2e580ed7921176b694db73693d185f0922f9926f
[cascardo/linux.git] / mm / mmap.c
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
7  */
8
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/export.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/perf_event.h>
31 #include <linux/audit.h>
32 #include <linux/khugepaged.h>
33 #include <linux/uprobes.h>
34
35 #include <asm/uaccess.h>
36 #include <asm/cacheflush.h>
37 #include <asm/tlb.h>
38 #include <asm/mmu_context.h>
39
40 #include "internal.h"
41
42 #ifndef arch_mmap_check
43 #define arch_mmap_check(addr, len, flags)       (0)
44 #endif
45
46 #ifndef arch_rebalance_pgtables
47 #define arch_rebalance_pgtables(addr, len)              (addr)
48 #endif
49
50 static void unmap_region(struct mm_struct *mm,
51                 struct vm_area_struct *vma, struct vm_area_struct *prev,
52                 unsigned long start, unsigned long end);
53
54 /*
55  * WARNING: the debugging will use recursive algorithms so never enable this
56  * unless you know what you are doing.
57  */
58 #undef DEBUG_MM_RB
59
60 /* description of effects of mapping type and prot in current implementation.
61  * this is due to the limited x86 page protection hardware.  The expected
62  * behavior is in parens:
63  *
64  * map_type     prot
65  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
66  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
67  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
68  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
69  *              
70  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
71  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
72  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
73  *
74  */
75 pgprot_t protection_map[16] = {
76         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
77         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
78 };
79
80 pgprot_t vm_get_page_prot(unsigned long vm_flags)
81 {
82         return __pgprot(pgprot_val(protection_map[vm_flags &
83                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
84                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
85 }
86 EXPORT_SYMBOL(vm_get_page_prot);
87
88 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
89 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
90 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
91 /*
92  * Make sure vm_committed_as in one cacheline and not cacheline shared with
93  * other variables. It can be updated by several CPUs frequently.
94  */
95 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
96
97 /*
98  * Check that a process has enough memory to allocate a new virtual
99  * mapping. 0 means there is enough memory for the allocation to
100  * succeed and -ENOMEM implies there is not.
101  *
102  * We currently support three overcommit policies, which are set via the
103  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
104  *
105  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
106  * Additional code 2002 Jul 20 by Robert Love.
107  *
108  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
109  *
110  * Note this is a helper function intended to be used by LSMs which
111  * wish to use this logic.
112  */
113 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
114 {
115         unsigned long free, allowed;
116
117         vm_acct_memory(pages);
118
119         /*
120          * Sometimes we want to use more memory than we have
121          */
122         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
123                 return 0;
124
125         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
126                 free = global_page_state(NR_FREE_PAGES);
127                 free += global_page_state(NR_FILE_PAGES);
128
129                 /*
130                  * shmem pages shouldn't be counted as free in this
131                  * case, they can't be purged, only swapped out, and
132                  * that won't affect the overall amount of available
133                  * memory in the system.
134                  */
135                 free -= global_page_state(NR_SHMEM);
136
137                 free += nr_swap_pages;
138
139                 /*
140                  * Any slabs which are created with the
141                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
142                  * which are reclaimable, under pressure.  The dentry
143                  * cache and most inode caches should fall into this
144                  */
145                 free += global_page_state(NR_SLAB_RECLAIMABLE);
146
147                 /*
148                  * Leave reserved pages. The pages are not for anonymous pages.
149                  */
150                 if (free <= totalreserve_pages)
151                         goto error;
152                 else
153                         free -= totalreserve_pages;
154
155                 /*
156                  * Leave the last 3% for root
157                  */
158                 if (!cap_sys_admin)
159                         free -= free / 32;
160
161                 if (free > pages)
162                         return 0;
163
164                 goto error;
165         }
166
167         allowed = (totalram_pages - hugetlb_total_pages())
168                 * sysctl_overcommit_ratio / 100;
169         /*
170          * Leave the last 3% for root
171          */
172         if (!cap_sys_admin)
173                 allowed -= allowed / 32;
174         allowed += total_swap_pages;
175
176         /* Don't let a single process grow too big:
177            leave 3% of the size of this process for other processes */
178         if (mm)
179                 allowed -= mm->total_vm / 32;
180
181         if (percpu_counter_read_positive(&vm_committed_as) < allowed)
182                 return 0;
183 error:
184         vm_unacct_memory(pages);
185
186         return -ENOMEM;
187 }
188
189 /*
190  * Requires inode->i_mapping->i_mmap_mutex
191  */
192 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
193                 struct file *file, struct address_space *mapping)
194 {
195         if (vma->vm_flags & VM_DENYWRITE)
196                 atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
197         if (vma->vm_flags & VM_SHARED)
198                 mapping->i_mmap_writable--;
199
200         flush_dcache_mmap_lock(mapping);
201         if (unlikely(vma->vm_flags & VM_NONLINEAR))
202                 list_del_init(&vma->shared.nonlinear);
203         else
204                 vma_interval_tree_remove(vma, &mapping->i_mmap);
205         flush_dcache_mmap_unlock(mapping);
206 }
207
208 /*
209  * Unlink a file-based vm structure from its interval tree, to hide
210  * vma from rmap and vmtruncate before freeing its page tables.
211  */
212 void unlink_file_vma(struct vm_area_struct *vma)
213 {
214         struct file *file = vma->vm_file;
215
216         if (file) {
217                 struct address_space *mapping = file->f_mapping;
218                 mutex_lock(&mapping->i_mmap_mutex);
219                 __remove_shared_vm_struct(vma, file, mapping);
220                 mutex_unlock(&mapping->i_mmap_mutex);
221         }
222 }
223
224 /*
225  * Close a vm structure and free it, returning the next.
226  */
227 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
228 {
229         struct vm_area_struct *next = vma->vm_next;
230
231         might_sleep();
232         if (vma->vm_ops && vma->vm_ops->close)
233                 vma->vm_ops->close(vma);
234         if (vma->vm_file)
235                 fput(vma->vm_file);
236         mpol_put(vma_policy(vma));
237         kmem_cache_free(vm_area_cachep, vma);
238         return next;
239 }
240
241 static unsigned long do_brk(unsigned long addr, unsigned long len);
242
243 SYSCALL_DEFINE1(brk, unsigned long, brk)
244 {
245         unsigned long rlim, retval;
246         unsigned long newbrk, oldbrk;
247         struct mm_struct *mm = current->mm;
248         unsigned long min_brk;
249
250         down_write(&mm->mmap_sem);
251
252 #ifdef CONFIG_COMPAT_BRK
253         /*
254          * CONFIG_COMPAT_BRK can still be overridden by setting
255          * randomize_va_space to 2, which will still cause mm->start_brk
256          * to be arbitrarily shifted
257          */
258         if (current->brk_randomized)
259                 min_brk = mm->start_brk;
260         else
261                 min_brk = mm->end_data;
262 #else
263         min_brk = mm->start_brk;
264 #endif
265         if (brk < min_brk)
266                 goto out;
267
268         /*
269          * Check against rlimit here. If this check is done later after the test
270          * of oldbrk with newbrk then it can escape the test and let the data
271          * segment grow beyond its set limit the in case where the limit is
272          * not page aligned -Ram Gupta
273          */
274         rlim = rlimit(RLIMIT_DATA);
275         if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
276                         (mm->end_data - mm->start_data) > rlim)
277                 goto out;
278
279         newbrk = PAGE_ALIGN(brk);
280         oldbrk = PAGE_ALIGN(mm->brk);
281         if (oldbrk == newbrk)
282                 goto set_brk;
283
284         /* Always allow shrinking brk. */
285         if (brk <= mm->brk) {
286                 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
287                         goto set_brk;
288                 goto out;
289         }
290
291         /* Check against existing mmap mappings. */
292         if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
293                 goto out;
294
295         /* Ok, looks good - let it rip. */
296         if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
297                 goto out;
298 set_brk:
299         mm->brk = brk;
300 out:
301         retval = mm->brk;
302         up_write(&mm->mmap_sem);
303         return retval;
304 }
305
306 #ifdef DEBUG_MM_RB
307 static int browse_rb(struct rb_root *root)
308 {
309         int i = 0, j;
310         struct rb_node *nd, *pn = NULL;
311         unsigned long prev = 0, pend = 0;
312
313         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
314                 struct vm_area_struct *vma;
315                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
316                 if (vma->vm_start < prev)
317                         printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
318                 if (vma->vm_start < pend)
319                         printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
320                 if (vma->vm_start > vma->vm_end)
321                         printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
322                 i++;
323                 pn = nd;
324                 prev = vma->vm_start;
325                 pend = vma->vm_end;
326         }
327         j = 0;
328         for (nd = pn; nd; nd = rb_prev(nd)) {
329                 j++;
330         }
331         if (i != j)
332                 printk("backwards %d, forwards %d\n", j, i), i = 0;
333         return i;
334 }
335
336 void validate_mm(struct mm_struct *mm)
337 {
338         int bug = 0;
339         int i = 0;
340         struct vm_area_struct *tmp = mm->mmap;
341         while (tmp) {
342                 tmp = tmp->vm_next;
343                 i++;
344         }
345         if (i != mm->map_count)
346                 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
347         i = browse_rb(&mm->mm_rb);
348         if (i != mm->map_count)
349                 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
350         BUG_ON(bug);
351 }
352 #else
353 #define validate_mm(mm) do { } while (0)
354 #endif
355
356 /*
357  * vma has some anon_vma assigned, and is already inserted on that
358  * anon_vma's interval trees.
359  *
360  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
361  * vma must be removed from the anon_vma's interval trees using
362  * anon_vma_interval_tree_pre_update_vma().
363  *
364  * After the update, the vma will be reinserted using
365  * anon_vma_interval_tree_post_update_vma().
366  *
367  * The entire update must be protected by exclusive mmap_sem and by
368  * the root anon_vma's mutex.
369  */
370 static inline void
371 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
372 {
373         struct anon_vma_chain *avc;
374
375         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
376                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
377 }
378
379 static inline void
380 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
381 {
382         struct anon_vma_chain *avc;
383
384         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
385                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
386 }
387
388 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
389                 unsigned long end, struct vm_area_struct **pprev,
390                 struct rb_node ***rb_link, struct rb_node **rb_parent)
391 {
392         struct rb_node **__rb_link, *__rb_parent, *rb_prev;
393
394         __rb_link = &mm->mm_rb.rb_node;
395         rb_prev = __rb_parent = NULL;
396
397         while (*__rb_link) {
398                 struct vm_area_struct *vma_tmp;
399
400                 __rb_parent = *__rb_link;
401                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
402
403                 if (vma_tmp->vm_end > addr) {
404                         /* Fail if an existing vma overlaps the area */
405                         if (vma_tmp->vm_start < end)
406                                 return -ENOMEM;
407                         __rb_link = &__rb_parent->rb_left;
408                 } else {
409                         rb_prev = __rb_parent;
410                         __rb_link = &__rb_parent->rb_right;
411                 }
412         }
413
414         *pprev = NULL;
415         if (rb_prev)
416                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
417         *rb_link = __rb_link;
418         *rb_parent = __rb_parent;
419         return 0;
420 }
421
422 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
423                 struct rb_node **rb_link, struct rb_node *rb_parent)
424 {
425         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
426         rb_insert_color(&vma->vm_rb, &mm->mm_rb);
427 }
428
429 static void __vma_link_file(struct vm_area_struct *vma)
430 {
431         struct file *file;
432
433         file = vma->vm_file;
434         if (file) {
435                 struct address_space *mapping = file->f_mapping;
436
437                 if (vma->vm_flags & VM_DENYWRITE)
438                         atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
439                 if (vma->vm_flags & VM_SHARED)
440                         mapping->i_mmap_writable++;
441
442                 flush_dcache_mmap_lock(mapping);
443                 if (unlikely(vma->vm_flags & VM_NONLINEAR))
444                         vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
445                 else
446                         vma_interval_tree_insert(vma, &mapping->i_mmap);
447                 flush_dcache_mmap_unlock(mapping);
448         }
449 }
450
451 static void
452 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
453         struct vm_area_struct *prev, struct rb_node **rb_link,
454         struct rb_node *rb_parent)
455 {
456         __vma_link_list(mm, vma, prev, rb_parent);
457         __vma_link_rb(mm, vma, rb_link, rb_parent);
458 }
459
460 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
461                         struct vm_area_struct *prev, struct rb_node **rb_link,
462                         struct rb_node *rb_parent)
463 {
464         struct address_space *mapping = NULL;
465
466         if (vma->vm_file)
467                 mapping = vma->vm_file->f_mapping;
468
469         if (mapping)
470                 mutex_lock(&mapping->i_mmap_mutex);
471
472         __vma_link(mm, vma, prev, rb_link, rb_parent);
473         __vma_link_file(vma);
474
475         if (mapping)
476                 mutex_unlock(&mapping->i_mmap_mutex);
477
478         mm->map_count++;
479         validate_mm(mm);
480 }
481
482 /*
483  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
484  * mm's list and rbtree.  It has already been inserted into the interval tree.
485  */
486 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
487 {
488         struct vm_area_struct *prev;
489         struct rb_node **rb_link, *rb_parent;
490
491         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
492                            &prev, &rb_link, &rb_parent))
493                 BUG();
494         __vma_link(mm, vma, prev, rb_link, rb_parent);
495         mm->map_count++;
496 }
497
498 static inline void
499 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
500                 struct vm_area_struct *prev)
501 {
502         struct vm_area_struct *next = vma->vm_next;
503
504         prev->vm_next = next;
505         if (next)
506                 next->vm_prev = prev;
507         rb_erase(&vma->vm_rb, &mm->mm_rb);
508         if (mm->mmap_cache == vma)
509                 mm->mmap_cache = prev;
510 }
511
512 /*
513  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
514  * is already present in an i_mmap tree without adjusting the tree.
515  * The following helper function should be used when such adjustments
516  * are necessary.  The "insert" vma (if any) is to be inserted
517  * before we drop the necessary locks.
518  */
519 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
520         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
521 {
522         struct mm_struct *mm = vma->vm_mm;
523         struct vm_area_struct *next = vma->vm_next;
524         struct vm_area_struct *importer = NULL;
525         struct address_space *mapping = NULL;
526         struct rb_root *root = NULL;
527         struct anon_vma *anon_vma = NULL;
528         struct file *file = vma->vm_file;
529         long adjust_next = 0;
530         int remove_next = 0;
531
532         if (next && !insert) {
533                 struct vm_area_struct *exporter = NULL;
534
535                 if (end >= next->vm_end) {
536                         /*
537                          * vma expands, overlapping all the next, and
538                          * perhaps the one after too (mprotect case 6).
539                          */
540 again:                  remove_next = 1 + (end > next->vm_end);
541                         end = next->vm_end;
542                         exporter = next;
543                         importer = vma;
544                 } else if (end > next->vm_start) {
545                         /*
546                          * vma expands, overlapping part of the next:
547                          * mprotect case 5 shifting the boundary up.
548                          */
549                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
550                         exporter = next;
551                         importer = vma;
552                 } else if (end < vma->vm_end) {
553                         /*
554                          * vma shrinks, and !insert tells it's not
555                          * split_vma inserting another: so it must be
556                          * mprotect case 4 shifting the boundary down.
557                          */
558                         adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
559                         exporter = vma;
560                         importer = next;
561                 }
562
563                 /*
564                  * Easily overlooked: when mprotect shifts the boundary,
565                  * make sure the expanding vma has anon_vma set if the
566                  * shrinking vma had, to cover any anon pages imported.
567                  */
568                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
569                         if (anon_vma_clone(importer, exporter))
570                                 return -ENOMEM;
571                         importer->anon_vma = exporter->anon_vma;
572                 }
573         }
574
575         if (file) {
576                 mapping = file->f_mapping;
577                 if (!(vma->vm_flags & VM_NONLINEAR)) {
578                         root = &mapping->i_mmap;
579                         uprobe_munmap(vma, vma->vm_start, vma->vm_end);
580
581                         if (adjust_next)
582                                 uprobe_munmap(next, next->vm_start,
583                                                         next->vm_end);
584                 }
585
586                 mutex_lock(&mapping->i_mmap_mutex);
587                 if (insert) {
588                         /*
589                          * Put into interval tree now, so instantiated pages
590                          * are visible to arm/parisc __flush_dcache_page
591                          * throughout; but we cannot insert into address
592                          * space until vma start or end is updated.
593                          */
594                         __vma_link_file(insert);
595                 }
596         }
597
598         vma_adjust_trans_huge(vma, start, end, adjust_next);
599
600         anon_vma = vma->anon_vma;
601         if (!anon_vma && adjust_next)
602                 anon_vma = next->anon_vma;
603         if (anon_vma) {
604                 VM_BUG_ON(adjust_next && next->anon_vma &&
605                           anon_vma != next->anon_vma);
606                 anon_vma_lock(anon_vma);
607                 anon_vma_interval_tree_pre_update_vma(vma);
608                 if (adjust_next)
609                         anon_vma_interval_tree_pre_update_vma(next);
610         }
611
612         if (root) {
613                 flush_dcache_mmap_lock(mapping);
614                 vma_interval_tree_remove(vma, root);
615                 if (adjust_next)
616                         vma_interval_tree_remove(next, root);
617         }
618
619         vma->vm_start = start;
620         vma->vm_end = end;
621         vma->vm_pgoff = pgoff;
622         if (adjust_next) {
623                 next->vm_start += adjust_next << PAGE_SHIFT;
624                 next->vm_pgoff += adjust_next;
625         }
626
627         if (root) {
628                 if (adjust_next)
629                         vma_interval_tree_insert(next, root);
630                 vma_interval_tree_insert(vma, root);
631                 flush_dcache_mmap_unlock(mapping);
632         }
633
634         if (remove_next) {
635                 /*
636                  * vma_merge has merged next into vma, and needs
637                  * us to remove next before dropping the locks.
638                  */
639                 __vma_unlink(mm, next, vma);
640                 if (file)
641                         __remove_shared_vm_struct(next, file, mapping);
642         } else if (insert) {
643                 /*
644                  * split_vma has split insert from vma, and needs
645                  * us to insert it before dropping the locks
646                  * (it may either follow vma or precede it).
647                  */
648                 __insert_vm_struct(mm, insert);
649         }
650
651         if (anon_vma) {
652                 anon_vma_interval_tree_post_update_vma(vma);
653                 if (adjust_next)
654                         anon_vma_interval_tree_post_update_vma(next);
655                 anon_vma_unlock(anon_vma);
656         }
657         if (mapping)
658                 mutex_unlock(&mapping->i_mmap_mutex);
659
660         if (root) {
661                 uprobe_mmap(vma);
662
663                 if (adjust_next)
664                         uprobe_mmap(next);
665         }
666
667         if (remove_next) {
668                 if (file) {
669                         uprobe_munmap(next, next->vm_start, next->vm_end);
670                         fput(file);
671                 }
672                 if (next->anon_vma)
673                         anon_vma_merge(vma, next);
674                 mm->map_count--;
675                 mpol_put(vma_policy(next));
676                 kmem_cache_free(vm_area_cachep, next);
677                 /*
678                  * In mprotect's case 6 (see comments on vma_merge),
679                  * we must remove another next too. It would clutter
680                  * up the code too much to do both in one go.
681                  */
682                 if (remove_next == 2) {
683                         next = vma->vm_next;
684                         goto again;
685                 }
686         }
687         if (insert && file)
688                 uprobe_mmap(insert);
689
690         validate_mm(mm);
691
692         return 0;
693 }
694
695 /*
696  * If the vma has a ->close operation then the driver probably needs to release
697  * per-vma resources, so we don't attempt to merge those.
698  */
699 static inline int is_mergeable_vma(struct vm_area_struct *vma,
700                         struct file *file, unsigned long vm_flags)
701 {
702         if (vma->vm_flags ^ vm_flags)
703                 return 0;
704         if (vma->vm_file != file)
705                 return 0;
706         if (vma->vm_ops && vma->vm_ops->close)
707                 return 0;
708         return 1;
709 }
710
711 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
712                                         struct anon_vma *anon_vma2,
713                                         struct vm_area_struct *vma)
714 {
715         /*
716          * The list_is_singular() test is to avoid merging VMA cloned from
717          * parents. This can improve scalability caused by anon_vma lock.
718          */
719         if ((!anon_vma1 || !anon_vma2) && (!vma ||
720                 list_is_singular(&vma->anon_vma_chain)))
721                 return 1;
722         return anon_vma1 == anon_vma2;
723 }
724
725 /*
726  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
727  * in front of (at a lower virtual address and file offset than) the vma.
728  *
729  * We cannot merge two vmas if they have differently assigned (non-NULL)
730  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
731  *
732  * We don't check here for the merged mmap wrapping around the end of pagecache
733  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
734  * wrap, nor mmaps which cover the final page at index -1UL.
735  */
736 static int
737 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
738         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
739 {
740         if (is_mergeable_vma(vma, file, vm_flags) &&
741             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
742                 if (vma->vm_pgoff == vm_pgoff)
743                         return 1;
744         }
745         return 0;
746 }
747
748 /*
749  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
750  * beyond (at a higher virtual address and file offset than) the vma.
751  *
752  * We cannot merge two vmas if they have differently assigned (non-NULL)
753  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
754  */
755 static int
756 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
757         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
758 {
759         if (is_mergeable_vma(vma, file, vm_flags) &&
760             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
761                 pgoff_t vm_pglen;
762                 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
763                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
764                         return 1;
765         }
766         return 0;
767 }
768
769 /*
770  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
771  * whether that can be merged with its predecessor or its successor.
772  * Or both (it neatly fills a hole).
773  *
774  * In most cases - when called for mmap, brk or mremap - [addr,end) is
775  * certain not to be mapped by the time vma_merge is called; but when
776  * called for mprotect, it is certain to be already mapped (either at
777  * an offset within prev, or at the start of next), and the flags of
778  * this area are about to be changed to vm_flags - and the no-change
779  * case has already been eliminated.
780  *
781  * The following mprotect cases have to be considered, where AAAA is
782  * the area passed down from mprotect_fixup, never extending beyond one
783  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
784  *
785  *     AAAA             AAAA                AAAA          AAAA
786  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
787  *    cannot merge    might become    might become    might become
788  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
789  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
790  *    mremap move:                                    PPPPNNNNNNNN 8
791  *        AAAA
792  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
793  *    might become    case 1 below    case 2 below    case 3 below
794  *
795  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
796  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
797  */
798 struct vm_area_struct *vma_merge(struct mm_struct *mm,
799                         struct vm_area_struct *prev, unsigned long addr,
800                         unsigned long end, unsigned long vm_flags,
801                         struct anon_vma *anon_vma, struct file *file,
802                         pgoff_t pgoff, struct mempolicy *policy)
803 {
804         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
805         struct vm_area_struct *area, *next;
806         int err;
807
808         /*
809          * We later require that vma->vm_flags == vm_flags,
810          * so this tests vma->vm_flags & VM_SPECIAL, too.
811          */
812         if (vm_flags & VM_SPECIAL)
813                 return NULL;
814
815         if (prev)
816                 next = prev->vm_next;
817         else
818                 next = mm->mmap;
819         area = next;
820         if (next && next->vm_end == end)                /* cases 6, 7, 8 */
821                 next = next->vm_next;
822
823         /*
824          * Can it merge with the predecessor?
825          */
826         if (prev && prev->vm_end == addr &&
827                         mpol_equal(vma_policy(prev), policy) &&
828                         can_vma_merge_after(prev, vm_flags,
829                                                 anon_vma, file, pgoff)) {
830                 /*
831                  * OK, it can.  Can we now merge in the successor as well?
832                  */
833                 if (next && end == next->vm_start &&
834                                 mpol_equal(policy, vma_policy(next)) &&
835                                 can_vma_merge_before(next, vm_flags,
836                                         anon_vma, file, pgoff+pglen) &&
837                                 is_mergeable_anon_vma(prev->anon_vma,
838                                                       next->anon_vma, NULL)) {
839                                                         /* cases 1, 6 */
840                         err = vma_adjust(prev, prev->vm_start,
841                                 next->vm_end, prev->vm_pgoff, NULL);
842                 } else                                  /* cases 2, 5, 7 */
843                         err = vma_adjust(prev, prev->vm_start,
844                                 end, prev->vm_pgoff, NULL);
845                 if (err)
846                         return NULL;
847                 khugepaged_enter_vma_merge(prev);
848                 return prev;
849         }
850
851         /*
852          * Can this new request be merged in front of next?
853          */
854         if (next && end == next->vm_start &&
855                         mpol_equal(policy, vma_policy(next)) &&
856                         can_vma_merge_before(next, vm_flags,
857                                         anon_vma, file, pgoff+pglen)) {
858                 if (prev && addr < prev->vm_end)        /* case 4 */
859                         err = vma_adjust(prev, prev->vm_start,
860                                 addr, prev->vm_pgoff, NULL);
861                 else                                    /* cases 3, 8 */
862                         err = vma_adjust(area, addr, next->vm_end,
863                                 next->vm_pgoff - pglen, NULL);
864                 if (err)
865                         return NULL;
866                 khugepaged_enter_vma_merge(area);
867                 return area;
868         }
869
870         return NULL;
871 }
872
873 /*
874  * Rough compatbility check to quickly see if it's even worth looking
875  * at sharing an anon_vma.
876  *
877  * They need to have the same vm_file, and the flags can only differ
878  * in things that mprotect may change.
879  *
880  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
881  * we can merge the two vma's. For example, we refuse to merge a vma if
882  * there is a vm_ops->close() function, because that indicates that the
883  * driver is doing some kind of reference counting. But that doesn't
884  * really matter for the anon_vma sharing case.
885  */
886 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
887 {
888         return a->vm_end == b->vm_start &&
889                 mpol_equal(vma_policy(a), vma_policy(b)) &&
890                 a->vm_file == b->vm_file &&
891                 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
892                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
893 }
894
895 /*
896  * Do some basic sanity checking to see if we can re-use the anon_vma
897  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
898  * the same as 'old', the other will be the new one that is trying
899  * to share the anon_vma.
900  *
901  * NOTE! This runs with mm_sem held for reading, so it is possible that
902  * the anon_vma of 'old' is concurrently in the process of being set up
903  * by another page fault trying to merge _that_. But that's ok: if it
904  * is being set up, that automatically means that it will be a singleton
905  * acceptable for merging, so we can do all of this optimistically. But
906  * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
907  *
908  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
909  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
910  * is to return an anon_vma that is "complex" due to having gone through
911  * a fork).
912  *
913  * We also make sure that the two vma's are compatible (adjacent,
914  * and with the same memory policies). That's all stable, even with just
915  * a read lock on the mm_sem.
916  */
917 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
918 {
919         if (anon_vma_compatible(a, b)) {
920                 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
921
922                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
923                         return anon_vma;
924         }
925         return NULL;
926 }
927
928 /*
929  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
930  * neighbouring vmas for a suitable anon_vma, before it goes off
931  * to allocate a new anon_vma.  It checks because a repetitive
932  * sequence of mprotects and faults may otherwise lead to distinct
933  * anon_vmas being allocated, preventing vma merge in subsequent
934  * mprotect.
935  */
936 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
937 {
938         struct anon_vma *anon_vma;
939         struct vm_area_struct *near;
940
941         near = vma->vm_next;
942         if (!near)
943                 goto try_prev;
944
945         anon_vma = reusable_anon_vma(near, vma, near);
946         if (anon_vma)
947                 return anon_vma;
948 try_prev:
949         near = vma->vm_prev;
950         if (!near)
951                 goto none;
952
953         anon_vma = reusable_anon_vma(near, near, vma);
954         if (anon_vma)
955                 return anon_vma;
956 none:
957         /*
958          * There's no absolute need to look only at touching neighbours:
959          * we could search further afield for "compatible" anon_vmas.
960          * But it would probably just be a waste of time searching,
961          * or lead to too many vmas hanging off the same anon_vma.
962          * We're trying to allow mprotect remerging later on,
963          * not trying to minimize memory used for anon_vmas.
964          */
965         return NULL;
966 }
967
968 #ifdef CONFIG_PROC_FS
969 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
970                                                 struct file *file, long pages)
971 {
972         const unsigned long stack_flags
973                 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
974
975         mm->total_vm += pages;
976
977         if (file) {
978                 mm->shared_vm += pages;
979                 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
980                         mm->exec_vm += pages;
981         } else if (flags & stack_flags)
982                 mm->stack_vm += pages;
983 }
984 #endif /* CONFIG_PROC_FS */
985
986 /*
987  * If a hint addr is less than mmap_min_addr change hint to be as
988  * low as possible but still greater than mmap_min_addr
989  */
990 static inline unsigned long round_hint_to_min(unsigned long hint)
991 {
992         hint &= PAGE_MASK;
993         if (((void *)hint != NULL) &&
994             (hint < mmap_min_addr))
995                 return PAGE_ALIGN(mmap_min_addr);
996         return hint;
997 }
998
999 /*
1000  * The caller must hold down_write(&current->mm->mmap_sem).
1001  */
1002
1003 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1004                         unsigned long len, unsigned long prot,
1005                         unsigned long flags, unsigned long pgoff)
1006 {
1007         struct mm_struct * mm = current->mm;
1008         struct inode *inode;
1009         vm_flags_t vm_flags;
1010
1011         /*
1012          * Does the application expect PROT_READ to imply PROT_EXEC?
1013          *
1014          * (the exception is when the underlying filesystem is noexec
1015          *  mounted, in which case we dont add PROT_EXEC.)
1016          */
1017         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1018                 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1019                         prot |= PROT_EXEC;
1020
1021         if (!len)
1022                 return -EINVAL;
1023
1024         if (!(flags & MAP_FIXED))
1025                 addr = round_hint_to_min(addr);
1026
1027         /* Careful about overflows.. */
1028         len = PAGE_ALIGN(len);
1029         if (!len)
1030                 return -ENOMEM;
1031
1032         /* offset overflow? */
1033         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1034                return -EOVERFLOW;
1035
1036         /* Too many mappings? */
1037         if (mm->map_count > sysctl_max_map_count)
1038                 return -ENOMEM;
1039
1040         /* Obtain the address to map to. we verify (or select) it and ensure
1041          * that it represents a valid section of the address space.
1042          */
1043         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1044         if (addr & ~PAGE_MASK)
1045                 return addr;
1046
1047         /* Do simple checking here so the lower-level routines won't have
1048          * to. we assume access permissions have been handled by the open
1049          * of the memory object, so we don't do any here.
1050          */
1051         vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1052                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1053
1054         if (flags & MAP_LOCKED)
1055                 if (!can_do_mlock())
1056                         return -EPERM;
1057
1058         /* mlock MCL_FUTURE? */
1059         if (vm_flags & VM_LOCKED) {
1060                 unsigned long locked, lock_limit;
1061                 locked = len >> PAGE_SHIFT;
1062                 locked += mm->locked_vm;
1063                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1064                 lock_limit >>= PAGE_SHIFT;
1065                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1066                         return -EAGAIN;
1067         }
1068
1069         inode = file ? file->f_path.dentry->d_inode : NULL;
1070
1071         if (file) {
1072                 switch (flags & MAP_TYPE) {
1073                 case MAP_SHARED:
1074                         if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1075                                 return -EACCES;
1076
1077                         /*
1078                          * Make sure we don't allow writing to an append-only
1079                          * file..
1080                          */
1081                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1082                                 return -EACCES;
1083
1084                         /*
1085                          * Make sure there are no mandatory locks on the file.
1086                          */
1087                         if (locks_verify_locked(inode))
1088                                 return -EAGAIN;
1089
1090                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1091                         if (!(file->f_mode & FMODE_WRITE))
1092                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1093
1094                         /* fall through */
1095                 case MAP_PRIVATE:
1096                         if (!(file->f_mode & FMODE_READ))
1097                                 return -EACCES;
1098                         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1099                                 if (vm_flags & VM_EXEC)
1100                                         return -EPERM;
1101                                 vm_flags &= ~VM_MAYEXEC;
1102                         }
1103
1104                         if (!file->f_op || !file->f_op->mmap)
1105                                 return -ENODEV;
1106                         break;
1107
1108                 default:
1109                         return -EINVAL;
1110                 }
1111         } else {
1112                 switch (flags & MAP_TYPE) {
1113                 case MAP_SHARED:
1114                         /*
1115                          * Ignore pgoff.
1116                          */
1117                         pgoff = 0;
1118                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1119                         break;
1120                 case MAP_PRIVATE:
1121                         /*
1122                          * Set pgoff according to addr for anon_vma.
1123                          */
1124                         pgoff = addr >> PAGE_SHIFT;
1125                         break;
1126                 default:
1127                         return -EINVAL;
1128                 }
1129         }
1130
1131         return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1132 }
1133
1134 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1135                 unsigned long, prot, unsigned long, flags,
1136                 unsigned long, fd, unsigned long, pgoff)
1137 {
1138         struct file *file = NULL;
1139         unsigned long retval = -EBADF;
1140
1141         if (!(flags & MAP_ANONYMOUS)) {
1142                 audit_mmap_fd(fd, flags);
1143                 if (unlikely(flags & MAP_HUGETLB))
1144                         return -EINVAL;
1145                 file = fget(fd);
1146                 if (!file)
1147                         goto out;
1148         } else if (flags & MAP_HUGETLB) {
1149                 struct user_struct *user = NULL;
1150                 /*
1151                  * VM_NORESERVE is used because the reservations will be
1152                  * taken when vm_ops->mmap() is called
1153                  * A dummy user value is used because we are not locking
1154                  * memory so no accounting is necessary
1155                  */
1156                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, addr, len,
1157                                                 VM_NORESERVE, &user,
1158                                                 HUGETLB_ANONHUGE_INODE);
1159                 if (IS_ERR(file))
1160                         return PTR_ERR(file);
1161         }
1162
1163         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1164
1165         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1166         if (file)
1167                 fput(file);
1168 out:
1169         return retval;
1170 }
1171
1172 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1173 struct mmap_arg_struct {
1174         unsigned long addr;
1175         unsigned long len;
1176         unsigned long prot;
1177         unsigned long flags;
1178         unsigned long fd;
1179         unsigned long offset;
1180 };
1181
1182 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1183 {
1184         struct mmap_arg_struct a;
1185
1186         if (copy_from_user(&a, arg, sizeof(a)))
1187                 return -EFAULT;
1188         if (a.offset & ~PAGE_MASK)
1189                 return -EINVAL;
1190
1191         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1192                               a.offset >> PAGE_SHIFT);
1193 }
1194 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1195
1196 /*
1197  * Some shared mappigns will want the pages marked read-only
1198  * to track write events. If so, we'll downgrade vm_page_prot
1199  * to the private version (using protection_map[] without the
1200  * VM_SHARED bit).
1201  */
1202 int vma_wants_writenotify(struct vm_area_struct *vma)
1203 {
1204         vm_flags_t vm_flags = vma->vm_flags;
1205
1206         /* If it was private or non-writable, the write bit is already clear */
1207         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1208                 return 0;
1209
1210         /* The backer wishes to know when pages are first written to? */
1211         if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1212                 return 1;
1213
1214         /* The open routine did something to the protections already? */
1215         if (pgprot_val(vma->vm_page_prot) !=
1216             pgprot_val(vm_get_page_prot(vm_flags)))
1217                 return 0;
1218
1219         /* Specialty mapping? */
1220         if (vm_flags & VM_PFNMAP)
1221                 return 0;
1222
1223         /* Can the mapping track the dirty pages? */
1224         return vma->vm_file && vma->vm_file->f_mapping &&
1225                 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1226 }
1227
1228 /*
1229  * We account for memory if it's a private writeable mapping,
1230  * not hugepages and VM_NORESERVE wasn't set.
1231  */
1232 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1233 {
1234         /*
1235          * hugetlb has its own accounting separate from the core VM
1236          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1237          */
1238         if (file && is_file_hugepages(file))
1239                 return 0;
1240
1241         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1242 }
1243
1244 unsigned long mmap_region(struct file *file, unsigned long addr,
1245                           unsigned long len, unsigned long flags,
1246                           vm_flags_t vm_flags, unsigned long pgoff)
1247 {
1248         struct mm_struct *mm = current->mm;
1249         struct vm_area_struct *vma, *prev;
1250         int correct_wcount = 0;
1251         int error;
1252         struct rb_node **rb_link, *rb_parent;
1253         unsigned long charged = 0;
1254         struct inode *inode =  file ? file->f_path.dentry->d_inode : NULL;
1255
1256         /* Clear old maps */
1257         error = -ENOMEM;
1258 munmap_back:
1259         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1260                 if (do_munmap(mm, addr, len))
1261                         return -ENOMEM;
1262                 goto munmap_back;
1263         }
1264
1265         /* Check against address space limit. */
1266         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1267                 return -ENOMEM;
1268
1269         /*
1270          * Set 'VM_NORESERVE' if we should not account for the
1271          * memory use of this mapping.
1272          */
1273         if ((flags & MAP_NORESERVE)) {
1274                 /* We honor MAP_NORESERVE if allowed to overcommit */
1275                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1276                         vm_flags |= VM_NORESERVE;
1277
1278                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1279                 if (file && is_file_hugepages(file))
1280                         vm_flags |= VM_NORESERVE;
1281         }
1282
1283         /*
1284          * Private writable mapping: check memory availability
1285          */
1286         if (accountable_mapping(file, vm_flags)) {
1287                 charged = len >> PAGE_SHIFT;
1288                 if (security_vm_enough_memory_mm(mm, charged))
1289                         return -ENOMEM;
1290                 vm_flags |= VM_ACCOUNT;
1291         }
1292
1293         /*
1294          * Can we just expand an old mapping?
1295          */
1296         vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1297         if (vma)
1298                 goto out;
1299
1300         /*
1301          * Determine the object being mapped and call the appropriate
1302          * specific mapper. the address has already been validated, but
1303          * not unmapped, but the maps are removed from the list.
1304          */
1305         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1306         if (!vma) {
1307                 error = -ENOMEM;
1308                 goto unacct_error;
1309         }
1310
1311         vma->vm_mm = mm;
1312         vma->vm_start = addr;
1313         vma->vm_end = addr + len;
1314         vma->vm_flags = vm_flags;
1315         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1316         vma->vm_pgoff = pgoff;
1317         INIT_LIST_HEAD(&vma->anon_vma_chain);
1318
1319         error = -EINVAL;        /* when rejecting VM_GROWSDOWN|VM_GROWSUP */
1320
1321         if (file) {
1322                 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1323                         goto free_vma;
1324                 if (vm_flags & VM_DENYWRITE) {
1325                         error = deny_write_access(file);
1326                         if (error)
1327                                 goto free_vma;
1328                         correct_wcount = 1;
1329                 }
1330                 vma->vm_file = get_file(file);
1331                 error = file->f_op->mmap(file, vma);
1332                 if (error)
1333                         goto unmap_and_free_vma;
1334
1335                 /* Can addr have changed??
1336                  *
1337                  * Answer: Yes, several device drivers can do it in their
1338                  *         f_op->mmap method. -DaveM
1339                  */
1340                 addr = vma->vm_start;
1341                 pgoff = vma->vm_pgoff;
1342                 vm_flags = vma->vm_flags;
1343         } else if (vm_flags & VM_SHARED) {
1344                 if (unlikely(vm_flags & (VM_GROWSDOWN|VM_GROWSUP)))
1345                         goto free_vma;
1346                 error = shmem_zero_setup(vma);
1347                 if (error)
1348                         goto free_vma;
1349         }
1350
1351         if (vma_wants_writenotify(vma)) {
1352                 pgprot_t pprot = vma->vm_page_prot;
1353
1354                 /* Can vma->vm_page_prot have changed??
1355                  *
1356                  * Answer: Yes, drivers may have changed it in their
1357                  *         f_op->mmap method.
1358                  *
1359                  * Ensures that vmas marked as uncached stay that way.
1360                  */
1361                 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1362                 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1363                         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1364         }
1365
1366         vma_link(mm, vma, prev, rb_link, rb_parent);
1367         file = vma->vm_file;
1368
1369         /* Once vma denies write, undo our temporary denial count */
1370         if (correct_wcount)
1371                 atomic_inc(&inode->i_writecount);
1372 out:
1373         perf_event_mmap(vma);
1374
1375         vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1376         if (vm_flags & VM_LOCKED) {
1377                 if (!mlock_vma_pages_range(vma, addr, addr + len))
1378                         mm->locked_vm += (len >> PAGE_SHIFT);
1379         } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1380                 make_pages_present(addr, addr + len);
1381
1382         if (file)
1383                 uprobe_mmap(vma);
1384
1385         return addr;
1386
1387 unmap_and_free_vma:
1388         if (correct_wcount)
1389                 atomic_inc(&inode->i_writecount);
1390         vma->vm_file = NULL;
1391         fput(file);
1392
1393         /* Undo any partial mapping done by a device driver. */
1394         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1395         charged = 0;
1396 free_vma:
1397         kmem_cache_free(vm_area_cachep, vma);
1398 unacct_error:
1399         if (charged)
1400                 vm_unacct_memory(charged);
1401         return error;
1402 }
1403
1404 /* Get an address range which is currently unmapped.
1405  * For shmat() with addr=0.
1406  *
1407  * Ugly calling convention alert:
1408  * Return value with the low bits set means error value,
1409  * ie
1410  *      if (ret & ~PAGE_MASK)
1411  *              error = ret;
1412  *
1413  * This function "knows" that -ENOMEM has the bits set.
1414  */
1415 #ifndef HAVE_ARCH_UNMAPPED_AREA
1416 unsigned long
1417 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1418                 unsigned long len, unsigned long pgoff, unsigned long flags)
1419 {
1420         struct mm_struct *mm = current->mm;
1421         struct vm_area_struct *vma;
1422         unsigned long start_addr;
1423
1424         if (len > TASK_SIZE)
1425                 return -ENOMEM;
1426
1427         if (flags & MAP_FIXED)
1428                 return addr;
1429
1430         if (addr) {
1431                 addr = PAGE_ALIGN(addr);
1432                 vma = find_vma(mm, addr);
1433                 if (TASK_SIZE - len >= addr &&
1434                     (!vma || addr + len <= vma->vm_start))
1435                         return addr;
1436         }
1437         if (len > mm->cached_hole_size) {
1438                 start_addr = addr = mm->free_area_cache;
1439         } else {
1440                 start_addr = addr = TASK_UNMAPPED_BASE;
1441                 mm->cached_hole_size = 0;
1442         }
1443
1444 full_search:
1445         for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1446                 /* At this point:  (!vma || addr < vma->vm_end). */
1447                 if (TASK_SIZE - len < addr) {
1448                         /*
1449                          * Start a new search - just in case we missed
1450                          * some holes.
1451                          */
1452                         if (start_addr != TASK_UNMAPPED_BASE) {
1453                                 addr = TASK_UNMAPPED_BASE;
1454                                 start_addr = addr;
1455                                 mm->cached_hole_size = 0;
1456                                 goto full_search;
1457                         }
1458                         return -ENOMEM;
1459                 }
1460                 if (!vma || addr + len <= vma->vm_start) {
1461                         /*
1462                          * Remember the place where we stopped the search:
1463                          */
1464                         mm->free_area_cache = addr + len;
1465                         return addr;
1466                 }
1467                 if (addr + mm->cached_hole_size < vma->vm_start)
1468                         mm->cached_hole_size = vma->vm_start - addr;
1469                 addr = vma->vm_end;
1470         }
1471 }
1472 #endif  
1473
1474 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1475 {
1476         /*
1477          * Is this a new hole at the lowest possible address?
1478          */
1479         if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache)
1480                 mm->free_area_cache = addr;
1481 }
1482
1483 /*
1484  * This mmap-allocator allocates new areas top-down from below the
1485  * stack's low limit (the base):
1486  */
1487 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1488 unsigned long
1489 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1490                           const unsigned long len, const unsigned long pgoff,
1491                           const unsigned long flags)
1492 {
1493         struct vm_area_struct *vma;
1494         struct mm_struct *mm = current->mm;
1495         unsigned long addr = addr0, start_addr;
1496
1497         /* requested length too big for entire address space */
1498         if (len > TASK_SIZE)
1499                 return -ENOMEM;
1500
1501         if (flags & MAP_FIXED)
1502                 return addr;
1503
1504         /* requesting a specific address */
1505         if (addr) {
1506                 addr = PAGE_ALIGN(addr);
1507                 vma = find_vma(mm, addr);
1508                 if (TASK_SIZE - len >= addr &&
1509                                 (!vma || addr + len <= vma->vm_start))
1510                         return addr;
1511         }
1512
1513         /* check if free_area_cache is useful for us */
1514         if (len <= mm->cached_hole_size) {
1515                 mm->cached_hole_size = 0;
1516                 mm->free_area_cache = mm->mmap_base;
1517         }
1518
1519 try_again:
1520         /* either no address requested or can't fit in requested address hole */
1521         start_addr = addr = mm->free_area_cache;
1522
1523         if (addr < len)
1524                 goto fail;
1525
1526         addr -= len;
1527         do {
1528                 /*
1529                  * Lookup failure means no vma is above this address,
1530                  * else if new region fits below vma->vm_start,
1531                  * return with success:
1532                  */
1533                 vma = find_vma(mm, addr);
1534                 if (!vma || addr+len <= vma->vm_start)
1535                         /* remember the address as a hint for next time */
1536                         return (mm->free_area_cache = addr);
1537
1538                 /* remember the largest hole we saw so far */
1539                 if (addr + mm->cached_hole_size < vma->vm_start)
1540                         mm->cached_hole_size = vma->vm_start - addr;
1541
1542                 /* try just below the current vma->vm_start */
1543                 addr = vma->vm_start-len;
1544         } while (len < vma->vm_start);
1545
1546 fail:
1547         /*
1548          * if hint left us with no space for the requested
1549          * mapping then try again:
1550          *
1551          * Note: this is different with the case of bottomup
1552          * which does the fully line-search, but we use find_vma
1553          * here that causes some holes skipped.
1554          */
1555         if (start_addr != mm->mmap_base) {
1556                 mm->free_area_cache = mm->mmap_base;
1557                 mm->cached_hole_size = 0;
1558                 goto try_again;
1559         }
1560
1561         /*
1562          * A failed mmap() very likely causes application failure,
1563          * so fall back to the bottom-up function here. This scenario
1564          * can happen with large stack limits and large mmap()
1565          * allocations.
1566          */
1567         mm->cached_hole_size = ~0UL;
1568         mm->free_area_cache = TASK_UNMAPPED_BASE;
1569         addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1570         /*
1571          * Restore the topdown base:
1572          */
1573         mm->free_area_cache = mm->mmap_base;
1574         mm->cached_hole_size = ~0UL;
1575
1576         return addr;
1577 }
1578 #endif
1579
1580 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1581 {
1582         /*
1583          * Is this a new hole at the highest possible address?
1584          */
1585         if (addr > mm->free_area_cache)
1586                 mm->free_area_cache = addr;
1587
1588         /* dont allow allocations above current base */
1589         if (mm->free_area_cache > mm->mmap_base)
1590                 mm->free_area_cache = mm->mmap_base;
1591 }
1592
1593 unsigned long
1594 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1595                 unsigned long pgoff, unsigned long flags)
1596 {
1597         unsigned long (*get_area)(struct file *, unsigned long,
1598                                   unsigned long, unsigned long, unsigned long);
1599
1600         unsigned long error = arch_mmap_check(addr, len, flags);
1601         if (error)
1602                 return error;
1603
1604         /* Careful about overflows.. */
1605         if (len > TASK_SIZE)
1606                 return -ENOMEM;
1607
1608         get_area = current->mm->get_unmapped_area;
1609         if (file && file->f_op && file->f_op->get_unmapped_area)
1610                 get_area = file->f_op->get_unmapped_area;
1611         addr = get_area(file, addr, len, pgoff, flags);
1612         if (IS_ERR_VALUE(addr))
1613                 return addr;
1614
1615         if (addr > TASK_SIZE - len)
1616                 return -ENOMEM;
1617         if (addr & ~PAGE_MASK)
1618                 return -EINVAL;
1619
1620         addr = arch_rebalance_pgtables(addr, len);
1621         error = security_mmap_addr(addr);
1622         return error ? error : addr;
1623 }
1624
1625 EXPORT_SYMBOL(get_unmapped_area);
1626
1627 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1628 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1629 {
1630         struct vm_area_struct *vma = NULL;
1631
1632         if (WARN_ON_ONCE(!mm))          /* Remove this in linux-3.6 */
1633                 return NULL;
1634
1635         /* Check the cache first. */
1636         /* (Cache hit rate is typically around 35%.) */
1637         vma = mm->mmap_cache;
1638         if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1639                 struct rb_node *rb_node;
1640
1641                 rb_node = mm->mm_rb.rb_node;
1642                 vma = NULL;
1643
1644                 while (rb_node) {
1645                         struct vm_area_struct *vma_tmp;
1646
1647                         vma_tmp = rb_entry(rb_node,
1648                                            struct vm_area_struct, vm_rb);
1649
1650                         if (vma_tmp->vm_end > addr) {
1651                                 vma = vma_tmp;
1652                                 if (vma_tmp->vm_start <= addr)
1653                                         break;
1654                                 rb_node = rb_node->rb_left;
1655                         } else
1656                                 rb_node = rb_node->rb_right;
1657                 }
1658                 if (vma)
1659                         mm->mmap_cache = vma;
1660         }
1661         return vma;
1662 }
1663
1664 EXPORT_SYMBOL(find_vma);
1665
1666 /*
1667  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
1668  */
1669 struct vm_area_struct *
1670 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1671                         struct vm_area_struct **pprev)
1672 {
1673         struct vm_area_struct *vma;
1674
1675         vma = find_vma(mm, addr);
1676         if (vma) {
1677                 *pprev = vma->vm_prev;
1678         } else {
1679                 struct rb_node *rb_node = mm->mm_rb.rb_node;
1680                 *pprev = NULL;
1681                 while (rb_node) {
1682                         *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1683                         rb_node = rb_node->rb_right;
1684                 }
1685         }
1686         return vma;
1687 }
1688
1689 /*
1690  * Verify that the stack growth is acceptable and
1691  * update accounting. This is shared with both the
1692  * grow-up and grow-down cases.
1693  */
1694 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1695 {
1696         struct mm_struct *mm = vma->vm_mm;
1697         struct rlimit *rlim = current->signal->rlim;
1698         unsigned long new_start;
1699
1700         /* address space limit tests */
1701         if (!may_expand_vm(mm, grow))
1702                 return -ENOMEM;
1703
1704         /* Stack limit test */
1705         if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1706                 return -ENOMEM;
1707
1708         /* mlock limit tests */
1709         if (vma->vm_flags & VM_LOCKED) {
1710                 unsigned long locked;
1711                 unsigned long limit;
1712                 locked = mm->locked_vm + grow;
1713                 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
1714                 limit >>= PAGE_SHIFT;
1715                 if (locked > limit && !capable(CAP_IPC_LOCK))
1716                         return -ENOMEM;
1717         }
1718
1719         /* Check to ensure the stack will not grow into a hugetlb-only region */
1720         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1721                         vma->vm_end - size;
1722         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1723                 return -EFAULT;
1724
1725         /*
1726          * Overcommit..  This must be the final test, as it will
1727          * update security statistics.
1728          */
1729         if (security_vm_enough_memory_mm(mm, grow))
1730                 return -ENOMEM;
1731
1732         /* Ok, everything looks good - let it rip */
1733         if (vma->vm_flags & VM_LOCKED)
1734                 mm->locked_vm += grow;
1735         vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1736         return 0;
1737 }
1738
1739 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1740 /*
1741  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1742  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1743  */
1744 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1745 {
1746         int error;
1747
1748         if (!(vma->vm_flags & VM_GROWSUP))
1749                 return -EFAULT;
1750
1751         /*
1752          * We must make sure the anon_vma is allocated
1753          * so that the anon_vma locking is not a noop.
1754          */
1755         if (unlikely(anon_vma_prepare(vma)))
1756                 return -ENOMEM;
1757         vma_lock_anon_vma(vma);
1758
1759         /*
1760          * vma->vm_start/vm_end cannot change under us because the caller
1761          * is required to hold the mmap_sem in read mode.  We need the
1762          * anon_vma lock to serialize against concurrent expand_stacks.
1763          * Also guard against wrapping around to address 0.
1764          */
1765         if (address < PAGE_ALIGN(address+4))
1766                 address = PAGE_ALIGN(address+4);
1767         else {
1768                 vma_unlock_anon_vma(vma);
1769                 return -ENOMEM;
1770         }
1771         error = 0;
1772
1773         /* Somebody else might have raced and expanded it already */
1774         if (address > vma->vm_end) {
1775                 unsigned long size, grow;
1776
1777                 size = address - vma->vm_start;
1778                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1779
1780                 error = -ENOMEM;
1781                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1782                         error = acct_stack_growth(vma, size, grow);
1783                         if (!error) {
1784                                 anon_vma_interval_tree_pre_update_vma(vma);
1785                                 vma->vm_end = address;
1786                                 anon_vma_interval_tree_post_update_vma(vma);
1787                                 perf_event_mmap(vma);
1788                         }
1789                 }
1790         }
1791         vma_unlock_anon_vma(vma);
1792         khugepaged_enter_vma_merge(vma);
1793         return error;
1794 }
1795 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1796
1797 /*
1798  * vma is the first one with address < vma->vm_start.  Have to extend vma.
1799  */
1800 int expand_downwards(struct vm_area_struct *vma,
1801                                    unsigned long address)
1802 {
1803         int error;
1804
1805         /*
1806          * We must make sure the anon_vma is allocated
1807          * so that the anon_vma locking is not a noop.
1808          */
1809         if (unlikely(anon_vma_prepare(vma)))
1810                 return -ENOMEM;
1811
1812         address &= PAGE_MASK;
1813         error = security_mmap_addr(address);
1814         if (error)
1815                 return error;
1816
1817         vma_lock_anon_vma(vma);
1818
1819         /*
1820          * vma->vm_start/vm_end cannot change under us because the caller
1821          * is required to hold the mmap_sem in read mode.  We need the
1822          * anon_vma lock to serialize against concurrent expand_stacks.
1823          */
1824
1825         /* Somebody else might have raced and expanded it already */
1826         if (address < vma->vm_start) {
1827                 unsigned long size, grow;
1828
1829                 size = vma->vm_end - address;
1830                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
1831
1832                 error = -ENOMEM;
1833                 if (grow <= vma->vm_pgoff) {
1834                         error = acct_stack_growth(vma, size, grow);
1835                         if (!error) {
1836                                 anon_vma_interval_tree_pre_update_vma(vma);
1837                                 vma->vm_start = address;
1838                                 vma->vm_pgoff -= grow;
1839                                 anon_vma_interval_tree_post_update_vma(vma);
1840                                 perf_event_mmap(vma);
1841                         }
1842                 }
1843         }
1844         vma_unlock_anon_vma(vma);
1845         khugepaged_enter_vma_merge(vma);
1846         return error;
1847 }
1848
1849 #ifdef CONFIG_STACK_GROWSUP
1850 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1851 {
1852         return expand_upwards(vma, address);
1853 }
1854
1855 struct vm_area_struct *
1856 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1857 {
1858         struct vm_area_struct *vma, *prev;
1859
1860         addr &= PAGE_MASK;
1861         vma = find_vma_prev(mm, addr, &prev);
1862         if (vma && (vma->vm_start <= addr))
1863                 return vma;
1864         if (!prev || expand_stack(prev, addr))
1865                 return NULL;
1866         if (prev->vm_flags & VM_LOCKED) {
1867                 mlock_vma_pages_range(prev, addr, prev->vm_end);
1868         }
1869         return prev;
1870 }
1871 #else
1872 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1873 {
1874         return expand_downwards(vma, address);
1875 }
1876
1877 struct vm_area_struct *
1878 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1879 {
1880         struct vm_area_struct * vma;
1881         unsigned long start;
1882
1883         addr &= PAGE_MASK;
1884         vma = find_vma(mm,addr);
1885         if (!vma)
1886                 return NULL;
1887         if (vma->vm_start <= addr)
1888                 return vma;
1889         if (!(vma->vm_flags & VM_GROWSDOWN))
1890                 return NULL;
1891         start = vma->vm_start;
1892         if (expand_stack(vma, addr))
1893                 return NULL;
1894         if (vma->vm_flags & VM_LOCKED) {
1895                 mlock_vma_pages_range(vma, addr, start);
1896         }
1897         return vma;
1898 }
1899 #endif
1900
1901 /*
1902  * Ok - we have the memory areas we should free on the vma list,
1903  * so release them, and do the vma updates.
1904  *
1905  * Called with the mm semaphore held.
1906  */
1907 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1908 {
1909         unsigned long nr_accounted = 0;
1910
1911         /* Update high watermark before we lower total_vm */
1912         update_hiwater_vm(mm);
1913         do {
1914                 long nrpages = vma_pages(vma);
1915
1916                 if (vma->vm_flags & VM_ACCOUNT)
1917                         nr_accounted += nrpages;
1918                 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1919                 vma = remove_vma(vma);
1920         } while (vma);
1921         vm_unacct_memory(nr_accounted);
1922         validate_mm(mm);
1923 }
1924
1925 /*
1926  * Get rid of page table information in the indicated region.
1927  *
1928  * Called with the mm semaphore held.
1929  */
1930 static void unmap_region(struct mm_struct *mm,
1931                 struct vm_area_struct *vma, struct vm_area_struct *prev,
1932                 unsigned long start, unsigned long end)
1933 {
1934         struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1935         struct mmu_gather tlb;
1936
1937         lru_add_drain();
1938         tlb_gather_mmu(&tlb, mm, 0);
1939         update_hiwater_rss(mm);
1940         unmap_vmas(&tlb, vma, start, end);
1941         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
1942                                  next ? next->vm_start : 0);
1943         tlb_finish_mmu(&tlb, start, end);
1944 }
1945
1946 /*
1947  * Create a list of vma's touched by the unmap, removing them from the mm's
1948  * vma list as we go..
1949  */
1950 static void
1951 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1952         struct vm_area_struct *prev, unsigned long end)
1953 {
1954         struct vm_area_struct **insertion_point;
1955         struct vm_area_struct *tail_vma = NULL;
1956         unsigned long addr;
1957
1958         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1959         vma->vm_prev = NULL;
1960         do {
1961                 rb_erase(&vma->vm_rb, &mm->mm_rb);
1962                 mm->map_count--;
1963                 tail_vma = vma;
1964                 vma = vma->vm_next;
1965         } while (vma && vma->vm_start < end);
1966         *insertion_point = vma;
1967         if (vma)
1968                 vma->vm_prev = prev;
1969         tail_vma->vm_next = NULL;
1970         if (mm->unmap_area == arch_unmap_area)
1971                 addr = prev ? prev->vm_end : mm->mmap_base;
1972         else
1973                 addr = vma ?  vma->vm_start : mm->mmap_base;
1974         mm->unmap_area(mm, addr);
1975         mm->mmap_cache = NULL;          /* Kill the cache. */
1976 }
1977
1978 /*
1979  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
1980  * munmap path where it doesn't make sense to fail.
1981  */
1982 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1983               unsigned long addr, int new_below)
1984 {
1985         struct mempolicy *pol;
1986         struct vm_area_struct *new;
1987         int err = -ENOMEM;
1988
1989         if (is_vm_hugetlb_page(vma) && (addr &
1990                                         ~(huge_page_mask(hstate_vma(vma)))))
1991                 return -EINVAL;
1992
1993         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1994         if (!new)
1995                 goto out_err;
1996
1997         /* most fields are the same, copy all, and then fixup */
1998         *new = *vma;
1999
2000         INIT_LIST_HEAD(&new->anon_vma_chain);
2001
2002         if (new_below)
2003                 new->vm_end = addr;
2004         else {
2005                 new->vm_start = addr;
2006                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2007         }
2008
2009         pol = mpol_dup(vma_policy(vma));
2010         if (IS_ERR(pol)) {
2011                 err = PTR_ERR(pol);
2012                 goto out_free_vma;
2013         }
2014         vma_set_policy(new, pol);
2015
2016         if (anon_vma_clone(new, vma))
2017                 goto out_free_mpol;
2018
2019         if (new->vm_file)
2020                 get_file(new->vm_file);
2021
2022         if (new->vm_ops && new->vm_ops->open)
2023                 new->vm_ops->open(new);
2024
2025         if (new_below)
2026                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2027                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
2028         else
2029                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2030
2031         /* Success. */
2032         if (!err)
2033                 return 0;
2034
2035         /* Clean everything up if vma_adjust failed. */
2036         if (new->vm_ops && new->vm_ops->close)
2037                 new->vm_ops->close(new);
2038         if (new->vm_file)
2039                 fput(new->vm_file);
2040         unlink_anon_vmas(new);
2041  out_free_mpol:
2042         mpol_put(pol);
2043  out_free_vma:
2044         kmem_cache_free(vm_area_cachep, new);
2045  out_err:
2046         return err;
2047 }
2048
2049 /*
2050  * Split a vma into two pieces at address 'addr', a new vma is allocated
2051  * either for the first part or the tail.
2052  */
2053 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2054               unsigned long addr, int new_below)
2055 {
2056         if (mm->map_count >= sysctl_max_map_count)
2057                 return -ENOMEM;
2058
2059         return __split_vma(mm, vma, addr, new_below);
2060 }
2061
2062 /* Munmap is split into 2 main parts -- this part which finds
2063  * what needs doing, and the areas themselves, which do the
2064  * work.  This now handles partial unmappings.
2065  * Jeremy Fitzhardinge <jeremy@goop.org>
2066  */
2067 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2068 {
2069         unsigned long end;
2070         struct vm_area_struct *vma, *prev, *last;
2071
2072         if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2073                 return -EINVAL;
2074
2075         if ((len = PAGE_ALIGN(len)) == 0)
2076                 return -EINVAL;
2077
2078         /* Find the first overlapping VMA */
2079         vma = find_vma(mm, start);
2080         if (!vma)
2081                 return 0;
2082         prev = vma->vm_prev;
2083         /* we have  start < vma->vm_end  */
2084
2085         /* if it doesn't overlap, we have nothing.. */
2086         end = start + len;
2087         if (vma->vm_start >= end)
2088                 return 0;
2089
2090         /*
2091          * If we need to split any vma, do it now to save pain later.
2092          *
2093          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2094          * unmapped vm_area_struct will remain in use: so lower split_vma
2095          * places tmp vma above, and higher split_vma places tmp vma below.
2096          */
2097         if (start > vma->vm_start) {
2098                 int error;
2099
2100                 /*
2101                  * Make sure that map_count on return from munmap() will
2102                  * not exceed its limit; but let map_count go just above
2103                  * its limit temporarily, to help free resources as expected.
2104                  */
2105                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2106                         return -ENOMEM;
2107
2108                 error = __split_vma(mm, vma, start, 0);
2109                 if (error)
2110                         return error;
2111                 prev = vma;
2112         }
2113
2114         /* Does it split the last one? */
2115         last = find_vma(mm, end);
2116         if (last && end > last->vm_start) {
2117                 int error = __split_vma(mm, last, end, 1);
2118                 if (error)
2119                         return error;
2120         }
2121         vma = prev? prev->vm_next: mm->mmap;
2122
2123         /*
2124          * unlock any mlock()ed ranges before detaching vmas
2125          */
2126         if (mm->locked_vm) {
2127                 struct vm_area_struct *tmp = vma;
2128                 while (tmp && tmp->vm_start < end) {
2129                         if (tmp->vm_flags & VM_LOCKED) {
2130                                 mm->locked_vm -= vma_pages(tmp);
2131                                 munlock_vma_pages_all(tmp);
2132                         }
2133                         tmp = tmp->vm_next;
2134                 }
2135         }
2136
2137         /*
2138          * Remove the vma's, and unmap the actual pages
2139          */
2140         detach_vmas_to_be_unmapped(mm, vma, prev, end);
2141         unmap_region(mm, vma, prev, start, end);
2142
2143         /* Fix up all other VM information */
2144         remove_vma_list(mm, vma);
2145
2146         return 0;
2147 }
2148
2149 int vm_munmap(unsigned long start, size_t len)
2150 {
2151         int ret;
2152         struct mm_struct *mm = current->mm;
2153
2154         down_write(&mm->mmap_sem);
2155         ret = do_munmap(mm, start, len);
2156         up_write(&mm->mmap_sem);
2157         return ret;
2158 }
2159 EXPORT_SYMBOL(vm_munmap);
2160
2161 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2162 {
2163         profile_munmap(addr);
2164         return vm_munmap(addr, len);
2165 }
2166
2167 static inline void verify_mm_writelocked(struct mm_struct *mm)
2168 {
2169 #ifdef CONFIG_DEBUG_VM
2170         if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2171                 WARN_ON(1);
2172                 up_read(&mm->mmap_sem);
2173         }
2174 #endif
2175 }
2176
2177 /*
2178  *  this is really a simplified "do_mmap".  it only handles
2179  *  anonymous maps.  eventually we may be able to do some
2180  *  brk-specific accounting here.
2181  */
2182 static unsigned long do_brk(unsigned long addr, unsigned long len)
2183 {
2184         struct mm_struct * mm = current->mm;
2185         struct vm_area_struct * vma, * prev;
2186         unsigned long flags;
2187         struct rb_node ** rb_link, * rb_parent;
2188         pgoff_t pgoff = addr >> PAGE_SHIFT;
2189         int error;
2190
2191         len = PAGE_ALIGN(len);
2192         if (!len)
2193                 return addr;
2194
2195         flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2196
2197         error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2198         if (error & ~PAGE_MASK)
2199                 return error;
2200
2201         /*
2202          * mlock MCL_FUTURE?
2203          */
2204         if (mm->def_flags & VM_LOCKED) {
2205                 unsigned long locked, lock_limit;
2206                 locked = len >> PAGE_SHIFT;
2207                 locked += mm->locked_vm;
2208                 lock_limit = rlimit(RLIMIT_MEMLOCK);
2209                 lock_limit >>= PAGE_SHIFT;
2210                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2211                         return -EAGAIN;
2212         }
2213
2214         /*
2215          * mm->mmap_sem is required to protect against another thread
2216          * changing the mappings in case we sleep.
2217          */
2218         verify_mm_writelocked(mm);
2219
2220         /*
2221          * Clear old maps.  this also does some error checking for us
2222          */
2223  munmap_back:
2224         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
2225                 if (do_munmap(mm, addr, len))
2226                         return -ENOMEM;
2227                 goto munmap_back;
2228         }
2229
2230         /* Check against address space limits *after* clearing old maps... */
2231         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2232                 return -ENOMEM;
2233
2234         if (mm->map_count > sysctl_max_map_count)
2235                 return -ENOMEM;
2236
2237         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2238                 return -ENOMEM;
2239
2240         /* Can we just expand an old private anonymous mapping? */
2241         vma = vma_merge(mm, prev, addr, addr + len, flags,
2242                                         NULL, NULL, pgoff, NULL);
2243         if (vma)
2244                 goto out;
2245
2246         /*
2247          * create a vma struct for an anonymous mapping
2248          */
2249         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2250         if (!vma) {
2251                 vm_unacct_memory(len >> PAGE_SHIFT);
2252                 return -ENOMEM;
2253         }
2254
2255         INIT_LIST_HEAD(&vma->anon_vma_chain);
2256         vma->vm_mm = mm;
2257         vma->vm_start = addr;
2258         vma->vm_end = addr + len;
2259         vma->vm_pgoff = pgoff;
2260         vma->vm_flags = flags;
2261         vma->vm_page_prot = vm_get_page_prot(flags);
2262         vma_link(mm, vma, prev, rb_link, rb_parent);
2263 out:
2264         perf_event_mmap(vma);
2265         mm->total_vm += len >> PAGE_SHIFT;
2266         if (flags & VM_LOCKED) {
2267                 if (!mlock_vma_pages_range(vma, addr, addr + len))
2268                         mm->locked_vm += (len >> PAGE_SHIFT);
2269         }
2270         return addr;
2271 }
2272
2273 unsigned long vm_brk(unsigned long addr, unsigned long len)
2274 {
2275         struct mm_struct *mm = current->mm;
2276         unsigned long ret;
2277
2278         down_write(&mm->mmap_sem);
2279         ret = do_brk(addr, len);
2280         up_write(&mm->mmap_sem);
2281         return ret;
2282 }
2283 EXPORT_SYMBOL(vm_brk);
2284
2285 /* Release all mmaps. */
2286 void exit_mmap(struct mm_struct *mm)
2287 {
2288         struct mmu_gather tlb;
2289         struct vm_area_struct *vma;
2290         unsigned long nr_accounted = 0;
2291
2292         /* mm's last user has gone, and its about to be pulled down */
2293         mmu_notifier_release(mm);
2294
2295         if (mm->locked_vm) {
2296                 vma = mm->mmap;
2297                 while (vma) {
2298                         if (vma->vm_flags & VM_LOCKED)
2299                                 munlock_vma_pages_all(vma);
2300                         vma = vma->vm_next;
2301                 }
2302         }
2303
2304         arch_exit_mmap(mm);
2305
2306         vma = mm->mmap;
2307         if (!vma)       /* Can happen if dup_mmap() received an OOM */
2308                 return;
2309
2310         lru_add_drain();
2311         flush_cache_mm(mm);
2312         tlb_gather_mmu(&tlb, mm, 1);
2313         /* update_hiwater_rss(mm) here? but nobody should be looking */
2314         /* Use -1 here to ensure all VMAs in the mm are unmapped */
2315         unmap_vmas(&tlb, vma, 0, -1);
2316
2317         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0);
2318         tlb_finish_mmu(&tlb, 0, -1);
2319
2320         /*
2321          * Walk the list again, actually closing and freeing it,
2322          * with preemption enabled, without holding any MM locks.
2323          */
2324         while (vma) {
2325                 if (vma->vm_flags & VM_ACCOUNT)
2326                         nr_accounted += vma_pages(vma);
2327                 vma = remove_vma(vma);
2328         }
2329         vm_unacct_memory(nr_accounted);
2330
2331         WARN_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2332 }
2333
2334 /* Insert vm structure into process list sorted by address
2335  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2336  * then i_mmap_mutex is taken here.
2337  */
2338 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2339 {
2340         struct vm_area_struct *prev;
2341         struct rb_node **rb_link, *rb_parent;
2342
2343         /*
2344          * The vm_pgoff of a purely anonymous vma should be irrelevant
2345          * until its first write fault, when page's anon_vma and index
2346          * are set.  But now set the vm_pgoff it will almost certainly
2347          * end up with (unless mremap moves it elsewhere before that
2348          * first wfault), so /proc/pid/maps tells a consistent story.
2349          *
2350          * By setting it to reflect the virtual start address of the
2351          * vma, merges and splits can happen in a seamless way, just
2352          * using the existing file pgoff checks and manipulations.
2353          * Similarly in do_mmap_pgoff and in do_brk.
2354          */
2355         if (!vma->vm_file) {
2356                 BUG_ON(vma->anon_vma);
2357                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2358         }
2359         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2360                            &prev, &rb_link, &rb_parent))
2361                 return -ENOMEM;
2362         if ((vma->vm_flags & VM_ACCOUNT) &&
2363              security_vm_enough_memory_mm(mm, vma_pages(vma)))
2364                 return -ENOMEM;
2365
2366         vma_link(mm, vma, prev, rb_link, rb_parent);
2367         return 0;
2368 }
2369
2370 /*
2371  * Copy the vma structure to a new location in the same mm,
2372  * prior to moving page table entries, to effect an mremap move.
2373  */
2374 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2375         unsigned long addr, unsigned long len, pgoff_t pgoff)
2376 {
2377         struct vm_area_struct *vma = *vmap;
2378         unsigned long vma_start = vma->vm_start;
2379         struct mm_struct *mm = vma->vm_mm;
2380         struct vm_area_struct *new_vma, *prev;
2381         struct rb_node **rb_link, *rb_parent;
2382         struct mempolicy *pol;
2383         bool faulted_in_anon_vma = true;
2384
2385         /*
2386          * If anonymous vma has not yet been faulted, update new pgoff
2387          * to match new location, to increase its chance of merging.
2388          */
2389         if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2390                 pgoff = addr >> PAGE_SHIFT;
2391                 faulted_in_anon_vma = false;
2392         }
2393
2394         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2395                 return NULL;    /* should never get here */
2396         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2397                         vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2398         if (new_vma) {
2399                 /*
2400                  * Source vma may have been merged into new_vma
2401                  */
2402                 if (unlikely(vma_start >= new_vma->vm_start &&
2403                              vma_start < new_vma->vm_end)) {
2404                         /*
2405                          * The only way we can get a vma_merge with
2406                          * self during an mremap is if the vma hasn't
2407                          * been faulted in yet and we were allowed to
2408                          * reset the dst vma->vm_pgoff to the
2409                          * destination address of the mremap to allow
2410                          * the merge to happen. mremap must change the
2411                          * vm_pgoff linearity between src and dst vmas
2412                          * (in turn preventing a vma_merge) to be
2413                          * safe. It is only safe to keep the vm_pgoff
2414                          * linear if there are no pages mapped yet.
2415                          */
2416                         VM_BUG_ON(faulted_in_anon_vma);
2417                         *vmap = new_vma;
2418                 }
2419         } else {
2420                 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2421                 if (new_vma) {
2422                         *new_vma = *vma;
2423                         pol = mpol_dup(vma_policy(vma));
2424                         if (IS_ERR(pol))
2425                                 goto out_free_vma;
2426                         INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2427                         if (anon_vma_clone(new_vma, vma))
2428                                 goto out_free_mempol;
2429                         vma_set_policy(new_vma, pol);
2430                         new_vma->vm_start = addr;
2431                         new_vma->vm_end = addr + len;
2432                         new_vma->vm_pgoff = pgoff;
2433                         if (new_vma->vm_file)
2434                                 get_file(new_vma->vm_file);
2435                         if (new_vma->vm_ops && new_vma->vm_ops->open)
2436                                 new_vma->vm_ops->open(new_vma);
2437                         vma_link(mm, new_vma, prev, rb_link, rb_parent);
2438                 }
2439         }
2440         return new_vma;
2441
2442  out_free_mempol:
2443         mpol_put(pol);
2444  out_free_vma:
2445         kmem_cache_free(vm_area_cachep, new_vma);
2446         return NULL;
2447 }
2448
2449 /*
2450  * Return true if the calling process may expand its vm space by the passed
2451  * number of pages
2452  */
2453 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2454 {
2455         unsigned long cur = mm->total_vm;       /* pages */
2456         unsigned long lim;
2457
2458         lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2459
2460         if (cur + npages > lim)
2461                 return 0;
2462         return 1;
2463 }
2464
2465
2466 static int special_mapping_fault(struct vm_area_struct *vma,
2467                                 struct vm_fault *vmf)
2468 {
2469         pgoff_t pgoff;
2470         struct page **pages;
2471
2472         /*
2473          * special mappings have no vm_file, and in that case, the mm
2474          * uses vm_pgoff internally. So we have to subtract it from here.
2475          * We are allowed to do this because we are the mm; do not copy
2476          * this code into drivers!
2477          */
2478         pgoff = vmf->pgoff - vma->vm_pgoff;
2479
2480         for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2481                 pgoff--;
2482
2483         if (*pages) {
2484                 struct page *page = *pages;
2485                 get_page(page);
2486                 vmf->page = page;
2487                 return 0;
2488         }
2489
2490         return VM_FAULT_SIGBUS;
2491 }
2492
2493 /*
2494  * Having a close hook prevents vma merging regardless of flags.
2495  */
2496 static void special_mapping_close(struct vm_area_struct *vma)
2497 {
2498 }
2499
2500 static const struct vm_operations_struct special_mapping_vmops = {
2501         .close = special_mapping_close,
2502         .fault = special_mapping_fault,
2503 };
2504
2505 /*
2506  * Called with mm->mmap_sem held for writing.
2507  * Insert a new vma covering the given region, with the given flags.
2508  * Its pages are supplied by the given array of struct page *.
2509  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2510  * The region past the last page supplied will always produce SIGBUS.
2511  * The array pointer and the pages it points to are assumed to stay alive
2512  * for as long as this mapping might exist.
2513  */
2514 int install_special_mapping(struct mm_struct *mm,
2515                             unsigned long addr, unsigned long len,
2516                             unsigned long vm_flags, struct page **pages)
2517 {
2518         int ret;
2519         struct vm_area_struct *vma;
2520
2521         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2522         if (unlikely(vma == NULL))
2523                 return -ENOMEM;
2524
2525         INIT_LIST_HEAD(&vma->anon_vma_chain);
2526         vma->vm_mm = mm;
2527         vma->vm_start = addr;
2528         vma->vm_end = addr + len;
2529
2530         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2531         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2532
2533         vma->vm_ops = &special_mapping_vmops;
2534         vma->vm_private_data = pages;
2535
2536         ret = insert_vm_struct(mm, vma);
2537         if (ret)
2538                 goto out;
2539
2540         mm->total_vm += len >> PAGE_SHIFT;
2541
2542         perf_event_mmap(vma);
2543
2544         return 0;
2545
2546 out:
2547         kmem_cache_free(vm_area_cachep, vma);
2548         return ret;
2549 }
2550
2551 static DEFINE_MUTEX(mm_all_locks_mutex);
2552
2553 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2554 {
2555         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
2556                 /*
2557                  * The LSB of head.next can't change from under us
2558                  * because we hold the mm_all_locks_mutex.
2559                  */
2560                 mutex_lock_nest_lock(&anon_vma->root->mutex, &mm->mmap_sem);
2561                 /*
2562                  * We can safely modify head.next after taking the
2563                  * anon_vma->root->mutex. If some other vma in this mm shares
2564                  * the same anon_vma we won't take it again.
2565                  *
2566                  * No need of atomic instructions here, head.next
2567                  * can't change from under us thanks to the
2568                  * anon_vma->root->mutex.
2569                  */
2570                 if (__test_and_set_bit(0, (unsigned long *)
2571                                        &anon_vma->root->rb_root.rb_node))
2572                         BUG();
2573         }
2574 }
2575
2576 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2577 {
2578         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2579                 /*
2580                  * AS_MM_ALL_LOCKS can't change from under us because
2581                  * we hold the mm_all_locks_mutex.
2582                  *
2583                  * Operations on ->flags have to be atomic because
2584                  * even if AS_MM_ALL_LOCKS is stable thanks to the
2585                  * mm_all_locks_mutex, there may be other cpus
2586                  * changing other bitflags in parallel to us.
2587                  */
2588                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2589                         BUG();
2590                 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
2591         }
2592 }
2593
2594 /*
2595  * This operation locks against the VM for all pte/vma/mm related
2596  * operations that could ever happen on a certain mm. This includes
2597  * vmtruncate, try_to_unmap, and all page faults.
2598  *
2599  * The caller must take the mmap_sem in write mode before calling
2600  * mm_take_all_locks(). The caller isn't allowed to release the
2601  * mmap_sem until mm_drop_all_locks() returns.
2602  *
2603  * mmap_sem in write mode is required in order to block all operations
2604  * that could modify pagetables and free pages without need of
2605  * altering the vma layout (for example populate_range() with
2606  * nonlinear vmas). It's also needed in write mode to avoid new
2607  * anon_vmas to be associated with existing vmas.
2608  *
2609  * A single task can't take more than one mm_take_all_locks() in a row
2610  * or it would deadlock.
2611  *
2612  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
2613  * mapping->flags avoid to take the same lock twice, if more than one
2614  * vma in this mm is backed by the same anon_vma or address_space.
2615  *
2616  * We can take all the locks in random order because the VM code
2617  * taking i_mmap_mutex or anon_vma->mutex outside the mmap_sem never
2618  * takes more than one of them in a row. Secondly we're protected
2619  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2620  *
2621  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2622  * that may have to take thousand of locks.
2623  *
2624  * mm_take_all_locks() can fail if it's interrupted by signals.
2625  */
2626 int mm_take_all_locks(struct mm_struct *mm)
2627 {
2628         struct vm_area_struct *vma;
2629         struct anon_vma_chain *avc;
2630
2631         BUG_ON(down_read_trylock(&mm->mmap_sem));
2632
2633         mutex_lock(&mm_all_locks_mutex);
2634
2635         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2636                 if (signal_pending(current))
2637                         goto out_unlock;
2638                 if (vma->vm_file && vma->vm_file->f_mapping)
2639                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
2640         }
2641
2642         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2643                 if (signal_pending(current))
2644                         goto out_unlock;
2645                 if (vma->anon_vma)
2646                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2647                                 vm_lock_anon_vma(mm, avc->anon_vma);
2648         }
2649
2650         return 0;
2651
2652 out_unlock:
2653         mm_drop_all_locks(mm);
2654         return -EINTR;
2655 }
2656
2657 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2658 {
2659         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
2660                 /*
2661                  * The LSB of head.next can't change to 0 from under
2662                  * us because we hold the mm_all_locks_mutex.
2663                  *
2664                  * We must however clear the bitflag before unlocking
2665                  * the vma so the users using the anon_vma->rb_root will
2666                  * never see our bitflag.
2667                  *
2668                  * No need of atomic instructions here, head.next
2669                  * can't change from under us until we release the
2670                  * anon_vma->root->mutex.
2671                  */
2672                 if (!__test_and_clear_bit(0, (unsigned long *)
2673                                           &anon_vma->root->rb_root.rb_node))
2674                         BUG();
2675                 anon_vma_unlock(anon_vma);
2676         }
2677 }
2678
2679 static void vm_unlock_mapping(struct address_space *mapping)
2680 {
2681         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2682                 /*
2683                  * AS_MM_ALL_LOCKS can't change to 0 from under us
2684                  * because we hold the mm_all_locks_mutex.
2685                  */
2686                 mutex_unlock(&mapping->i_mmap_mutex);
2687                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2688                                         &mapping->flags))
2689                         BUG();
2690         }
2691 }
2692
2693 /*
2694  * The mmap_sem cannot be released by the caller until
2695  * mm_drop_all_locks() returns.
2696  */
2697 void mm_drop_all_locks(struct mm_struct *mm)
2698 {
2699         struct vm_area_struct *vma;
2700         struct anon_vma_chain *avc;
2701
2702         BUG_ON(down_read_trylock(&mm->mmap_sem));
2703         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2704
2705         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2706                 if (vma->anon_vma)
2707                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2708                                 vm_unlock_anon_vma(avc->anon_vma);
2709                 if (vma->vm_file && vma->vm_file->f_mapping)
2710                         vm_unlock_mapping(vma->vm_file->f_mapping);
2711         }
2712
2713         mutex_unlock(&mm_all_locks_mutex);
2714 }
2715
2716 /*
2717  * initialise the VMA slab
2718  */
2719 void __init mmap_init(void)
2720 {
2721         int ret;
2722
2723         ret = percpu_counter_init(&vm_committed_as, 0);
2724         VM_BUG_ON(ret);
2725 }