
1457 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1458
1459 /**
1460  * follow_page_mask - look up a page descriptor from a user-virtual address
1461  * @vma: vm_area_struct mapping @address
1462  * @address: virtual address to look up
1463  * @flags: flags modifying lookup behaviour
1464  * @page_mask: on output, *page_mask is set according to the size of the page
1465  *
1466  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1467  *
1468  * Returns the mapped (struct page *), %NULL if no mapping exists, or
1469  * an error pointer if there is a mapping to something not represented
1470  * by a page descriptor (see also vm_normal_page()).
1471  */
1472 struct page *follow_page_mask(struct vm_area_struct *vma,
1473                               unsigned long address, unsigned int flags,
1474                               unsigned int *page_mask)
1475 {
1476         pgd_t *pgd;
1477         pud_t *pud;
1478         pmd_t *pmd;
1479         pte_t *ptep, pte;
1480         spinlock_t *ptl;
1481         struct page *page;
1482         struct mm_struct *mm = vma->vm_mm;
1483
1484         *page_mask = 0;
1485
1486         page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1487         if (!IS_ERR(page)) {
1488                 BUG_ON(flags & FOLL_GET);
1489                 goto out;
1490         }
1491
1492         page = NULL;
1493         pgd = pgd_offset(mm, address);
1494         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1495                 goto no_page_table;
1496
1497         pud = pud_offset(pgd, address);
1498         if (pud_none(*pud))
1499                 goto no_page_table;
1500         if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1501                 BUG_ON(flags & FOLL_GET);
1502                 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1503                 goto out;
1504         }
1505         if (unlikely(pud_bad(*pud)))
1506                 goto no_page_table;
1507
1508         pmd = pmd_offset(pud, address);
1509         if (pmd_none(*pmd))
1510                 goto no_page_table;
1511         if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1512                 BUG_ON(flags & FOLL_GET);
1513                 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1514                 goto out;
1515         }
1516         if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1517                 goto no_page_table;
1518         if (pmd_trans_huge(*pmd)) {
1519                 if (flags & FOLL_SPLIT) {
1520                         split_huge_page_pmd(vma, address, pmd);
1521                         goto split_fallthrough;
1522                 }
1523                 spin_lock(&mm->page_table_lock);
1524                 if (likely(pmd_trans_huge(*pmd))) {
1525                         if (unlikely(pmd_trans_splitting(*pmd))) {
1526                                 spin_unlock(&mm->page_table_lock);
1527                                 wait_split_huge_page(vma->anon_vma, pmd);
1528                         } else {
1529                                 page = follow_trans_huge_pmd(vma, address,
1530                                                              pmd, flags);
1531                                 spin_unlock(&mm->page_table_lock);
1532                                 *page_mask = HPAGE_PMD_NR - 1;
1533                                 goto out;
1534                         }
1535                 } else
1536                         spin_unlock(&mm->page_table_lock);
1537                 /* fall through */
1538         }
1539 split_fallthrough:
1540         if (unlikely(pmd_bad(*pmd)))
1541                 goto no_page_table;
1542
1543         ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1544
1545         pte = *ptep;
1546         if (!pte_present(pte)) {
1547                 swp_entry_t entry;
1548                 /*
1549                  * KSM's break_ksm() relies upon recognizing a ksm page
1550                  * even while it is being migrated, so for that case we
1551                  * need migration_entry_wait().
1552                  */
1553                 if (likely(!(flags & FOLL_MIGRATION)))
1554                         goto no_page;
1555                 if (pte_none(pte) || pte_file(pte))
1556                         goto no_page;
1557                 entry = pte_to_swp_entry(pte);
1558                 if (!is_migration_entry(entry))
1559                         goto no_page;
1560                 pte_unmap_unlock(ptep, ptl);
1561                 migration_entry_wait(mm, pmd, address);
1562                 goto split_fallthrough;
1563         }
1564         if ((flags & FOLL_NUMA) && pte_numa(pte))
1565                 goto no_page;
1566         if ((flags & FOLL_WRITE) && !pte_write(pte))
1567                 goto unlock;
1568
1569         page = vm_normal_page(vma, address, pte);
1570         if (unlikely(!page)) {
1571                 if ((flags & FOLL_DUMP) ||
1572                     !is_zero_pfn(pte_pfn(pte)))
1573                         goto bad_page;
1574                 page = pte_page(pte);
1575         }
1576
1577         if (flags & FOLL_GET)
1578                 get_page_foll(page);
1579         if (flags & FOLL_TOUCH) {
1580                 if ((flags & FOLL_WRITE) &&
1581                     !pte_dirty(pte) && !PageDirty(page))
1582                         set_page_dirty(page);
1583                 /*
1584                  * pte_mkyoung() would be more correct here, but atomic care
1585                  * is needed to avoid losing the dirty bit: it is easier to use
1586                  * mark_page_accessed().
1587                  */
1588                 mark_page_accessed(page);
1589         }
1590         if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1591                 /*
1592                  * The preliminary mapping check is mainly to avoid the
1593                  * pointless overhead of lock_page on the ZERO_PAGE
1594                  * which might bounce very badly if there is contention.
1595                  *
1596                  * If the page is already locked, we don't need to
1597                  * handle it now - vmscan will handle it later if and
1598                  * when it attempts to reclaim the page.
1599                  */
1600                 if (page->mapping && trylock_page(page)) {
1601                         lru_add_drain();  /* push cached pages to LRU */
1602                         /*
1603                          * Because we lock page here, and migration is
1604                          * blocked by the pte's page reference, and we
1605                          * know the page is still mapped, we don't even
1606                          * need to check for file-cache page truncation.
1607                          */
1608                         mlock_vma_page(page);
1609                         unlock_page(page);
1610                 }
1611         }
1612 unlock:
1613         pte_unmap_unlock(ptep, ptl);
1614 out:
1615         return page;
1616
1617 bad_page:
1618         pte_unmap_unlock(ptep, ptl);
1619         return ERR_PTR(-EFAULT);
1620
1621 no_page:
1622         pte_unmap_unlock(ptep, ptl);
1623         if (!pte_none(pte))
1624                 return page;
1625
1626 no_page_table:
1627         /*
1628          * When core dumping an enormous anonymous area that nobody
1629          * has touched so far, we don't want to allocate unnecessary pages or
1630          * page tables.  Return error instead of NULL to skip handle_mm_fault,
1631          * then get_dump_page() will return NULL to leave a hole in the dump.
1632          * But we can only make this optimization where a hole would surely
1633          * be zero-filled if handle_mm_fault() actually did handle it.
1634          */
1635         if ((flags & FOLL_DUMP) &&
1636             (!vma->vm_ops || !vma->vm_ops->fault))
1637                 return ERR_PTR(-EFAULT);
1638         return page;
1639 }
1640
1641 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1642 {
1643         return stack_guard_page_start(vma, addr) ||
1644                stack_guard_page_end(vma, addr+PAGE_SIZE);
1645 }
1646
1647 /**
1648  * __get_user_pages() - pin user pages in memory
1649  * @tsk:        task_struct of target task
1650  * @mm:         mm_struct of target mm
1651  * @start:      starting user address
1652  * @nr_pages:   number of pages from start to pin
1653  * @gup_flags:  flags modifying pin behaviour
1654  * @pages:      array that receives pointers to the pages pinned.
1655  *              Should be at least nr_pages long. Or NULL, if caller
1656  *              only intends to ensure the pages are faulted in.
1657  * @vmas:       array of pointers to vmas corresponding to each page.
1658  *              Or NULL if the caller does not require them.
1659  * @nonblocking: whether waiting for disk IO or mmap_sem contention
1660  *
1661  * Returns number of pages pinned. This may be fewer than the number
1662  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1663  * were pinned, returns -errno. Each page returned must be released
1664  * with a put_page() call when it is finished with. vmas will only
1665  * remain valid while mmap_sem is held.
1666  *
1667  * Must be called with mmap_sem held for read or write.
1668  *
1669  * __get_user_pages walks a process's page tables and takes a reference to
1670  * each struct page that each user address corresponds to at a given
1671  * instant. That is, it takes the page that would be accessed if a user
1672  * thread accesses the given user virtual address at that instant.
1673  *
1674  * This does not guarantee that the page exists in the user mappings when
1675  * __get_user_pages returns, and there may even be a completely different
1676  * page there in some cases (eg. if mmapped pagecache has been invalidated
1677  * and subsequently re faulted). However it does guarantee that the page
1678  * won't be freed completely. And mostly callers simply care that the page
1679  * contains data that was valid *at some point in time*. Typically, an IO
1680  * or similar operation cannot guarantee anything stronger anyway because
1681  * locks can't be held over the syscall boundary.
1682  *
1683  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1684  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1685  * appropriate) must be called after the page is finished with, and
1686  * before put_page is called.
1687  *
1688  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1689  * or mmap_sem contention, and if waiting is needed to pin all pages,
1690  * *@nonblocking will be set to 0.
1691  *
1692  * In most cases, get_user_pages or get_user_pages_fast should be used
1693  * instead of __get_user_pages. __get_user_pages should be used only if
1694  * you need some special @gup_flags.
1695  */
1696 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1697                 unsigned long start, unsigned long nr_pages,
1698                 unsigned int gup_flags, struct page **pages,
1699                 struct vm_area_struct **vmas, int *nonblocking)
1700 {
1701         long i;
1702         unsigned long vm_flags;
1703         unsigned int page_mask;
1704
1705         if (!nr_pages)
1706                 return 0;
1707
1708         VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1709
1710         /* 
1711          * Require read or write permissions.
1712          * If FOLL_FORCE is set, we only require the "MAY" flags.
1713          */
1714         vm_flags  = (gup_flags & FOLL_WRITE) ?
1715                         (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1716         vm_flags &= (gup_flags & FOLL_FORCE) ?
1717                         (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1718
1719         /*
1720          * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
1721          * would be called on PROT_NONE ranges. We must never invoke
1722          * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
1723          * page faults would unprotect the PROT_NONE ranges if
1724          * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
1725          * bitflag. So to avoid that, don't set FOLL_NUMA if
1726          * FOLL_FORCE is set.
1727          */
1728         if (!(gup_flags & FOLL_FORCE))
1729                 gup_flags |= FOLL_NUMA;
1730
1731         i = 0;
1732
1733         do {
1734                 struct vm_area_struct *vma;
1735
1736                 vma = find_extend_vma(mm, start);
1737                 if (!vma && in_gate_area(mm, start)) {
1738                         unsigned long pg = start & PAGE_MASK;
1739                         pgd_t *pgd;
1740                         pud_t *pud;
1741                         pmd_t *pmd;
1742                         pte_t *pte;
1743
1744                         /* user gate pages are read-only */
1745                         if (gup_flags & FOLL_WRITE)
1746                                 return i ? : -EFAULT;
1747                         if (pg > TASK_SIZE)
1748                                 pgd = pgd_offset_k(pg);
1749                         else
1750                                 pgd = pgd_offset_gate(mm, pg);
1751                         BUG_ON(pgd_none(*pgd));
1752                         pud = pud_offset(pgd, pg);
1753                         BUG_ON(pud_none(*pud));
1754                         pmd = pmd_offset(pud, pg);
1755                         if (pmd_none(*pmd))
1756                                 return i ? : -EFAULT;
1757                         VM_BUG_ON(pmd_trans_huge(*pmd));
1758                         pte = pte_offset_map(pmd, pg);
1759                         if (pte_none(*pte)) {
1760                                 pte_unmap(pte);
1761                                 return i ? : -EFAULT;
1762                         }
1763                         vma = get_gate_vma(mm);
1764                         if (pages) {
1765                                 struct page *page;
1766
1767                                 page = vm_normal_page(vma, start, *pte);
1768                                 if (!page) {
1769                                         if (!(gup_flags & FOLL_DUMP) &&
1770                                              is_zero_pfn(pte_pfn(*pte)))
1771                                                 page = pte_page(*pte);
1772                                         else {
1773                                                 pte_unmap(pte);
1774                                                 return i ? : -EFAULT;
1775                                         }
1776                                 }
1777                                 pages[i] = page;
1778                                 get_page(page);
1779                         }
1780                         pte_unmap(pte);
1781                         page_mask = 0;
1782                         goto next_page;
1783                 }
1784
1785                 if (!vma ||
1786                     (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1787                     !(vm_flags & vma->vm_flags))
1788                         return i ? : -EFAULT;
1789
1790                 if (is_vm_hugetlb_page(vma)) {
1791                         i = follow_hugetlb_page(mm, vma, pages, vmas,
1792                                         &start, &nr_pages, i, gup_flags);
1793                         continue;
1794                 }
1795
1796                 do {
1797                         struct page *page;
1798                         unsigned int foll_flags = gup_flags;
1799                         unsigned int page_increm;
1800
1801                         /*
1802                          * If we have a pending SIGKILL, don't keep faulting
1803                          * pages and potentially allocating memory.
1804                          */
1805                         if (unlikely(fatal_signal_pending(current)))
1806                                 return i ? i : -ERESTARTSYS;
1807
1808                         cond_resched();
1809                         while (!(page = follow_page_mask(vma, start,
1810                                                 foll_flags, &page_mask))) {
1811                                 int ret;
1812                                 unsigned int fault_flags = 0;
1813
1814                                 /* For mlock, just skip the stack guard page. */
1815                                 if (foll_flags & FOLL_MLOCK) {
1816                                         if (stack_guard_page(vma, start))
1817                                                 goto next_page;
1818                                 }
1819                                 if (foll_flags & FOLL_WRITE)
1820                                         fault_flags |= FAULT_FLAG_WRITE;
1821                                 if (nonblocking)
1822                                         fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1823                                 if (foll_flags & FOLL_NOWAIT)
1824                                         fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1825
1826                                 ret = handle_mm_fault(mm, vma, start,
1827                                                         fault_flags);
1828
1829                                 if (ret & VM_FAULT_ERROR) {
1830                                         if (ret & VM_FAULT_OOM)
1831                                                 return i ? i : -ENOMEM;
1832                                         if (ret & (VM_FAULT_HWPOISON |
1833                                                    VM_FAULT_HWPOISON_LARGE)) {
1834                                                 if (i)
1835                                                         return i;
1836                                                 else if (gup_flags & FOLL_HWPOISON)
1837                                                         return -EHWPOISON;
1838                                                 else
1839                                                         return -EFAULT;
1840                                         }
1841                                         if (ret & VM_FAULT_SIGBUS)
1842                                                 return i ? i : -EFAULT;
1843                                         BUG();
1844                                 }
1845
1846                                 if (tsk) {
1847                                         if (ret & VM_FAULT_MAJOR)
1848                                                 tsk->maj_flt++;
1849                                         else
1850                                                 tsk->min_flt++;
1851                                 }
1852
1853                                 if (ret & VM_FAULT_RETRY) {
1854                                         if (nonblocking)
1855                                                 *nonblocking = 0;
1856                                         return i;
1857                                 }
1858
1859                                 /*
1860                                  * The VM_FAULT_WRITE bit tells us that
1861                                  * do_wp_page has broken COW when necessary,
1862                                  * even if maybe_mkwrite decided not to set
1863                                  * pte_write. We can thus safely do subsequent
1864                                  * page lookups as if they were reads. But only
1865                                  * do so when looping for pte_write is futile:
1866                                  * in some cases userspace may also be wanting
1867                                  * to write to the gotten user page, which a
1868                                  * read fault here might prevent (a readonly
1869                                  * page might get reCOWed by userspace write).
1870                                  */
1871                                 if ((ret & VM_FAULT_WRITE) &&
1872                                     !(vma->vm_flags & VM_WRITE))
1873                                         foll_flags &= ~FOLL_WRITE;
1874
1875                                 cond_resched();
1876                         }
1877                         if (IS_ERR(page))
1878                                 return i ? i : PTR_ERR(page);
1879                         if (pages) {
1880                                 pages[i] = page;
1881
1882                                 flush_anon_page(vma, page, start);
1883                                 flush_dcache_page(page);
1884                                 page_mask = 0;
1885                         }
1886 next_page:
1887                         if (vmas) {
1888                                 vmas[i] = vma;
1889                                 page_mask = 0;
1890                         }
1891                         page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
1892                         if (page_increm > nr_pages)
1893                                 page_increm = nr_pages;
1894                         i += page_increm;
1895                         start += page_increm * PAGE_SIZE;
1896                         nr_pages -= page_increm;
1897                 } while (nr_pages && start < vma->vm_end);
1898         } while (nr_pages);
1899         return i;
1900 }
1901 EXPORT_SYMBOL(__get_user_pages);
1902
1903 /*
1904  * fixup_user_fault() - manually resolve a user page fault
1905  * @tsk:        the task_struct to use for page fault accounting, or
1906  *              NULL if faults are not to be recorded.
1907  * @mm:         mm_struct of target mm
1908  * @address:    user address
1909  * @fault_flags:flags to pass down to handle_mm_fault()
1910  *
1911  * This is meant to be called in the specific scenario where for locking reasons
1912  * we try to access user memory in atomic context (within a pagefault_disable()
1913  * section), this returns -EFAULT, and we want to resolve the user fault before
1914  * trying again.
1915  *
1916  * Typically this is meant to be used by the futex code.
1917  *
1918  * The main difference with get_user_pages() is that this function will
1919  * unconditionally call handle_mm_fault() which will in turn perform all the
1920  * necessary SW fixup of the dirty and young bits in the PTE, while
1921  * handle_mm_fault() only guarantees to update these in the struct page.
1922  *
1923  * This is important for some architectures where those bits also gate the
1924  * access permission to the page because they are maintained in software.  On
1925  * such architectures, gup() will not be enough to make a subsequent access
1926  * succeed.
1927  *
1928  * This should be called with the mm_sem held for read.
1929  */
1930 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1931                      unsigned long address, unsigned int fault_flags)
1932 {
1933         struct vm_area_struct *vma;
1934         int ret;
1935
1936         vma = find_extend_vma(mm, address);
1937         if (!vma || address < vma->vm_start)
1938                 return -EFAULT;
1939
1940         ret = handle_mm_fault(mm, vma, address, fault_flags);
1941         if (ret & VM_FAULT_ERROR) {
1942                 if (ret & VM_FAULT_OOM)
1943                         return -ENOMEM;
1944                 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1945                         return -EHWPOISON;
1946                 if (ret & VM_FAULT_SIGBUS)
1947                         return -EFAULT;
1948                 BUG();
1949         }
1950         if (tsk) {
1951                 if (ret & VM_FAULT_MAJOR)
1952                         tsk->maj_flt++;
1953                 else
1954                         tsk->min_flt++;
1955         }
1956         return 0;
1957 }
1958
1959 /*
1960  * get_user_pages() - pin user pages in memory
1961  * @tsk:        the task_struct to use for page fault accounting, or
1962  *              NULL if faults are not to be recorded.
1963  * @mm:         mm_struct of target mm
1964  * @start:      starting user address
1965  * @nr_pages:   number of pages from start to pin
1966  * @write:      whether pages will be written to by the caller
1967  * @force:      whether to force write access even if user mapping is
1968  *              readonly. This will result in the page being COWed even
1969  *              in MAP_SHARED mappings. You do not want this.
1970  * @pages:      array that receives pointers to the pages pinned.
1971  *              Should be at least nr_pages long. Or NULL, if caller
1972  *              only intends to ensure the pages are faulted in.
1973  * @vmas:       array of pointers to vmas corresponding to each page.
1974  *              Or NULL if the caller does not require them.
1975  *
1976  * Returns number of pages pinned. This may be fewer than the number
1977  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1978  * were pinned, returns -errno. Each page returned must be released
1979  * with a put_page() call when it is finished with. vmas will only
1980  * remain valid while mmap_sem is held.
1981  *
1982  * Must be called with mmap_sem held for read or write.
1983  *
1984  * get_user_pages walks a process's page tables and takes a reference to
1985  * each struct page that each user address corresponds to at a given
1986  * instant. That is, it takes the page that would be accessed if a user
1987  * thread accesses the given user virtual address at that instant.
1988  *
1989  * This does not guarantee that the page exists in the user mappings when
1990  * get_user_pages returns, and there may even be a completely different
1991  * page there in some cases (eg. if mmapped pagecache has been invalidated
1992  * and subsequently re faulted). However it does guarantee that the page
1993  * won't be freed completely. And mostly callers simply care that the page
1994  * contains data that was valid *at some point in time*. Typically, an IO
1995  * or similar operation cannot guarantee anything stronger anyway because
1996  * locks can't be held over the syscall boundary.
1997  *
1998  * If write=0, the page must not be written to. If the page is written to,
1999  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
2000  * after the page is finished with, and before put_page is called.
2001  *
2002  * get_user_pages is typically used for fewer-copy IO operations, to get a
2003  * handle on the memory by some means other than accesses via the user virtual
2004  * addresses. The pages may be submitted for DMA to devices or accessed via
2005  * their kernel linear mapping (via the kmap APIs). Care should be taken to
2006  * use the correct cache flushing APIs.
2007  *
2008  * See also get_user_pages_fast, for performance critical applications.
2009  */
2010 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
2011                 unsigned long start, unsigned long nr_pages, int write,
2012                 int force, struct page **pages, struct vm_area_struct **vmas)
2013 {
2014         int flags = FOLL_TOUCH;
2015
2016         if (pages)
2017                 flags |= FOLL_GET;
2018         if (write)
2019                 flags |= FOLL_WRITE;
2020         if (force)
2021                 flags |= FOLL_FORCE;
2022
2023         return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
2024                                 NULL);
2025 }
2026 EXPORT_SYMBOL(get_user_pages);
2027
2028 /**
2029  * get_dump_page() - pin user page in memory while writing it to core dump
2030  * @addr: user address
2031  *
2032  * Returns struct page pointer of user page pinned for dump,
2033  * to be freed afterwards by page_cache_release() or put_page().
2034  *
2035  * Returns NULL on any kind of failure - a hole must then be inserted into
2036  * the corefile, to preserve alignment with its headers; and also returns
2037  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2038  * allowing a hole to be left in the corefile to save diskspace.
2039  *
2040  * Called without mmap_sem, but after all other threads have been killed.
2041  */
2042 #ifdef CONFIG_ELF_CORE
2043 struct page *get_dump_page(unsigned long addr)
2044 {
2045         struct vm_area_struct *vma;
2046         struct page *page;
2047
2048         if (__get_user_pages(current, current->mm, addr, 1,
2049                              FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
2050                              NULL) < 1)
2051                 return NULL;
2052         flush_cache_page(vma, addr, page_to_pfn(page));
2053         return page;
2054 }
2055 #endif /* CONFIG_ELF_CORE */
2056
2057 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2058                         spinlock_t **ptl)
2059 {
2060         pgd_t * pgd = pgd_offset(mm, addr);
2061         pud_t * pud = pud_alloc(mm, pgd, addr);
2062         if (pud) {
2063                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
2064                 if (pmd) {
2065                         VM_BUG_ON(pmd_trans_huge(*pmd));
2066                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
2067                 }
2068         }
2069         return NULL;
2070 }
2071
2072 /*
2073  * This is the old fallback for page remapping.
2074  *
2075  * For historical reasons, it only allows reserved pages. Only
2076  * old drivers should use this, and they needed to mark their
2077  * pages reserved for the old functions anyway.
2078  */
2079 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2080                         struct page *page, pgprot_t prot)
2081 {
2082         struct mm_struct *mm = vma->vm_mm;
2083         int retval;
2084         pte_t *pte;
2085         spinlock_t *ptl;
2086
2087         retval = -EINVAL;
2088         if (PageAnon(page))
2089                 goto out;
2090         retval = -ENOMEM;
2091         flush_dcache_page(page);
2092         pte = get_locked_pte(mm, addr, &ptl);
2093         if (!pte)
2094                 goto out;
2095         retval = -EBUSY;
2096         if (!pte_none(*pte))
2097                 goto out_unlock;
2098
2099         /* Ok, finally just insert the thing.. */
2100         get_page(page);
2101         inc_mm_counter_fast(mm, MM_FILEPAGES);
2102         page_add_file_rmap(page);
2103         set_pte_at(mm, addr, pte, mk_pte(page, prot));
2104
2105         retval = 0;
2106         pte_unmap_unlock(pte, ptl);
2107         return retval;
2108 out_unlock:
2109         pte_unmap_unlock(pte, ptl);
2110 out:
2111         return retval;
2112 }
2113
2114 /**
2115  * vm_insert_page - insert single page into user vma
2116  * @vma: user vma to map to
2117  * @addr: target user address of this page
2118  * @page: source kernel page
2119  *
2120  * This allows drivers to insert individual pages they've allocated
2121  * into a user vma.
2122  *
2123  * The page has to be a nice clean _individual_ kernel allocation.
2124  * If you allocate a compound page, you need to have marked it as
2125  * such (__GFP_COMP), or manually just split the page up yourself
2126  * (see split_page()).
2127  *
2128  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2129  * took an arbitrary page protection parameter. This doesn't allow
2130  * that. Your vma protection will have to be set up correctly, which
2131  * means that if you want a shared writable mapping, you'd better
2132  * ask for a shared writable mapping!
2133  *
2134  * The page does not need to be reserved.
2135  *
2136  * Usually this function is called from f_op->mmap() handler
2137  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
2138  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2139  * function from other places, for example from page-fault handler.
2140  */
2141 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2142                         struct page *page)
2143 {
2144         if (addr < vma->vm_start || addr >= vma->vm_end)
2145                 return -EFAULT;
2146         if (!page_count(page))
2147                 return -EINVAL;
2148         if (!(vma->vm_flags & VM_MIXEDMAP)) {
2149                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
2150                 BUG_ON(vma->vm_flags & VM_PFNMAP);
2151                 vma->vm_flags |= VM_MIXEDMAP;
2152         }
2153         return insert_page(vma, addr, page, vma->vm_page_prot);
2154 }
2155 EXPORT_SYMBOL(vm_insert_page);
2156
2157 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2158                         unsigned long pfn, pgprot_t prot)
2159 {
2160         struct mm_struct *mm = vma->vm_mm;
2161         int retval;
2162         pte_t *pte, entry;
2163         spinlock_t *ptl;
2164
2165         retval = -ENOMEM;
2166         pte = get_locked_pte(mm, addr, &ptl);
2167         if (!pte)
2168                 goto out;
2169         retval = -EBUSY;
2170         if (!pte_none(*pte))
2171                 goto out_unlock;
2172
2173         /* Ok, finally just insert the thing.. */
2174         entry = pte_mkspecial(pfn_pte(pfn, prot));
2175         set_pte_at(mm, addr, pte, entry);
2176         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2177
2178         retval = 0;
2179 out_unlock:
2180         pte_unmap_unlock(pte, ptl);
2181 out:
2182         return retval;
2183 }
2184
2185 /**
2186  * vm_insert_pfn - insert single pfn into user vma
2187  * @vma: user vma to map to
2188  * @addr: target user address of this page
2189  * @pfn: source kernel pfn
2190  *
2191  * Similar to vm_insert_page, this allows drivers to insert individual pages
2192  * they've allocated into a user vma. Same comments apply.
2193  *
2194  * This function should only be called from a vm_ops->fault handler, and
2195  * in that case the handler should return NULL.
2196  *
2197  * vma cannot be a COW mapping.
2198  *
2199  * As this is called only for pages that do not currently exist, we
2200  * do not need to flush old virtual caches or the TLB.
2201  */
2202 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2203                         unsigned long pfn)
2204 {
2205         int ret;
2206         pgprot_t pgprot = vma->vm_page_prot;
2207         /*
2208          * Technically, architectures with pte_special can avoid all these
2209          * restrictions (same for remap_pfn_range).  However we would like
2210          * consistency in testing and feature parity among all, so we should
2211          * try to keep these invariants in place for everybody.
2212          */
2213         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2214         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2215                                                 (VM_PFNMAP|VM_MIXEDMAP));
2216         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2217         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2218
2219         if (addr < vma->vm_start || addr >= vma->vm_end)
2220                 return -EFAULT;
2221         if (track_pfn_insert(vma, &pgprot, pfn))
2222                 return -EINVAL;
2223
2224         ret = insert_pfn(vma, addr, pfn, pgprot);
2225
2226         return ret;
2227 }
2228 EXPORT_SYMBOL(vm_insert_pfn);
2229
2230 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2231                         unsigned long pfn)
2232 {
2233         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2234
2235         if (addr < vma->vm_start || addr >= vma->vm_end)
2236                 return -EFAULT;
2237
2238         /*
2239          * If we don't have pte special, then we have to use the pfn_valid()
2240          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2241          * refcount the page if pfn_valid is true (hence insert_page rather
2242          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2243          * without pte special, it would there be refcounted as a normal page.
2244          */
2245         if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2246                 struct page *page;
2247
2248                 page = pfn_to_page(pfn);
2249                 return insert_page(vma, addr, page, vma->vm_page_prot);
2250         }
2251         return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2252 }
2253 EXPORT_SYMBOL(vm_insert_mixed);
2254
2255 /*
2256  * maps a range of physical memory into the requested pages. the old
2257  * mappings are removed. any references to nonexistent pages results
2258  * in null mappings (currently treated as "copy-on-access")
2259  */
2260 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2261                         unsigned long addr, unsigned long end,
2262                         unsigned long pfn, pgprot_t prot)
2263 {
2264         pte_t *pte;
2265         spinlock_t *ptl;
2266
2267         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2268         if (!pte)
2269                 return -ENOMEM;
2270         arch_enter_lazy_mmu_mode();
2271         do {
2272                 BUG_ON(!pte_none(*pte));
2273                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2274                 pfn++;
2275         } while (pte++, addr += PAGE_SIZE, addr != end);
2276         arch_leave_lazy_mmu_mode();
2277         pte_unmap_unlock(pte - 1, ptl);
2278         return 0;
2279 }
2280
2281 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2282                         unsigned long addr, unsigned long end,
2283                         unsigned long pfn, pgprot_t prot)
2284 {
2285         pmd_t *pmd;
2286         unsigned long next;
2287
2288         pfn -= addr >> PAGE_SHIFT;
2289         pmd = pmd_alloc(mm, pud, addr);
2290         if (!pmd)
2291                 return -ENOMEM;
2292         VM_BUG_ON(pmd_trans_huge(*pmd));
2293         do {
2294                 next = pmd_addr_end(addr, end);
2295                 if (remap_pte_range(mm, pmd, addr, next,
2296                                 pfn + (addr >> PAGE_SHIFT), prot))
2297                         return -ENOMEM;
2298         } while (pmd++, addr = next, addr != end);
2299         return 0;
2300 }
2301
2302 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2303                         unsigned long addr, unsigned long end,
2304                         unsigned long pfn, pgprot_t prot)
2305 {
2306         pud_t *pud;
2307         unsigned long next;
2308
2309         pfn -= addr >> PAGE_SHIFT;
2310         pud = pud_alloc(mm, pgd, addr);
2311         if (!pud)
2312                 return -ENOMEM;
2313         do {
2314                 next = pud_addr_end(addr, end);
2315                 if (remap_pmd_range(mm, pud, addr, next,
2316                                 pfn + (addr >> PAGE_SHIFT), prot))
2317                         return -ENOMEM;
2318         } while (pud++, addr = next, addr != end);
2319         return 0;
2320 }
2321
2322 /**
2323  * remap_pfn_range - remap kernel memory to userspace
2324  * @vma: user vma to map to
2325  * @addr: target user address to start at
2326  * @pfn: physical address of kernel memory
2327  * @size: size of map area
2328  * @prot: page protection flags for this mapping
2329  *
2330  *  Note: this is only safe if the mm semaphore is held when called.
2331  */
2332 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2333                     unsigned long pfn, unsigned long size, pgprot_t prot)
2334 {
2335         pgd_t *pgd;
2336         unsigned long next;
2337         unsigned long end = addr + PAGE_ALIGN(size);
2338         struct mm_struct *mm = vma->vm_mm;
2339         int err;
2340
2341         /*
2342          * Physically remapped pages are special. Tell the
2343          * rest of the world about it:
2344          *   VM_IO tells people not to look at these pages
2345          *      (accesses can have side effects).
2346          *   VM_PFNMAP tells the core MM that the base pages are just
2347          *      raw PFN mappings, and do not have a "struct page" associated
2348          *      with them.
2349          *   VM_DONTEXPAND
2350          *      Disable vma merging and expanding with mremap().
2351          *   VM_DONTDUMP
2352          *      Omit vma from core dump, even when VM_IO turned off.
2353          *
2354          * There's a horrible special case to handle copy-on-write
2355          * behaviour that some programs depend on. We mark the "original"
2356          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2357          * See vm_normal_page() for details.
2358          */
2359         if (is_cow_mapping(vma->vm_flags)) {
2360                 if (addr != vma->vm_start || end != vma->vm_end)
2361                         return -EINVAL;
2362                 vma->vm_pgoff = pfn;
2363         }
2364
2365         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2366         if (err)
2367                 return -EINVAL;
2368
2369         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2370
2371         BUG_ON(addr >= end);
2372         pfn -= addr >> PAGE_SHIFT;
2373         pgd = pgd_offset(mm, addr);
2374         flush_cache_range(vma, addr, end);
2375         do {
2376                 next = pgd_addr_end(addr, end);
2377                 err = remap_pud_range(mm, pgd, addr, next,
2378                                 pfn + (addr >> PAGE_SHIFT), prot);
2379                 if (err)
2380                         break;
2381         } while (pgd++, addr = next, addr != end);
2382
2383         if (err)
2384                 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2385
2386         return err;
2387 }
2388 EXPORT_SYMBOL(remap_pfn_range);
2389
2390 /**
2391  * vm_iomap_memory - remap memory to userspace
2392  * @vma: user vma to map to
2393  * @start: start of area
2394  * @len: size of area
2395  *
2396  * This is a simplified io_remap_pfn_range() for common driver use. The
2397  * driver just needs to give us the physical memory range to be mapped,
2398  * we'll figure out the rest from the vma information.
2399  *
2400  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2401  * whatever write-combining details or similar.
2402  */
2403 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2404 {
2405         unsigned long vm_len, pfn, pages;
2406
2407         /* Check that the physical memory area passed in looks valid */
2408         if (start + len < start)
2409                 return -EINVAL;
2410         /*
2411          * You *really* shouldn't map things that aren't page-aligned,
2412          * but we've historically allowed it because IO memory might
2413          * just have smaller alignment.
2414          */
2415         len += start & ~PAGE_MASK;
2416         pfn = start >> PAGE_SHIFT;
2417         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2418         if (pfn + pages < pfn)
2419                 return -EINVAL;
2420
2421         /* We start the mapping 'vm_pgoff' pages into the area */
2422         if (vma->vm_pgoff > pages)
2423                 return -EINVAL;
2424         pfn += vma->vm_pgoff;
2425         pages -= vma->vm_pgoff;
2426
2427         /* Can we fit all of the mapping? */
2428         vm_len = vma->vm_end - vma->vm_start;
2429         if (vm_len >> PAGE_SHIFT > pages)
2430                 return -EINVAL;
2431
2432         /* Ok, let it rip */
2433         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2434 }
2435 EXPORT_SYMBOL(vm_iomap_memory);
2436
2437 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2438                                      unsigned long addr, unsigned long end,
2439                                      pte_fn_t fn, void *data)
2440 {
2441         pte_t *pte;
2442         int err;
2443         pgtable_t token;
2444         spinlock_t *uninitialized_var(ptl);
2445
2446         pte = (mm == &init_mm) ?
2447                 pte_alloc_kernel(pmd, addr) :
2448                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2449         if (!pte)
2450                 return -ENOMEM;
2451
2452         BUG_ON(pmd_huge(*pmd));
2453
2454         arch_enter_lazy_mmu_mode();
2455
2456         token = pmd_pgtable(*pmd);
2457
2458         do {
2459                 err = fn(pte++, token, addr, data);
2460                 if (err)
2461                         break;
2462         } while (addr += PAGE_SIZE, addr != end);
2463
2464         arch_leave_lazy_mmu_mode();
2465
2466         if (mm != &init_mm)
2467                 pte_unmap_unlock(pte-1, ptl);
2468         return err;
2469 }
2470
2471 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2472                                      unsigned long addr, unsigned long end,
2473                                      pte_fn_t fn, void *data)
2474 {
2475         pmd_t *pmd;
2476         unsigned long next;
2477         int err;
2478
2479         BUG_ON(pud_huge(*pud));
2480
2481         pmd = pmd_alloc(mm, pud, addr);
2482         if (!pmd)
2483                 return -ENOMEM;
2484         do {
2485                 next = pmd_addr_end(addr, end);
2486                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2487                 if (err)
2488                         break;
2489         } while (pmd++, addr = next, addr != end);
2490         return err;
2491 }
2492
2493 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2494                                      unsigned long addr, unsigned long end,
2495                                      pte_fn_t fn, void *data)
2496 {
2497         pud_t *pud;
2498         unsigned long next;
2499         int err;
2500
2501         pud = pud_alloc(mm, pgd, addr);
2502         if (!pud)
2503                 return -ENOMEM;
2504         do {
2505                 next = pud_addr_end(addr, end);
2506                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2507                 if (err)
2508                         break;
2509         } while (pud++, addr = next, addr != end);
2510         return err;
2511 }
2512
2513 /*
2514  * Scan a region of virtual memory, filling in page tables as necessary
2515  * and calling a provided function on each leaf page table.
2516  */
2517 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2518                         unsigned long size, pte_fn_t fn, void *data)
2519 {
2520         pgd_t *pgd;
2521         unsigned long next;
2522         unsigned long end = addr + size;
2523         int err;
2524
2525         BUG_ON(addr >= end);
2526         pgd = pgd_offset(mm, addr);
2527         do {
2528                 next = pgd_addr_end(addr, end);
2529                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2530                 if (err)
2531                         break;
2532         } while (pgd++, addr = next, addr != end);
2533
2534         return err;
2535 }
2536 EXPORT_SYMBOL_GPL(apply_to_page_range);
2537
2538 /*
2539  * handle_pte_fault chooses page fault handler according to an entry
2540  * which was read non-atomically.  Before making any commitment, on
2541  * those architectures or configurations (e.g. i386 with PAE) which
2542  * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2543  * must check under lock before unmapping the pte and proceeding
2544  * (but do_wp_page is only called after already making such a check;
2545  * and do_anonymous_page can safely check later on).
2546  */
2547 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2548                                 pte_t *page_table, pte_t orig_pte)
2549 {
2550         int same = 1;
2551 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2552         if (sizeof(pte_t) > sizeof(unsigned long)) {
2553                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2554                 spin_lock(ptl);
2555                 same = pte_same(*page_table, orig_pte);
2556                 spin_unlock(ptl);
2557         }
2558 #endif
2559         pte_unmap(page_table);
2560         return same;
2561 }
2562
2563 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2564 {
2565         /*
2566          * If the source page was a PFN mapping, we don't have
2567          * a "struct page" for it. We do a best-effort copy by
2568          * just copying from the original user address. If that
2569          * fails, we just zero-fill it. Live with it.
2570          */
2571         if (unlikely(!src)) {
2572                 void *kaddr = kmap_atomic(dst);
2573                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2574
2575                 /*
2576                  * This really shouldn't fail, because the page is there
2577                  * in the page tables. But it might just be unreadable,
2578                  * in which case we just give up and fill the result with
2579                  * zeroes.
2580                  */
2581                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2582                         clear_page(kaddr);
2583                 kunmap_atomic(kaddr);
2584                 flush_dcache_page(dst);
2585         } else
2586                 copy_user_highpage(dst, src, va, vma);
2587 }
2588
2589 /*
2590  * This routine handles present pages, when users try to write
2591  * to a shared page. It is done by copying the page to a new address
2592  * and decrementing the shared-page counter for the old page.
2593  *
2594  * Note that this routine assumes that the protection checks have been
2595  * done by the caller (the low-level page fault routine in most cases).
2596  * Thus we can safely just mark it writable once we've done any necessary
2597  * COW.
2598  *
2599  * We also mark the page dirty at this point even though the page will
2600  * change only once the write actually happens. This avoids a few races,
2601  * and potentially makes it more efficient.
2602  *
2603  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2604  * but allow concurrent faults), with pte both mapped and locked.
2605  * We return with mmap_sem still held, but pte unmapped and unlocked.
2606  */
2607 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2608                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2609                 spinlock_t *ptl, pte_t orig_pte)
2610         __releases(ptl)
2611 {
2612         struct page *old_page, *new_page = NULL;
2613         pte_t entry;
2614         int ret = 0;
2615         int page_mkwrite = 0;
2616         struct page *dirty_page = NULL;
2617         unsigned long mmun_start = 0;   /* For mmu_notifiers */
2618         unsigned long mmun_end = 0;     /* For mmu_notifiers */
2619
2620         old_page = vm_normal_page(vma, address, orig_pte);
2621         if (!old_page) {
2622                 /*
2623                  * VM_MIXEDMAP !pfn_valid() case
2624                  *
2625                  * We should not cow pages in a shared writeable mapping.
2626                  * Just mark the pages writable as we can't do any dirty
2627                  * accounting on raw pfn maps.
2628                  */
2629                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2630                                      (VM_WRITE|VM_SHARED))
2631                         goto reuse;
2632                 goto gotten;
2633         }
2634
2635         /*
2636          * Take out anonymous pages first, anonymous shared vmas are
2637          * not dirty accountable.
2638          */
2639         if (PageAnon(old_page) && !PageKsm(old_page)) {
2640                 if (!trylock_page(old_page)) {
2641                         page_cache_get(old_page);
2642                         pte_unmap_unlock(page_table, ptl);
2643                         lock_page(old_page);
2644                         page_table = pte_offset_map_lock(mm, pmd, address,
2645                                                          &ptl);
2646                         if (!pte_same(*page_table, orig_pte)) {
2647                                 unlock_page(old_page);
2648                                 goto unlock;
2649                         }
2650                         page_cache_release(old_page);
2651                 }
2652                 if (reuse_swap_page(old_page)) {
2653                         /*
2654                          * The page is all ours.  Move it to our anon_vma so
2655                          * the rmap code will not search our parent or siblings.
2656                          * Protected against the rmap code by the page lock.
2657                          */
2658                         page_move_anon_rmap(old_page, vma, address);
2659                         unlock_page(old_page);
2660                         goto reuse;
2661                 }
2662                 unlock_page(old_page);
2663         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2664                                         (VM_WRITE|VM_SHARED))) {
2665                 /*
2666                  * Only catch write-faults on shared writable pages,
2667                  * read-only shared pages can get COWed by
2668                  * get_user_pages(.write=1, .force=1).
2669                  */
2670                 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2671                         struct vm_fault vmf;
2672                         int tmp;
2673
2674                         vmf.virtual_address = (void __user *)(address &
2675                                                                 PAGE_MASK);
2676                         vmf.pgoff = old_page->index;
2677                         vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2678                         vmf.page = old_page;
2679
2680                         /*
2681                          * Notify the address space that the page is about to
2682                          * become writable so that it can prohibit this or wait
2683                          * for the page to get into an appropriate state.
2684                          *
2685                          * We do this without the lock held, so that it can
2686                          * sleep if it needs to.
2687                          */
2688                         page_cache_get(old_page);
2689                         pte_unmap_unlock(page_table, ptl);
2690
2691                         tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2692                         if (unlikely(tmp &
2693                                         (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2694                                 ret = tmp;
2695                                 goto unwritable_page;
2696                         }
2697                         if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2698                                 lock_page(old_page);
2699                                 if (!old_page->mapping) {
2700                                         ret = 0; /* retry the fault */
2701                                         unlock_page(old_page);
2702                                         goto unwritable_page;
2703                                 }
2704                         } else
2705                                 VM_BUG_ON(!PageLocked(old_page));
2706
2707                         /*
2708                          * Since we dropped the lock we need to revalidate
2709                          * the PTE as someone else may have changed it.  If
2710                          * they did, we just return, as we can count on the
2711                          * MMU to tell us if they didn't also make it writable.
2712                          */
2713                         page_table = pte_offset_map_lock(mm, pmd, address,
2714                                                          &ptl);
2715                         if (!pte_same(*page_table, orig_pte)) {
2716                                 unlock_page(old_page);
2717                                 goto unlock;
2718                         }
2719
2720                         page_mkwrite = 1;
2721                 }
2722                 dirty_page = old_page;
2723                 get_page(dirty_page);
2724
2725 reuse:
2726                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2727                 entry = pte_mkyoung(orig_pte);
2728                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2729                 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2730                         update_mmu_cache(vma, address, page_table);
2731                 pte_unmap_unlock(page_table, ptl);
2732                 ret |= VM_FAULT_WRITE;
2733
2734                 if (!dirty_page)
2735                         return ret;
2736
2737                 /*
2738                  * Yes, Virginia, this is actually required to prevent a race
2739                  * with clear_page_dirty_for_io() from clearing the page dirty
2740                  * bit after it clear all dirty ptes, but before a racing
2741                  * do_wp_page installs a dirty pte.
2742                  *
2743                  * __do_fault is protected similarly.
2744                  */
2745                 if (!page_mkwrite) {
2746                         wait_on_page_locked(dirty_page);
2747                         set_page_dirty_balance(dirty_page, page_mkwrite);
2748                         /* file_update_time outside page_lock */
2749                         if (vma->vm_file)
2750                                 file_update_time(vma->vm_file);
2751                 }
2752                 put_page(dirty_page);
2753                 if (page_mkwrite) {
2754                         struct address_space *mapping = dirty_page->mapping;
2755
2756                         set_page_dirty(dirty_page);
2757                         unlock_page(dirty_page);
2758                         page_cache_release(dirty_page);
2759                         if (mapping)    {
2760                                 /*
2761                                  * Some device drivers do not set page.mapping
2762                                  * but still dirty their pages
2763                                  */
2764                                 balance_dirty_pages_ratelimited(mapping);
2765                         }
2766                 }
2767
2768                 return ret;
2769         }
2770
2771         /*
2772          * Ok, we need to copy. Oh, well..
2773          */
2774         page_cache_get(old_page);
2775 gotten:
2776         pte_unmap_unlock(page_table, ptl);
2777
2778         if (unlikely(anon_vma_prepare(vma)))
2779                 goto oom;
2780
2781         if (is_zero_pfn(pte_pfn(orig_pte))) {
2782                 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2783                 if (!new_page)
2784                         goto oom;
2785         } else {
2786                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2787                 if (!new_page)
2788                         goto oom;
2789                 cow_user_page(new_page, old_page, address, vma);
2790         }
2791         __SetPageUptodate(new_page);
2792
2793         if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2794                 goto oom_free_new;
2795
2796         mmun_start  = address & PAGE_MASK;
2797         mmun_end    = mmun_start + PAGE_SIZE;
2798         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2799
2800         /*
2801          * Re-check the pte - we dropped the lock
2802          */
2803         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2804         if (likely(pte_same(*page_table, orig_pte))) {
2805                 if (old_page) {
2806                         if (!PageAnon(old_page)) {
2807                                 dec_mm_counter_fast(mm, MM_FILEPAGES);
2808                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2809                         }
2810                 } else
2811                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2812                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2813                 entry = mk_pte(new_page, vma->vm_page_prot);
2814                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2815                 /*
2816                  * Clear the pte entry and flush it first, before updating the
2817                  * pte with the new entry. This will avoid a race condition
2818                  * seen in the presence of one thread doing SMC and another
2819                  * thread doing COW.
2820                  */
2821                 ptep_clear_flush(vma, address, page_table);
2822                 page_add_new_anon_rmap(new_page, vma, address);
2823                 /*
2824                  * We call the notify macro here because, when using secondary
2825                  * mmu page tables (such as kvm shadow page tables), we want the
2826                  * new page to be mapped directly into the secondary page table.
2827                  */
2828                 set_pte_at_notify(mm, address, page_table, entry);
2829                 update_mmu_cache(vma, address, page_table);
2830                 if (old_page) {
2831                         /*
2832                          * Only after switching the pte to the new page may
2833                          * we remove the mapcount here. Otherwise another
2834                          * process may come and find the rmap count decremented
2835                          * before the pte is switched to the new page, and
2836                          * "reuse" the old page writing into it while our pte
2837                          * here still points into it and can be read by other
2838                          * threads.
2839                          *
2840                          * The critical issue is to order this
2841                          * page_remove_rmap with the ptp_clear_flush above.
2842                          * Those stores are ordered by (if nothing else,)
2843                          * the barrier present in the atomic_add_negative
2844                          * in page_remove_rmap.
2845                          *
2846                          * Then the TLB flush in ptep_clear_flush ensures that
2847                          * no process can access the old page before the
2848                          * decremented mapcount is visible. And the old page
2849                          * cannot be reused until after the decremented
2850                          * mapcount is visible. So transitively, TLBs to
2851                          * old page will be flushed before it can be reused.
2852                          */
2853                         page_remove_rmap(old_page);
2854                 }
2855
2856                 /* Free the old page.. */
2857                 new_page = old_page;
2858                 ret |= VM_FAULT_WRITE;
2859         } else
2860                 mem_cgroup_uncharge_page(new_page);
2861
2862         if (new_page)
2863                 page_cache_release(new_page);
2864 unlock:
2865         pte_unmap_unlock(page_table, ptl);
2866         if (mmun_end > mmun_start)
2867                 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2868         if (old_page) {
2869                 /*
2870                  * Don't let another task, with possibly unlocked vma,
2871                  * keep the mlocked page.
2872                  */
2873                 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2874                         lock_page(old_page);    /* LRU manipulation */
2875                         munlock_vma_page(old_page);
2876                         unlock_page(old_page);
2877                 }
2878                 page_cache_release(old_page);
2879         }
2880         return ret;
2881 oom_free_new:
2882         page_cache_release(new_page);
2883 oom:
2884         if (old_page)
2885                 page_cache_release(old_page);
2886         return VM_FAULT_OOM;
2887
2888 unwritable_page:
2889         page_cache_release(old_page);
2890         return ret;
2891 }
2892
2893 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2894                 unsigned long start_addr, unsigned long end_addr,
2895                 struct zap_details *details)
2896 {
2897         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2898 }
2899
2900 static inline void unmap_mapping_range_tree(struct rb_root *root,
2901                                             struct zap_details *details)
2902 {
2903         struct vm_area_struct *vma;
2904         pgoff_t vba, vea, zba, zea;
2905
2906         vma_interval_tree_foreach(vma, root,
2907                         details->first_index, details->last_index) {
2908
2909                 vba = vma->vm_pgoff;
2910                 vea = vba + vma_pages(vma) - 1;
2911                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2912                 zba = details->first_index;
2913                 if (zba < vba)
2914                         zba = vba;
2915                 zea = details->last_index;
2916                 if (zea > vea)
2917                         zea = vea;
2918
2919                 unmap_mapping_range_vma(vma,
2920                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2921                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2922                                 details);
2923         }
2924 }
2925
2926 static inline void unmap_mapping_range_list(struct list_head *head,
2927                                             struct zap_details *details)
2928 {
2929         struct vm_area_struct *vma;
2930
2931         /*
2932          * In nonlinear VMAs there is no correspondence between virtual address
2933          * offset and file offset.  So we must perform an exhaustive search
2934          * across *all* the pages in each nonlinear VMA, not just the pages
2935          * whose virtual address lies outside the file truncation point.
2936          */
2937         list_for_each_entry(vma, head, shared.nonlinear) {
2938                 details->nonlinear_vma = vma;
2939                 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2940         }
2941 }
2942
2943 /**
2944  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2945  * @mapping: the address space containing mmaps to be unmapped.
2946  * @holebegin: byte in first page to unmap, relative to the start of
2947  * the underlying file.  This will be rounded down to a PAGE_SIZE
2948  * boundary.  Note that this is different from truncate_pagecache(), which
2949  * must keep the partial page.  In contrast, we must get rid of
2950  * partial pages.
2951  * @holelen: size of prospective hole in bytes.  This will be rounded
2952  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2953  * end of the file.
2954  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2955  * but 0 when invalidating pagecache, don't throw away private data.
2956  */
2957 void unmap_mapping_range(struct address_space *mapping,
2958                 loff_t const holebegin, loff_t const holelen, int even_cows)
2959 {
2960         struct zap_details details;
2961         pgoff_t hba = holebegin >> PAGE_SHIFT;
2962         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2963
2964         /* Check for overflow. */
2965         if (sizeof(holelen) > sizeof(hlen)) {
2966                 long long holeend =
2967                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2968                 if (holeend & ~(long long)ULONG_MAX)
2969                         hlen = ULONG_MAX - hba + 1;
2970         }
2971
2972         details.check_mapping = even_cows? NULL: mapping;
2973         details.nonlinear_vma = NULL;
2974         details.first_index = hba;
2975         details.last_index = hba + hlen - 1;
2976         if (details.last_index < details.first_index)
2977                 details.last_index = ULONG_MAX;
2978
2979
2980         mutex_lock(&mapping->i_mmap_mutex);
2981         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2982                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2983         if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2984                 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2985         mutex_unlock(&mapping->i_mmap_mutex);
2986 }
2987 EXPORT_SYMBOL(unmap_mapping_range);
2988
2989 /*
2990  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2991  * but allow concurrent faults), and pte mapped but not yet locked.
2992  * We return with mmap_sem still held, but pte unmapped and unlocked.
2993  */
2994 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2995                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2996                 unsigned int flags, pte_t orig_pte)
2997 {
2998         spinlock_t *ptl;
2999         struct page *page, *swapcache;
3000         swp_entry_t entry;
3001         pte_t pte;
3002         int locked;
3003         struct mem_cgroup *ptr;
3004         int exclusive = 0;
3005         int ret = 0;
3006
3007         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3008                 goto out;
3009
3010         entry = pte_to_swp_entry(orig_pte);
3011         if (unlikely(non_swap_entry(entry))) {
3012                 if (is_migration_entry(entry)) {
3013                         migration_entry_wait(mm, pmd, address);
3014                 } else if (is_hwpoison_entry(entry)) {
3015                         ret = VM_FAULT_HWPOISON;
3016                 } else {
3017                         print_bad_pte(vma, address, orig_pte, NULL);
3018                         ret = VM_FAULT_SIGBUS;
3019                 }
3020                 goto out;
3021         }
3022         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3023         page = lookup_swap_cache(entry);
3024         if (!page) {
3025                 page = swapin_readahead(entry,
3026                                         GFP_HIGHUSER_MOVABLE, vma, address);
3027                 if (!page) {
3028                         /*
3029                          * Back out if somebody else faulted in this pte
3030                          * while we released the pte lock.
3031                          */
3032                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3033                         if (likely(pte_same(*page_table, orig_pte)))
3034                                 ret = VM_FAULT_OOM;
3035                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3036                         goto unlock;
3037                 }
3038
3039                 /* Had to read the page from swap area: Major fault */
3040                 ret = VM_FAULT_MAJOR;
3041                 count_vm_event(PGMAJFAULT);
3042                 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
3043         } else if (PageHWPoison(page)) {
3044                 /*
3045                  * hwpoisoned dirty swapcache pages are kept for killing
3046                  * owner processes (which may be unknown at hwpoison time)
3047                  */
3048                 ret = VM_FAULT_HWPOISON;
3049                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3050                 swapcache = page;
3051                 goto out_release;
3052         }
3053
3054         swapcache = page;
3055         locked = lock_page_or_retry(page, mm, flags);
3056
3057         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3058         if (!locked) {
3059                 ret |= VM_FAULT_RETRY;
3060                 goto out_release;
3061         }
3062
3063         /*
3064          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3065          * release the swapcache from under us.  The page pin, and pte_same
3066          * test below, are not enough to exclude that.  Even if it is still
3067          * swapcache, we need to check that the page's swap has not changed.
3068          */
3069         if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
3070                 goto out_page;
3071
3072         page = ksm_might_need_to_copy(page, vma, address);
3073         if (unlikely(!page)) {
3074                 ret = VM_FAULT_OOM;
3075                 page = swapcache;
3076                 goto out_page;
3077         }
3078
3079         if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
3080                 ret = VM_FAULT_OOM;
3081                 goto out_page;
3082         }
3083
3084         /*
3085          * Back out if somebody else already faulted in this pte.
3086          */
3087         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3088         if (unlikely(!pte_same(*page_table, orig_pte)))
3089                 goto out_nomap;
3090
3091         if (unlikely(!PageUptodate(page))) {
3092                 ret = VM_FAULT_SIGBUS;
3093                 goto out_nomap;
3094         }
3095
3096         /*
3097          * The page isn't present yet, go ahead with the fault.
3098          *
3099          * Be careful about the sequence of operations here.
3100          * To get its accounting right, reuse_swap_page() must be called
3101          * while the page is counted on swap but not yet in mapcount i.e.
3102          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3103          * must be called after the swap_free(), or it will never succeed.
3104          * Because delete_from_swap_page() may be called by reuse_swap_page(),
3105          * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3106          * in page->private. In this case, a record in swap_cgroup  is silently
3107          * discarded at swap_free().
3108          */
3109
3110         inc_mm_counter_fast(mm, MM_ANONPAGES);
3111         dec_mm_counter_fast(mm, MM_SWAPENTS);
3112         pte = mk_pte(page, vma->vm_page_prot);
3113         if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3114                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3115                 flags &= ~FAULT_FLAG_WRITE;
3116                 ret |= VM_FAULT_WRITE;
3117                 exclusive = 1;
3118         }
3119         flush_icache_page(vma, page);
3120         set_pte_at(mm, address, page_table, pte);
3121         if (page == swapcache)
3122                 do_page_add_anon_rmap(page, vma, address, exclusive);
3123         else /* ksm created a completely new copy */
3124                 page_add_new_anon_rmap(page, vma, address);
3125         /* It's better to call commit-charge after rmap is established */
3126         mem_cgroup_commit_charge_swapin(page, ptr);
3127
3128         swap_free(entry);
3129         if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3130                 try_to_free_swap(page);
3131         unlock_page(page);
3132         if (page != swapcache) {
3133                 /*
3134                  * Hold the lock to avoid the swap entry to be reused
3135                  * until we take the PT lock for the pte_same() check
3136                  * (to avoid false positives from pte_same). For
3137                  * further safety release the lock after the swap_free
3138                  * so that the swap count won't change under a
3139                  * parallel locked swapcache.
3140                  */
3141                 unlock_page(swapcache);
3142                 page_cache_release(swapcache);
3143         }
3144
3145         if (flags & FAULT_FLAG_WRITE) {
3146                 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3147                 if (ret & VM_FAULT_ERROR)
3148                         ret &= VM_FAULT_ERROR;
3149                 goto out;
3150         }
3151
3152         /* No need to invalidate - it was non-present before */
3153         update_mmu_cache(vma, address, page_table);
3154 unlock:
3155         pte_unmap_unlock(page_table, ptl);
3156 out:
3157         return ret;
3158 out_nomap:
3159         mem_cgroup_cancel_charge_swapin(ptr);
3160         pte_unmap_unlock(page_table, ptl);
3161 out_page:
3162         unlock_page(page);
3163 out_release:
3164         page_cache_release(page);
3165         if (page != swapcache) {
3166                 unlock_page(swapcache);
3167                 page_cache_release(swapcache);
3168         }
3169         return ret;
3170 }
3171
3172 /*
3173  * This is like a special single-page "expand_{down|up}wards()",
3174  * except we must first make sure that 'address{-|+}PAGE_SIZE'
3175  * doesn't hit another vma.
3176  */
3177 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3178 {
3179         address &= PAGE_MASK;
3180         if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3181                 struct vm_area_struct *prev = vma->vm_prev;
3182
3183                 /*
3184                  * Is there a mapping abutting this one below?
3185                  *
3186                  * That's only ok if it's the same stack mapping
3187                  * that has gotten split..
3188                  */
3189                 if (prev && prev->vm_end == address)
3190                         return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3191
3192                 expand_downwards(vma, address - PAGE_SIZE);
3193         }
3194         if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3195                 struct vm_area_struct *next = vma->vm_next;
3196
3197                 /* As VM_GROWSDOWN but s/below/above/ */
3198                 if (next && next->vm_start == address + PAGE_SIZE)
3199                         return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3200
3201                 expand_upwards(vma, address + PAGE_SIZE);
3202         }
3203         return 0;
3204 }
3205
3206 /*
3207  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3208  * but allow concurrent faults), and pte mapped but not yet locked.
3209  * We return with mmap_sem still held, but pte unmapped and unlocked.
3210  */
3211 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3212                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3213                 unsigned int flags)
3214 {
3215         struct page *page;
3216         spinlock_t *ptl;
3217         pte_t entry;
3218
3219         pte_unmap(page_table);
3220
3221         /* Check if we need to add a guard page to the stack */
3222         if (check_stack_guard_page(vma, address) < 0)
3223                 return VM_FAULT_SIGBUS;
3224
3225         /* Use the zero-page for reads */
3226         if (!(flags & FAULT_FLAG_WRITE)) {
3227                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3228                                                 vma->vm_page_prot));
3229                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3230                 if (!pte_none(*page_table))
3231                         goto unlock;
3232                 goto setpte;
3233         }
3234
3235         /* Allocate our own private page. */
3236         if (unlikely(anon_vma_prepare(vma)))
3237                 goto oom;
3238         page = alloc_zeroed_user_highpage_movable(vma, address);
3239         if (!page)
3240                 goto oom;
3241         /*
3242          * The memory barrier inside __SetPageUptodate makes sure that
3243          * preceeding stores to the page contents become visible before
3244          * the set_pte_at() write.
3245          */
3246         __SetPageUptodate(page);
3247
3248         if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3249                 goto oom_free_page;
3250
3251         entry = mk_pte(page, vma->vm_page_prot);
3252         if (vma->vm_flags & VM_WRITE)
3253                 entry = pte_mkwrite(pte_mkdirty(entry));
3254
3255         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3256         if (!pte_none(*page_table))
3257                 goto release;
3258
3259         inc_mm_counter_fast(mm, MM_ANONPAGES);
3260         page_add_new_anon_rmap(page, vma, address);
3261 setpte:
3262         set_pte_at(mm, address, page_table, entry);
3263
3264         /* No need to invalidate - it was non-present before */
3265         update_mmu_cache(vma, address, page_table);
3266 unlock:
3267         pte_unmap_unlock(page_table, ptl);
3268         return 0;
3269 release:
3270         mem_cgroup_uncharge_page(page);
3271         page_cache_release(page);
3272         goto unlock;
3273 oom_free_page:
3274         page_cache_release(page);
3275 oom:
3276         return VM_FAULT_OOM;
3277 }
3278
3279 /*
3280  * __do_fault() tries to create a new page mapping. It aggressively
3281  * tries to share with existing pages, but makes a separate copy if
3282  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3283  * the next page fault.
3284  *
3285  * As this is called only for pages that do not currently exist, we
3286  * do not need to flush old virtual caches or the TLB.
3287  *
3288  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3289  * but allow concurrent faults), and pte neither mapped nor locked.
3290  * We return with mmap_sem still held, but pte unmapped and unlocked.
3291  */
3292 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3293                 unsigned long address, pmd_t *pmd,
3294                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3295 {
3296         pte_t *page_table;
3297         spinlock_t *ptl;
3298         struct page *page;
3299         struct page *cow_page;
3300         pte_t entry;
3301         int anon = 0;
3302         struct page *dirty_page = NULL;
3303         struct vm_fault vmf;
3304         int ret;
3305         int page_mkwrite = 0;
3306
3307         /*
3308          * If we do COW later, allocate page befor taking lock_page()
3309          * on the file cache page. This will reduce lock holding time.
3310          */
3311         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3312
3313                 if (unlikely(anon_vma_prepare(vma)))
3314                         return VM_FAULT_OOM;
3315
3316                 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3317                 if (!cow_page)
3318                         return VM_FAULT_OOM;
3319
3320                 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3321                         page_cache_release(cow_page);
3322                         return VM_FAULT_OOM;
3323                 }
3324         } else
3325                 cow_page = NULL;
3326
3327         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3328         vmf.pgoff = pgoff;
3329         vmf.flags = flags;
3330         vmf.page = NULL;
3331
3332         ret = vma->vm_ops->fault(vma, &vmf);
3333         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3334                             VM_FAULT_RETRY)))
3335                 goto uncharge_out;
3336
3337         if (unlikely(PageHWPoison(vmf.page))) {
3338                 if (ret & VM_FAULT_LOCKED)
3339                         unlock_page(vmf.page);
3340                 ret = VM_FAULT_HWPOISON;
3341                 goto uncharge_out;
3342         }
3343
3344         /*
3345          * For consistency in subsequent calls, make the faulted page always
3346          * locked.
3347          */
3348         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3349                 lock_page(vmf.page);
3350         else
3351                 VM_BUG_ON(!PageLocked(vmf.page));
3352
3353         /*
3354          * Should we do an early C-O-W break?
3355          */
3356         page = vmf.page;
3357         if (flags & FAULT_FLAG_WRITE) {
3358                 if (!(vma->vm_flags & VM_SHARED)) {
3359                         page = cow_page;
3360                         anon = 1;
3361                         copy_user_highpage(page, vmf.page, address, vma);
3362                         __SetPageUptodate(page);
3363                 } else {
3364                         /*
3365                          * If the page will be shareable, see if the backing
3366                          * address space wants to know that the page is about
3367                          * to become writable
3368                          */
3369                         if (vma->vm_ops->page_mkwrite) {
3370                                 int tmp;
3371
3372                                 unlock_page(page);
3373                                 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3374                                 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3375                                 if (unlikely(tmp &
3376                                           (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3377                                         ret = tmp;
3378                                         goto unwritable_page;
3379                                 }
3380                                 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3381                                         lock_page(page);
3382                                         if (!page->mapping) {
3383                                                 ret = 0; /* retry the fault */
3384                                                 unlock_page(page);
3385                                                 goto unwritable_page;
3386                                         }
3387                                 } else
3388                                         VM_BUG_ON(!PageLocked(page));
3389                                 page_mkwrite = 1;
3390                         }
3391                 }
3392
3393         }
3394
3395         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3396
3397         /*
3398          * This silly early PAGE_DIRTY setting removes a race
3399          * due to the bad i386 page protection. But it's valid
3400          * for other architectures too.
3401          *
3402          * Note that if FAULT_FLAG_WRITE is set, we either now have
3403          * an exclusive copy of the page, or this is a shared mapping,
3404          * so we can make it writable and dirty to avoid having to
3405          * handle that later.
3406          */
3407         /* Only go through if we didn't race with anybody else... */
3408         if (likely(pte_same(*page_table, orig_pte))) {
3409                 flush_icache_page(vma, page);
3410                 entry = mk_pte(page, vma->vm_page_prot);
3411                 if (flags & FAULT_FLAG_WRITE)
3412                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3413                 if (anon) {
3414                         inc_mm_counter_fast(mm, MM_ANONPAGES);
3415                         page_add_new_anon_rmap(page, vma, address);
3416                 } else {
3417                         inc_mm_counter_fast(mm, MM_FILEPAGES);
3418                         page_add_file_rmap(page);
3419                         if (flags & FAULT_FLAG_WRITE) {
3420                                 dirty_page = page;
3421                                 get_page(dirty_page);
3422                         }
3423                 }
3424                 set_pte_at(mm, address, page_table, entry);
3425
3426                 /* no need to invalidate: a not-present page won't be cached */
3427                 update_mmu_cache(vma, address, page_table);
3428         } else {
3429                 if (cow_page)
3430                         mem_cgroup_uncharge_page(cow_page);
3431                 if (anon)
3432                         page_cache_release(page);
3433                 else
3434                         anon = 1; /* no anon but release faulted_page */
3435         }
3436
3437         pte_unmap_unlock(page_table, ptl);
3438
3439         if (dirty_page) {
3440                 struct address_space *mapping = page->mapping;
3441                 int dirtied = 0;
3442
3443                 if (set_page_dirty(dirty_page))
3444                         dirtied = 1;
3445                 unlock_page(dirty_page);
3446                 put_page(dirty_page);
3447                 if ((dirtied || page_mkwrite) && mapping) {
3448                         /*
3449                          * Some device drivers do not set page.mapping but still
3450                          * dirty their pages
3451                          */
3452                         balance_dirty_pages_ratelimited(mapping);
3453                 }
3454
3455                 /* file_update_time outside page_lock */
3456                 if (vma->vm_file && !page_mkwrite)
3457                         file_update_time(vma->vm_file);
3458         } else {
3459                 unlock_page(vmf.page);
3460                 if (anon)
3461                         page_cache_release(vmf.page);
3462         }
3463
3464         return ret;
3465
3466 unwritable_page:
3467         page_cache_release(page);
3468         return ret;
3469 uncharge_out:
3470         /* fs's fault handler get error */
3471         if (cow_page) {
3472                 mem_cgroup_uncharge_page(cow_page);
3473                 page_cache_release(cow_page);
3474         }
3475         return ret;
3476 }
3477
3478 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3479                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3480                 unsigned int flags, pte_t orig_pte)
3481 {
3482         pgoff_t pgoff = (((address & PAGE_MASK)
3483                         - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3484
3485         pte_unmap(page_table);
3486         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3487 }
3488
3489 /*
3490  * Fault of a previously existing named mapping. Repopulate the pte
3491  * from the encoded file_pte if possible. This enables swappable
3492  * nonlinear vmas.
3493  *
3494  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3495  * but allow concurrent faults), and pte mapped but not yet locked.
3496  * We return with mmap_sem still held, but pte unmapped and unlocked.
3497  */
3498 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3499                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3500                 unsigned int flags, pte_t orig_pte)
3501 {
3502         pgoff_t pgoff;
3503
3504         flags |= FAULT_FLAG_NONLINEAR;
3505
3506         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3507                 return 0;
3508
3509         if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3510                 /*
3511                  * Page table corrupted: show pte and kill process.
3512                  */
3513                 print_bad_pte(vma, address, orig_pte, NULL);
3514                 return VM_FAULT_SIGBUS;
3515         }
3516
3517         pgoff = pte_to_pgoff(orig_pte);
3518         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3519 }
3520
3521 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3522                                 unsigned long addr, int current_nid)
3523 {
3524         get_page(page);
3525
3526         count_vm_numa_event(NUMA_HINT_FAULTS);
3527         if (current_nid == numa_node_id())
3528                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3529
3530         return mpol_misplaced(page, vma, addr);
3531 }
3532
3533 int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3534                    unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3535 {
3536         struct page *page = NULL;
3537         spinlock_t *ptl;
3538         int current_nid = -1;
3539         int target_nid;
3540         bool migrated = false;
3541
3542         /*
3543         * The "pte" at this point cannot be used safely without
3544         * validation through pte_unmap_same(). It's of NUMA type but
3545         * the pfn may be screwed if the read is non atomic.
3546         *
3547         * ptep_modify_prot_start is not called as this is clearing
3548         * the _PAGE_NUMA bit and it is not really expected that there
3549         * would be concurrent hardware modifications to the PTE.
3550         */
3551         ptl = pte_lockptr(mm, pmd);
3552         spin_lock(ptl);
3553         if (unlikely(!pte_same(*ptep, pte))) {
3554                 pte_unmap_unlock(ptep, ptl);
3555                 goto out;
3556         }
3557
3558         pte = pte_mknonnuma(pte);
3559         set_pte_at(mm, addr, ptep, pte);
3560         update_mmu_cache(vma, addr, ptep);
3561
3562         page = vm_normal_page(vma, addr, pte);
3563         if (!page) {
3564                 pte_unmap_unlock(ptep, ptl);
3565                 return 0;
3566         }
3567
3568         current_nid = page_to_nid(page);
3569         target_nid = numa_migrate_prep(page, vma, addr, current_nid);
3570         pte_unmap_unlock(ptep, ptl);
3571         if (target_nid == -1) {
3572                 /*
3573                  * Account for the fault against the current node if it not
3574                  * being replaced regardless of where the page is located.
3575                  */
3576                 current_nid = numa_node_id();
3577                 put_page(page);
3578                 goto out;
3579         }
3580
3581         /* Migrate to the requested node */
3582         migrated = migrate_misplaced_page(page, target_nid);
3583         if (migrated)
3584                 current_nid = target_nid;
3585
3586 out:
3587         if (current_nid != -1)
3588                 task_numa_fault(current_nid, 1, migrated);
3589         return 0;
3590 }
3591
3592 /* NUMA hinting page fault entry point for regular pmds */
3593 #ifdef CONFIG_NUMA_BALANCING
3594 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3595                      unsigned long addr, pmd_t *pmdp)
3596 {
3597         pmd_t pmd;
3598         pte_t *pte, *orig_pte;
3599         unsigned long _addr = addr & PMD_MASK;
3600         unsigned long offset;
3601         spinlock_t *ptl;
3602         bool numa = false;
3603         int local_nid = numa_node_id();
3604
3605         spin_lock(&mm->page_table_lock);
3606         pmd = *pmdp;
3607         if (pmd_numa(pmd)) {
3608                 set_pmd_at(mm, _addr, pmdp, pmd_mknonnuma(pmd));
3609                 numa = true;
3610         }
3611         spin_unlock(&mm->page_table_lock);
3612
3613         if (!numa)
3614                 return 0;
3615
3616         /* we're in a page fault so some vma must be in the range */
3617         BUG_ON(!vma);
3618         BUG_ON(vma->vm_start >= _addr + PMD_SIZE);
3619         offset = max(_addr, vma->vm_start) & ~PMD_MASK;
3620         VM_BUG_ON(offset >= PMD_SIZE);
3621         orig_pte = pte = pte_offset_map_lock(mm, pmdp, _addr, &ptl);
3622         pte += offset >> PAGE_SHIFT;
3623         for (addr = _addr + offset; addr < _addr + PMD_SIZE; pte++, addr += PAGE_SIZE) {
3624                 pte_t pteval = *pte;
3625                 struct page *page;
3626                 int curr_nid = local_nid;
3627                 int target_nid;
3628                 bool migrated;
3629                 if (!pte_present(pteval))
3630                         continue;
3631                 if (!pte_numa(pteval))
3632                         continue;
3633                 if (addr >= vma->vm_end) {
3634                         vma = find_vma(mm, addr);
3635                         /* there's a pte present so there must be a vma */
3636                         BUG_ON(!vma);
3637                         BUG_ON(addr < vma->vm_start);
3638                 }
3639                 if (pte_numa(pteval)) {
3640                         pteval = pte_mknonnuma(pteval);
3641                         set_pte_at(mm, addr, pte, pteval);
3642                 }
3643                 page = vm_normal_page(vma, addr, pteval);
3644                 if (unlikely(!page))
3645                         continue;
3646                 /* only check non-shared pages */
3647                 if (unlikely(page_mapcount(page) != 1))
3648                         continue;
3649
3650                 /*
3651                  * Note that the NUMA fault is later accounted to either
3652                  * the node that is currently running or where the page is
3653                  * migrated to.
3654                  */
3655                 curr_nid = local_nid;
3656                 target_nid = numa_migrate_prep(page, vma, addr,
3657                                                page_to_nid(page));
3658                 if (target_nid == -1) {
3659                         put_page(page);
3660                         continue;
3661                 }
3662
3663                 /* Migrate to the requested node */
3664                 pte_unmap_unlock(pte, ptl);
3665                 migrated = migrate_misplaced_page(page, target_nid);
3666                 if (migrated)
3667                         curr_nid = target_nid;
3668                 task_numa_fault(curr_nid, 1, migrated);
3669
3670                 pte = pte_offset_map_lock(mm, pmdp, addr, &ptl);
3671         }
3672         pte_unmap_unlock(orig_pte, ptl);
3673
3674         return 0;
3675 }
3676 #else
3677 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3678                      unsigned long addr, pmd_t *pmdp)
3679 {
3680         BUG();
3681         return 0;
3682 }
3683 #endif /* CONFIG_NUMA_BALANCING */
3684
3685 /*
3686  * These routines also need to handle stuff like marking pages dirty
3687  * and/or accessed for architectures that don't do it in hardware (most
3688  * RISC architectures).  The early dirtying is also good on the i386.
3689  *
3690  * There is also a hook called "update_mmu_cache()" that architectures
3691  * with external mmu caches can use to update those (ie the Sparc or
3692  * PowerPC hashed page tables that act as extended TLBs).
3693  *
3694  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3695  * but allow concurrent faults), and pte mapped but not yet locked.
3696  * We return with mmap_sem still held, but pte unmapped and unlocked.
3697  */
3698 int handle_pte_fault(struct mm_struct *mm,
3699                      struct vm_area_struct *vma, unsigned long address,
3700                      pte_t *pte, pmd_t *pmd, unsigned int flags)
3701 {
3702         pte_t entry;
3703         spinlock_t *ptl;
3704
3705         entry = *pte;
3706         if (!pte_present(entry)) {
3707                 if (pte_none(entry)) {
3708                         if (vma->vm_ops) {
3709                                 if (likely(vma->vm_ops->fault))
3710                                         return do_linear_fault(mm, vma, address,
3711                                                 pte, pmd, flags, entry);
3712                         }
3713                         return do_anonymous_page(mm, vma, address,
3714                                                  pte, pmd, flags);
3715                 }
3716                 if (pte_file(entry))
3717                         return do_nonlinear_fault(mm, vma, address,
3718                                         pte, pmd, flags, entry);
3719                 return do_swap_page(mm, vma, address,
3720                                         pte, pmd, flags, entry);
3721         }
3722
3723         if (pte_numa(entry))
3724                 return do_numa_page(mm, vma, address, entry, pte, pmd);
3725
3726         ptl = pte_lockptr(mm, pmd);
3727         spin_lock(ptl);
3728         if (unlikely(!pte_same(*pte, entry)))
3729                 goto unlock;
3730         if (flags & FAULT_FLAG_WRITE) {
3731                 if (!pte_write(entry))
3732                         return do_wp_page(mm, vma, address,
3733                                         pte, pmd, ptl, entry);
3734                 entry = pte_mkdirty(entry);
3735         }
3736         entry = pte_mkyoung(entry);
3737         if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3738                 update_mmu_cache(vma, address, pte);
3739         } else {
3740                 /*
3741                  * This is needed only for protection faults but the arch code
3742                  * is not yet telling us if this is a protection fault or not.
3743                  * This still avoids useless tlb flushes for .text page faults
3744                  * with threads.
3745                  */
3746                 if (flags & FAULT_FLAG_WRITE)
3747                         flush_tlb_fix_spurious_fault(vma, address);
3748         }
3749 unlock:
3750         pte_unmap_unlock(pte, ptl);
3751         return 0;
3752 }
3753
3754 /*
3755  * By the time we get here, we already hold the mm semaphore
3756  */
3757 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3758                 unsigned long address, unsigned int flags)
3759 {
3760         pgd_t *pgd;
3761         pud_t *pud;
3762         pmd_t *pmd;
3763         pte_t *pte;
3764
3765         __set_current_state(TASK_RUNNING);
3766
3767         count_vm_event(PGFAULT);
3768         mem_cgroup_count_vm_event(mm, PGFAULT);
3769
3770         /* do counter updates before entering really critical section. */
3771         check_sync_rss_stat(current);
3772
3773         if (unlikely(is_vm_hugetlb_page(vma)))
3774                 return hugetlb_fault(mm, vma, address, flags);
3775
3776 retry:
3777         pgd = pgd_offset(mm, address);
3778         pud = pud_alloc(mm, pgd, address);
3779         if (!pud)
3780                 return VM_FAULT_OOM;
3781         pmd = pmd_alloc(mm, pud, address);
3782         if (!pmd)
3783                 return VM_FAULT_OOM;
3784         if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3785                 if (!vma->vm_ops)
3786                         return do_huge_pmd_anonymous_page(mm, vma, address,
3787                                                           pmd, flags);
3788         } else {
3789                 pmd_t orig_pmd = *pmd;
3790                 int ret;
3791
3792                 barrier();
3793                 if (pmd_trans_huge(orig_pmd)) {
3794                         unsigned int dirty = flags & FAULT_FLAG_WRITE;
3795
3796                         /*
3797                          * If the pmd is splitting, return and retry the
3798                          * the fault.  Alternative: wait until the split
3799                          * is done, and goto retry.
3800                          */
3801                         if (pmd_trans_splitting(orig_pmd))
3802                                 return 0;
3803
3804                         if (pmd_numa(orig_pmd))
3805                                 return do_huge_pmd_numa_page(mm, vma, address,
3806                                                              orig_pmd, pmd);
3807
3808                         if (dirty && !pmd_write(orig_pmd)) {
3809                                 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3810                                                           orig_pmd);
3811                                 /*
3812                                  * If COW results in an oom, the huge pmd will
3813                                  * have been split, so retry the fault on the
3814                                  * pte for a smaller charge.
3815                                  */
3816                                 if (unlikely(ret & VM_FAULT_OOM))
3817                                         goto retry;
3818                                 return ret;
3819                         } else {
3820                                 huge_pmd_set_accessed(mm, vma, address, pmd,
3821                                                       orig_pmd, dirty);
3822                         }
3823
3824                         return 0;
3825                 }
3826         }
3827
3828         if (pmd_numa(*pmd))
3829                 return do_pmd_numa_page(mm, vma, address, pmd);
3830
3831         /*
3832          * Use __pte_alloc instead of pte_alloc_map, because we can't
3833          * run pte_offset_map on the pmd, if an huge pmd could
3834          * materialize from under us from a different thread.
3835          */
3836         if (unlikely(pmd_none(*pmd)) &&
3837             unlikely(__pte_alloc(mm, vma, pmd, address)))
3838                 return VM_FAULT_OOM;
3839         /* if an huge pmd materialized from under us just retry later */
3840         if (unlikely(pmd_trans_huge(*pmd)))
3841                 return 0;
3842         /*
3843          * A regular pmd is established and it can't morph into a huge pmd
3844          * from under us anymore at this point because we hold the mmap_sem
3845          * read mode and khugepaged takes it in write mode. So now it's
3846          * safe to run pte_offset_map().
3847          */
3848         pte = pte_offset_map(pmd, address);
3849
3850         return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3851 }
3852
3853 #ifndef __PAGETABLE_PUD_FOLDED
3854 /*
3855  * Allocate page upper directory.
3856  * We've already handled the fast-path in-line.
3857  */
3858 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3859 {
3860         pud_t *new = pud_alloc_one(mm, address);
3861         if (!new)
3862                 return -ENOMEM;
3863
3864         smp_wmb(); /* See comment in __pte_alloc */
3865
3866         spin_lock(&mm->page_table_lock);
3867         if (pgd_present(*pgd))          /* Another has populated it */
3868                 pud_free(mm, new);
3869         else
3870                 pgd_populate(mm, pgd, new);
3871         spin_unlock(&mm->page_table_lock);
3872         return 0;
3873 }
3874 #endif /* __PAGETABLE_PUD_FOLDED */
3875
3876 #ifndef __PAGETABLE_PMD_FOLDED
3877 /*
3878  * Allocate page middle directory.
3879  * We've already handled the fast-path in-line.
3880  */
3881 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3882 {
3883         pmd_t *new = pmd_alloc_one(mm, address);
3884         if (!new)
3885                 return -ENOMEM;
3886
3887         smp_wmb(); /* See comment in __pte_alloc */
3888
3889         spin_lock(&mm->page_table_lock);
3890 #ifndef __ARCH_HAS_4LEVEL_HACK
3891         if (pud_present(*pud))          /* Another has populated it */
3892                 pmd_free(mm, new);
3893         else
3894                 pud_populate(mm, pud, new);
3895 #else
3896         if (pgd_present(*pud))          /* Another has populated it */
3897                 pmd_free(mm, new);
3898         else
3899                 pgd_populate(mm, pud, new);
3900 #endif /* __ARCH_HAS_4LEVEL_HACK */
3901         spin_unlock(&mm->page_table_lock);
3902         return 0;
3903 }
3904 #endif /* __PAGETABLE_PMD_FOLDED */
3905
3906 #if !defined(__HAVE_ARCH_GATE_AREA)
3907
3908 #if defined(AT_SYSINFO_EHDR)
3909 static struct vm_area_struct gate_vma;
3910
3911 static int __init gate_vma_init(void)
3912 {
3913         gate_vma.vm_mm = NULL;
3914         gate_vma.vm_start = FIXADDR_USER_START;
3915         gate_vma.vm_end = FIXADDR_USER_END;
3916         gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3917         gate_vma.vm_page_prot = __P101;
3918
3919         return 0;
3920 }
3921 __initcall(gate_vma_init);
3922 #endif
3923
3924 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3925 {
3926 #ifdef AT_SYSINFO_EHDR
3927         return &gate_vma;
3928 #else
3929         return NULL;
3930 #endif
3931 }
3932
3933 int in_gate_area_no_mm(unsigned long addr)
3934 {
3935 #ifdef AT_SYSINFO_EHDR
3936         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3937                 return 1;
3938 #endif
3939         return 0;
3940 }
3941
3942 #endif  /* __HAVE_ARCH_GATE_AREA */
3943
3944 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3945                 pte_t **ptepp, spinlock_t **ptlp)
3946 {
3947         pgd_t *pgd;
3948         pud_t *pud;
3949         pmd_t *pmd;
3950         pte_t *ptep;
3951
3952         pgd = pgd_offset(mm, address);
3953         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3954                 goto out;
3955
3956         pud = pud_offset(pgd, address);
3957         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3958                 goto out;
3959
3960         pmd = pmd_offset(pud, address);
3961         VM_BUG_ON(pmd_trans_huge(*pmd));
3962         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3963                 goto out;
3964
3965         /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3966         if (pmd_huge(*pmd))
3967                 goto out;
3968
3969         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3970         if (!ptep)
3971                 goto out;
3972         if (!pte_present(*ptep))
3973                 goto unlock;
3974         *ptepp = ptep;
3975         return 0;
3976 unlock:
3977         pte_unmap_unlock(ptep, *ptlp);
3978 out:
3979         return -EINVAL;
3980 }
3981
3982 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3983                              pte_t **ptepp, spinlock_t **ptlp)
3984 {
3985         int res;
3986
3987         /* (void) is needed to make gcc happy */
3988         (void) __cond_lock(*ptlp,
3989                            !(res = __follow_pte(mm, address, ptepp, ptlp)));
3990         return res;
3991 }
3992
3993 /**
3994  * follow_pfn - look up PFN at a user virtual address
3995  * @vma: memory mapping
3996  * @address: user virtual address
3997  * @pfn: location to store found PFN
3998  *
3999  * Only IO mappings and raw PFN mappings are allowed.
4000  *
4001  * Returns zero and the pfn at @pfn on success, -ve otherwise.
4002  */
4003 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4004         unsigned long *pfn)
4005 {
4006         int ret = -EINVAL;
4007         spinlock_t *ptl;
4008         pte_t *ptep;
4009
4010         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4011                 return ret;
4012
4013         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4014         if (ret)
4015                 return ret;
4016         *pfn = pte_pfn(*ptep);
4017         pte_unmap_unlock(ptep, ptl);
4018         return 0;
4019 }
4020 EXPORT_SYMBOL(follow_pfn);
4021
4022 #ifdef CONFIG_HAVE_IOREMAP_PROT
4023 int follow_phys(struct vm_area_struct *vma,
4024                 unsigned long address, unsigned int flags,
4025                 unsigned long *prot, resource_size_t *phys)
4026 {
4027         int ret = -EINVAL;
4028         pte_t *ptep, pte;
4029         spinlock_t *ptl;
4030
4031         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4032                 goto out;
4033
4034         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4035                 goto out;
4036         pte = *ptep;
4037
4038         if ((flags & FOLL_WRITE) && !pte_write(pte))
4039                 goto unlock;
4040
4041         *prot = pgprot_val(pte_pgprot(pte));
4042         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4043
4044         ret = 0;
4045 unlock:
4046         pte_unmap_unlock(ptep, ptl);
4047 out:
4048         return ret;
4049 }
4050
4051 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4052                         void *buf, int len, int write)
4053 {
4054         resource_size_t phys_addr;
4055         unsigned long prot = 0;
4056         void __iomem *maddr;
4057         int offset = addr & (PAGE_SIZE-1);
4058
4059         if (follow_phys(vma, addr, write, &prot, &phys_addr))
4060                 return -EINVAL;
4061
4062         maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
4063         if (write)
4064                 memcpy_toio(maddr + offset, buf, len);
4065         else
4066                 memcpy_fromio(buf, maddr + offset, len);
4067         iounmap(maddr);
4068
4069         return len;
4070 }
4071 #endif
4072
4073 /*
4074  * Access another process' address space as given in mm.  If non-NULL, use the
4075  * given task for page fault accounting.
4076  */
4077 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4078                 unsigned long addr, void *buf, int len, int write)
4079 {
4080         struct vm_area_struct *vma;
4081         void *old_buf = buf;
4082
4083         down_read(&mm->mmap_sem);
4084         /* ignore errors, just check how much was successfully transferred */
4085         while (len) {
4086                 int bytes, ret, offset;
4087                 void *maddr;
4088                 struct page *page = NULL;
4089
4090                 ret = get_user_pages(tsk, mm, addr, 1,
4091                                 write, 1, &page, &vma);
4092                 if (ret <= 0) {
4093                         /*
4094                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4095                          * we can access using slightly different code.
4096                          */
4097 #ifdef CONFIG_HAVE_IOREMAP_PROT
4098                         vma = find_vma(mm, addr);
4099                         if (!vma || vma->vm_start > addr)
4100                                 break;
4101                         if (vma->vm_ops && vma->vm_ops->access)
4102                                 ret = vma->vm_ops->access(vma, addr, buf,
4103                                                           len, write);
4104                         if (ret <= 0)
4105 #endif
4106                                 break;
4107                         bytes = ret;
4108                 } else {
4109                         bytes = len;
4110                         offset = addr & (PAGE_SIZE-1);
4111                         if (bytes > PAGE_SIZE-offset)
4112                                 bytes = PAGE_SIZE-offset;
4113
4114                         maddr = kmap(page);
4115                         if (write) {
4116                                 copy_to_user_page(vma, page, addr,
4117                                                   maddr + offset, buf, bytes);
4118                                 set_page_dirty_lock(page);
4119                         } else {
4120                                 copy_from_user_page(vma, page, addr,
4121                                                     buf, maddr + offset, bytes);
4122                         }
4123                         kunmap(page);
4124                         page_cache_release(page);
4125                 }
4126                 len -= bytes;
4127                 buf += bytes;
4128                 addr += bytes;
4129         }
4130         up_read(&mm->mmap_sem);
4131
4132         return buf - old_buf;
4133 }
4134
4135 /**
4136  * access_remote_vm - access another process' address space
4137  * @mm:         the mm_struct of the target address space
4138  * @addr:       start address to access
4139  * @buf:        source or destination buffer
4140  * @len:        number of bytes to transfer
4141  * @write:      whether the access is a write
4142  *
4143  * The caller must hold a reference on @mm.
4144  */
4145 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4146                 void *buf, int len, int write)
4147 {
4148         return __access_remote_vm(NULL, mm, addr, buf, len, write);
4149 }
4150
4151 /*
4152  * Access another process' address space.
4153  * Source/target buffer must be kernel space,
4154  * Do not walk the page table directly, use get_user_pages
4155  */
4156 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4157                 void *buf, int len, int write)
4158 {
4159         struct mm_struct *mm;
4160         int ret;
4161
4162         mm = get_task_mm(tsk);
4163         if (!mm)
4164                 return 0;
4165
4166         ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
4167         mmput(mm);
4168
4169         return ret;
4170 }
4171
4172 /*
4173  * Print the name of a VMA.
4174  */
4175 void print_vma_addr(char *prefix, unsigned long ip)
4176 {
4177         struct mm_struct *mm = current->mm;
4178         struct vm_area_struct *vma;
4179
4180         /*
4181          * Do not print if we are in atomic
4182          * contexts (in exception stacks, etc.):
4183          */
4184         if (preempt_count())
4185                 return;
4186
4187         down_read(&mm->mmap_sem);
4188         vma = find_vma(mm, ip);
4189         if (vma && vma->vm_file) {
4190                 struct file *f = vma->vm_file;
4191                 char *buf = (char *)__get_free_page(GFP_KERNEL);
4192                 if (buf) {
4193                         char *p;
4194
4195                         p = d_path(&f->f_path, buf, PAGE_SIZE);
4196                         if (IS_ERR(p))
4197                                 p = "?";
4198                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4199                                         vma->vm_start,
4200                                         vma->vm_end - vma->vm_start);
4201                         free_page((unsigned long)buf);
4202                 }
4203         }
4204         up_read(&mm->mmap_sem);
4205 }
4206
4207 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4208 void might_fault(void)
4209 {
4210         /*
4211          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4212          * holding the mmap_sem, this is safe because kernel memory doesn't
4213          * get paged out, therefore we'll never actually fault, and the
4214          * below annotations will generate false positives.
4215          */
4216         if (segment_eq(get_fs(), KERNEL_DS))
4217                 return;
4218
4219         /*
4220          * it would be nicer only to annotate paths which are not under
4221          * pagefault_disable, however that requires a larger audit and
4222          * providing helpers like get_user_atomic.
4223          */
4224         if (in_atomic())
4225                 return;
4226
4227         __might_sleep(__FILE__, __LINE__, 0);
4228
4229         if (current->mm)
4230                 might_lock_read(&current->mm->mmap_sem);
4231 }
4232 EXPORT_SYMBOL(might_fault);
4233 #endif
4234
4235 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4236 static void clear_gigantic_page(struct page *page,
4237                                 unsigned long addr,
4238                                 unsigned int pages_per_huge_page)
4239 {
4240         int i;
4241         struct page *p = page;
4242
4243         might_sleep();
4244         for (i = 0; i < pages_per_huge_page;
4245              i++, p = mem_map_next(p, page, i)) {
4246                 cond_resched();
4247                 clear_user_highpage(p, addr + i * PAGE_SIZE);
4248         }
4249 }
4250 void clear_huge_page(struct page *page,
4251                      unsigned long addr, unsigned int pages_per_huge_page)
4252 {
4253         int i;
4254
4255         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4256                 clear_gigantic_page(page, addr, pages_per_huge_page);
4257                 return;
4258         }
4259
4260         might_sleep();
4261         for (i = 0; i < pages_per_huge_page; i++) {
4262                 cond_resched();
4263                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4264         }
4265 }
4266
4267 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4268                                     unsigned long addr,
4269                                     struct vm_area_struct *vma,
4270                                     unsigned int pages_per_huge_page)
4271 {
4272         int i;
4273         struct page *dst_base = dst;
4274         struct page *src_base = src;
4275
4276         for (i = 0; i < pages_per_huge_page; ) {
4277                 cond_resched();
4278                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4279
4280                 i++;
4281                 dst = mem_map_next(dst, dst_base, i);
4282                 src = mem_map_next(src, src_base, i);
4283         }
4284 }
4285
4286 void copy_user_huge_page(struct page *dst, struct page *src,
4287                          unsigned long addr, struct vm_area_struct *vma,
4288                          unsigned int pages_per_huge_page)
4289 {
4290         int i;
4291
4292         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4293                 copy_user_gigantic_page(dst, src, addr, vma,
4294                                         pages_per_huge_page);
4295                 return;
4296         }
4297
4298         might_sleep();
4299         for (i = 0; i < pages_per_huge_page; i++) {
4300                 cond_resched();
4301                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4302         }
4303 }
4304 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */