kdb: use task_cpu() instead of task_thread_info()->cpu
[cascardo/linux.git] / mm / mmap.c
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/profile.h>
30 #include <linux/export.h>
31 #include <linux/mount.h>
32 #include <linux/mempolicy.h>
33 #include <linux/rmap.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/mmdebug.h>
36 #include <linux/perf_event.h>
37 #include <linux/audit.h>
38 #include <linux/khugepaged.h>
39 #include <linux/uprobes.h>
40 #include <linux/rbtree_augmented.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47
48 #include <asm/uaccess.h>
49 #include <asm/cacheflush.h>
50 #include <asm/tlb.h>
51 #include <asm/mmu_context.h>
52
53 #include "internal.h"
54
55 #ifndef arch_mmap_check
56 #define arch_mmap_check(addr, len, flags)       (0)
57 #endif
58
59 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
60 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
61 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
62 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
63 #endif
64 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
65 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
66 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
67 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
68 #endif
69
70 static bool ignore_rlimit_data;
71 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
72
73 static void unmap_region(struct mm_struct *mm,
74                 struct vm_area_struct *vma, struct vm_area_struct *prev,
75                 unsigned long start, unsigned long end);
76
77 /* description of effects of mapping type and prot in current implementation.
78  * this is due to the limited x86 page protection hardware.  The expected
79  * behavior is in parens:
80  *
81  * map_type     prot
82  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
83  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
84  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
85  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
86  *
87  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
88  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
89  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
90  *
91  */
92 pgprot_t protection_map[16] = {
93         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
94         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
95 };
96
97 pgprot_t vm_get_page_prot(unsigned long vm_flags)
98 {
99         return __pgprot(pgprot_val(protection_map[vm_flags &
100                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
101                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
102 }
103 EXPORT_SYMBOL(vm_get_page_prot);
104
105 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
106 {
107         return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
108 }
109
110 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
111 void vma_set_page_prot(struct vm_area_struct *vma)
112 {
113         unsigned long vm_flags = vma->vm_flags;
114
115         vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
116         if (vma_wants_writenotify(vma)) {
117                 vm_flags &= ~VM_SHARED;
118                 vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot,
119                                                      vm_flags);
120         }
121 }
122
123 /*
124  * Requires inode->i_mapping->i_mmap_rwsem
125  */
126 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
127                 struct file *file, struct address_space *mapping)
128 {
129         if (vma->vm_flags & VM_DENYWRITE)
130                 atomic_inc(&file_inode(file)->i_writecount);
131         if (vma->vm_flags & VM_SHARED)
132                 mapping_unmap_writable(mapping);
133
134         flush_dcache_mmap_lock(mapping);
135         vma_interval_tree_remove(vma, &mapping->i_mmap);
136         flush_dcache_mmap_unlock(mapping);
137 }
138
139 /*
140  * Unlink a file-based vm structure from its interval tree, to hide
141  * vma from rmap and vmtruncate before freeing its page tables.
142  */
143 void unlink_file_vma(struct vm_area_struct *vma)
144 {
145         struct file *file = vma->vm_file;
146
147         if (file) {
148                 struct address_space *mapping = file->f_mapping;
149                 i_mmap_lock_write(mapping);
150                 __remove_shared_vm_struct(vma, file, mapping);
151                 i_mmap_unlock_write(mapping);
152         }
153 }
154
155 /*
156  * Close a vm structure and free it, returning the next.
157  */
158 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
159 {
160         struct vm_area_struct *next = vma->vm_next;
161
162         might_sleep();
163         if (vma->vm_ops && vma->vm_ops->close)
164                 vma->vm_ops->close(vma);
165         if (vma->vm_file)
166                 fput(vma->vm_file);
167         mpol_put(vma_policy(vma));
168         kmem_cache_free(vm_area_cachep, vma);
169         return next;
170 }
171
172 static int do_brk(unsigned long addr, unsigned long len);
173
174 SYSCALL_DEFINE1(brk, unsigned long, brk)
175 {
176         unsigned long retval;
177         unsigned long newbrk, oldbrk;
178         struct mm_struct *mm = current->mm;
179         unsigned long min_brk;
180         bool populate;
181
182         if (down_write_killable(&mm->mmap_sem))
183                 return -EINTR;
184
185 #ifdef CONFIG_COMPAT_BRK
186         /*
187          * CONFIG_COMPAT_BRK can still be overridden by setting
188          * randomize_va_space to 2, which will still cause mm->start_brk
189          * to be arbitrarily shifted
190          */
191         if (current->brk_randomized)
192                 min_brk = mm->start_brk;
193         else
194                 min_brk = mm->end_data;
195 #else
196         min_brk = mm->start_brk;
197 #endif
198         if (brk < min_brk)
199                 goto out;
200
201         /*
202          * Check against rlimit here. If this check is done later after the test
203          * of oldbrk with newbrk then it can escape the test and let the data
204          * segment grow beyond its set limit the in case where the limit is
205          * not page aligned -Ram Gupta
206          */
207         if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
208                               mm->end_data, mm->start_data))
209                 goto out;
210
211         newbrk = PAGE_ALIGN(brk);
212         oldbrk = PAGE_ALIGN(mm->brk);
213         if (oldbrk == newbrk)
214                 goto set_brk;
215
216         /* Always allow shrinking brk. */
217         if (brk <= mm->brk) {
218                 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
219                         goto set_brk;
220                 goto out;
221         }
222
223         /* Check against existing mmap mappings. */
224         if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
225                 goto out;
226
227         /* Ok, looks good - let it rip. */
228         if (do_brk(oldbrk, newbrk-oldbrk) < 0)
229                 goto out;
230
231 set_brk:
232         mm->brk = brk;
233         populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
234         up_write(&mm->mmap_sem);
235         if (populate)
236                 mm_populate(oldbrk, newbrk - oldbrk);
237         return brk;
238
239 out:
240         retval = mm->brk;
241         up_write(&mm->mmap_sem);
242         return retval;
243 }
244
245 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
246 {
247         unsigned long max, subtree_gap;
248         max = vma->vm_start;
249         if (vma->vm_prev)
250                 max -= vma->vm_prev->vm_end;
251         if (vma->vm_rb.rb_left) {
252                 subtree_gap = rb_entry(vma->vm_rb.rb_left,
253                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
254                 if (subtree_gap > max)
255                         max = subtree_gap;
256         }
257         if (vma->vm_rb.rb_right) {
258                 subtree_gap = rb_entry(vma->vm_rb.rb_right,
259                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
260                 if (subtree_gap > max)
261                         max = subtree_gap;
262         }
263         return max;
264 }
265
266 #ifdef CONFIG_DEBUG_VM_RB
267 static int browse_rb(struct mm_struct *mm)
268 {
269         struct rb_root *root = &mm->mm_rb;
270         int i = 0, j, bug = 0;
271         struct rb_node *nd, *pn = NULL;
272         unsigned long prev = 0, pend = 0;
273
274         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
275                 struct vm_area_struct *vma;
276                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
277                 if (vma->vm_start < prev) {
278                         pr_emerg("vm_start %lx < prev %lx\n",
279                                   vma->vm_start, prev);
280                         bug = 1;
281                 }
282                 if (vma->vm_start < pend) {
283                         pr_emerg("vm_start %lx < pend %lx\n",
284                                   vma->vm_start, pend);
285                         bug = 1;
286                 }
287                 if (vma->vm_start > vma->vm_end) {
288                         pr_emerg("vm_start %lx > vm_end %lx\n",
289                                   vma->vm_start, vma->vm_end);
290                         bug = 1;
291                 }
292                 spin_lock(&mm->page_table_lock);
293                 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
294                         pr_emerg("free gap %lx, correct %lx\n",
295                                vma->rb_subtree_gap,
296                                vma_compute_subtree_gap(vma));
297                         bug = 1;
298                 }
299                 spin_unlock(&mm->page_table_lock);
300                 i++;
301                 pn = nd;
302                 prev = vma->vm_start;
303                 pend = vma->vm_end;
304         }
305         j = 0;
306         for (nd = pn; nd; nd = rb_prev(nd))
307                 j++;
308         if (i != j) {
309                 pr_emerg("backwards %d, forwards %d\n", j, i);
310                 bug = 1;
311         }
312         return bug ? -1 : i;
313 }
314
315 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
316 {
317         struct rb_node *nd;
318
319         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
320                 struct vm_area_struct *vma;
321                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
322                 VM_BUG_ON_VMA(vma != ignore &&
323                         vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
324                         vma);
325         }
326 }
327
328 static void validate_mm(struct mm_struct *mm)
329 {
330         int bug = 0;
331         int i = 0;
332         unsigned long highest_address = 0;
333         struct vm_area_struct *vma = mm->mmap;
334
335         while (vma) {
336                 struct anon_vma *anon_vma = vma->anon_vma;
337                 struct anon_vma_chain *avc;
338
339                 if (anon_vma) {
340                         anon_vma_lock_read(anon_vma);
341                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
342                                 anon_vma_interval_tree_verify(avc);
343                         anon_vma_unlock_read(anon_vma);
344                 }
345
346                 highest_address = vma->vm_end;
347                 vma = vma->vm_next;
348                 i++;
349         }
350         if (i != mm->map_count) {
351                 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
352                 bug = 1;
353         }
354         if (highest_address != mm->highest_vm_end) {
355                 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
356                           mm->highest_vm_end, highest_address);
357                 bug = 1;
358         }
359         i = browse_rb(mm);
360         if (i != mm->map_count) {
361                 if (i != -1)
362                         pr_emerg("map_count %d rb %d\n", mm->map_count, i);
363                 bug = 1;
364         }
365         VM_BUG_ON_MM(bug, mm);
366 }
367 #else
368 #define validate_mm_rb(root, ignore) do { } while (0)
369 #define validate_mm(mm) do { } while (0)
370 #endif
371
372 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
373                      unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
374
375 /*
376  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
377  * vma->vm_prev->vm_end values changed, without modifying the vma's position
378  * in the rbtree.
379  */
380 static void vma_gap_update(struct vm_area_struct *vma)
381 {
382         /*
383          * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
384          * function that does exacltly what we want.
385          */
386         vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
387 }
388
389 static inline void vma_rb_insert(struct vm_area_struct *vma,
390                                  struct rb_root *root)
391 {
392         /* All rb_subtree_gap values must be consistent prior to insertion */
393         validate_mm_rb(root, NULL);
394
395         rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
396 }
397
398 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
399 {
400         /*
401          * All rb_subtree_gap values must be consistent prior to erase,
402          * with the possible exception of the vma being erased.
403          */
404         validate_mm_rb(root, vma);
405
406         /*
407          * Note rb_erase_augmented is a fairly large inline function,
408          * so make sure we instantiate it only once with our desired
409          * augmented rbtree callbacks.
410          */
411         rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
412 }
413
414 /*
415  * vma has some anon_vma assigned, and is already inserted on that
416  * anon_vma's interval trees.
417  *
418  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
419  * vma must be removed from the anon_vma's interval trees using
420  * anon_vma_interval_tree_pre_update_vma().
421  *
422  * After the update, the vma will be reinserted using
423  * anon_vma_interval_tree_post_update_vma().
424  *
425  * The entire update must be protected by exclusive mmap_sem and by
426  * the root anon_vma's mutex.
427  */
428 static inline void
429 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
430 {
431         struct anon_vma_chain *avc;
432
433         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
434                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
435 }
436
437 static inline void
438 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
439 {
440         struct anon_vma_chain *avc;
441
442         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
443                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
444 }
445
446 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
447                 unsigned long end, struct vm_area_struct **pprev,
448                 struct rb_node ***rb_link, struct rb_node **rb_parent)
449 {
450         struct rb_node **__rb_link, *__rb_parent, *rb_prev;
451
452         __rb_link = &mm->mm_rb.rb_node;
453         rb_prev = __rb_parent = NULL;
454
455         while (*__rb_link) {
456                 struct vm_area_struct *vma_tmp;
457
458                 __rb_parent = *__rb_link;
459                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
460
461                 if (vma_tmp->vm_end > addr) {
462                         /* Fail if an existing vma overlaps the area */
463                         if (vma_tmp->vm_start < end)
464                                 return -ENOMEM;
465                         __rb_link = &__rb_parent->rb_left;
466                 } else {
467                         rb_prev = __rb_parent;
468                         __rb_link = &__rb_parent->rb_right;
469                 }
470         }
471
472         *pprev = NULL;
473         if (rb_prev)
474                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
475         *rb_link = __rb_link;
476         *rb_parent = __rb_parent;
477         return 0;
478 }
479
480 static unsigned long count_vma_pages_range(struct mm_struct *mm,
481                 unsigned long addr, unsigned long end)
482 {
483         unsigned long nr_pages = 0;
484         struct vm_area_struct *vma;
485
486         /* Find first overlaping mapping */
487         vma = find_vma_intersection(mm, addr, end);
488         if (!vma)
489                 return 0;
490
491         nr_pages = (min(end, vma->vm_end) -
492                 max(addr, vma->vm_start)) >> PAGE_SHIFT;
493
494         /* Iterate over the rest of the overlaps */
495         for (vma = vma->vm_next; vma; vma = vma->vm_next) {
496                 unsigned long overlap_len;
497
498                 if (vma->vm_start > end)
499                         break;
500
501                 overlap_len = min(end, vma->vm_end) - vma->vm_start;
502                 nr_pages += overlap_len >> PAGE_SHIFT;
503         }
504
505         return nr_pages;
506 }
507
508 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
509                 struct rb_node **rb_link, struct rb_node *rb_parent)
510 {
511         /* Update tracking information for the gap following the new vma. */
512         if (vma->vm_next)
513                 vma_gap_update(vma->vm_next);
514         else
515                 mm->highest_vm_end = vma->vm_end;
516
517         /*
518          * vma->vm_prev wasn't known when we followed the rbtree to find the
519          * correct insertion point for that vma. As a result, we could not
520          * update the vma vm_rb parents rb_subtree_gap values on the way down.
521          * So, we first insert the vma with a zero rb_subtree_gap value
522          * (to be consistent with what we did on the way down), and then
523          * immediately update the gap to the correct value. Finally we
524          * rebalance the rbtree after all augmented values have been set.
525          */
526         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
527         vma->rb_subtree_gap = 0;
528         vma_gap_update(vma);
529         vma_rb_insert(vma, &mm->mm_rb);
530 }
531
532 static void __vma_link_file(struct vm_area_struct *vma)
533 {
534         struct file *file;
535
536         file = vma->vm_file;
537         if (file) {
538                 struct address_space *mapping = file->f_mapping;
539
540                 if (vma->vm_flags & VM_DENYWRITE)
541                         atomic_dec(&file_inode(file)->i_writecount);
542                 if (vma->vm_flags & VM_SHARED)
543                         atomic_inc(&mapping->i_mmap_writable);
544
545                 flush_dcache_mmap_lock(mapping);
546                 vma_interval_tree_insert(vma, &mapping->i_mmap);
547                 flush_dcache_mmap_unlock(mapping);
548         }
549 }
550
551 static void
552 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
553         struct vm_area_struct *prev, struct rb_node **rb_link,
554         struct rb_node *rb_parent)
555 {
556         __vma_link_list(mm, vma, prev, rb_parent);
557         __vma_link_rb(mm, vma, rb_link, rb_parent);
558 }
559
560 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
561                         struct vm_area_struct *prev, struct rb_node **rb_link,
562                         struct rb_node *rb_parent)
563 {
564         struct address_space *mapping = NULL;
565
566         if (vma->vm_file) {
567                 mapping = vma->vm_file->f_mapping;
568                 i_mmap_lock_write(mapping);
569         }
570
571         __vma_link(mm, vma, prev, rb_link, rb_parent);
572         __vma_link_file(vma);
573
574         if (mapping)
575                 i_mmap_unlock_write(mapping);
576
577         mm->map_count++;
578         validate_mm(mm);
579 }
580
581 /*
582  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
583  * mm's list and rbtree.  It has already been inserted into the interval tree.
584  */
585 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
586 {
587         struct vm_area_struct *prev;
588         struct rb_node **rb_link, *rb_parent;
589
590         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
591                            &prev, &rb_link, &rb_parent))
592                 BUG();
593         __vma_link(mm, vma, prev, rb_link, rb_parent);
594         mm->map_count++;
595 }
596
597 static inline void
598 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
599                 struct vm_area_struct *prev)
600 {
601         struct vm_area_struct *next;
602
603         vma_rb_erase(vma, &mm->mm_rb);
604         prev->vm_next = next = vma->vm_next;
605         if (next)
606                 next->vm_prev = prev;
607
608         /* Kill the cache */
609         vmacache_invalidate(mm);
610 }
611
612 /*
613  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
614  * is already present in an i_mmap tree without adjusting the tree.
615  * The following helper function should be used when such adjustments
616  * are necessary.  The "insert" vma (if any) is to be inserted
617  * before we drop the necessary locks.
618  */
619 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
620         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
621 {
622         struct mm_struct *mm = vma->vm_mm;
623         struct vm_area_struct *next = vma->vm_next;
624         struct vm_area_struct *importer = NULL;
625         struct address_space *mapping = NULL;
626         struct rb_root *root = NULL;
627         struct anon_vma *anon_vma = NULL;
628         struct file *file = vma->vm_file;
629         bool start_changed = false, end_changed = false;
630         long adjust_next = 0;
631         int remove_next = 0;
632
633         if (next && !insert) {
634                 struct vm_area_struct *exporter = NULL;
635
636                 if (end >= next->vm_end) {
637                         /*
638                          * vma expands, overlapping all the next, and
639                          * perhaps the one after too (mprotect case 6).
640                          */
641 again:                  remove_next = 1 + (end > next->vm_end);
642                         end = next->vm_end;
643                         exporter = next;
644                         importer = vma;
645                 } else if (end > next->vm_start) {
646                         /*
647                          * vma expands, overlapping part of the next:
648                          * mprotect case 5 shifting the boundary up.
649                          */
650                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
651                         exporter = next;
652                         importer = vma;
653                 } else if (end < vma->vm_end) {
654                         /*
655                          * vma shrinks, and !insert tells it's not
656                          * split_vma inserting another: so it must be
657                          * mprotect case 4 shifting the boundary down.
658                          */
659                         adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
660                         exporter = vma;
661                         importer = next;
662                 }
663
664                 /*
665                  * Easily overlooked: when mprotect shifts the boundary,
666                  * make sure the expanding vma has anon_vma set if the
667                  * shrinking vma had, to cover any anon pages imported.
668                  */
669                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
670                         int error;
671
672                         importer->anon_vma = exporter->anon_vma;
673                         error = anon_vma_clone(importer, exporter);
674                         if (error)
675                                 return error;
676                 }
677         }
678
679         vma_adjust_trans_huge(vma, start, end, adjust_next);
680
681         if (file) {
682                 mapping = file->f_mapping;
683                 root = &mapping->i_mmap;
684                 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
685
686                 if (adjust_next)
687                         uprobe_munmap(next, next->vm_start, next->vm_end);
688
689                 i_mmap_lock_write(mapping);
690                 if (insert) {
691                         /*
692                          * Put into interval tree now, so instantiated pages
693                          * are visible to arm/parisc __flush_dcache_page
694                          * throughout; but we cannot insert into address
695                          * space until vma start or end is updated.
696                          */
697                         __vma_link_file(insert);
698                 }
699         }
700
701         anon_vma = vma->anon_vma;
702         if (!anon_vma && adjust_next)
703                 anon_vma = next->anon_vma;
704         if (anon_vma) {
705                 VM_BUG_ON_VMA(adjust_next && next->anon_vma &&
706                           anon_vma != next->anon_vma, next);
707                 anon_vma_lock_write(anon_vma);
708                 anon_vma_interval_tree_pre_update_vma(vma);
709                 if (adjust_next)
710                         anon_vma_interval_tree_pre_update_vma(next);
711         }
712
713         if (root) {
714                 flush_dcache_mmap_lock(mapping);
715                 vma_interval_tree_remove(vma, root);
716                 if (adjust_next)
717                         vma_interval_tree_remove(next, root);
718         }
719
720         if (start != vma->vm_start) {
721                 vma->vm_start = start;
722                 start_changed = true;
723         }
724         if (end != vma->vm_end) {
725                 vma->vm_end = end;
726                 end_changed = true;
727         }
728         vma->vm_pgoff = pgoff;
729         if (adjust_next) {
730                 next->vm_start += adjust_next << PAGE_SHIFT;
731                 next->vm_pgoff += adjust_next;
732         }
733
734         if (root) {
735                 if (adjust_next)
736                         vma_interval_tree_insert(next, root);
737                 vma_interval_tree_insert(vma, root);
738                 flush_dcache_mmap_unlock(mapping);
739         }
740
741         if (remove_next) {
742                 /*
743                  * vma_merge has merged next into vma, and needs
744                  * us to remove next before dropping the locks.
745                  */
746                 __vma_unlink(mm, next, vma);
747                 if (file)
748                         __remove_shared_vm_struct(next, file, mapping);
749         } else if (insert) {
750                 /*
751                  * split_vma has split insert from vma, and needs
752                  * us to insert it before dropping the locks
753                  * (it may either follow vma or precede it).
754                  */
755                 __insert_vm_struct(mm, insert);
756         } else {
757                 if (start_changed)
758                         vma_gap_update(vma);
759                 if (end_changed) {
760                         if (!next)
761                                 mm->highest_vm_end = end;
762                         else if (!adjust_next)
763                                 vma_gap_update(next);
764                 }
765         }
766
767         if (anon_vma) {
768                 anon_vma_interval_tree_post_update_vma(vma);
769                 if (adjust_next)
770                         anon_vma_interval_tree_post_update_vma(next);
771                 anon_vma_unlock_write(anon_vma);
772         }
773         if (mapping)
774                 i_mmap_unlock_write(mapping);
775
776         if (root) {
777                 uprobe_mmap(vma);
778
779                 if (adjust_next)
780                         uprobe_mmap(next);
781         }
782
783         if (remove_next) {
784                 if (file) {
785                         uprobe_munmap(next, next->vm_start, next->vm_end);
786                         fput(file);
787                 }
788                 if (next->anon_vma)
789                         anon_vma_merge(vma, next);
790                 mm->map_count--;
791                 mpol_put(vma_policy(next));
792                 kmem_cache_free(vm_area_cachep, next);
793                 /*
794                  * In mprotect's case 6 (see comments on vma_merge),
795                  * we must remove another next too. It would clutter
796                  * up the code too much to do both in one go.
797                  */
798                 next = vma->vm_next;
799                 if (remove_next == 2)
800                         goto again;
801                 else if (next)
802                         vma_gap_update(next);
803                 else
804                         mm->highest_vm_end = end;
805         }
806         if (insert && file)
807                 uprobe_mmap(insert);
808
809         validate_mm(mm);
810
811         return 0;
812 }
813
814 /*
815  * If the vma has a ->close operation then the driver probably needs to release
816  * per-vma resources, so we don't attempt to merge those.
817  */
818 static inline int is_mergeable_vma(struct vm_area_struct *vma,
819                                 struct file *file, unsigned long vm_flags,
820                                 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
821 {
822         /*
823          * VM_SOFTDIRTY should not prevent from VMA merging, if we
824          * match the flags but dirty bit -- the caller should mark
825          * merged VMA as dirty. If dirty bit won't be excluded from
826          * comparison, we increase pressue on the memory system forcing
827          * the kernel to generate new VMAs when old one could be
828          * extended instead.
829          */
830         if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
831                 return 0;
832         if (vma->vm_file != file)
833                 return 0;
834         if (vma->vm_ops && vma->vm_ops->close)
835                 return 0;
836         if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
837                 return 0;
838         return 1;
839 }
840
841 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
842                                         struct anon_vma *anon_vma2,
843                                         struct vm_area_struct *vma)
844 {
845         /*
846          * The list_is_singular() test is to avoid merging VMA cloned from
847          * parents. This can improve scalability caused by anon_vma lock.
848          */
849         if ((!anon_vma1 || !anon_vma2) && (!vma ||
850                 list_is_singular(&vma->anon_vma_chain)))
851                 return 1;
852         return anon_vma1 == anon_vma2;
853 }
854
855 /*
856  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
857  * in front of (at a lower virtual address and file offset than) the vma.
858  *
859  * We cannot merge two vmas if they have differently assigned (non-NULL)
860  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
861  *
862  * We don't check here for the merged mmap wrapping around the end of pagecache
863  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
864  * wrap, nor mmaps which cover the final page at index -1UL.
865  */
866 static int
867 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
868                      struct anon_vma *anon_vma, struct file *file,
869                      pgoff_t vm_pgoff,
870                      struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
871 {
872         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
873             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
874                 if (vma->vm_pgoff == vm_pgoff)
875                         return 1;
876         }
877         return 0;
878 }
879
880 /*
881  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
882  * beyond (at a higher virtual address and file offset than) the vma.
883  *
884  * We cannot merge two vmas if they have differently assigned (non-NULL)
885  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
886  */
887 static int
888 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
889                     struct anon_vma *anon_vma, struct file *file,
890                     pgoff_t vm_pgoff,
891                     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
892 {
893         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
894             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
895                 pgoff_t vm_pglen;
896                 vm_pglen = vma_pages(vma);
897                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
898                         return 1;
899         }
900         return 0;
901 }
902
903 /*
904  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
905  * whether that can be merged with its predecessor or its successor.
906  * Or both (it neatly fills a hole).
907  *
908  * In most cases - when called for mmap, brk or mremap - [addr,end) is
909  * certain not to be mapped by the time vma_merge is called; but when
910  * called for mprotect, it is certain to be already mapped (either at
911  * an offset within prev, or at the start of next), and the flags of
912  * this area are about to be changed to vm_flags - and the no-change
913  * case has already been eliminated.
914  *
915  * The following mprotect cases have to be considered, where AAAA is
916  * the area passed down from mprotect_fixup, never extending beyond one
917  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
918  *
919  *     AAAA             AAAA                AAAA          AAAA
920  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
921  *    cannot merge    might become    might become    might become
922  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
923  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
924  *    mremap move:                                    PPPPNNNNNNNN 8
925  *        AAAA
926  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
927  *    might become    case 1 below    case 2 below    case 3 below
928  *
929  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
930  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
931  */
932 struct vm_area_struct *vma_merge(struct mm_struct *mm,
933                         struct vm_area_struct *prev, unsigned long addr,
934                         unsigned long end, unsigned long vm_flags,
935                         struct anon_vma *anon_vma, struct file *file,
936                         pgoff_t pgoff, struct mempolicy *policy,
937                         struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
938 {
939         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
940         struct vm_area_struct *area, *next;
941         int err;
942
943         /*
944          * We later require that vma->vm_flags == vm_flags,
945          * so this tests vma->vm_flags & VM_SPECIAL, too.
946          */
947         if (vm_flags & VM_SPECIAL)
948                 return NULL;
949
950         if (prev)
951                 next = prev->vm_next;
952         else
953                 next = mm->mmap;
954         area = next;
955         if (next && next->vm_end == end)                /* cases 6, 7, 8 */
956                 next = next->vm_next;
957
958         /*
959          * Can it merge with the predecessor?
960          */
961         if (prev && prev->vm_end == addr &&
962                         mpol_equal(vma_policy(prev), policy) &&
963                         can_vma_merge_after(prev, vm_flags,
964                                             anon_vma, file, pgoff,
965                                             vm_userfaultfd_ctx)) {
966                 /*
967                  * OK, it can.  Can we now merge in the successor as well?
968                  */
969                 if (next && end == next->vm_start &&
970                                 mpol_equal(policy, vma_policy(next)) &&
971                                 can_vma_merge_before(next, vm_flags,
972                                                      anon_vma, file,
973                                                      pgoff+pglen,
974                                                      vm_userfaultfd_ctx) &&
975                                 is_mergeable_anon_vma(prev->anon_vma,
976                                                       next->anon_vma, NULL)) {
977                                                         /* cases 1, 6 */
978                         err = vma_adjust(prev, prev->vm_start,
979                                 next->vm_end, prev->vm_pgoff, NULL);
980                 } else                                  /* cases 2, 5, 7 */
981                         err = vma_adjust(prev, prev->vm_start,
982                                 end, prev->vm_pgoff, NULL);
983                 if (err)
984                         return NULL;
985                 khugepaged_enter_vma_merge(prev, vm_flags);
986                 return prev;
987         }
988
989         /*
990          * Can this new request be merged in front of next?
991          */
992         if (next && end == next->vm_start &&
993                         mpol_equal(policy, vma_policy(next)) &&
994                         can_vma_merge_before(next, vm_flags,
995                                              anon_vma, file, pgoff+pglen,
996                                              vm_userfaultfd_ctx)) {
997                 if (prev && addr < prev->vm_end)        /* case 4 */
998                         err = vma_adjust(prev, prev->vm_start,
999                                 addr, prev->vm_pgoff, NULL);
1000                 else                                    /* cases 3, 8 */
1001                         err = vma_adjust(area, addr, next->vm_end,
1002                                 next->vm_pgoff - pglen, NULL);
1003                 if (err)
1004                         return NULL;
1005                 khugepaged_enter_vma_merge(area, vm_flags);
1006                 return area;
1007         }
1008
1009         return NULL;
1010 }
1011
1012 /*
1013  * Rough compatbility check to quickly see if it's even worth looking
1014  * at sharing an anon_vma.
1015  *
1016  * They need to have the same vm_file, and the flags can only differ
1017  * in things that mprotect may change.
1018  *
1019  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1020  * we can merge the two vma's. For example, we refuse to merge a vma if
1021  * there is a vm_ops->close() function, because that indicates that the
1022  * driver is doing some kind of reference counting. But that doesn't
1023  * really matter for the anon_vma sharing case.
1024  */
1025 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1026 {
1027         return a->vm_end == b->vm_start &&
1028                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1029                 a->vm_file == b->vm_file &&
1030                 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1031                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1032 }
1033
1034 /*
1035  * Do some basic sanity checking to see if we can re-use the anon_vma
1036  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1037  * the same as 'old', the other will be the new one that is trying
1038  * to share the anon_vma.
1039  *
1040  * NOTE! This runs with mm_sem held for reading, so it is possible that
1041  * the anon_vma of 'old' is concurrently in the process of being set up
1042  * by another page fault trying to merge _that_. But that's ok: if it
1043  * is being set up, that automatically means that it will be a singleton
1044  * acceptable for merging, so we can do all of this optimistically. But
1045  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1046  *
1047  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1048  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1049  * is to return an anon_vma that is "complex" due to having gone through
1050  * a fork).
1051  *
1052  * We also make sure that the two vma's are compatible (adjacent,
1053  * and with the same memory policies). That's all stable, even with just
1054  * a read lock on the mm_sem.
1055  */
1056 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1057 {
1058         if (anon_vma_compatible(a, b)) {
1059                 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1060
1061                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1062                         return anon_vma;
1063         }
1064         return NULL;
1065 }
1066
1067 /*
1068  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1069  * neighbouring vmas for a suitable anon_vma, before it goes off
1070  * to allocate a new anon_vma.  It checks because a repetitive
1071  * sequence of mprotects and faults may otherwise lead to distinct
1072  * anon_vmas being allocated, preventing vma merge in subsequent
1073  * mprotect.
1074  */
1075 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1076 {
1077         struct anon_vma *anon_vma;
1078         struct vm_area_struct *near;
1079
1080         near = vma->vm_next;
1081         if (!near)
1082                 goto try_prev;
1083
1084         anon_vma = reusable_anon_vma(near, vma, near);
1085         if (anon_vma)
1086                 return anon_vma;
1087 try_prev:
1088         near = vma->vm_prev;
1089         if (!near)
1090                 goto none;
1091
1092         anon_vma = reusable_anon_vma(near, near, vma);
1093         if (anon_vma)
1094                 return anon_vma;
1095 none:
1096         /*
1097          * There's no absolute need to look only at touching neighbours:
1098          * we could search further afield for "compatible" anon_vmas.
1099          * But it would probably just be a waste of time searching,
1100          * or lead to too many vmas hanging off the same anon_vma.
1101          * We're trying to allow mprotect remerging later on,
1102          * not trying to minimize memory used for anon_vmas.
1103          */
1104         return NULL;
1105 }
1106
1107 /*
1108  * If a hint addr is less than mmap_min_addr change hint to be as
1109  * low as possible but still greater than mmap_min_addr
1110  */
1111 static inline unsigned long round_hint_to_min(unsigned long hint)
1112 {
1113         hint &= PAGE_MASK;
1114         if (((void *)hint != NULL) &&
1115             (hint < mmap_min_addr))
1116                 return PAGE_ALIGN(mmap_min_addr);
1117         return hint;
1118 }
1119
1120 static inline int mlock_future_check(struct mm_struct *mm,
1121                                      unsigned long flags,
1122                                      unsigned long len)
1123 {
1124         unsigned long locked, lock_limit;
1125
1126         /*  mlock MCL_FUTURE? */
1127         if (flags & VM_LOCKED) {
1128                 locked = len >> PAGE_SHIFT;
1129                 locked += mm->locked_vm;
1130                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1131                 lock_limit >>= PAGE_SHIFT;
1132                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1133                         return -EAGAIN;
1134         }
1135         return 0;
1136 }
1137
1138 /*
1139  * The caller must hold down_write(&current->mm->mmap_sem).
1140  */
1141 unsigned long do_mmap(struct file *file, unsigned long addr,
1142                         unsigned long len, unsigned long prot,
1143                         unsigned long flags, vm_flags_t vm_flags,
1144                         unsigned long pgoff, unsigned long *populate)
1145 {
1146         struct mm_struct *mm = current->mm;
1147         int pkey = 0;
1148
1149         *populate = 0;
1150
1151         if (!len)
1152                 return -EINVAL;
1153
1154         /*
1155          * Does the application expect PROT_READ to imply PROT_EXEC?
1156          *
1157          * (the exception is when the underlying filesystem is noexec
1158          *  mounted, in which case we dont add PROT_EXEC.)
1159          */
1160         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1161                 if (!(file && path_noexec(&file->f_path)))
1162                         prot |= PROT_EXEC;
1163
1164         if (!(flags & MAP_FIXED))
1165                 addr = round_hint_to_min(addr);
1166
1167         /* Careful about overflows.. */
1168         len = PAGE_ALIGN(len);
1169         if (!len)
1170                 return -ENOMEM;
1171
1172         /* offset overflow? */
1173         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1174                 return -EOVERFLOW;
1175
1176         /* Too many mappings? */
1177         if (mm->map_count > sysctl_max_map_count)
1178                 return -ENOMEM;
1179
1180         /* Obtain the address to map to. we verify (or select) it and ensure
1181          * that it represents a valid section of the address space.
1182          */
1183         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1184         if (offset_in_page(addr))
1185                 return addr;
1186
1187         if (prot == PROT_EXEC) {
1188                 pkey = execute_only_pkey(mm);
1189                 if (pkey < 0)
1190                         pkey = 0;
1191         }
1192
1193         /* Do simple checking here so the lower-level routines won't have
1194          * to. we assume access permissions have been handled by the open
1195          * of the memory object, so we don't do any here.
1196          */
1197         vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1198                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1199
1200         if (flags & MAP_LOCKED)
1201                 if (!can_do_mlock())
1202                         return -EPERM;
1203
1204         if (mlock_future_check(mm, vm_flags, len))
1205                 return -EAGAIN;
1206
1207         if (file) {
1208                 struct inode *inode = file_inode(file);
1209
1210                 switch (flags & MAP_TYPE) {
1211                 case MAP_SHARED:
1212                         if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1213                                 return -EACCES;
1214
1215                         /*
1216                          * Make sure we don't allow writing to an append-only
1217                          * file..
1218                          */
1219                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1220                                 return -EACCES;
1221
1222                         /*
1223                          * Make sure there are no mandatory locks on the file.
1224                          */
1225                         if (locks_verify_locked(file))
1226                                 return -EAGAIN;
1227
1228                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1229                         if (!(file->f_mode & FMODE_WRITE))
1230                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1231
1232                         /* fall through */
1233                 case MAP_PRIVATE:
1234                         if (!(file->f_mode & FMODE_READ))
1235                                 return -EACCES;
1236                         if (path_noexec(&file->f_path)) {
1237                                 if (vm_flags & VM_EXEC)
1238                                         return -EPERM;
1239                                 vm_flags &= ~VM_MAYEXEC;
1240                         }
1241
1242                         if (!file->f_op->mmap)
1243                                 return -ENODEV;
1244                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1245                                 return -EINVAL;
1246                         break;
1247
1248                 default:
1249                         return -EINVAL;
1250                 }
1251         } else {
1252                 switch (flags & MAP_TYPE) {
1253                 case MAP_SHARED:
1254                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1255                                 return -EINVAL;
1256                         /*
1257                          * Ignore pgoff.
1258                          */
1259                         pgoff = 0;
1260                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1261                         break;
1262                 case MAP_PRIVATE:
1263                         /*
1264                          * Set pgoff according to addr for anon_vma.
1265                          */
1266                         pgoff = addr >> PAGE_SHIFT;
1267                         break;
1268                 default:
1269                         return -EINVAL;
1270                 }
1271         }
1272
1273         /*
1274          * Set 'VM_NORESERVE' if we should not account for the
1275          * memory use of this mapping.
1276          */
1277         if (flags & MAP_NORESERVE) {
1278                 /* We honor MAP_NORESERVE if allowed to overcommit */
1279                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1280                         vm_flags |= VM_NORESERVE;
1281
1282                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1283                 if (file && is_file_hugepages(file))
1284                         vm_flags |= VM_NORESERVE;
1285         }
1286
1287         addr = mmap_region(file, addr, len, vm_flags, pgoff);
1288         if (!IS_ERR_VALUE(addr) &&
1289             ((vm_flags & VM_LOCKED) ||
1290              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1291                 *populate = len;
1292         return addr;
1293 }
1294
1295 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1296                 unsigned long, prot, unsigned long, flags,
1297                 unsigned long, fd, unsigned long, pgoff)
1298 {
1299         struct file *file = NULL;
1300         unsigned long retval;
1301
1302         if (!(flags & MAP_ANONYMOUS)) {
1303                 audit_mmap_fd(fd, flags);
1304                 file = fget(fd);
1305                 if (!file)
1306                         return -EBADF;
1307                 if (is_file_hugepages(file))
1308                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1309                 retval = -EINVAL;
1310                 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1311                         goto out_fput;
1312         } else if (flags & MAP_HUGETLB) {
1313                 struct user_struct *user = NULL;
1314                 struct hstate *hs;
1315
1316                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1317                 if (!hs)
1318                         return -EINVAL;
1319
1320                 len = ALIGN(len, huge_page_size(hs));
1321                 /*
1322                  * VM_NORESERVE is used because the reservations will be
1323                  * taken when vm_ops->mmap() is called
1324                  * A dummy user value is used because we are not locking
1325                  * memory so no accounting is necessary
1326                  */
1327                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1328                                 VM_NORESERVE,
1329                                 &user, HUGETLB_ANONHUGE_INODE,
1330                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1331                 if (IS_ERR(file))
1332                         return PTR_ERR(file);
1333         }
1334
1335         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1336
1337         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1338 out_fput:
1339         if (file)
1340                 fput(file);
1341         return retval;
1342 }
1343
1344 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1345 struct mmap_arg_struct {
1346         unsigned long addr;
1347         unsigned long len;
1348         unsigned long prot;
1349         unsigned long flags;
1350         unsigned long fd;
1351         unsigned long offset;
1352 };
1353
1354 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1355 {
1356         struct mmap_arg_struct a;
1357
1358         if (copy_from_user(&a, arg, sizeof(a)))
1359                 return -EFAULT;
1360         if (offset_in_page(a.offset))
1361                 return -EINVAL;
1362
1363         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1364                               a.offset >> PAGE_SHIFT);
1365 }
1366 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1367
1368 /*
1369  * Some shared mappigns will want the pages marked read-only
1370  * to track write events. If so, we'll downgrade vm_page_prot
1371  * to the private version (using protection_map[] without the
1372  * VM_SHARED bit).
1373  */
1374 int vma_wants_writenotify(struct vm_area_struct *vma)
1375 {
1376         vm_flags_t vm_flags = vma->vm_flags;
1377         const struct vm_operations_struct *vm_ops = vma->vm_ops;
1378
1379         /* If it was private or non-writable, the write bit is already clear */
1380         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1381                 return 0;
1382
1383         /* The backer wishes to know when pages are first written to? */
1384         if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1385                 return 1;
1386
1387         /* The open routine did something to the protections that pgprot_modify
1388          * won't preserve? */
1389         if (pgprot_val(vma->vm_page_prot) !=
1390             pgprot_val(vm_pgprot_modify(vma->vm_page_prot, vm_flags)))
1391                 return 0;
1392
1393         /* Do we need to track softdirty? */
1394         if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1395                 return 1;
1396
1397         /* Specialty mapping? */
1398         if (vm_flags & VM_PFNMAP)
1399                 return 0;
1400
1401         /* Can the mapping track the dirty pages? */
1402         return vma->vm_file && vma->vm_file->f_mapping &&
1403                 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1404 }
1405
1406 /*
1407  * We account for memory if it's a private writeable mapping,
1408  * not hugepages and VM_NORESERVE wasn't set.
1409  */
1410 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1411 {
1412         /*
1413          * hugetlb has its own accounting separate from the core VM
1414          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1415          */
1416         if (file && is_file_hugepages(file))
1417                 return 0;
1418
1419         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1420 }
1421
1422 unsigned long mmap_region(struct file *file, unsigned long addr,
1423                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1424 {
1425         struct mm_struct *mm = current->mm;
1426         struct vm_area_struct *vma, *prev;
1427         int error;
1428         struct rb_node **rb_link, *rb_parent;
1429         unsigned long charged = 0;
1430
1431         /* Check against address space limit. */
1432         if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1433                 unsigned long nr_pages;
1434
1435                 /*
1436                  * MAP_FIXED may remove pages of mappings that intersects with
1437                  * requested mapping. Account for the pages it would unmap.
1438                  */
1439                 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1440
1441                 if (!may_expand_vm(mm, vm_flags,
1442                                         (len >> PAGE_SHIFT) - nr_pages))
1443                         return -ENOMEM;
1444         }
1445
1446         /* Clear old maps */
1447         while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1448                               &rb_parent)) {
1449                 if (do_munmap(mm, addr, len))
1450                         return -ENOMEM;
1451         }
1452
1453         /*
1454          * Private writable mapping: check memory availability
1455          */
1456         if (accountable_mapping(file, vm_flags)) {
1457                 charged = len >> PAGE_SHIFT;
1458                 if (security_vm_enough_memory_mm(mm, charged))
1459                         return -ENOMEM;
1460                 vm_flags |= VM_ACCOUNT;
1461         }
1462
1463         /*
1464          * Can we just expand an old mapping?
1465          */
1466         vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1467                         NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1468         if (vma)
1469                 goto out;
1470
1471         /*
1472          * Determine the object being mapped and call the appropriate
1473          * specific mapper. the address has already been validated, but
1474          * not unmapped, but the maps are removed from the list.
1475          */
1476         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1477         if (!vma) {
1478                 error = -ENOMEM;
1479                 goto unacct_error;
1480         }
1481
1482         vma->vm_mm = mm;
1483         vma->vm_start = addr;
1484         vma->vm_end = addr + len;
1485         vma->vm_flags = vm_flags;
1486         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1487         vma->vm_pgoff = pgoff;
1488         INIT_LIST_HEAD(&vma->anon_vma_chain);
1489
1490         if (file) {
1491                 if (vm_flags & VM_DENYWRITE) {
1492                         error = deny_write_access(file);
1493                         if (error)
1494                                 goto free_vma;
1495                 }
1496                 if (vm_flags & VM_SHARED) {
1497                         error = mapping_map_writable(file->f_mapping);
1498                         if (error)
1499                                 goto allow_write_and_free_vma;
1500                 }
1501
1502                 /* ->mmap() can change vma->vm_file, but must guarantee that
1503                  * vma_link() below can deny write-access if VM_DENYWRITE is set
1504                  * and map writably if VM_SHARED is set. This usually means the
1505                  * new file must not have been exposed to user-space, yet.
1506                  */
1507                 vma->vm_file = get_file(file);
1508                 error = file->f_op->mmap(file, vma);
1509                 if (error)
1510                         goto unmap_and_free_vma;
1511
1512                 /* Can addr have changed??
1513                  *
1514                  * Answer: Yes, several device drivers can do it in their
1515                  *         f_op->mmap method. -DaveM
1516                  * Bug: If addr is changed, prev, rb_link, rb_parent should
1517                  *      be updated for vma_link()
1518                  */
1519                 WARN_ON_ONCE(addr != vma->vm_start);
1520
1521                 addr = vma->vm_start;
1522                 vm_flags = vma->vm_flags;
1523         } else if (vm_flags & VM_SHARED) {
1524                 error = shmem_zero_setup(vma);
1525                 if (error)
1526                         goto free_vma;
1527         }
1528
1529         vma_link(mm, vma, prev, rb_link, rb_parent);
1530         /* Once vma denies write, undo our temporary denial count */
1531         if (file) {
1532                 if (vm_flags & VM_SHARED)
1533                         mapping_unmap_writable(file->f_mapping);
1534                 if (vm_flags & VM_DENYWRITE)
1535                         allow_write_access(file);
1536         }
1537         file = vma->vm_file;
1538 out:
1539         perf_event_mmap(vma);
1540
1541         vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1542         if (vm_flags & VM_LOCKED) {
1543                 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1544                                         vma == get_gate_vma(current->mm)))
1545                         mm->locked_vm += (len >> PAGE_SHIFT);
1546                 else
1547                         vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1548         }
1549
1550         if (file)
1551                 uprobe_mmap(vma);
1552
1553         /*
1554          * New (or expanded) vma always get soft dirty status.
1555          * Otherwise user-space soft-dirty page tracker won't
1556          * be able to distinguish situation when vma area unmapped,
1557          * then new mapped in-place (which must be aimed as
1558          * a completely new data area).
1559          */
1560         vma->vm_flags |= VM_SOFTDIRTY;
1561
1562         vma_set_page_prot(vma);
1563
1564         return addr;
1565
1566 unmap_and_free_vma:
1567         vma->vm_file = NULL;
1568         fput(file);
1569
1570         /* Undo any partial mapping done by a device driver. */
1571         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1572         charged = 0;
1573         if (vm_flags & VM_SHARED)
1574                 mapping_unmap_writable(file->f_mapping);
1575 allow_write_and_free_vma:
1576         if (vm_flags & VM_DENYWRITE)
1577                 allow_write_access(file);
1578 free_vma:
1579         kmem_cache_free(vm_area_cachep, vma);
1580 unacct_error:
1581         if (charged)
1582                 vm_unacct_memory(charged);
1583         return error;
1584 }
1585
1586 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1587 {
1588         /*
1589          * We implement the search by looking for an rbtree node that
1590          * immediately follows a suitable gap. That is,
1591          * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1592          * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1593          * - gap_end - gap_start >= length
1594          */
1595
1596         struct mm_struct *mm = current->mm;
1597         struct vm_area_struct *vma;
1598         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1599
1600         /* Adjust search length to account for worst case alignment overhead */
1601         length = info->length + info->align_mask;
1602         if (length < info->length)
1603                 return -ENOMEM;
1604
1605         /* Adjust search limits by the desired length */
1606         if (info->high_limit < length)
1607                 return -ENOMEM;
1608         high_limit = info->high_limit - length;
1609
1610         if (info->low_limit > high_limit)
1611                 return -ENOMEM;
1612         low_limit = info->low_limit + length;
1613
1614         /* Check if rbtree root looks promising */
1615         if (RB_EMPTY_ROOT(&mm->mm_rb))
1616                 goto check_highest;
1617         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1618         if (vma->rb_subtree_gap < length)
1619                 goto check_highest;
1620
1621         while (true) {
1622                 /* Visit left subtree if it looks promising */
1623                 gap_end = vma->vm_start;
1624                 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1625                         struct vm_area_struct *left =
1626                                 rb_entry(vma->vm_rb.rb_left,
1627                                          struct vm_area_struct, vm_rb);
1628                         if (left->rb_subtree_gap >= length) {
1629                                 vma = left;
1630                                 continue;
1631                         }
1632                 }
1633
1634                 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1635 check_current:
1636                 /* Check if current node has a suitable gap */
1637                 if (gap_start > high_limit)
1638                         return -ENOMEM;
1639                 if (gap_end >= low_limit && gap_end - gap_start >= length)
1640                         goto found;
1641
1642                 /* Visit right subtree if it looks promising */
1643                 if (vma->vm_rb.rb_right) {
1644                         struct vm_area_struct *right =
1645                                 rb_entry(vma->vm_rb.rb_right,
1646                                          struct vm_area_struct, vm_rb);
1647                         if (right->rb_subtree_gap >= length) {
1648                                 vma = right;
1649                                 continue;
1650                         }
1651                 }
1652
1653                 /* Go back up the rbtree to find next candidate node */
1654                 while (true) {
1655                         struct rb_node *prev = &vma->vm_rb;
1656                         if (!rb_parent(prev))
1657                                 goto check_highest;
1658                         vma = rb_entry(rb_parent(prev),
1659                                        struct vm_area_struct, vm_rb);
1660                         if (prev == vma->vm_rb.rb_left) {
1661                                 gap_start = vma->vm_prev->vm_end;
1662                                 gap_end = vma->vm_start;
1663                                 goto check_current;
1664                         }
1665                 }
1666         }
1667
1668 check_highest:
1669         /* Check highest gap, which does not precede any rbtree node */
1670         gap_start = mm->highest_vm_end;
1671         gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1672         if (gap_start > high_limit)
1673                 return -ENOMEM;
1674
1675 found:
1676         /* We found a suitable gap. Clip it with the original low_limit. */
1677         if (gap_start < info->low_limit)
1678                 gap_start = info->low_limit;
1679
1680         /* Adjust gap address to the desired alignment */
1681         gap_start += (info->align_offset - gap_start) & info->align_mask;
1682
1683         VM_BUG_ON(gap_start + info->length > info->high_limit);
1684         VM_BUG_ON(gap_start + info->length > gap_end);
1685         return gap_start;
1686 }
1687
1688 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1689 {
1690         struct mm_struct *mm = current->mm;
1691         struct vm_area_struct *vma;
1692         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1693
1694         /* Adjust search length to account for worst case alignment overhead */
1695         length = info->length + info->align_mask;
1696         if (length < info->length)
1697                 return -ENOMEM;
1698
1699         /*
1700          * Adjust search limits by the desired length.
1701          * See implementation comment at top of unmapped_area().
1702          */
1703         gap_end = info->high_limit;
1704         if (gap_end < length)
1705                 return -ENOMEM;
1706         high_limit = gap_end - length;
1707
1708         if (info->low_limit > high_limit)
1709                 return -ENOMEM;
1710         low_limit = info->low_limit + length;
1711
1712         /* Check highest gap, which does not precede any rbtree node */
1713         gap_start = mm->highest_vm_end;
1714         if (gap_start <= high_limit)
1715                 goto found_highest;
1716
1717         /* Check if rbtree root looks promising */
1718         if (RB_EMPTY_ROOT(&mm->mm_rb))
1719                 return -ENOMEM;
1720         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1721         if (vma->rb_subtree_gap < length)
1722                 return -ENOMEM;
1723
1724         while (true) {
1725                 /* Visit right subtree if it looks promising */
1726                 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1727                 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1728                         struct vm_area_struct *right =
1729                                 rb_entry(vma->vm_rb.rb_right,
1730                                          struct vm_area_struct, vm_rb);
1731                         if (right->rb_subtree_gap >= length) {
1732                                 vma = right;
1733                                 continue;
1734                         }
1735                 }
1736
1737 check_current:
1738                 /* Check if current node has a suitable gap */
1739                 gap_end = vma->vm_start;
1740                 if (gap_end < low_limit)
1741                         return -ENOMEM;
1742                 if (gap_start <= high_limit && gap_end - gap_start >= length)
1743                         goto found;
1744
1745                 /* Visit left subtree if it looks promising */
1746                 if (vma->vm_rb.rb_left) {
1747                         struct vm_area_struct *left =
1748                                 rb_entry(vma->vm_rb.rb_left,
1749                                          struct vm_area_struct, vm_rb);
1750                         if (left->rb_subtree_gap >= length) {
1751                                 vma = left;
1752                                 continue;
1753                         }
1754                 }
1755
1756                 /* Go back up the rbtree to find next candidate node */
1757                 while (true) {
1758                         struct rb_node *prev = &vma->vm_rb;
1759                         if (!rb_parent(prev))
1760                                 return -ENOMEM;
1761                         vma = rb_entry(rb_parent(prev),
1762                                        struct vm_area_struct, vm_rb);
1763                         if (prev == vma->vm_rb.rb_right) {
1764                                 gap_start = vma->vm_prev ?
1765                                         vma->vm_prev->vm_end : 0;
1766                                 goto check_current;
1767                         }
1768                 }
1769         }
1770
1771 found:
1772         /* We found a suitable gap. Clip it with the original high_limit. */
1773         if (gap_end > info->high_limit)
1774                 gap_end = info->high_limit;
1775
1776 found_highest:
1777         /* Compute highest gap address at the desired alignment */
1778         gap_end -= info->length;
1779         gap_end -= (gap_end - info->align_offset) & info->align_mask;
1780
1781         VM_BUG_ON(gap_end < info->low_limit);
1782         VM_BUG_ON(gap_end < gap_start);
1783         return gap_end;
1784 }
1785
1786 /* Get an address range which is currently unmapped.
1787  * For shmat() with addr=0.
1788  *
1789  * Ugly calling convention alert:
1790  * Return value with the low bits set means error value,
1791  * ie
1792  *      if (ret & ~PAGE_MASK)
1793  *              error = ret;
1794  *
1795  * This function "knows" that -ENOMEM has the bits set.
1796  */
1797 #ifndef HAVE_ARCH_UNMAPPED_AREA
1798 unsigned long
1799 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1800                 unsigned long len, unsigned long pgoff, unsigned long flags)
1801 {
1802         struct mm_struct *mm = current->mm;
1803         struct vm_area_struct *vma;
1804         struct vm_unmapped_area_info info;
1805
1806         if (len > TASK_SIZE - mmap_min_addr)
1807                 return -ENOMEM;
1808
1809         if (flags & MAP_FIXED)
1810                 return addr;
1811
1812         if (addr) {
1813                 addr = PAGE_ALIGN(addr);
1814                 vma = find_vma(mm, addr);
1815                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1816                     (!vma || addr + len <= vma->vm_start))
1817                         return addr;
1818         }
1819
1820         info.flags = 0;
1821         info.length = len;
1822         info.low_limit = mm->mmap_base;
1823         info.high_limit = TASK_SIZE;
1824         info.align_mask = 0;
1825         return vm_unmapped_area(&info);
1826 }
1827 #endif
1828
1829 /*
1830  * This mmap-allocator allocates new areas top-down from below the
1831  * stack's low limit (the base):
1832  */
1833 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1834 unsigned long
1835 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1836                           const unsigned long len, const unsigned long pgoff,
1837                           const unsigned long flags)
1838 {
1839         struct vm_area_struct *vma;
1840         struct mm_struct *mm = current->mm;
1841         unsigned long addr = addr0;
1842         struct vm_unmapped_area_info info;
1843
1844         /* requested length too big for entire address space */
1845         if (len > TASK_SIZE - mmap_min_addr)
1846                 return -ENOMEM;
1847
1848         if (flags & MAP_FIXED)
1849                 return addr;
1850
1851         /* requesting a specific address */
1852         if (addr) {
1853                 addr = PAGE_ALIGN(addr);
1854                 vma = find_vma(mm, addr);
1855                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1856                                 (!vma || addr + len <= vma->vm_start))
1857                         return addr;
1858         }
1859
1860         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1861         info.length = len;
1862         info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1863         info.high_limit = mm->mmap_base;
1864         info.align_mask = 0;
1865         addr = vm_unmapped_area(&info);
1866
1867         /*
1868          * A failed mmap() very likely causes application failure,
1869          * so fall back to the bottom-up function here. This scenario
1870          * can happen with large stack limits and large mmap()
1871          * allocations.
1872          */
1873         if (offset_in_page(addr)) {
1874                 VM_BUG_ON(addr != -ENOMEM);
1875                 info.flags = 0;
1876                 info.low_limit = TASK_UNMAPPED_BASE;
1877                 info.high_limit = TASK_SIZE;
1878                 addr = vm_unmapped_area(&info);
1879         }
1880
1881         return addr;
1882 }
1883 #endif
1884
1885 unsigned long
1886 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1887                 unsigned long pgoff, unsigned long flags)
1888 {
1889         unsigned long (*get_area)(struct file *, unsigned long,
1890                                   unsigned long, unsigned long, unsigned long);
1891
1892         unsigned long error = arch_mmap_check(addr, len, flags);
1893         if (error)
1894                 return error;
1895
1896         /* Careful about overflows.. */
1897         if (len > TASK_SIZE)
1898                 return -ENOMEM;
1899
1900         get_area = current->mm->get_unmapped_area;
1901         if (file) {
1902                 if (file->f_op->get_unmapped_area)
1903                         get_area = file->f_op->get_unmapped_area;
1904         } else if (flags & MAP_SHARED) {
1905                 /*
1906                  * mmap_region() will call shmem_zero_setup() to create a file,
1907                  * so use shmem's get_unmapped_area in case it can be huge.
1908                  * do_mmap_pgoff() will clear pgoff, so match alignment.
1909                  */
1910                 pgoff = 0;
1911                 get_area = shmem_get_unmapped_area;
1912         }
1913
1914         addr = get_area(file, addr, len, pgoff, flags);
1915         if (IS_ERR_VALUE(addr))
1916                 return addr;
1917
1918         if (addr > TASK_SIZE - len)
1919                 return -ENOMEM;
1920         if (offset_in_page(addr))
1921                 return -EINVAL;
1922
1923         error = security_mmap_addr(addr);
1924         return error ? error : addr;
1925 }
1926
1927 EXPORT_SYMBOL(get_unmapped_area);
1928
1929 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1930 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1931 {
1932         struct rb_node *rb_node;
1933         struct vm_area_struct *vma;
1934
1935         /* Check the cache first. */
1936         vma = vmacache_find(mm, addr);
1937         if (likely(vma))
1938                 return vma;
1939
1940         rb_node = mm->mm_rb.rb_node;
1941
1942         while (rb_node) {
1943                 struct vm_area_struct *tmp;
1944
1945                 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1946
1947                 if (tmp->vm_end > addr) {
1948                         vma = tmp;
1949                         if (tmp->vm_start <= addr)
1950                                 break;
1951                         rb_node = rb_node->rb_left;
1952                 } else
1953                         rb_node = rb_node->rb_right;
1954         }
1955
1956         if (vma)
1957                 vmacache_update(addr, vma);
1958         return vma;
1959 }
1960
1961 EXPORT_SYMBOL(find_vma);
1962
1963 /*
1964  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
1965  */
1966 struct vm_area_struct *
1967 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1968                         struct vm_area_struct **pprev)
1969 {
1970         struct vm_area_struct *vma;
1971
1972         vma = find_vma(mm, addr);
1973         if (vma) {
1974                 *pprev = vma->vm_prev;
1975         } else {
1976                 struct rb_node *rb_node = mm->mm_rb.rb_node;
1977                 *pprev = NULL;
1978                 while (rb_node) {
1979                         *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1980                         rb_node = rb_node->rb_right;
1981                 }
1982         }
1983         return vma;
1984 }
1985
1986 /*
1987  * Verify that the stack growth is acceptable and
1988  * update accounting. This is shared with both the
1989  * grow-up and grow-down cases.
1990  */
1991 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1992 {
1993         struct mm_struct *mm = vma->vm_mm;
1994         struct rlimit *rlim = current->signal->rlim;
1995         unsigned long new_start, actual_size;
1996
1997         /* address space limit tests */
1998         if (!may_expand_vm(mm, vma->vm_flags, grow))
1999                 return -ENOMEM;
2000
2001         /* Stack limit test */
2002         actual_size = size;
2003         if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN)))
2004                 actual_size -= PAGE_SIZE;
2005         if (actual_size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2006                 return -ENOMEM;
2007
2008         /* mlock limit tests */
2009         if (vma->vm_flags & VM_LOCKED) {
2010                 unsigned long locked;
2011                 unsigned long limit;
2012                 locked = mm->locked_vm + grow;
2013                 limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2014                 limit >>= PAGE_SHIFT;
2015                 if (locked > limit && !capable(CAP_IPC_LOCK))
2016                         return -ENOMEM;
2017         }
2018
2019         /* Check to ensure the stack will not grow into a hugetlb-only region */
2020         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2021                         vma->vm_end - size;
2022         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2023                 return -EFAULT;
2024
2025         /*
2026          * Overcommit..  This must be the final test, as it will
2027          * update security statistics.
2028          */
2029         if (security_vm_enough_memory_mm(mm, grow))
2030                 return -ENOMEM;
2031
2032         return 0;
2033 }
2034
2035 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2036 /*
2037  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2038  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2039  */
2040 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2041 {
2042         struct mm_struct *mm = vma->vm_mm;
2043         int error = 0;
2044
2045         if (!(vma->vm_flags & VM_GROWSUP))
2046                 return -EFAULT;
2047
2048         /* Guard against wrapping around to address 0. */
2049         if (address < PAGE_ALIGN(address+4))
2050                 address = PAGE_ALIGN(address+4);
2051         else
2052                 return -ENOMEM;
2053
2054         /* We must make sure the anon_vma is allocated. */
2055         if (unlikely(anon_vma_prepare(vma)))
2056                 return -ENOMEM;
2057
2058         /*
2059          * vma->vm_start/vm_end cannot change under us because the caller
2060          * is required to hold the mmap_sem in read mode.  We need the
2061          * anon_vma lock to serialize against concurrent expand_stacks.
2062          */
2063         anon_vma_lock_write(vma->anon_vma);
2064
2065         /* Somebody else might have raced and expanded it already */
2066         if (address > vma->vm_end) {
2067                 unsigned long size, grow;
2068
2069                 size = address - vma->vm_start;
2070                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2071
2072                 error = -ENOMEM;
2073                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2074                         error = acct_stack_growth(vma, size, grow);
2075                         if (!error) {
2076                                 /*
2077                                  * vma_gap_update() doesn't support concurrent
2078                                  * updates, but we only hold a shared mmap_sem
2079                                  * lock here, so we need to protect against
2080                                  * concurrent vma expansions.
2081                                  * anon_vma_lock_write() doesn't help here, as
2082                                  * we don't guarantee that all growable vmas
2083                                  * in a mm share the same root anon vma.
2084                                  * So, we reuse mm->page_table_lock to guard
2085                                  * against concurrent vma expansions.
2086                                  */
2087                                 spin_lock(&mm->page_table_lock);
2088                                 if (vma->vm_flags & VM_LOCKED)
2089                                         mm->locked_vm += grow;
2090                                 vm_stat_account(mm, vma->vm_flags, grow);
2091                                 anon_vma_interval_tree_pre_update_vma(vma);
2092                                 vma->vm_end = address;
2093                                 anon_vma_interval_tree_post_update_vma(vma);
2094                                 if (vma->vm_next)
2095                                         vma_gap_update(vma->vm_next);
2096                                 else
2097                                         mm->highest_vm_end = address;
2098                                 spin_unlock(&mm->page_table_lock);
2099
2100                                 perf_event_mmap(vma);
2101                         }
2102                 }
2103         }
2104         anon_vma_unlock_write(vma->anon_vma);
2105         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2106         validate_mm(mm);
2107         return error;
2108 }
2109 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2110
2111 /*
2112  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2113  */
2114 int expand_downwards(struct vm_area_struct *vma,
2115                                    unsigned long address)
2116 {
2117         struct mm_struct *mm = vma->vm_mm;
2118         int error;
2119
2120         address &= PAGE_MASK;
2121         error = security_mmap_addr(address);
2122         if (error)
2123                 return error;
2124
2125         /* We must make sure the anon_vma is allocated. */
2126         if (unlikely(anon_vma_prepare(vma)))
2127                 return -ENOMEM;
2128
2129         /*
2130          * vma->vm_start/vm_end cannot change under us because the caller
2131          * is required to hold the mmap_sem in read mode.  We need the
2132          * anon_vma lock to serialize against concurrent expand_stacks.
2133          */
2134         anon_vma_lock_write(vma->anon_vma);
2135
2136         /* Somebody else might have raced and expanded it already */
2137         if (address < vma->vm_start) {
2138                 unsigned long size, grow;
2139
2140                 size = vma->vm_end - address;
2141                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2142
2143                 error = -ENOMEM;
2144                 if (grow <= vma->vm_pgoff) {
2145                         error = acct_stack_growth(vma, size, grow);
2146                         if (!error) {
2147                                 /*
2148                                  * vma_gap_update() doesn't support concurrent
2149                                  * updates, but we only hold a shared mmap_sem
2150                                  * lock here, so we need to protect against
2151                                  * concurrent vma expansions.
2152                                  * anon_vma_lock_write() doesn't help here, as
2153                                  * we don't guarantee that all growable vmas
2154                                  * in a mm share the same root anon vma.
2155                                  * So, we reuse mm->page_table_lock to guard
2156                                  * against concurrent vma expansions.
2157                                  */
2158                                 spin_lock(&mm->page_table_lock);
2159                                 if (vma->vm_flags & VM_LOCKED)
2160                                         mm->locked_vm += grow;
2161                                 vm_stat_account(mm, vma->vm_flags, grow);
2162                                 anon_vma_interval_tree_pre_update_vma(vma);
2163                                 vma->vm_start = address;
2164                                 vma->vm_pgoff -= grow;
2165                                 anon_vma_interval_tree_post_update_vma(vma);
2166                                 vma_gap_update(vma);
2167                                 spin_unlock(&mm->page_table_lock);
2168
2169                                 perf_event_mmap(vma);
2170                         }
2171                 }
2172         }
2173         anon_vma_unlock_write(vma->anon_vma);
2174         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2175         validate_mm(mm);
2176         return error;
2177 }
2178
2179 /*
2180  * Note how expand_stack() refuses to expand the stack all the way to
2181  * abut the next virtual mapping, *unless* that mapping itself is also
2182  * a stack mapping. We want to leave room for a guard page, after all
2183  * (the guard page itself is not added here, that is done by the
2184  * actual page faulting logic)
2185  *
2186  * This matches the behavior of the guard page logic (see mm/memory.c:
2187  * check_stack_guard_page()), which only allows the guard page to be
2188  * removed under these circumstances.
2189  */
2190 #ifdef CONFIG_STACK_GROWSUP
2191 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2192 {
2193         struct vm_area_struct *next;
2194
2195         address &= PAGE_MASK;
2196         next = vma->vm_next;
2197         if (next && next->vm_start == address + PAGE_SIZE) {
2198                 if (!(next->vm_flags & VM_GROWSUP))
2199                         return -ENOMEM;
2200         }
2201         return expand_upwards(vma, address);
2202 }
2203
2204 struct vm_area_struct *
2205 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2206 {
2207         struct vm_area_struct *vma, *prev;
2208
2209         addr &= PAGE_MASK;
2210         vma = find_vma_prev(mm, addr, &prev);
2211         if (vma && (vma->vm_start <= addr))
2212                 return vma;
2213         if (!prev || expand_stack(prev, addr))
2214                 return NULL;
2215         if (prev->vm_flags & VM_LOCKED)
2216                 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2217         return prev;
2218 }
2219 #else
2220 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2221 {
2222         struct vm_area_struct *prev;
2223
2224         address &= PAGE_MASK;
2225         prev = vma->vm_prev;
2226         if (prev && prev->vm_end == address) {
2227                 if (!(prev->vm_flags & VM_GROWSDOWN))
2228                         return -ENOMEM;
2229         }
2230         return expand_downwards(vma, address);
2231 }
2232
2233 struct vm_area_struct *
2234 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2235 {
2236         struct vm_area_struct *vma;
2237         unsigned long start;
2238
2239         addr &= PAGE_MASK;
2240         vma = find_vma(mm, addr);
2241         if (!vma)
2242                 return NULL;
2243         if (vma->vm_start <= addr)
2244                 return vma;
2245         if (!(vma->vm_flags & VM_GROWSDOWN))
2246                 return NULL;
2247         start = vma->vm_start;
2248         if (expand_stack(vma, addr))
2249                 return NULL;
2250         if (vma->vm_flags & VM_LOCKED)
2251                 populate_vma_page_range(vma, addr, start, NULL);
2252         return vma;
2253 }
2254 #endif
2255
2256 EXPORT_SYMBOL_GPL(find_extend_vma);
2257
2258 /*
2259  * Ok - we have the memory areas we should free on the vma list,
2260  * so release them, and do the vma updates.
2261  *
2262  * Called with the mm semaphore held.
2263  */
2264 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2265 {
2266         unsigned long nr_accounted = 0;
2267
2268         /* Update high watermark before we lower total_vm */
2269         update_hiwater_vm(mm);
2270         do {
2271                 long nrpages = vma_pages(vma);
2272
2273                 if (vma->vm_flags & VM_ACCOUNT)
2274                         nr_accounted += nrpages;
2275                 vm_stat_account(mm, vma->vm_flags, -nrpages);
2276                 vma = remove_vma(vma);
2277         } while (vma);
2278         vm_unacct_memory(nr_accounted);
2279         validate_mm(mm);
2280 }
2281
2282 /*
2283  * Get rid of page table information in the indicated region.
2284  *
2285  * Called with the mm semaphore held.
2286  */
2287 static void unmap_region(struct mm_struct *mm,
2288                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2289                 unsigned long start, unsigned long end)
2290 {
2291         struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2292         struct mmu_gather tlb;
2293
2294         lru_add_drain();
2295         tlb_gather_mmu(&tlb, mm, start, end);
2296         update_hiwater_rss(mm);
2297         unmap_vmas(&tlb, vma, start, end);
2298         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2299                                  next ? next->vm_start : USER_PGTABLES_CEILING);
2300         tlb_finish_mmu(&tlb, start, end);
2301 }
2302
2303 /*
2304  * Create a list of vma's touched by the unmap, removing them from the mm's
2305  * vma list as we go..
2306  */
2307 static void
2308 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2309         struct vm_area_struct *prev, unsigned long end)
2310 {
2311         struct vm_area_struct **insertion_point;
2312         struct vm_area_struct *tail_vma = NULL;
2313
2314         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2315         vma->vm_prev = NULL;
2316         do {
2317                 vma_rb_erase(vma, &mm->mm_rb);
2318                 mm->map_count--;
2319                 tail_vma = vma;
2320                 vma = vma->vm_next;
2321         } while (vma && vma->vm_start < end);
2322         *insertion_point = vma;
2323         if (vma) {
2324                 vma->vm_prev = prev;
2325                 vma_gap_update(vma);
2326         } else
2327                 mm->highest_vm_end = prev ? prev->vm_end : 0;
2328         tail_vma->vm_next = NULL;
2329
2330         /* Kill the cache */
2331         vmacache_invalidate(mm);
2332 }
2333
2334 /*
2335  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2336  * munmap path where it doesn't make sense to fail.
2337  */
2338 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2339               unsigned long addr, int new_below)
2340 {
2341         struct vm_area_struct *new;
2342         int err;
2343
2344         if (is_vm_hugetlb_page(vma) && (addr &
2345                                         ~(huge_page_mask(hstate_vma(vma)))))
2346                 return -EINVAL;
2347
2348         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2349         if (!new)
2350                 return -ENOMEM;
2351
2352         /* most fields are the same, copy all, and then fixup */
2353         *new = *vma;
2354
2355         INIT_LIST_HEAD(&new->anon_vma_chain);
2356
2357         if (new_below)
2358                 new->vm_end = addr;
2359         else {
2360                 new->vm_start = addr;
2361                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2362         }
2363
2364         err = vma_dup_policy(vma, new);
2365         if (err)
2366                 goto out_free_vma;
2367
2368         err = anon_vma_clone(new, vma);
2369         if (err)
2370                 goto out_free_mpol;
2371
2372         if (new->vm_file)
2373                 get_file(new->vm_file);
2374
2375         if (new->vm_ops && new->vm_ops->open)
2376                 new->vm_ops->open(new);
2377
2378         if (new_below)
2379                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2380                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
2381         else
2382                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2383
2384         /* Success. */
2385         if (!err)
2386                 return 0;
2387
2388         /* Clean everything up if vma_adjust failed. */
2389         if (new->vm_ops && new->vm_ops->close)
2390                 new->vm_ops->close(new);
2391         if (new->vm_file)
2392                 fput(new->vm_file);
2393         unlink_anon_vmas(new);
2394  out_free_mpol:
2395         mpol_put(vma_policy(new));
2396  out_free_vma:
2397         kmem_cache_free(vm_area_cachep, new);
2398         return err;
2399 }
2400
2401 /*
2402  * Split a vma into two pieces at address 'addr', a new vma is allocated
2403  * either for the first part or the tail.
2404  */
2405 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2406               unsigned long addr, int new_below)
2407 {
2408         if (mm->map_count >= sysctl_max_map_count)
2409                 return -ENOMEM;
2410
2411         return __split_vma(mm, vma, addr, new_below);
2412 }
2413
2414 /* Munmap is split into 2 main parts -- this part which finds
2415  * what needs doing, and the areas themselves, which do the
2416  * work.  This now handles partial unmappings.
2417  * Jeremy Fitzhardinge <jeremy@goop.org>
2418  */
2419 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2420 {
2421         unsigned long end;
2422         struct vm_area_struct *vma, *prev, *last;
2423
2424         if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2425                 return -EINVAL;
2426
2427         len = PAGE_ALIGN(len);
2428         if (len == 0)
2429                 return -EINVAL;
2430
2431         /* Find the first overlapping VMA */
2432         vma = find_vma(mm, start);
2433         if (!vma)
2434                 return 0;
2435         prev = vma->vm_prev;
2436         /* we have  start < vma->vm_end  */
2437
2438         /* if it doesn't overlap, we have nothing.. */
2439         end = start + len;
2440         if (vma->vm_start >= end)
2441                 return 0;
2442
2443         /*
2444          * If we need to split any vma, do it now to save pain later.
2445          *
2446          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2447          * unmapped vm_area_struct will remain in use: so lower split_vma
2448          * places tmp vma above, and higher split_vma places tmp vma below.
2449          */
2450         if (start > vma->vm_start) {
2451                 int error;
2452
2453                 /*
2454                  * Make sure that map_count on return from munmap() will
2455                  * not exceed its limit; but let map_count go just above
2456                  * its limit temporarily, to help free resources as expected.
2457                  */
2458                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2459                         return -ENOMEM;
2460
2461                 error = __split_vma(mm, vma, start, 0);
2462                 if (error)
2463                         return error;
2464                 prev = vma;
2465         }
2466
2467         /* Does it split the last one? */
2468         last = find_vma(mm, end);
2469         if (last && end > last->vm_start) {
2470                 int error = __split_vma(mm, last, end, 1);
2471                 if (error)
2472                         return error;
2473         }
2474         vma = prev ? prev->vm_next : mm->mmap;
2475
2476         /*
2477          * unlock any mlock()ed ranges before detaching vmas
2478          */
2479         if (mm->locked_vm) {
2480                 struct vm_area_struct *tmp = vma;
2481                 while (tmp && tmp->vm_start < end) {
2482                         if (tmp->vm_flags & VM_LOCKED) {
2483                                 mm->locked_vm -= vma_pages(tmp);
2484                                 munlock_vma_pages_all(tmp);
2485                         }
2486                         tmp = tmp->vm_next;
2487                 }
2488         }
2489
2490         /*
2491          * Remove the vma's, and unmap the actual pages
2492          */
2493         detach_vmas_to_be_unmapped(mm, vma, prev, end);
2494         unmap_region(mm, vma, prev, start, end);
2495
2496         arch_unmap(mm, vma, start, end);
2497
2498         /* Fix up all other VM information */
2499         remove_vma_list(mm, vma);
2500
2501         return 0;
2502 }
2503
2504 int vm_munmap(unsigned long start, size_t len)
2505 {
2506         int ret;
2507         struct mm_struct *mm = current->mm;
2508
2509         if (down_write_killable(&mm->mmap_sem))
2510                 return -EINTR;
2511
2512         ret = do_munmap(mm, start, len);
2513         up_write(&mm->mmap_sem);
2514         return ret;
2515 }
2516 EXPORT_SYMBOL(vm_munmap);
2517
2518 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2519 {
2520         int ret;
2521         struct mm_struct *mm = current->mm;
2522
2523         profile_munmap(addr);
2524         if (down_write_killable(&mm->mmap_sem))
2525                 return -EINTR;
2526         ret = do_munmap(mm, addr, len);
2527         up_write(&mm->mmap_sem);
2528         return ret;
2529 }
2530
2531
2532 /*
2533  * Emulation of deprecated remap_file_pages() syscall.
2534  */
2535 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2536                 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2537 {
2538
2539         struct mm_struct *mm = current->mm;
2540         struct vm_area_struct *vma;
2541         unsigned long populate = 0;
2542         unsigned long ret = -EINVAL;
2543         struct file *file;
2544
2545         pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.txt.\n",
2546                      current->comm, current->pid);
2547
2548         if (prot)
2549                 return ret;
2550         start = start & PAGE_MASK;
2551         size = size & PAGE_MASK;
2552
2553         if (start + size <= start)
2554                 return ret;
2555
2556         /* Does pgoff wrap? */
2557         if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2558                 return ret;
2559
2560         if (down_write_killable(&mm->mmap_sem))
2561                 return -EINTR;
2562
2563         vma = find_vma(mm, start);
2564
2565         if (!vma || !(vma->vm_flags & VM_SHARED))
2566                 goto out;
2567
2568         if (start < vma->vm_start)
2569                 goto out;
2570
2571         if (start + size > vma->vm_end) {
2572                 struct vm_area_struct *next;
2573
2574                 for (next = vma->vm_next; next; next = next->vm_next) {
2575                         /* hole between vmas ? */
2576                         if (next->vm_start != next->vm_prev->vm_end)
2577                                 goto out;
2578
2579                         if (next->vm_file != vma->vm_file)
2580                                 goto out;
2581
2582                         if (next->vm_flags != vma->vm_flags)
2583                                 goto out;
2584
2585                         if (start + size <= next->vm_end)
2586                                 break;
2587                 }
2588
2589                 if (!next)
2590                         goto out;
2591         }
2592
2593         prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2594         prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2595         prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2596
2597         flags &= MAP_NONBLOCK;
2598         flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2599         if (vma->vm_flags & VM_LOCKED) {
2600                 struct vm_area_struct *tmp;
2601                 flags |= MAP_LOCKED;
2602
2603                 /* drop PG_Mlocked flag for over-mapped range */
2604                 for (tmp = vma; tmp->vm_start >= start + size;
2605                                 tmp = tmp->vm_next) {
2606                         /*
2607                          * Split pmd and munlock page on the border
2608                          * of the range.
2609                          */
2610                         vma_adjust_trans_huge(tmp, start, start + size, 0);
2611
2612                         munlock_vma_pages_range(tmp,
2613                                         max(tmp->vm_start, start),
2614                                         min(tmp->vm_end, start + size));
2615                 }
2616         }
2617
2618         file = get_file(vma->vm_file);
2619         ret = do_mmap_pgoff(vma->vm_file, start, size,
2620                         prot, flags, pgoff, &populate);
2621         fput(file);
2622 out:
2623         up_write(&mm->mmap_sem);
2624         if (populate)
2625                 mm_populate(ret, populate);
2626         if (!IS_ERR_VALUE(ret))
2627                 ret = 0;
2628         return ret;
2629 }
2630
2631 static inline void verify_mm_writelocked(struct mm_struct *mm)
2632 {
2633 #ifdef CONFIG_DEBUG_VM
2634         if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2635                 WARN_ON(1);
2636                 up_read(&mm->mmap_sem);
2637         }
2638 #endif
2639 }
2640
2641 /*
2642  *  this is really a simplified "do_mmap".  it only handles
2643  *  anonymous maps.  eventually we may be able to do some
2644  *  brk-specific accounting here.
2645  */
2646 static int do_brk(unsigned long addr, unsigned long len)
2647 {
2648         struct mm_struct *mm = current->mm;
2649         struct vm_area_struct *vma, *prev;
2650         unsigned long flags;
2651         struct rb_node **rb_link, *rb_parent;
2652         pgoff_t pgoff = addr >> PAGE_SHIFT;
2653         int error;
2654
2655         len = PAGE_ALIGN(len);
2656         if (!len)
2657                 return 0;
2658
2659         flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2660
2661         error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2662         if (offset_in_page(error))
2663                 return error;
2664
2665         error = mlock_future_check(mm, mm->def_flags, len);
2666         if (error)
2667                 return error;
2668
2669         /*
2670          * mm->mmap_sem is required to protect against another thread
2671          * changing the mappings in case we sleep.
2672          */
2673         verify_mm_writelocked(mm);
2674
2675         /*
2676          * Clear old maps.  this also does some error checking for us
2677          */
2678         while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2679                               &rb_parent)) {
2680                 if (do_munmap(mm, addr, len))
2681                         return -ENOMEM;
2682         }
2683
2684         /* Check against address space limits *after* clearing old maps... */
2685         if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2686                 return -ENOMEM;
2687
2688         if (mm->map_count > sysctl_max_map_count)
2689                 return -ENOMEM;
2690
2691         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2692                 return -ENOMEM;
2693
2694         /* Can we just expand an old private anonymous mapping? */
2695         vma = vma_merge(mm, prev, addr, addr + len, flags,
2696                         NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2697         if (vma)
2698                 goto out;
2699
2700         /*
2701          * create a vma struct for an anonymous mapping
2702          */
2703         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2704         if (!vma) {
2705                 vm_unacct_memory(len >> PAGE_SHIFT);
2706                 return -ENOMEM;
2707         }
2708
2709         INIT_LIST_HEAD(&vma->anon_vma_chain);
2710         vma->vm_mm = mm;
2711         vma->vm_start = addr;
2712         vma->vm_end = addr + len;
2713         vma->vm_pgoff = pgoff;
2714         vma->vm_flags = flags;
2715         vma->vm_page_prot = vm_get_page_prot(flags);
2716         vma_link(mm, vma, prev, rb_link, rb_parent);
2717 out:
2718         perf_event_mmap(vma);
2719         mm->total_vm += len >> PAGE_SHIFT;
2720         mm->data_vm += len >> PAGE_SHIFT;
2721         if (flags & VM_LOCKED)
2722                 mm->locked_vm += (len >> PAGE_SHIFT);
2723         vma->vm_flags |= VM_SOFTDIRTY;
2724         return 0;
2725 }
2726
2727 int vm_brk(unsigned long addr, unsigned long len)
2728 {
2729         struct mm_struct *mm = current->mm;
2730         int ret;
2731         bool populate;
2732
2733         if (down_write_killable(&mm->mmap_sem))
2734                 return -EINTR;
2735
2736         ret = do_brk(addr, len);
2737         populate = ((mm->def_flags & VM_LOCKED) != 0);
2738         up_write(&mm->mmap_sem);
2739         if (populate && !ret)
2740                 mm_populate(addr, len);
2741         return ret;
2742 }
2743 EXPORT_SYMBOL(vm_brk);
2744
2745 /* Release all mmaps. */
2746 void exit_mmap(struct mm_struct *mm)
2747 {
2748         struct mmu_gather tlb;
2749         struct vm_area_struct *vma;
2750         unsigned long nr_accounted = 0;
2751
2752         /* mm's last user has gone, and its about to be pulled down */
2753         mmu_notifier_release(mm);
2754
2755         if (mm->locked_vm) {
2756                 vma = mm->mmap;
2757                 while (vma) {
2758                         if (vma->vm_flags & VM_LOCKED)
2759                                 munlock_vma_pages_all(vma);
2760                         vma = vma->vm_next;
2761                 }
2762         }
2763
2764         arch_exit_mmap(mm);
2765
2766         vma = mm->mmap;
2767         if (!vma)       /* Can happen if dup_mmap() received an OOM */
2768                 return;
2769
2770         lru_add_drain();
2771         flush_cache_mm(mm);
2772         tlb_gather_mmu(&tlb, mm, 0, -1);
2773         /* update_hiwater_rss(mm) here? but nobody should be looking */
2774         /* Use -1 here to ensure all VMAs in the mm are unmapped */
2775         unmap_vmas(&tlb, vma, 0, -1);
2776
2777         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2778         tlb_finish_mmu(&tlb, 0, -1);
2779
2780         /*
2781          * Walk the list again, actually closing and freeing it,
2782          * with preemption enabled, without holding any MM locks.
2783          */
2784         while (vma) {
2785                 if (vma->vm_flags & VM_ACCOUNT)
2786                         nr_accounted += vma_pages(vma);
2787                 vma = remove_vma(vma);
2788         }
2789         vm_unacct_memory(nr_accounted);
2790 }
2791
2792 /* Insert vm structure into process list sorted by address
2793  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2794  * then i_mmap_rwsem is taken here.
2795  */
2796 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2797 {
2798         struct vm_area_struct *prev;
2799         struct rb_node **rb_link, *rb_parent;
2800
2801         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2802                            &prev, &rb_link, &rb_parent))
2803                 return -ENOMEM;
2804         if ((vma->vm_flags & VM_ACCOUNT) &&
2805              security_vm_enough_memory_mm(mm, vma_pages(vma)))
2806                 return -ENOMEM;
2807
2808         /*
2809          * The vm_pgoff of a purely anonymous vma should be irrelevant
2810          * until its first write fault, when page's anon_vma and index
2811          * are set.  But now set the vm_pgoff it will almost certainly
2812          * end up with (unless mremap moves it elsewhere before that
2813          * first wfault), so /proc/pid/maps tells a consistent story.
2814          *
2815          * By setting it to reflect the virtual start address of the
2816          * vma, merges and splits can happen in a seamless way, just
2817          * using the existing file pgoff checks and manipulations.
2818          * Similarly in do_mmap_pgoff and in do_brk.
2819          */
2820         if (vma_is_anonymous(vma)) {
2821                 BUG_ON(vma->anon_vma);
2822                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2823         }
2824
2825         vma_link(mm, vma, prev, rb_link, rb_parent);
2826         return 0;
2827 }
2828
2829 /*
2830  * Copy the vma structure to a new location in the same mm,
2831  * prior to moving page table entries, to effect an mremap move.
2832  */
2833 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2834         unsigned long addr, unsigned long len, pgoff_t pgoff,
2835         bool *need_rmap_locks)
2836 {
2837         struct vm_area_struct *vma = *vmap;
2838         unsigned long vma_start = vma->vm_start;
2839         struct mm_struct *mm = vma->vm_mm;
2840         struct vm_area_struct *new_vma, *prev;
2841         struct rb_node **rb_link, *rb_parent;
2842         bool faulted_in_anon_vma = true;
2843
2844         /*
2845          * If anonymous vma has not yet been faulted, update new pgoff
2846          * to match new location, to increase its chance of merging.
2847          */
2848         if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
2849                 pgoff = addr >> PAGE_SHIFT;
2850                 faulted_in_anon_vma = false;
2851         }
2852
2853         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2854                 return NULL;    /* should never get here */
2855         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2856                             vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
2857                             vma->vm_userfaultfd_ctx);
2858         if (new_vma) {
2859                 /*
2860                  * Source vma may have been merged into new_vma
2861                  */
2862                 if (unlikely(vma_start >= new_vma->vm_start &&
2863                              vma_start < new_vma->vm_end)) {
2864                         /*
2865                          * The only way we can get a vma_merge with
2866                          * self during an mremap is if the vma hasn't
2867                          * been faulted in yet and we were allowed to
2868                          * reset the dst vma->vm_pgoff to the
2869                          * destination address of the mremap to allow
2870                          * the merge to happen. mremap must change the
2871                          * vm_pgoff linearity between src and dst vmas
2872                          * (in turn preventing a vma_merge) to be
2873                          * safe. It is only safe to keep the vm_pgoff
2874                          * linear if there are no pages mapped yet.
2875                          */
2876                         VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
2877                         *vmap = vma = new_vma;
2878                 }
2879                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2880         } else {
2881                 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2882                 if (!new_vma)
2883                         goto out;
2884                 *new_vma = *vma;
2885                 new_vma->vm_start = addr;
2886                 new_vma->vm_end = addr + len;
2887                 new_vma->vm_pgoff = pgoff;
2888                 if (vma_dup_policy(vma, new_vma))
2889                         goto out_free_vma;
2890                 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2891                 if (anon_vma_clone(new_vma, vma))
2892                         goto out_free_mempol;
2893                 if (new_vma->vm_file)
2894                         get_file(new_vma->vm_file);
2895                 if (new_vma->vm_ops && new_vma->vm_ops->open)
2896                         new_vma->vm_ops->open(new_vma);
2897                 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2898                 *need_rmap_locks = false;
2899         }
2900         return new_vma;
2901
2902 out_free_mempol:
2903         mpol_put(vma_policy(new_vma));
2904 out_free_vma:
2905         kmem_cache_free(vm_area_cachep, new_vma);
2906 out:
2907         return NULL;
2908 }
2909
2910 /*
2911  * Return true if the calling process may expand its vm space by the passed
2912  * number of pages
2913  */
2914 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
2915 {
2916         if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
2917                 return false;
2918
2919         if (is_data_mapping(flags) &&
2920             mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
2921                 /* Workaround for Valgrind */
2922                 if (rlimit(RLIMIT_DATA) == 0 &&
2923                     mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
2924                         return true;
2925                 if (!ignore_rlimit_data) {
2926                         pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits or use boot option ignore_rlimit_data.\n",
2927                                      current->comm, current->pid,
2928                                      (mm->data_vm + npages) << PAGE_SHIFT,
2929                                      rlimit(RLIMIT_DATA));
2930                         return false;
2931                 }
2932         }
2933
2934         return true;
2935 }
2936
2937 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
2938 {
2939         mm->total_vm += npages;
2940
2941         if (is_exec_mapping(flags))
2942                 mm->exec_vm += npages;
2943         else if (is_stack_mapping(flags))
2944                 mm->stack_vm += npages;
2945         else if (is_data_mapping(flags))
2946                 mm->data_vm += npages;
2947 }
2948
2949 static int special_mapping_fault(struct vm_area_struct *vma,
2950                                  struct vm_fault *vmf);
2951
2952 /*
2953  * Having a close hook prevents vma merging regardless of flags.
2954  */
2955 static void special_mapping_close(struct vm_area_struct *vma)
2956 {
2957 }
2958
2959 static const char *special_mapping_name(struct vm_area_struct *vma)
2960 {
2961         return ((struct vm_special_mapping *)vma->vm_private_data)->name;
2962 }
2963
2964 static int special_mapping_mremap(struct vm_area_struct *new_vma)
2965 {
2966         struct vm_special_mapping *sm = new_vma->vm_private_data;
2967
2968         if (sm->mremap)
2969                 return sm->mremap(sm, new_vma);
2970         return 0;
2971 }
2972
2973 static const struct vm_operations_struct special_mapping_vmops = {
2974         .close = special_mapping_close,
2975         .fault = special_mapping_fault,
2976         .mremap = special_mapping_mremap,
2977         .name = special_mapping_name,
2978 };
2979
2980 static const struct vm_operations_struct legacy_special_mapping_vmops = {
2981         .close = special_mapping_close,
2982         .fault = special_mapping_fault,
2983 };
2984
2985 static int special_mapping_fault(struct vm_area_struct *vma,
2986                                 struct vm_fault *vmf)
2987 {
2988         pgoff_t pgoff;
2989         struct page **pages;
2990
2991         if (vma->vm_ops == &legacy_special_mapping_vmops) {
2992                 pages = vma->vm_private_data;
2993         } else {
2994                 struct vm_special_mapping *sm = vma->vm_private_data;
2995
2996                 if (sm->fault)
2997                         return sm->fault(sm, vma, vmf);
2998
2999                 pages = sm->pages;
3000         }
3001
3002         for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3003                 pgoff--;
3004
3005         if (*pages) {
3006                 struct page *page = *pages;
3007                 get_page(page);
3008                 vmf->page = page;
3009                 return 0;
3010         }
3011
3012         return VM_FAULT_SIGBUS;
3013 }
3014
3015 static struct vm_area_struct *__install_special_mapping(
3016         struct mm_struct *mm,
3017         unsigned long addr, unsigned long len,
3018         unsigned long vm_flags, void *priv,
3019         const struct vm_operations_struct *ops)
3020 {
3021         int ret;
3022         struct vm_area_struct *vma;
3023
3024         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3025         if (unlikely(vma == NULL))
3026                 return ERR_PTR(-ENOMEM);
3027
3028         INIT_LIST_HEAD(&vma->anon_vma_chain);
3029         vma->vm_mm = mm;
3030         vma->vm_start = addr;
3031         vma->vm_end = addr + len;
3032
3033         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3034         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3035
3036         vma->vm_ops = ops;
3037         vma->vm_private_data = priv;
3038
3039         ret = insert_vm_struct(mm, vma);
3040         if (ret)
3041                 goto out;
3042
3043         vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3044
3045         perf_event_mmap(vma);
3046
3047         return vma;
3048
3049 out:
3050         kmem_cache_free(vm_area_cachep, vma);
3051         return ERR_PTR(ret);
3052 }
3053
3054 /*
3055  * Called with mm->mmap_sem held for writing.
3056  * Insert a new vma covering the given region, with the given flags.
3057  * Its pages are supplied by the given array of struct page *.
3058  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3059  * The region past the last page supplied will always produce SIGBUS.
3060  * The array pointer and the pages it points to are assumed to stay alive
3061  * for as long as this mapping might exist.
3062  */
3063 struct vm_area_struct *_install_special_mapping(
3064         struct mm_struct *mm,
3065         unsigned long addr, unsigned long len,
3066         unsigned long vm_flags, const struct vm_special_mapping *spec)
3067 {
3068         return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3069                                         &special_mapping_vmops);
3070 }
3071
3072 int install_special_mapping(struct mm_struct *mm,
3073                             unsigned long addr, unsigned long len,
3074                             unsigned long vm_flags, struct page **pages)
3075 {
3076         struct vm_area_struct *vma = __install_special_mapping(
3077                 mm, addr, len, vm_flags, (void *)pages,
3078                 &legacy_special_mapping_vmops);
3079
3080         return PTR_ERR_OR_ZERO(vma);
3081 }
3082
3083 static DEFINE_MUTEX(mm_all_locks_mutex);
3084
3085 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3086 {
3087         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3088                 /*
3089                  * The LSB of head.next can't change from under us
3090                  * because we hold the mm_all_locks_mutex.
3091                  */
3092                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3093                 /*
3094                  * We can safely modify head.next after taking the
3095                  * anon_vma->root->rwsem. If some other vma in this mm shares
3096                  * the same anon_vma we won't take it again.
3097                  *
3098                  * No need of atomic instructions here, head.next
3099                  * can't change from under us thanks to the
3100                  * anon_vma->root->rwsem.
3101                  */
3102                 if (__test_and_set_bit(0, (unsigned long *)
3103                                        &anon_vma->root->rb_root.rb_node))
3104                         BUG();
3105         }
3106 }
3107
3108 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3109 {
3110         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3111                 /*
3112                  * AS_MM_ALL_LOCKS can't change from under us because
3113                  * we hold the mm_all_locks_mutex.
3114                  *
3115                  * Operations on ->flags have to be atomic because
3116                  * even if AS_MM_ALL_LOCKS is stable thanks to the
3117                  * mm_all_locks_mutex, there may be other cpus
3118                  * changing other bitflags in parallel to us.
3119                  */
3120                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3121                         BUG();
3122                 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3123         }
3124 }
3125
3126 /*
3127  * This operation locks against the VM for all pte/vma/mm related
3128  * operations that could ever happen on a certain mm. This includes
3129  * vmtruncate, try_to_unmap, and all page faults.
3130  *
3131  * The caller must take the mmap_sem in write mode before calling
3132  * mm_take_all_locks(). The caller isn't allowed to release the
3133  * mmap_sem until mm_drop_all_locks() returns.
3134  *
3135  * mmap_sem in write mode is required in order to block all operations
3136  * that could modify pagetables and free pages without need of
3137  * altering the vma layout. It's also needed in write mode to avoid new
3138  * anon_vmas to be associated with existing vmas.
3139  *
3140  * A single task can't take more than one mm_take_all_locks() in a row
3141  * or it would deadlock.
3142  *
3143  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3144  * mapping->flags avoid to take the same lock twice, if more than one
3145  * vma in this mm is backed by the same anon_vma or address_space.
3146  *
3147  * We take locks in following order, accordingly to comment at beginning
3148  * of mm/rmap.c:
3149  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3150  *     hugetlb mapping);
3151  *   - all i_mmap_rwsem locks;
3152  *   - all anon_vma->rwseml
3153  *
3154  * We can take all locks within these types randomly because the VM code
3155  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3156  * mm_all_locks_mutex.
3157  *
3158  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3159  * that may have to take thousand of locks.
3160  *
3161  * mm_take_all_locks() can fail if it's interrupted by signals.
3162  */
3163 int mm_take_all_locks(struct mm_struct *mm)
3164 {
3165         struct vm_area_struct *vma;
3166         struct anon_vma_chain *avc;
3167
3168         BUG_ON(down_read_trylock(&mm->mmap_sem));
3169
3170         mutex_lock(&mm_all_locks_mutex);
3171
3172         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3173                 if (signal_pending(current))
3174                         goto out_unlock;
3175                 if (vma->vm_file && vma->vm_file->f_mapping &&
3176                                 is_vm_hugetlb_page(vma))
3177                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3178         }
3179
3180         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3181                 if (signal_pending(current))
3182                         goto out_unlock;
3183                 if (vma->vm_file && vma->vm_file->f_mapping &&
3184                                 !is_vm_hugetlb_page(vma))
3185                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3186         }
3187
3188         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3189                 if (signal_pending(current))
3190                         goto out_unlock;
3191                 if (vma->anon_vma)
3192                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3193                                 vm_lock_anon_vma(mm, avc->anon_vma);
3194         }
3195
3196         return 0;
3197
3198 out_unlock:
3199         mm_drop_all_locks(mm);
3200         return -EINTR;
3201 }
3202
3203 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3204 {
3205         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3206                 /*
3207                  * The LSB of head.next can't change to 0 from under
3208                  * us because we hold the mm_all_locks_mutex.
3209                  *
3210                  * We must however clear the bitflag before unlocking
3211                  * the vma so the users using the anon_vma->rb_root will
3212                  * never see our bitflag.
3213                  *
3214                  * No need of atomic instructions here, head.next
3215                  * can't change from under us until we release the
3216                  * anon_vma->root->rwsem.
3217                  */
3218                 if (!__test_and_clear_bit(0, (unsigned long *)
3219                                           &anon_vma->root->rb_root.rb_node))
3220                         BUG();
3221                 anon_vma_unlock_write(anon_vma);
3222         }
3223 }
3224
3225 static void vm_unlock_mapping(struct address_space *mapping)
3226 {
3227         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3228                 /*
3229                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3230                  * because we hold the mm_all_locks_mutex.
3231                  */
3232                 i_mmap_unlock_write(mapping);
3233                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3234                                         &mapping->flags))
3235                         BUG();
3236         }
3237 }
3238
3239 /*
3240  * The mmap_sem cannot be released by the caller until
3241  * mm_drop_all_locks() returns.
3242  */
3243 void mm_drop_all_locks(struct mm_struct *mm)
3244 {
3245         struct vm_area_struct *vma;
3246         struct anon_vma_chain *avc;
3247
3248         BUG_ON(down_read_trylock(&mm->mmap_sem));
3249         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3250
3251         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3252                 if (vma->anon_vma)
3253                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3254                                 vm_unlock_anon_vma(avc->anon_vma);
3255                 if (vma->vm_file && vma->vm_file->f_mapping)
3256                         vm_unlock_mapping(vma->vm_file->f_mapping);
3257         }
3258
3259         mutex_unlock(&mm_all_locks_mutex);
3260 }
3261
3262 /*
3263  * initialise the VMA slab
3264  */
3265 void __init mmap_init(void)
3266 {
3267         int ret;
3268
3269         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3270         VM_BUG_ON(ret);
3271 }
3272
3273 /*
3274  * Initialise sysctl_user_reserve_kbytes.
3275  *
3276  * This is intended to prevent a user from starting a single memory hogging
3277  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3278  * mode.
3279  *
3280  * The default value is min(3% of free memory, 128MB)
3281  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3282  */
3283 static int init_user_reserve(void)
3284 {
3285         unsigned long free_kbytes;
3286
3287         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3288
3289         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3290         return 0;
3291 }
3292 subsys_initcall(init_user_reserve);
3293
3294 /*
3295  * Initialise sysctl_admin_reserve_kbytes.
3296  *
3297  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3298  * to log in and kill a memory hogging process.
3299  *
3300  * Systems with more than 256MB will reserve 8MB, enough to recover
3301  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3302  * only reserve 3% of free pages by default.
3303  */
3304 static int init_admin_reserve(void)
3305 {
3306         unsigned long free_kbytes;
3307
3308         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3309
3310         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3311         return 0;
3312 }
3313 subsys_initcall(init_admin_reserve);
3314
3315 /*
3316  * Reinititalise user and admin reserves if memory is added or removed.
3317  *
3318  * The default user reserve max is 128MB, and the default max for the
3319  * admin reserve is 8MB. These are usually, but not always, enough to
3320  * enable recovery from a memory hogging process using login/sshd, a shell,
3321  * and tools like top. It may make sense to increase or even disable the
3322  * reserve depending on the existence of swap or variations in the recovery
3323  * tools. So, the admin may have changed them.
3324  *
3325  * If memory is added and the reserves have been eliminated or increased above
3326  * the default max, then we'll trust the admin.
3327  *
3328  * If memory is removed and there isn't enough free memory, then we
3329  * need to reset the reserves.
3330  *
3331  * Otherwise keep the reserve set by the admin.
3332  */
3333 static int reserve_mem_notifier(struct notifier_block *nb,
3334                              unsigned long action, void *data)
3335 {
3336         unsigned long tmp, free_kbytes;
3337
3338         switch (action) {
3339         case MEM_ONLINE:
3340                 /* Default max is 128MB. Leave alone if modified by operator. */
3341                 tmp = sysctl_user_reserve_kbytes;
3342                 if (0 < tmp && tmp < (1UL << 17))
3343                         init_user_reserve();
3344
3345                 /* Default max is 8MB.  Leave alone if modified by operator. */
3346                 tmp = sysctl_admin_reserve_kbytes;
3347                 if (0 < tmp && tmp < (1UL << 13))
3348                         init_admin_reserve();
3349
3350                 break;
3351         case MEM_OFFLINE:
3352                 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3353
3354                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3355                         init_user_reserve();
3356                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3357                                 sysctl_user_reserve_kbytes);
3358                 }
3359
3360                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3361                         init_admin_reserve();
3362                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3363                                 sysctl_admin_reserve_kbytes);
3364                 }
3365                 break;
3366         default:
3367                 break;
3368         }
3369         return NOTIFY_OK;
3370 }
3371
3372 static struct notifier_block reserve_mem_nb = {
3373         .notifier_call = reserve_mem_notifier,
3374 };
3375
3376 static int __meminit init_reserve_notifier(void)
3377 {
3378         if (register_hotmemory_notifier(&reserve_mem_nb))
3379                 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3380
3381         return 0;
3382 }
3383 subsys_initcall(init_reserve_notifier);