Merge tag 'drivers-for-3.17' of git://git.kernel.org/pub/scm/linux/kernel/git/arm...
[cascardo/linux.git] / mm / mmap.c
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/profile.h>
29 #include <linux/export.h>
30 #include <linux/mount.h>
31 #include <linux/mempolicy.h>
32 #include <linux/rmap.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/mmdebug.h>
35 #include <linux/perf_event.h>
36 #include <linux/audit.h>
37 #include <linux/khugepaged.h>
38 #include <linux/uprobes.h>
39 #include <linux/rbtree_augmented.h>
40 #include <linux/sched/sysctl.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44
45 #include <asm/uaccess.h>
46 #include <asm/cacheflush.h>
47 #include <asm/tlb.h>
48 #include <asm/mmu_context.h>
49
50 #include "internal.h"
51
52 #ifndef arch_mmap_check
53 #define arch_mmap_check(addr, len, flags)       (0)
54 #endif
55
56 #ifndef arch_rebalance_pgtables
57 #define arch_rebalance_pgtables(addr, len)              (addr)
58 #endif
59
60 static void unmap_region(struct mm_struct *mm,
61                 struct vm_area_struct *vma, struct vm_area_struct *prev,
62                 unsigned long start, unsigned long end);
63
64 /* description of effects of mapping type and prot in current implementation.
65  * this is due to the limited x86 page protection hardware.  The expected
66  * behavior is in parens:
67  *
68  * map_type     prot
69  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
70  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
71  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
72  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
73  *              
74  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
75  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
76  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
77  *
78  */
79 pgprot_t protection_map[16] = {
80         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
81         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
82 };
83
84 pgprot_t vm_get_page_prot(unsigned long vm_flags)
85 {
86         return __pgprot(pgprot_val(protection_map[vm_flags &
87                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
88                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
89 }
90 EXPORT_SYMBOL(vm_get_page_prot);
91
92 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
93 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
94 unsigned long sysctl_overcommit_kbytes __read_mostly;
95 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
96 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
97 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
98 /*
99  * Make sure vm_committed_as in one cacheline and not cacheline shared with
100  * other variables. It can be updated by several CPUs frequently.
101  */
102 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
103
104 /*
105  * The global memory commitment made in the system can be a metric
106  * that can be used to drive ballooning decisions when Linux is hosted
107  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
108  * balancing memory across competing virtual machines that are hosted.
109  * Several metrics drive this policy engine including the guest reported
110  * memory commitment.
111  */
112 unsigned long vm_memory_committed(void)
113 {
114         return percpu_counter_read_positive(&vm_committed_as);
115 }
116 EXPORT_SYMBOL_GPL(vm_memory_committed);
117
118 /*
119  * Check that a process has enough memory to allocate a new virtual
120  * mapping. 0 means there is enough memory for the allocation to
121  * succeed and -ENOMEM implies there is not.
122  *
123  * We currently support three overcommit policies, which are set via the
124  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
125  *
126  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
127  * Additional code 2002 Jul 20 by Robert Love.
128  *
129  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
130  *
131  * Note this is a helper function intended to be used by LSMs which
132  * wish to use this logic.
133  */
134 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
135 {
136         unsigned long free, allowed, reserve;
137
138         VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
139                         -(s64)vm_committed_as_batch * num_online_cpus(),
140                         "memory commitment underflow");
141
142         vm_acct_memory(pages);
143
144         /*
145          * Sometimes we want to use more memory than we have
146          */
147         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
148                 return 0;
149
150         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
151                 free = global_page_state(NR_FREE_PAGES);
152                 free += global_page_state(NR_FILE_PAGES);
153
154                 /*
155                  * shmem pages shouldn't be counted as free in this
156                  * case, they can't be purged, only swapped out, and
157                  * that won't affect the overall amount of available
158                  * memory in the system.
159                  */
160                 free -= global_page_state(NR_SHMEM);
161
162                 free += get_nr_swap_pages();
163
164                 /*
165                  * Any slabs which are created with the
166                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
167                  * which are reclaimable, under pressure.  The dentry
168                  * cache and most inode caches should fall into this
169                  */
170                 free += global_page_state(NR_SLAB_RECLAIMABLE);
171
172                 /*
173                  * Leave reserved pages. The pages are not for anonymous pages.
174                  */
175                 if (free <= totalreserve_pages)
176                         goto error;
177                 else
178                         free -= totalreserve_pages;
179
180                 /*
181                  * Reserve some for root
182                  */
183                 if (!cap_sys_admin)
184                         free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
185
186                 if (free > pages)
187                         return 0;
188
189                 goto error;
190         }
191
192         allowed = vm_commit_limit();
193         /*
194          * Reserve some for root
195          */
196         if (!cap_sys_admin)
197                 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
198
199         /*
200          * Don't let a single process grow so big a user can't recover
201          */
202         if (mm) {
203                 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
204                 allowed -= min(mm->total_vm / 32, reserve);
205         }
206
207         if (percpu_counter_read_positive(&vm_committed_as) < allowed)
208                 return 0;
209 error:
210         vm_unacct_memory(pages);
211
212         return -ENOMEM;
213 }
214
215 /*
216  * Requires inode->i_mapping->i_mmap_mutex
217  */
218 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
219                 struct file *file, struct address_space *mapping)
220 {
221         if (vma->vm_flags & VM_DENYWRITE)
222                 atomic_inc(&file_inode(file)->i_writecount);
223         if (vma->vm_flags & VM_SHARED)
224                 mapping->i_mmap_writable--;
225
226         flush_dcache_mmap_lock(mapping);
227         if (unlikely(vma->vm_flags & VM_NONLINEAR))
228                 list_del_init(&vma->shared.nonlinear);
229         else
230                 vma_interval_tree_remove(vma, &mapping->i_mmap);
231         flush_dcache_mmap_unlock(mapping);
232 }
233
234 /*
235  * Unlink a file-based vm structure from its interval tree, to hide
236  * vma from rmap and vmtruncate before freeing its page tables.
237  */
238 void unlink_file_vma(struct vm_area_struct *vma)
239 {
240         struct file *file = vma->vm_file;
241
242         if (file) {
243                 struct address_space *mapping = file->f_mapping;
244                 mutex_lock(&mapping->i_mmap_mutex);
245                 __remove_shared_vm_struct(vma, file, mapping);
246                 mutex_unlock(&mapping->i_mmap_mutex);
247         }
248 }
249
250 /*
251  * Close a vm structure and free it, returning the next.
252  */
253 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
254 {
255         struct vm_area_struct *next = vma->vm_next;
256
257         might_sleep();
258         if (vma->vm_ops && vma->vm_ops->close)
259                 vma->vm_ops->close(vma);
260         if (vma->vm_file)
261                 fput(vma->vm_file);
262         mpol_put(vma_policy(vma));
263         kmem_cache_free(vm_area_cachep, vma);
264         return next;
265 }
266
267 static unsigned long do_brk(unsigned long addr, unsigned long len);
268
269 SYSCALL_DEFINE1(brk, unsigned long, brk)
270 {
271         unsigned long rlim, retval;
272         unsigned long newbrk, oldbrk;
273         struct mm_struct *mm = current->mm;
274         unsigned long min_brk;
275         bool populate;
276
277         down_write(&mm->mmap_sem);
278
279 #ifdef CONFIG_COMPAT_BRK
280         /*
281          * CONFIG_COMPAT_BRK can still be overridden by setting
282          * randomize_va_space to 2, which will still cause mm->start_brk
283          * to be arbitrarily shifted
284          */
285         if (current->brk_randomized)
286                 min_brk = mm->start_brk;
287         else
288                 min_brk = mm->end_data;
289 #else
290         min_brk = mm->start_brk;
291 #endif
292         if (brk < min_brk)
293                 goto out;
294
295         /*
296          * Check against rlimit here. If this check is done later after the test
297          * of oldbrk with newbrk then it can escape the test and let the data
298          * segment grow beyond its set limit the in case where the limit is
299          * not page aligned -Ram Gupta
300          */
301         rlim = rlimit(RLIMIT_DATA);
302         if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
303                         (mm->end_data - mm->start_data) > rlim)
304                 goto out;
305
306         newbrk = PAGE_ALIGN(brk);
307         oldbrk = PAGE_ALIGN(mm->brk);
308         if (oldbrk == newbrk)
309                 goto set_brk;
310
311         /* Always allow shrinking brk. */
312         if (brk <= mm->brk) {
313                 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
314                         goto set_brk;
315                 goto out;
316         }
317
318         /* Check against existing mmap mappings. */
319         if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
320                 goto out;
321
322         /* Ok, looks good - let it rip. */
323         if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
324                 goto out;
325
326 set_brk:
327         mm->brk = brk;
328         populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
329         up_write(&mm->mmap_sem);
330         if (populate)
331                 mm_populate(oldbrk, newbrk - oldbrk);
332         return brk;
333
334 out:
335         retval = mm->brk;
336         up_write(&mm->mmap_sem);
337         return retval;
338 }
339
340 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
341 {
342         unsigned long max, subtree_gap;
343         max = vma->vm_start;
344         if (vma->vm_prev)
345                 max -= vma->vm_prev->vm_end;
346         if (vma->vm_rb.rb_left) {
347                 subtree_gap = rb_entry(vma->vm_rb.rb_left,
348                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
349                 if (subtree_gap > max)
350                         max = subtree_gap;
351         }
352         if (vma->vm_rb.rb_right) {
353                 subtree_gap = rb_entry(vma->vm_rb.rb_right,
354                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
355                 if (subtree_gap > max)
356                         max = subtree_gap;
357         }
358         return max;
359 }
360
361 #ifdef CONFIG_DEBUG_VM_RB
362 static int browse_rb(struct rb_root *root)
363 {
364         int i = 0, j, bug = 0;
365         struct rb_node *nd, *pn = NULL;
366         unsigned long prev = 0, pend = 0;
367
368         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
369                 struct vm_area_struct *vma;
370                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
371                 if (vma->vm_start < prev) {
372                         pr_info("vm_start %lx prev %lx\n", vma->vm_start, prev);
373                         bug = 1;
374                 }
375                 if (vma->vm_start < pend) {
376                         pr_info("vm_start %lx pend %lx\n", vma->vm_start, pend);
377                         bug = 1;
378                 }
379                 if (vma->vm_start > vma->vm_end) {
380                         pr_info("vm_end %lx < vm_start %lx\n",
381                                 vma->vm_end, vma->vm_start);
382                         bug = 1;
383                 }
384                 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
385                         pr_info("free gap %lx, correct %lx\n",
386                                vma->rb_subtree_gap,
387                                vma_compute_subtree_gap(vma));
388                         bug = 1;
389                 }
390                 i++;
391                 pn = nd;
392                 prev = vma->vm_start;
393                 pend = vma->vm_end;
394         }
395         j = 0;
396         for (nd = pn; nd; nd = rb_prev(nd))
397                 j++;
398         if (i != j) {
399                 pr_info("backwards %d, forwards %d\n", j, i);
400                 bug = 1;
401         }
402         return bug ? -1 : i;
403 }
404
405 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
406 {
407         struct rb_node *nd;
408
409         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
410                 struct vm_area_struct *vma;
411                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
412                 BUG_ON(vma != ignore &&
413                        vma->rb_subtree_gap != vma_compute_subtree_gap(vma));
414         }
415 }
416
417 static void validate_mm(struct mm_struct *mm)
418 {
419         int bug = 0;
420         int i = 0;
421         unsigned long highest_address = 0;
422         struct vm_area_struct *vma = mm->mmap;
423         while (vma) {
424                 struct anon_vma_chain *avc;
425                 vma_lock_anon_vma(vma);
426                 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
427                         anon_vma_interval_tree_verify(avc);
428                 vma_unlock_anon_vma(vma);
429                 highest_address = vma->vm_end;
430                 vma = vma->vm_next;
431                 i++;
432         }
433         if (i != mm->map_count) {
434                 pr_info("map_count %d vm_next %d\n", mm->map_count, i);
435                 bug = 1;
436         }
437         if (highest_address != mm->highest_vm_end) {
438                 pr_info("mm->highest_vm_end %lx, found %lx\n",
439                        mm->highest_vm_end, highest_address);
440                 bug = 1;
441         }
442         i = browse_rb(&mm->mm_rb);
443         if (i != mm->map_count) {
444                 pr_info("map_count %d rb %d\n", mm->map_count, i);
445                 bug = 1;
446         }
447         BUG_ON(bug);
448 }
449 #else
450 #define validate_mm_rb(root, ignore) do { } while (0)
451 #define validate_mm(mm) do { } while (0)
452 #endif
453
454 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
455                      unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
456
457 /*
458  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
459  * vma->vm_prev->vm_end values changed, without modifying the vma's position
460  * in the rbtree.
461  */
462 static void vma_gap_update(struct vm_area_struct *vma)
463 {
464         /*
465          * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
466          * function that does exacltly what we want.
467          */
468         vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
469 }
470
471 static inline void vma_rb_insert(struct vm_area_struct *vma,
472                                  struct rb_root *root)
473 {
474         /* All rb_subtree_gap values must be consistent prior to insertion */
475         validate_mm_rb(root, NULL);
476
477         rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
478 }
479
480 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
481 {
482         /*
483          * All rb_subtree_gap values must be consistent prior to erase,
484          * with the possible exception of the vma being erased.
485          */
486         validate_mm_rb(root, vma);
487
488         /*
489          * Note rb_erase_augmented is a fairly large inline function,
490          * so make sure we instantiate it only once with our desired
491          * augmented rbtree callbacks.
492          */
493         rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
494 }
495
496 /*
497  * vma has some anon_vma assigned, and is already inserted on that
498  * anon_vma's interval trees.
499  *
500  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
501  * vma must be removed from the anon_vma's interval trees using
502  * anon_vma_interval_tree_pre_update_vma().
503  *
504  * After the update, the vma will be reinserted using
505  * anon_vma_interval_tree_post_update_vma().
506  *
507  * The entire update must be protected by exclusive mmap_sem and by
508  * the root anon_vma's mutex.
509  */
510 static inline void
511 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
512 {
513         struct anon_vma_chain *avc;
514
515         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
516                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
517 }
518
519 static inline void
520 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
521 {
522         struct anon_vma_chain *avc;
523
524         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
525                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
526 }
527
528 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
529                 unsigned long end, struct vm_area_struct **pprev,
530                 struct rb_node ***rb_link, struct rb_node **rb_parent)
531 {
532         struct rb_node **__rb_link, *__rb_parent, *rb_prev;
533
534         __rb_link = &mm->mm_rb.rb_node;
535         rb_prev = __rb_parent = NULL;
536
537         while (*__rb_link) {
538                 struct vm_area_struct *vma_tmp;
539
540                 __rb_parent = *__rb_link;
541                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
542
543                 if (vma_tmp->vm_end > addr) {
544                         /* Fail if an existing vma overlaps the area */
545                         if (vma_tmp->vm_start < end)
546                                 return -ENOMEM;
547                         __rb_link = &__rb_parent->rb_left;
548                 } else {
549                         rb_prev = __rb_parent;
550                         __rb_link = &__rb_parent->rb_right;
551                 }
552         }
553
554         *pprev = NULL;
555         if (rb_prev)
556                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
557         *rb_link = __rb_link;
558         *rb_parent = __rb_parent;
559         return 0;
560 }
561
562 static unsigned long count_vma_pages_range(struct mm_struct *mm,
563                 unsigned long addr, unsigned long end)
564 {
565         unsigned long nr_pages = 0;
566         struct vm_area_struct *vma;
567
568         /* Find first overlaping mapping */
569         vma = find_vma_intersection(mm, addr, end);
570         if (!vma)
571                 return 0;
572
573         nr_pages = (min(end, vma->vm_end) -
574                 max(addr, vma->vm_start)) >> PAGE_SHIFT;
575
576         /* Iterate over the rest of the overlaps */
577         for (vma = vma->vm_next; vma; vma = vma->vm_next) {
578                 unsigned long overlap_len;
579
580                 if (vma->vm_start > end)
581                         break;
582
583                 overlap_len = min(end, vma->vm_end) - vma->vm_start;
584                 nr_pages += overlap_len >> PAGE_SHIFT;
585         }
586
587         return nr_pages;
588 }
589
590 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
591                 struct rb_node **rb_link, struct rb_node *rb_parent)
592 {
593         /* Update tracking information for the gap following the new vma. */
594         if (vma->vm_next)
595                 vma_gap_update(vma->vm_next);
596         else
597                 mm->highest_vm_end = vma->vm_end;
598
599         /*
600          * vma->vm_prev wasn't known when we followed the rbtree to find the
601          * correct insertion point for that vma. As a result, we could not
602          * update the vma vm_rb parents rb_subtree_gap values on the way down.
603          * So, we first insert the vma with a zero rb_subtree_gap value
604          * (to be consistent with what we did on the way down), and then
605          * immediately update the gap to the correct value. Finally we
606          * rebalance the rbtree after all augmented values have been set.
607          */
608         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
609         vma->rb_subtree_gap = 0;
610         vma_gap_update(vma);
611         vma_rb_insert(vma, &mm->mm_rb);
612 }
613
614 static void __vma_link_file(struct vm_area_struct *vma)
615 {
616         struct file *file;
617
618         file = vma->vm_file;
619         if (file) {
620                 struct address_space *mapping = file->f_mapping;
621
622                 if (vma->vm_flags & VM_DENYWRITE)
623                         atomic_dec(&file_inode(file)->i_writecount);
624                 if (vma->vm_flags & VM_SHARED)
625                         mapping->i_mmap_writable++;
626
627                 flush_dcache_mmap_lock(mapping);
628                 if (unlikely(vma->vm_flags & VM_NONLINEAR))
629                         vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
630                 else
631                         vma_interval_tree_insert(vma, &mapping->i_mmap);
632                 flush_dcache_mmap_unlock(mapping);
633         }
634 }
635
636 static void
637 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
638         struct vm_area_struct *prev, struct rb_node **rb_link,
639         struct rb_node *rb_parent)
640 {
641         __vma_link_list(mm, vma, prev, rb_parent);
642         __vma_link_rb(mm, vma, rb_link, rb_parent);
643 }
644
645 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
646                         struct vm_area_struct *prev, struct rb_node **rb_link,
647                         struct rb_node *rb_parent)
648 {
649         struct address_space *mapping = NULL;
650
651         if (vma->vm_file) {
652                 mapping = vma->vm_file->f_mapping;
653                 mutex_lock(&mapping->i_mmap_mutex);
654         }
655
656         __vma_link(mm, vma, prev, rb_link, rb_parent);
657         __vma_link_file(vma);
658
659         if (mapping)
660                 mutex_unlock(&mapping->i_mmap_mutex);
661
662         mm->map_count++;
663         validate_mm(mm);
664 }
665
666 /*
667  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
668  * mm's list and rbtree.  It has already been inserted into the interval tree.
669  */
670 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
671 {
672         struct vm_area_struct *prev;
673         struct rb_node **rb_link, *rb_parent;
674
675         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
676                            &prev, &rb_link, &rb_parent))
677                 BUG();
678         __vma_link(mm, vma, prev, rb_link, rb_parent);
679         mm->map_count++;
680 }
681
682 static inline void
683 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
684                 struct vm_area_struct *prev)
685 {
686         struct vm_area_struct *next;
687
688         vma_rb_erase(vma, &mm->mm_rb);
689         prev->vm_next = next = vma->vm_next;
690         if (next)
691                 next->vm_prev = prev;
692
693         /* Kill the cache */
694         vmacache_invalidate(mm);
695 }
696
697 /*
698  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
699  * is already present in an i_mmap tree without adjusting the tree.
700  * The following helper function should be used when such adjustments
701  * are necessary.  The "insert" vma (if any) is to be inserted
702  * before we drop the necessary locks.
703  */
704 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
705         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
706 {
707         struct mm_struct *mm = vma->vm_mm;
708         struct vm_area_struct *next = vma->vm_next;
709         struct vm_area_struct *importer = NULL;
710         struct address_space *mapping = NULL;
711         struct rb_root *root = NULL;
712         struct anon_vma *anon_vma = NULL;
713         struct file *file = vma->vm_file;
714         bool start_changed = false, end_changed = false;
715         long adjust_next = 0;
716         int remove_next = 0;
717
718         if (next && !insert) {
719                 struct vm_area_struct *exporter = NULL;
720
721                 if (end >= next->vm_end) {
722                         /*
723                          * vma expands, overlapping all the next, and
724                          * perhaps the one after too (mprotect case 6).
725                          */
726 again:                  remove_next = 1 + (end > next->vm_end);
727                         end = next->vm_end;
728                         exporter = next;
729                         importer = vma;
730                 } else if (end > next->vm_start) {
731                         /*
732                          * vma expands, overlapping part of the next:
733                          * mprotect case 5 shifting the boundary up.
734                          */
735                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
736                         exporter = next;
737                         importer = vma;
738                 } else if (end < vma->vm_end) {
739                         /*
740                          * vma shrinks, and !insert tells it's not
741                          * split_vma inserting another: so it must be
742                          * mprotect case 4 shifting the boundary down.
743                          */
744                         adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
745                         exporter = vma;
746                         importer = next;
747                 }
748
749                 /*
750                  * Easily overlooked: when mprotect shifts the boundary,
751                  * make sure the expanding vma has anon_vma set if the
752                  * shrinking vma had, to cover any anon pages imported.
753                  */
754                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
755                         if (anon_vma_clone(importer, exporter))
756                                 return -ENOMEM;
757                         importer->anon_vma = exporter->anon_vma;
758                 }
759         }
760
761         if (file) {
762                 mapping = file->f_mapping;
763                 if (!(vma->vm_flags & VM_NONLINEAR)) {
764                         root = &mapping->i_mmap;
765                         uprobe_munmap(vma, vma->vm_start, vma->vm_end);
766
767                         if (adjust_next)
768                                 uprobe_munmap(next, next->vm_start,
769                                                         next->vm_end);
770                 }
771
772                 mutex_lock(&mapping->i_mmap_mutex);
773                 if (insert) {
774                         /*
775                          * Put into interval tree now, so instantiated pages
776                          * are visible to arm/parisc __flush_dcache_page
777                          * throughout; but we cannot insert into address
778                          * space until vma start or end is updated.
779                          */
780                         __vma_link_file(insert);
781                 }
782         }
783
784         vma_adjust_trans_huge(vma, start, end, adjust_next);
785
786         anon_vma = vma->anon_vma;
787         if (!anon_vma && adjust_next)
788                 anon_vma = next->anon_vma;
789         if (anon_vma) {
790                 VM_BUG_ON(adjust_next && next->anon_vma &&
791                           anon_vma != next->anon_vma);
792                 anon_vma_lock_write(anon_vma);
793                 anon_vma_interval_tree_pre_update_vma(vma);
794                 if (adjust_next)
795                         anon_vma_interval_tree_pre_update_vma(next);
796         }
797
798         if (root) {
799                 flush_dcache_mmap_lock(mapping);
800                 vma_interval_tree_remove(vma, root);
801                 if (adjust_next)
802                         vma_interval_tree_remove(next, root);
803         }
804
805         if (start != vma->vm_start) {
806                 vma->vm_start = start;
807                 start_changed = true;
808         }
809         if (end != vma->vm_end) {
810                 vma->vm_end = end;
811                 end_changed = true;
812         }
813         vma->vm_pgoff = pgoff;
814         if (adjust_next) {
815                 next->vm_start += adjust_next << PAGE_SHIFT;
816                 next->vm_pgoff += adjust_next;
817         }
818
819         if (root) {
820                 if (adjust_next)
821                         vma_interval_tree_insert(next, root);
822                 vma_interval_tree_insert(vma, root);
823                 flush_dcache_mmap_unlock(mapping);
824         }
825
826         if (remove_next) {
827                 /*
828                  * vma_merge has merged next into vma, and needs
829                  * us to remove next before dropping the locks.
830                  */
831                 __vma_unlink(mm, next, vma);
832                 if (file)
833                         __remove_shared_vm_struct(next, file, mapping);
834         } else if (insert) {
835                 /*
836                  * split_vma has split insert from vma, and needs
837                  * us to insert it before dropping the locks
838                  * (it may either follow vma or precede it).
839                  */
840                 __insert_vm_struct(mm, insert);
841         } else {
842                 if (start_changed)
843                         vma_gap_update(vma);
844                 if (end_changed) {
845                         if (!next)
846                                 mm->highest_vm_end = end;
847                         else if (!adjust_next)
848                                 vma_gap_update(next);
849                 }
850         }
851
852         if (anon_vma) {
853                 anon_vma_interval_tree_post_update_vma(vma);
854                 if (adjust_next)
855                         anon_vma_interval_tree_post_update_vma(next);
856                 anon_vma_unlock_write(anon_vma);
857         }
858         if (mapping)
859                 mutex_unlock(&mapping->i_mmap_mutex);
860
861         if (root) {
862                 uprobe_mmap(vma);
863
864                 if (adjust_next)
865                         uprobe_mmap(next);
866         }
867
868         if (remove_next) {
869                 if (file) {
870                         uprobe_munmap(next, next->vm_start, next->vm_end);
871                         fput(file);
872                 }
873                 if (next->anon_vma)
874                         anon_vma_merge(vma, next);
875                 mm->map_count--;
876                 mpol_put(vma_policy(next));
877                 kmem_cache_free(vm_area_cachep, next);
878                 /*
879                  * In mprotect's case 6 (see comments on vma_merge),
880                  * we must remove another next too. It would clutter
881                  * up the code too much to do both in one go.
882                  */
883                 next = vma->vm_next;
884                 if (remove_next == 2)
885                         goto again;
886                 else if (next)
887                         vma_gap_update(next);
888                 else
889                         mm->highest_vm_end = end;
890         }
891         if (insert && file)
892                 uprobe_mmap(insert);
893
894         validate_mm(mm);
895
896         return 0;
897 }
898
899 /*
900  * If the vma has a ->close operation then the driver probably needs to release
901  * per-vma resources, so we don't attempt to merge those.
902  */
903 static inline int is_mergeable_vma(struct vm_area_struct *vma,
904                         struct file *file, unsigned long vm_flags)
905 {
906         /*
907          * VM_SOFTDIRTY should not prevent from VMA merging, if we
908          * match the flags but dirty bit -- the caller should mark
909          * merged VMA as dirty. If dirty bit won't be excluded from
910          * comparison, we increase pressue on the memory system forcing
911          * the kernel to generate new VMAs when old one could be
912          * extended instead.
913          */
914         if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
915                 return 0;
916         if (vma->vm_file != file)
917                 return 0;
918         if (vma->vm_ops && vma->vm_ops->close)
919                 return 0;
920         return 1;
921 }
922
923 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
924                                         struct anon_vma *anon_vma2,
925                                         struct vm_area_struct *vma)
926 {
927         /*
928          * The list_is_singular() test is to avoid merging VMA cloned from
929          * parents. This can improve scalability caused by anon_vma lock.
930          */
931         if ((!anon_vma1 || !anon_vma2) && (!vma ||
932                 list_is_singular(&vma->anon_vma_chain)))
933                 return 1;
934         return anon_vma1 == anon_vma2;
935 }
936
937 /*
938  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
939  * in front of (at a lower virtual address and file offset than) the vma.
940  *
941  * We cannot merge two vmas if they have differently assigned (non-NULL)
942  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
943  *
944  * We don't check here for the merged mmap wrapping around the end of pagecache
945  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
946  * wrap, nor mmaps which cover the final page at index -1UL.
947  */
948 static int
949 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
950         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
951 {
952         if (is_mergeable_vma(vma, file, vm_flags) &&
953             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
954                 if (vma->vm_pgoff == vm_pgoff)
955                         return 1;
956         }
957         return 0;
958 }
959
960 /*
961  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
962  * beyond (at a higher virtual address and file offset than) the vma.
963  *
964  * We cannot merge two vmas if they have differently assigned (non-NULL)
965  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
966  */
967 static int
968 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
969         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
970 {
971         if (is_mergeable_vma(vma, file, vm_flags) &&
972             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
973                 pgoff_t vm_pglen;
974                 vm_pglen = vma_pages(vma);
975                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
976                         return 1;
977         }
978         return 0;
979 }
980
981 /*
982  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
983  * whether that can be merged with its predecessor or its successor.
984  * Or both (it neatly fills a hole).
985  *
986  * In most cases - when called for mmap, brk or mremap - [addr,end) is
987  * certain not to be mapped by the time vma_merge is called; but when
988  * called for mprotect, it is certain to be already mapped (either at
989  * an offset within prev, or at the start of next), and the flags of
990  * this area are about to be changed to vm_flags - and the no-change
991  * case has already been eliminated.
992  *
993  * The following mprotect cases have to be considered, where AAAA is
994  * the area passed down from mprotect_fixup, never extending beyond one
995  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
996  *
997  *     AAAA             AAAA                AAAA          AAAA
998  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
999  *    cannot merge    might become    might become    might become
1000  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
1001  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
1002  *    mremap move:                                    PPPPNNNNNNNN 8
1003  *        AAAA
1004  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
1005  *    might become    case 1 below    case 2 below    case 3 below
1006  *
1007  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1008  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1009  */
1010 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1011                         struct vm_area_struct *prev, unsigned long addr,
1012                         unsigned long end, unsigned long vm_flags,
1013                         struct anon_vma *anon_vma, struct file *file,
1014                         pgoff_t pgoff, struct mempolicy *policy)
1015 {
1016         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1017         struct vm_area_struct *area, *next;
1018         int err;
1019
1020         /*
1021          * We later require that vma->vm_flags == vm_flags,
1022          * so this tests vma->vm_flags & VM_SPECIAL, too.
1023          */
1024         if (vm_flags & VM_SPECIAL)
1025                 return NULL;
1026
1027         if (prev)
1028                 next = prev->vm_next;
1029         else
1030                 next = mm->mmap;
1031         area = next;
1032         if (next && next->vm_end == end)                /* cases 6, 7, 8 */
1033                 next = next->vm_next;
1034
1035         /*
1036          * Can it merge with the predecessor?
1037          */
1038         if (prev && prev->vm_end == addr &&
1039                         mpol_equal(vma_policy(prev), policy) &&
1040                         can_vma_merge_after(prev, vm_flags,
1041                                                 anon_vma, file, pgoff)) {
1042                 /*
1043                  * OK, it can.  Can we now merge in the successor as well?
1044                  */
1045                 if (next && end == next->vm_start &&
1046                                 mpol_equal(policy, vma_policy(next)) &&
1047                                 can_vma_merge_before(next, vm_flags,
1048                                         anon_vma, file, pgoff+pglen) &&
1049                                 is_mergeable_anon_vma(prev->anon_vma,
1050                                                       next->anon_vma, NULL)) {
1051                                                         /* cases 1, 6 */
1052                         err = vma_adjust(prev, prev->vm_start,
1053                                 next->vm_end, prev->vm_pgoff, NULL);
1054                 } else                                  /* cases 2, 5, 7 */
1055                         err = vma_adjust(prev, prev->vm_start,
1056                                 end, prev->vm_pgoff, NULL);
1057                 if (err)
1058                         return NULL;
1059                 khugepaged_enter_vma_merge(prev);
1060                 return prev;
1061         }
1062
1063         /*
1064          * Can this new request be merged in front of next?
1065          */
1066         if (next && end == next->vm_start &&
1067                         mpol_equal(policy, vma_policy(next)) &&
1068                         can_vma_merge_before(next, vm_flags,
1069                                         anon_vma, file, pgoff+pglen)) {
1070                 if (prev && addr < prev->vm_end)        /* case 4 */
1071                         err = vma_adjust(prev, prev->vm_start,
1072                                 addr, prev->vm_pgoff, NULL);
1073                 else                                    /* cases 3, 8 */
1074                         err = vma_adjust(area, addr, next->vm_end,
1075                                 next->vm_pgoff - pglen, NULL);
1076                 if (err)
1077                         return NULL;
1078                 khugepaged_enter_vma_merge(area);
1079                 return area;
1080         }
1081
1082         return NULL;
1083 }
1084
1085 /*
1086  * Rough compatbility check to quickly see if it's even worth looking
1087  * at sharing an anon_vma.
1088  *
1089  * They need to have the same vm_file, and the flags can only differ
1090  * in things that mprotect may change.
1091  *
1092  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1093  * we can merge the two vma's. For example, we refuse to merge a vma if
1094  * there is a vm_ops->close() function, because that indicates that the
1095  * driver is doing some kind of reference counting. But that doesn't
1096  * really matter for the anon_vma sharing case.
1097  */
1098 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1099 {
1100         return a->vm_end == b->vm_start &&
1101                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1102                 a->vm_file == b->vm_file &&
1103                 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1104                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1105 }
1106
1107 /*
1108  * Do some basic sanity checking to see if we can re-use the anon_vma
1109  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1110  * the same as 'old', the other will be the new one that is trying
1111  * to share the anon_vma.
1112  *
1113  * NOTE! This runs with mm_sem held for reading, so it is possible that
1114  * the anon_vma of 'old' is concurrently in the process of being set up
1115  * by another page fault trying to merge _that_. But that's ok: if it
1116  * is being set up, that automatically means that it will be a singleton
1117  * acceptable for merging, so we can do all of this optimistically. But
1118  * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
1119  *
1120  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1121  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1122  * is to return an anon_vma that is "complex" due to having gone through
1123  * a fork).
1124  *
1125  * We also make sure that the two vma's are compatible (adjacent,
1126  * and with the same memory policies). That's all stable, even with just
1127  * a read lock on the mm_sem.
1128  */
1129 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1130 {
1131         if (anon_vma_compatible(a, b)) {
1132                 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
1133
1134                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1135                         return anon_vma;
1136         }
1137         return NULL;
1138 }
1139
1140 /*
1141  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1142  * neighbouring vmas for a suitable anon_vma, before it goes off
1143  * to allocate a new anon_vma.  It checks because a repetitive
1144  * sequence of mprotects and faults may otherwise lead to distinct
1145  * anon_vmas being allocated, preventing vma merge in subsequent
1146  * mprotect.
1147  */
1148 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1149 {
1150         struct anon_vma *anon_vma;
1151         struct vm_area_struct *near;
1152
1153         near = vma->vm_next;
1154         if (!near)
1155                 goto try_prev;
1156
1157         anon_vma = reusable_anon_vma(near, vma, near);
1158         if (anon_vma)
1159                 return anon_vma;
1160 try_prev:
1161         near = vma->vm_prev;
1162         if (!near)
1163                 goto none;
1164
1165         anon_vma = reusable_anon_vma(near, near, vma);
1166         if (anon_vma)
1167                 return anon_vma;
1168 none:
1169         /*
1170          * There's no absolute need to look only at touching neighbours:
1171          * we could search further afield for "compatible" anon_vmas.
1172          * But it would probably just be a waste of time searching,
1173          * or lead to too many vmas hanging off the same anon_vma.
1174          * We're trying to allow mprotect remerging later on,
1175          * not trying to minimize memory used for anon_vmas.
1176          */
1177         return NULL;
1178 }
1179
1180 #ifdef CONFIG_PROC_FS
1181 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1182                                                 struct file *file, long pages)
1183 {
1184         const unsigned long stack_flags
1185                 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1186
1187         mm->total_vm += pages;
1188
1189         if (file) {
1190                 mm->shared_vm += pages;
1191                 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1192                         mm->exec_vm += pages;
1193         } else if (flags & stack_flags)
1194                 mm->stack_vm += pages;
1195 }
1196 #endif /* CONFIG_PROC_FS */
1197
1198 /*
1199  * If a hint addr is less than mmap_min_addr change hint to be as
1200  * low as possible but still greater than mmap_min_addr
1201  */
1202 static inline unsigned long round_hint_to_min(unsigned long hint)
1203 {
1204         hint &= PAGE_MASK;
1205         if (((void *)hint != NULL) &&
1206             (hint < mmap_min_addr))
1207                 return PAGE_ALIGN(mmap_min_addr);
1208         return hint;
1209 }
1210
1211 static inline int mlock_future_check(struct mm_struct *mm,
1212                                      unsigned long flags,
1213                                      unsigned long len)
1214 {
1215         unsigned long locked, lock_limit;
1216
1217         /*  mlock MCL_FUTURE? */
1218         if (flags & VM_LOCKED) {
1219                 locked = len >> PAGE_SHIFT;
1220                 locked += mm->locked_vm;
1221                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1222                 lock_limit >>= PAGE_SHIFT;
1223                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1224                         return -EAGAIN;
1225         }
1226         return 0;
1227 }
1228
1229 /*
1230  * The caller must hold down_write(&current->mm->mmap_sem).
1231  */
1232
1233 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1234                         unsigned long len, unsigned long prot,
1235                         unsigned long flags, unsigned long pgoff,
1236                         unsigned long *populate)
1237 {
1238         struct mm_struct * mm = current->mm;
1239         vm_flags_t vm_flags;
1240
1241         *populate = 0;
1242
1243         /*
1244          * Does the application expect PROT_READ to imply PROT_EXEC?
1245          *
1246          * (the exception is when the underlying filesystem is noexec
1247          *  mounted, in which case we dont add PROT_EXEC.)
1248          */
1249         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1250                 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1251                         prot |= PROT_EXEC;
1252
1253         if (!len)
1254                 return -EINVAL;
1255
1256         if (!(flags & MAP_FIXED))
1257                 addr = round_hint_to_min(addr);
1258
1259         /* Careful about overflows.. */
1260         len = PAGE_ALIGN(len);
1261         if (!len)
1262                 return -ENOMEM;
1263
1264         /* offset overflow? */
1265         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1266                return -EOVERFLOW;
1267
1268         /* Too many mappings? */
1269         if (mm->map_count > sysctl_max_map_count)
1270                 return -ENOMEM;
1271
1272         /* Obtain the address to map to. we verify (or select) it and ensure
1273          * that it represents a valid section of the address space.
1274          */
1275         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1276         if (addr & ~PAGE_MASK)
1277                 return addr;
1278
1279         /* Do simple checking here so the lower-level routines won't have
1280          * to. we assume access permissions have been handled by the open
1281          * of the memory object, so we don't do any here.
1282          */
1283         vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1284                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1285
1286         if (flags & MAP_LOCKED)
1287                 if (!can_do_mlock())
1288                         return -EPERM;
1289
1290         if (mlock_future_check(mm, vm_flags, len))
1291                 return -EAGAIN;
1292
1293         if (file) {
1294                 struct inode *inode = file_inode(file);
1295
1296                 switch (flags & MAP_TYPE) {
1297                 case MAP_SHARED:
1298                         if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1299                                 return -EACCES;
1300
1301                         /*
1302                          * Make sure we don't allow writing to an append-only
1303                          * file..
1304                          */
1305                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1306                                 return -EACCES;
1307
1308                         /*
1309                          * Make sure there are no mandatory locks on the file.
1310                          */
1311                         if (locks_verify_locked(file))
1312                                 return -EAGAIN;
1313
1314                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1315                         if (!(file->f_mode & FMODE_WRITE))
1316                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1317
1318                         /* fall through */
1319                 case MAP_PRIVATE:
1320                         if (!(file->f_mode & FMODE_READ))
1321                                 return -EACCES;
1322                         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1323                                 if (vm_flags & VM_EXEC)
1324                                         return -EPERM;
1325                                 vm_flags &= ~VM_MAYEXEC;
1326                         }
1327
1328                         if (!file->f_op->mmap)
1329                                 return -ENODEV;
1330                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1331                                 return -EINVAL;
1332                         break;
1333
1334                 default:
1335                         return -EINVAL;
1336                 }
1337         } else {
1338                 switch (flags & MAP_TYPE) {
1339                 case MAP_SHARED:
1340                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1341                                 return -EINVAL;
1342                         /*
1343                          * Ignore pgoff.
1344                          */
1345                         pgoff = 0;
1346                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1347                         break;
1348                 case MAP_PRIVATE:
1349                         /*
1350                          * Set pgoff according to addr for anon_vma.
1351                          */
1352                         pgoff = addr >> PAGE_SHIFT;
1353                         break;
1354                 default:
1355                         return -EINVAL;
1356                 }
1357         }
1358
1359         /*
1360          * Set 'VM_NORESERVE' if we should not account for the
1361          * memory use of this mapping.
1362          */
1363         if (flags & MAP_NORESERVE) {
1364                 /* We honor MAP_NORESERVE if allowed to overcommit */
1365                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1366                         vm_flags |= VM_NORESERVE;
1367
1368                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1369                 if (file && is_file_hugepages(file))
1370                         vm_flags |= VM_NORESERVE;
1371         }
1372
1373         addr = mmap_region(file, addr, len, vm_flags, pgoff);
1374         if (!IS_ERR_VALUE(addr) &&
1375             ((vm_flags & VM_LOCKED) ||
1376              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1377                 *populate = len;
1378         return addr;
1379 }
1380
1381 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1382                 unsigned long, prot, unsigned long, flags,
1383                 unsigned long, fd, unsigned long, pgoff)
1384 {
1385         struct file *file = NULL;
1386         unsigned long retval = -EBADF;
1387
1388         if (!(flags & MAP_ANONYMOUS)) {
1389                 audit_mmap_fd(fd, flags);
1390                 file = fget(fd);
1391                 if (!file)
1392                         goto out;
1393                 if (is_file_hugepages(file))
1394                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1395                 retval = -EINVAL;
1396                 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1397                         goto out_fput;
1398         } else if (flags & MAP_HUGETLB) {
1399                 struct user_struct *user = NULL;
1400                 struct hstate *hs;
1401
1402                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1403                 if (!hs)
1404                         return -EINVAL;
1405
1406                 len = ALIGN(len, huge_page_size(hs));
1407                 /*
1408                  * VM_NORESERVE is used because the reservations will be
1409                  * taken when vm_ops->mmap() is called
1410                  * A dummy user value is used because we are not locking
1411                  * memory so no accounting is necessary
1412                  */
1413                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1414                                 VM_NORESERVE,
1415                                 &user, HUGETLB_ANONHUGE_INODE,
1416                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1417                 if (IS_ERR(file))
1418                         return PTR_ERR(file);
1419         }
1420
1421         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1422
1423         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1424 out_fput:
1425         if (file)
1426                 fput(file);
1427 out:
1428         return retval;
1429 }
1430
1431 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1432 struct mmap_arg_struct {
1433         unsigned long addr;
1434         unsigned long len;
1435         unsigned long prot;
1436         unsigned long flags;
1437         unsigned long fd;
1438         unsigned long offset;
1439 };
1440
1441 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1442 {
1443         struct mmap_arg_struct a;
1444
1445         if (copy_from_user(&a, arg, sizeof(a)))
1446                 return -EFAULT;
1447         if (a.offset & ~PAGE_MASK)
1448                 return -EINVAL;
1449
1450         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1451                               a.offset >> PAGE_SHIFT);
1452 }
1453 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1454
1455 /*
1456  * Some shared mappigns will want the pages marked read-only
1457  * to track write events. If so, we'll downgrade vm_page_prot
1458  * to the private version (using protection_map[] without the
1459  * VM_SHARED bit).
1460  */
1461 int vma_wants_writenotify(struct vm_area_struct *vma)
1462 {
1463         vm_flags_t vm_flags = vma->vm_flags;
1464
1465         /* If it was private or non-writable, the write bit is already clear */
1466         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1467                 return 0;
1468
1469         /* The backer wishes to know when pages are first written to? */
1470         if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1471                 return 1;
1472
1473         /* The open routine did something to the protections already? */
1474         if (pgprot_val(vma->vm_page_prot) !=
1475             pgprot_val(vm_get_page_prot(vm_flags)))
1476                 return 0;
1477
1478         /* Specialty mapping? */
1479         if (vm_flags & VM_PFNMAP)
1480                 return 0;
1481
1482         /* Can the mapping track the dirty pages? */
1483         return vma->vm_file && vma->vm_file->f_mapping &&
1484                 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1485 }
1486
1487 /*
1488  * We account for memory if it's a private writeable mapping,
1489  * not hugepages and VM_NORESERVE wasn't set.
1490  */
1491 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1492 {
1493         /*
1494          * hugetlb has its own accounting separate from the core VM
1495          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1496          */
1497         if (file && is_file_hugepages(file))
1498                 return 0;
1499
1500         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1501 }
1502
1503 unsigned long mmap_region(struct file *file, unsigned long addr,
1504                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1505 {
1506         struct mm_struct *mm = current->mm;
1507         struct vm_area_struct *vma, *prev;
1508         int error;
1509         struct rb_node **rb_link, *rb_parent;
1510         unsigned long charged = 0;
1511
1512         /* Check against address space limit. */
1513         if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1514                 unsigned long nr_pages;
1515
1516                 /*
1517                  * MAP_FIXED may remove pages of mappings that intersects with
1518                  * requested mapping. Account for the pages it would unmap.
1519                  */
1520                 if (!(vm_flags & MAP_FIXED))
1521                         return -ENOMEM;
1522
1523                 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1524
1525                 if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1526                         return -ENOMEM;
1527         }
1528
1529         /* Clear old maps */
1530         error = -ENOMEM;
1531 munmap_back:
1532         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1533                 if (do_munmap(mm, addr, len))
1534                         return -ENOMEM;
1535                 goto munmap_back;
1536         }
1537
1538         /*
1539          * Private writable mapping: check memory availability
1540          */
1541         if (accountable_mapping(file, vm_flags)) {
1542                 charged = len >> PAGE_SHIFT;
1543                 if (security_vm_enough_memory_mm(mm, charged))
1544                         return -ENOMEM;
1545                 vm_flags |= VM_ACCOUNT;
1546         }
1547
1548         /*
1549          * Can we just expand an old mapping?
1550          */
1551         vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1552         if (vma)
1553                 goto out;
1554
1555         /*
1556          * Determine the object being mapped and call the appropriate
1557          * specific mapper. the address has already been validated, but
1558          * not unmapped, but the maps are removed from the list.
1559          */
1560         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1561         if (!vma) {
1562                 error = -ENOMEM;
1563                 goto unacct_error;
1564         }
1565
1566         vma->vm_mm = mm;
1567         vma->vm_start = addr;
1568         vma->vm_end = addr + len;
1569         vma->vm_flags = vm_flags;
1570         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1571         vma->vm_pgoff = pgoff;
1572         INIT_LIST_HEAD(&vma->anon_vma_chain);
1573
1574         if (file) {
1575                 if (vm_flags & VM_DENYWRITE) {
1576                         error = deny_write_access(file);
1577                         if (error)
1578                                 goto free_vma;
1579                 }
1580                 vma->vm_file = get_file(file);
1581                 error = file->f_op->mmap(file, vma);
1582                 if (error)
1583                         goto unmap_and_free_vma;
1584
1585                 /* Can addr have changed??
1586                  *
1587                  * Answer: Yes, several device drivers can do it in their
1588                  *         f_op->mmap method. -DaveM
1589                  * Bug: If addr is changed, prev, rb_link, rb_parent should
1590                  *      be updated for vma_link()
1591                  */
1592                 WARN_ON_ONCE(addr != vma->vm_start);
1593
1594                 addr = vma->vm_start;
1595                 vm_flags = vma->vm_flags;
1596         } else if (vm_flags & VM_SHARED) {
1597                 error = shmem_zero_setup(vma);
1598                 if (error)
1599                         goto free_vma;
1600         }
1601
1602         if (vma_wants_writenotify(vma)) {
1603                 pgprot_t pprot = vma->vm_page_prot;
1604
1605                 /* Can vma->vm_page_prot have changed??
1606                  *
1607                  * Answer: Yes, drivers may have changed it in their
1608                  *         f_op->mmap method.
1609                  *
1610                  * Ensures that vmas marked as uncached stay that way.
1611                  */
1612                 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1613                 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1614                         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1615         }
1616
1617         vma_link(mm, vma, prev, rb_link, rb_parent);
1618         /* Once vma denies write, undo our temporary denial count */
1619         if (vm_flags & VM_DENYWRITE)
1620                 allow_write_access(file);
1621         file = vma->vm_file;
1622 out:
1623         perf_event_mmap(vma);
1624
1625         vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1626         if (vm_flags & VM_LOCKED) {
1627                 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1628                                         vma == get_gate_vma(current->mm)))
1629                         mm->locked_vm += (len >> PAGE_SHIFT);
1630                 else
1631                         vma->vm_flags &= ~VM_LOCKED;
1632         }
1633
1634         if (file)
1635                 uprobe_mmap(vma);
1636
1637         /*
1638          * New (or expanded) vma always get soft dirty status.
1639          * Otherwise user-space soft-dirty page tracker won't
1640          * be able to distinguish situation when vma area unmapped,
1641          * then new mapped in-place (which must be aimed as
1642          * a completely new data area).
1643          */
1644         vma->vm_flags |= VM_SOFTDIRTY;
1645
1646         return addr;
1647
1648 unmap_and_free_vma:
1649         if (vm_flags & VM_DENYWRITE)
1650                 allow_write_access(file);
1651         vma->vm_file = NULL;
1652         fput(file);
1653
1654         /* Undo any partial mapping done by a device driver. */
1655         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1656         charged = 0;
1657 free_vma:
1658         kmem_cache_free(vm_area_cachep, vma);
1659 unacct_error:
1660         if (charged)
1661                 vm_unacct_memory(charged);
1662         return error;
1663 }
1664
1665 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1666 {
1667         /*
1668          * We implement the search by looking for an rbtree node that
1669          * immediately follows a suitable gap. That is,
1670          * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1671          * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1672          * - gap_end - gap_start >= length
1673          */
1674
1675         struct mm_struct *mm = current->mm;
1676         struct vm_area_struct *vma;
1677         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1678
1679         /* Adjust search length to account for worst case alignment overhead */
1680         length = info->length + info->align_mask;
1681         if (length < info->length)
1682                 return -ENOMEM;
1683
1684         /* Adjust search limits by the desired length */
1685         if (info->high_limit < length)
1686                 return -ENOMEM;
1687         high_limit = info->high_limit - length;
1688
1689         if (info->low_limit > high_limit)
1690                 return -ENOMEM;
1691         low_limit = info->low_limit + length;
1692
1693         /* Check if rbtree root looks promising */
1694         if (RB_EMPTY_ROOT(&mm->mm_rb))
1695                 goto check_highest;
1696         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1697         if (vma->rb_subtree_gap < length)
1698                 goto check_highest;
1699
1700         while (true) {
1701                 /* Visit left subtree if it looks promising */
1702                 gap_end = vma->vm_start;
1703                 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1704                         struct vm_area_struct *left =
1705                                 rb_entry(vma->vm_rb.rb_left,
1706                                          struct vm_area_struct, vm_rb);
1707                         if (left->rb_subtree_gap >= length) {
1708                                 vma = left;
1709                                 continue;
1710                         }
1711                 }
1712
1713                 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1714 check_current:
1715                 /* Check if current node has a suitable gap */
1716                 if (gap_start > high_limit)
1717                         return -ENOMEM;
1718                 if (gap_end >= low_limit && gap_end - gap_start >= length)
1719                         goto found;
1720
1721                 /* Visit right subtree if it looks promising */
1722                 if (vma->vm_rb.rb_right) {
1723                         struct vm_area_struct *right =
1724                                 rb_entry(vma->vm_rb.rb_right,
1725                                          struct vm_area_struct, vm_rb);
1726                         if (right->rb_subtree_gap >= length) {
1727                                 vma = right;
1728                                 continue;
1729                         }
1730                 }
1731
1732                 /* Go back up the rbtree to find next candidate node */
1733                 while (true) {
1734                         struct rb_node *prev = &vma->vm_rb;
1735                         if (!rb_parent(prev))
1736                                 goto check_highest;
1737                         vma = rb_entry(rb_parent(prev),
1738                                        struct vm_area_struct, vm_rb);
1739                         if (prev == vma->vm_rb.rb_left) {
1740                                 gap_start = vma->vm_prev->vm_end;
1741                                 gap_end = vma->vm_start;
1742                                 goto check_current;
1743                         }
1744                 }
1745         }
1746
1747 check_highest:
1748         /* Check highest gap, which does not precede any rbtree node */
1749         gap_start = mm->highest_vm_end;
1750         gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1751         if (gap_start > high_limit)
1752                 return -ENOMEM;
1753
1754 found:
1755         /* We found a suitable gap. Clip it with the original low_limit. */
1756         if (gap_start < info->low_limit)
1757                 gap_start = info->low_limit;
1758
1759         /* Adjust gap address to the desired alignment */
1760         gap_start += (info->align_offset - gap_start) & info->align_mask;
1761
1762         VM_BUG_ON(gap_start + info->length > info->high_limit);
1763         VM_BUG_ON(gap_start + info->length > gap_end);
1764         return gap_start;
1765 }
1766
1767 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1768 {
1769         struct mm_struct *mm = current->mm;
1770         struct vm_area_struct *vma;
1771         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1772
1773         /* Adjust search length to account for worst case alignment overhead */
1774         length = info->length + info->align_mask;
1775         if (length < info->length)
1776                 return -ENOMEM;
1777
1778         /*
1779          * Adjust search limits by the desired length.
1780          * See implementation comment at top of unmapped_area().
1781          */
1782         gap_end = info->high_limit;
1783         if (gap_end < length)
1784                 return -ENOMEM;
1785         high_limit = gap_end - length;
1786
1787         if (info->low_limit > high_limit)
1788                 return -ENOMEM;
1789         low_limit = info->low_limit + length;
1790
1791         /* Check highest gap, which does not precede any rbtree node */
1792         gap_start = mm->highest_vm_end;
1793         if (gap_start <= high_limit)
1794                 goto found_highest;
1795
1796         /* Check if rbtree root looks promising */
1797         if (RB_EMPTY_ROOT(&mm->mm_rb))
1798                 return -ENOMEM;
1799         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1800         if (vma->rb_subtree_gap < length)
1801                 return -ENOMEM;
1802
1803         while (true) {
1804                 /* Visit right subtree if it looks promising */
1805                 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1806                 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1807                         struct vm_area_struct *right =
1808                                 rb_entry(vma->vm_rb.rb_right,
1809                                          struct vm_area_struct, vm_rb);
1810                         if (right->rb_subtree_gap >= length) {
1811                                 vma = right;
1812                                 continue;
1813                         }
1814                 }
1815
1816 check_current:
1817                 /* Check if current node has a suitable gap */
1818                 gap_end = vma->vm_start;
1819                 if (gap_end < low_limit)
1820                         return -ENOMEM;
1821                 if (gap_start <= high_limit && gap_end - gap_start >= length)
1822                         goto found;
1823
1824                 /* Visit left subtree if it looks promising */
1825                 if (vma->vm_rb.rb_left) {
1826                         struct vm_area_struct *left =
1827                                 rb_entry(vma->vm_rb.rb_left,
1828                                          struct vm_area_struct, vm_rb);
1829                         if (left->rb_subtree_gap >= length) {
1830                                 vma = left;
1831                                 continue;
1832                         }
1833                 }
1834
1835                 /* Go back up the rbtree to find next candidate node */
1836                 while (true) {
1837                         struct rb_node *prev = &vma->vm_rb;
1838                         if (!rb_parent(prev))
1839                                 return -ENOMEM;
1840                         vma = rb_entry(rb_parent(prev),
1841                                        struct vm_area_struct, vm_rb);
1842                         if (prev == vma->vm_rb.rb_right) {
1843                                 gap_start = vma->vm_prev ?
1844                                         vma->vm_prev->vm_end : 0;
1845                                 goto check_current;
1846                         }
1847                 }
1848         }
1849
1850 found:
1851         /* We found a suitable gap. Clip it with the original high_limit. */
1852         if (gap_end > info->high_limit)
1853                 gap_end = info->high_limit;
1854
1855 found_highest:
1856         /* Compute highest gap address at the desired alignment */
1857         gap_end -= info->length;
1858         gap_end -= (gap_end - info->align_offset) & info->align_mask;
1859
1860         VM_BUG_ON(gap_end < info->low_limit);
1861         VM_BUG_ON(gap_end < gap_start);
1862         return gap_end;
1863 }
1864
1865 /* Get an address range which is currently unmapped.
1866  * For shmat() with addr=0.
1867  *
1868  * Ugly calling convention alert:
1869  * Return value with the low bits set means error value,
1870  * ie
1871  *      if (ret & ~PAGE_MASK)
1872  *              error = ret;
1873  *
1874  * This function "knows" that -ENOMEM has the bits set.
1875  */
1876 #ifndef HAVE_ARCH_UNMAPPED_AREA
1877 unsigned long
1878 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1879                 unsigned long len, unsigned long pgoff, unsigned long flags)
1880 {
1881         struct mm_struct *mm = current->mm;
1882         struct vm_area_struct *vma;
1883         struct vm_unmapped_area_info info;
1884
1885         if (len > TASK_SIZE - mmap_min_addr)
1886                 return -ENOMEM;
1887
1888         if (flags & MAP_FIXED)
1889                 return addr;
1890
1891         if (addr) {
1892                 addr = PAGE_ALIGN(addr);
1893                 vma = find_vma(mm, addr);
1894                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1895                     (!vma || addr + len <= vma->vm_start))
1896                         return addr;
1897         }
1898
1899         info.flags = 0;
1900         info.length = len;
1901         info.low_limit = mm->mmap_base;
1902         info.high_limit = TASK_SIZE;
1903         info.align_mask = 0;
1904         return vm_unmapped_area(&info);
1905 }
1906 #endif  
1907
1908 /*
1909  * This mmap-allocator allocates new areas top-down from below the
1910  * stack's low limit (the base):
1911  */
1912 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1913 unsigned long
1914 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1915                           const unsigned long len, const unsigned long pgoff,
1916                           const unsigned long flags)
1917 {
1918         struct vm_area_struct *vma;
1919         struct mm_struct *mm = current->mm;
1920         unsigned long addr = addr0;
1921         struct vm_unmapped_area_info info;
1922
1923         /* requested length too big for entire address space */
1924         if (len > TASK_SIZE - mmap_min_addr)
1925                 return -ENOMEM;
1926
1927         if (flags & MAP_FIXED)
1928                 return addr;
1929
1930         /* requesting a specific address */
1931         if (addr) {
1932                 addr = PAGE_ALIGN(addr);
1933                 vma = find_vma(mm, addr);
1934                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1935                                 (!vma || addr + len <= vma->vm_start))
1936                         return addr;
1937         }
1938
1939         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1940         info.length = len;
1941         info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1942         info.high_limit = mm->mmap_base;
1943         info.align_mask = 0;
1944         addr = vm_unmapped_area(&info);
1945
1946         /*
1947          * A failed mmap() very likely causes application failure,
1948          * so fall back to the bottom-up function here. This scenario
1949          * can happen with large stack limits and large mmap()
1950          * allocations.
1951          */
1952         if (addr & ~PAGE_MASK) {
1953                 VM_BUG_ON(addr != -ENOMEM);
1954                 info.flags = 0;
1955                 info.low_limit = TASK_UNMAPPED_BASE;
1956                 info.high_limit = TASK_SIZE;
1957                 addr = vm_unmapped_area(&info);
1958         }
1959
1960         return addr;
1961 }
1962 #endif
1963
1964 unsigned long
1965 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1966                 unsigned long pgoff, unsigned long flags)
1967 {
1968         unsigned long (*get_area)(struct file *, unsigned long,
1969                                   unsigned long, unsigned long, unsigned long);
1970
1971         unsigned long error = arch_mmap_check(addr, len, flags);
1972         if (error)
1973                 return error;
1974
1975         /* Careful about overflows.. */
1976         if (len > TASK_SIZE)
1977                 return -ENOMEM;
1978
1979         get_area = current->mm->get_unmapped_area;
1980         if (file && file->f_op->get_unmapped_area)
1981                 get_area = file->f_op->get_unmapped_area;
1982         addr = get_area(file, addr, len, pgoff, flags);
1983         if (IS_ERR_VALUE(addr))
1984                 return addr;
1985
1986         if (addr > TASK_SIZE - len)
1987                 return -ENOMEM;
1988         if (addr & ~PAGE_MASK)
1989                 return -EINVAL;
1990
1991         addr = arch_rebalance_pgtables(addr, len);
1992         error = security_mmap_addr(addr);
1993         return error ? error : addr;
1994 }
1995
1996 EXPORT_SYMBOL(get_unmapped_area);
1997
1998 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1999 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2000 {
2001         struct rb_node *rb_node;
2002         struct vm_area_struct *vma;
2003
2004         /* Check the cache first. */
2005         vma = vmacache_find(mm, addr);
2006         if (likely(vma))
2007                 return vma;
2008
2009         rb_node = mm->mm_rb.rb_node;
2010         vma = NULL;
2011
2012         while (rb_node) {
2013                 struct vm_area_struct *tmp;
2014
2015                 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2016
2017                 if (tmp->vm_end > addr) {
2018                         vma = tmp;
2019                         if (tmp->vm_start <= addr)
2020                                 break;
2021                         rb_node = rb_node->rb_left;
2022                 } else
2023                         rb_node = rb_node->rb_right;
2024         }
2025
2026         if (vma)
2027                 vmacache_update(addr, vma);
2028         return vma;
2029 }
2030
2031 EXPORT_SYMBOL(find_vma);
2032
2033 /*
2034  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2035  */
2036 struct vm_area_struct *
2037 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2038                         struct vm_area_struct **pprev)
2039 {
2040         struct vm_area_struct *vma;
2041
2042         vma = find_vma(mm, addr);
2043         if (vma) {
2044                 *pprev = vma->vm_prev;
2045         } else {
2046                 struct rb_node *rb_node = mm->mm_rb.rb_node;
2047                 *pprev = NULL;
2048                 while (rb_node) {
2049                         *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2050                         rb_node = rb_node->rb_right;
2051                 }
2052         }
2053         return vma;
2054 }
2055
2056 /*
2057  * Verify that the stack growth is acceptable and
2058  * update accounting. This is shared with both the
2059  * grow-up and grow-down cases.
2060  */
2061 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2062 {
2063         struct mm_struct *mm = vma->vm_mm;
2064         struct rlimit *rlim = current->signal->rlim;
2065         unsigned long new_start;
2066
2067         /* address space limit tests */
2068         if (!may_expand_vm(mm, grow))
2069                 return -ENOMEM;
2070
2071         /* Stack limit test */
2072         if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2073                 return -ENOMEM;
2074
2075         /* mlock limit tests */
2076         if (vma->vm_flags & VM_LOCKED) {
2077                 unsigned long locked;
2078                 unsigned long limit;
2079                 locked = mm->locked_vm + grow;
2080                 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2081                 limit >>= PAGE_SHIFT;
2082                 if (locked > limit && !capable(CAP_IPC_LOCK))
2083                         return -ENOMEM;
2084         }
2085
2086         /* Check to ensure the stack will not grow into a hugetlb-only region */
2087         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2088                         vma->vm_end - size;
2089         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2090                 return -EFAULT;
2091
2092         /*
2093          * Overcommit..  This must be the final test, as it will
2094          * update security statistics.
2095          */
2096         if (security_vm_enough_memory_mm(mm, grow))
2097                 return -ENOMEM;
2098
2099         /* Ok, everything looks good - let it rip */
2100         if (vma->vm_flags & VM_LOCKED)
2101                 mm->locked_vm += grow;
2102         vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
2103         return 0;
2104 }
2105
2106 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2107 /*
2108  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2109  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2110  */
2111 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2112 {
2113         int error;
2114
2115         if (!(vma->vm_flags & VM_GROWSUP))
2116                 return -EFAULT;
2117
2118         /*
2119          * We must make sure the anon_vma is allocated
2120          * so that the anon_vma locking is not a noop.
2121          */
2122         if (unlikely(anon_vma_prepare(vma)))
2123                 return -ENOMEM;
2124         vma_lock_anon_vma(vma);
2125
2126         /*
2127          * vma->vm_start/vm_end cannot change under us because the caller
2128          * is required to hold the mmap_sem in read mode.  We need the
2129          * anon_vma lock to serialize against concurrent expand_stacks.
2130          * Also guard against wrapping around to address 0.
2131          */
2132         if (address < PAGE_ALIGN(address+4))
2133                 address = PAGE_ALIGN(address+4);
2134         else {
2135                 vma_unlock_anon_vma(vma);
2136                 return -ENOMEM;
2137         }
2138         error = 0;
2139
2140         /* Somebody else might have raced and expanded it already */
2141         if (address > vma->vm_end) {
2142                 unsigned long size, grow;
2143
2144                 size = address - vma->vm_start;
2145                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2146
2147                 error = -ENOMEM;
2148                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2149                         error = acct_stack_growth(vma, size, grow);
2150                         if (!error) {
2151                                 /*
2152                                  * vma_gap_update() doesn't support concurrent
2153                                  * updates, but we only hold a shared mmap_sem
2154                                  * lock here, so we need to protect against
2155                                  * concurrent vma expansions.
2156                                  * vma_lock_anon_vma() doesn't help here, as
2157                                  * we don't guarantee that all growable vmas
2158                                  * in a mm share the same root anon vma.
2159                                  * So, we reuse mm->page_table_lock to guard
2160                                  * against concurrent vma expansions.
2161                                  */
2162                                 spin_lock(&vma->vm_mm->page_table_lock);
2163                                 anon_vma_interval_tree_pre_update_vma(vma);
2164                                 vma->vm_end = address;
2165                                 anon_vma_interval_tree_post_update_vma(vma);
2166                                 if (vma->vm_next)
2167                                         vma_gap_update(vma->vm_next);
2168                                 else
2169                                         vma->vm_mm->highest_vm_end = address;
2170                                 spin_unlock(&vma->vm_mm->page_table_lock);
2171
2172                                 perf_event_mmap(vma);
2173                         }
2174                 }
2175         }
2176         vma_unlock_anon_vma(vma);
2177         khugepaged_enter_vma_merge(vma);
2178         validate_mm(vma->vm_mm);
2179         return error;
2180 }
2181 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2182
2183 /*
2184  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2185  */
2186 int expand_downwards(struct vm_area_struct *vma,
2187                                    unsigned long address)
2188 {
2189         int error;
2190
2191         /*
2192          * We must make sure the anon_vma is allocated
2193          * so that the anon_vma locking is not a noop.
2194          */
2195         if (unlikely(anon_vma_prepare(vma)))
2196                 return -ENOMEM;
2197
2198         address &= PAGE_MASK;
2199         error = security_mmap_addr(address);
2200         if (error)
2201                 return error;
2202
2203         vma_lock_anon_vma(vma);
2204
2205         /*
2206          * vma->vm_start/vm_end cannot change under us because the caller
2207          * is required to hold the mmap_sem in read mode.  We need the
2208          * anon_vma lock to serialize against concurrent expand_stacks.
2209          */
2210
2211         /* Somebody else might have raced and expanded it already */
2212         if (address < vma->vm_start) {
2213                 unsigned long size, grow;
2214
2215                 size = vma->vm_end - address;
2216                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2217
2218                 error = -ENOMEM;
2219                 if (grow <= vma->vm_pgoff) {
2220                         error = acct_stack_growth(vma, size, grow);
2221                         if (!error) {
2222                                 /*
2223                                  * vma_gap_update() doesn't support concurrent
2224                                  * updates, but we only hold a shared mmap_sem
2225                                  * lock here, so we need to protect against
2226                                  * concurrent vma expansions.
2227                                  * vma_lock_anon_vma() doesn't help here, as
2228                                  * we don't guarantee that all growable vmas
2229                                  * in a mm share the same root anon vma.
2230                                  * So, we reuse mm->page_table_lock to guard
2231                                  * against concurrent vma expansions.
2232                                  */
2233                                 spin_lock(&vma->vm_mm->page_table_lock);
2234                                 anon_vma_interval_tree_pre_update_vma(vma);
2235                                 vma->vm_start = address;
2236                                 vma->vm_pgoff -= grow;
2237                                 anon_vma_interval_tree_post_update_vma(vma);
2238                                 vma_gap_update(vma);
2239                                 spin_unlock(&vma->vm_mm->page_table_lock);
2240
2241                                 perf_event_mmap(vma);
2242                         }
2243                 }
2244         }
2245         vma_unlock_anon_vma(vma);
2246         khugepaged_enter_vma_merge(vma);
2247         validate_mm(vma->vm_mm);
2248         return error;
2249 }
2250
2251 /*
2252  * Note how expand_stack() refuses to expand the stack all the way to
2253  * abut the next virtual mapping, *unless* that mapping itself is also
2254  * a stack mapping. We want to leave room for a guard page, after all
2255  * (the guard page itself is not added here, that is done by the
2256  * actual page faulting logic)
2257  *
2258  * This matches the behavior of the guard page logic (see mm/memory.c:
2259  * check_stack_guard_page()), which only allows the guard page to be
2260  * removed under these circumstances.
2261  */
2262 #ifdef CONFIG_STACK_GROWSUP
2263 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2264 {
2265         struct vm_area_struct *next;
2266
2267         address &= PAGE_MASK;
2268         next = vma->vm_next;
2269         if (next && next->vm_start == address + PAGE_SIZE) {
2270                 if (!(next->vm_flags & VM_GROWSUP))
2271                         return -ENOMEM;
2272         }
2273         return expand_upwards(vma, address);
2274 }
2275
2276 struct vm_area_struct *
2277 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2278 {
2279         struct vm_area_struct *vma, *prev;
2280
2281         addr &= PAGE_MASK;
2282         vma = find_vma_prev(mm, addr, &prev);
2283         if (vma && (vma->vm_start <= addr))
2284                 return vma;
2285         if (!prev || expand_stack(prev, addr))
2286                 return NULL;
2287         if (prev->vm_flags & VM_LOCKED)
2288                 __mlock_vma_pages_range(prev, addr, prev->vm_end, NULL);
2289         return prev;
2290 }
2291 #else
2292 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2293 {
2294         struct vm_area_struct *prev;
2295
2296         address &= PAGE_MASK;
2297         prev = vma->vm_prev;
2298         if (prev && prev->vm_end == address) {
2299                 if (!(prev->vm_flags & VM_GROWSDOWN))
2300                         return -ENOMEM;
2301         }
2302         return expand_downwards(vma, address);
2303 }
2304
2305 struct vm_area_struct *
2306 find_extend_vma(struct mm_struct * mm, unsigned long addr)
2307 {
2308         struct vm_area_struct * vma;
2309         unsigned long start;
2310
2311         addr &= PAGE_MASK;
2312         vma = find_vma(mm,addr);
2313         if (!vma)
2314                 return NULL;
2315         if (vma->vm_start <= addr)
2316                 return vma;
2317         if (!(vma->vm_flags & VM_GROWSDOWN))
2318                 return NULL;
2319         start = vma->vm_start;
2320         if (expand_stack(vma, addr))
2321                 return NULL;
2322         if (vma->vm_flags & VM_LOCKED)
2323                 __mlock_vma_pages_range(vma, addr, start, NULL);
2324         return vma;
2325 }
2326 #endif
2327
2328 /*
2329  * Ok - we have the memory areas we should free on the vma list,
2330  * so release them, and do the vma updates.
2331  *
2332  * Called with the mm semaphore held.
2333  */
2334 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2335 {
2336         unsigned long nr_accounted = 0;
2337
2338         /* Update high watermark before we lower total_vm */
2339         update_hiwater_vm(mm);
2340         do {
2341                 long nrpages = vma_pages(vma);
2342
2343                 if (vma->vm_flags & VM_ACCOUNT)
2344                         nr_accounted += nrpages;
2345                 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2346                 vma = remove_vma(vma);
2347         } while (vma);
2348         vm_unacct_memory(nr_accounted);
2349         validate_mm(mm);
2350 }
2351
2352 /*
2353  * Get rid of page table information in the indicated region.
2354  *
2355  * Called with the mm semaphore held.
2356  */
2357 static void unmap_region(struct mm_struct *mm,
2358                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2359                 unsigned long start, unsigned long end)
2360 {
2361         struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
2362         struct mmu_gather tlb;
2363
2364         lru_add_drain();
2365         tlb_gather_mmu(&tlb, mm, start, end);
2366         update_hiwater_rss(mm);
2367         unmap_vmas(&tlb, vma, start, end);
2368         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2369                                  next ? next->vm_start : USER_PGTABLES_CEILING);
2370         tlb_finish_mmu(&tlb, start, end);
2371 }
2372
2373 /*
2374  * Create a list of vma's touched by the unmap, removing them from the mm's
2375  * vma list as we go..
2376  */
2377 static void
2378 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2379         struct vm_area_struct *prev, unsigned long end)
2380 {
2381         struct vm_area_struct **insertion_point;
2382         struct vm_area_struct *tail_vma = NULL;
2383
2384         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2385         vma->vm_prev = NULL;
2386         do {
2387                 vma_rb_erase(vma, &mm->mm_rb);
2388                 mm->map_count--;
2389                 tail_vma = vma;
2390                 vma = vma->vm_next;
2391         } while (vma && vma->vm_start < end);
2392         *insertion_point = vma;
2393         if (vma) {
2394                 vma->vm_prev = prev;
2395                 vma_gap_update(vma);
2396         } else
2397                 mm->highest_vm_end = prev ? prev->vm_end : 0;
2398         tail_vma->vm_next = NULL;
2399
2400         /* Kill the cache */
2401         vmacache_invalidate(mm);
2402 }
2403
2404 /*
2405  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2406  * munmap path where it doesn't make sense to fail.
2407  */
2408 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
2409               unsigned long addr, int new_below)
2410 {
2411         struct vm_area_struct *new;
2412         int err = -ENOMEM;
2413
2414         if (is_vm_hugetlb_page(vma) && (addr &
2415                                         ~(huge_page_mask(hstate_vma(vma)))))
2416                 return -EINVAL;
2417
2418         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2419         if (!new)
2420                 goto out_err;
2421
2422         /* most fields are the same, copy all, and then fixup */
2423         *new = *vma;
2424
2425         INIT_LIST_HEAD(&new->anon_vma_chain);
2426
2427         if (new_below)
2428                 new->vm_end = addr;
2429         else {
2430                 new->vm_start = addr;
2431                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2432         }
2433
2434         err = vma_dup_policy(vma, new);
2435         if (err)
2436                 goto out_free_vma;
2437
2438         if (anon_vma_clone(new, vma))
2439                 goto out_free_mpol;
2440
2441         if (new->vm_file)
2442                 get_file(new->vm_file);
2443
2444         if (new->vm_ops && new->vm_ops->open)
2445                 new->vm_ops->open(new);
2446
2447         if (new_below)
2448                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2449                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
2450         else
2451                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2452
2453         /* Success. */
2454         if (!err)
2455                 return 0;
2456
2457         /* Clean everything up if vma_adjust failed. */
2458         if (new->vm_ops && new->vm_ops->close)
2459                 new->vm_ops->close(new);
2460         if (new->vm_file)
2461                 fput(new->vm_file);
2462         unlink_anon_vmas(new);
2463  out_free_mpol:
2464         mpol_put(vma_policy(new));
2465  out_free_vma:
2466         kmem_cache_free(vm_area_cachep, new);
2467  out_err:
2468         return err;
2469 }
2470
2471 /*
2472  * Split a vma into two pieces at address 'addr', a new vma is allocated
2473  * either for the first part or the tail.
2474  */
2475 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2476               unsigned long addr, int new_below)
2477 {
2478         if (mm->map_count >= sysctl_max_map_count)
2479                 return -ENOMEM;
2480
2481         return __split_vma(mm, vma, addr, new_below);
2482 }
2483
2484 /* Munmap is split into 2 main parts -- this part which finds
2485  * what needs doing, and the areas themselves, which do the
2486  * work.  This now handles partial unmappings.
2487  * Jeremy Fitzhardinge <jeremy@goop.org>
2488  */
2489 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2490 {
2491         unsigned long end;
2492         struct vm_area_struct *vma, *prev, *last;
2493
2494         if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2495                 return -EINVAL;
2496
2497         if ((len = PAGE_ALIGN(len)) == 0)
2498                 return -EINVAL;
2499
2500         /* Find the first overlapping VMA */
2501         vma = find_vma(mm, start);
2502         if (!vma)
2503                 return 0;
2504         prev = vma->vm_prev;
2505         /* we have  start < vma->vm_end  */
2506
2507         /* if it doesn't overlap, we have nothing.. */
2508         end = start + len;
2509         if (vma->vm_start >= end)
2510                 return 0;
2511
2512         /*
2513          * If we need to split any vma, do it now to save pain later.
2514          *
2515          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2516          * unmapped vm_area_struct will remain in use: so lower split_vma
2517          * places tmp vma above, and higher split_vma places tmp vma below.
2518          */
2519         if (start > vma->vm_start) {
2520                 int error;
2521
2522                 /*
2523                  * Make sure that map_count on return from munmap() will
2524                  * not exceed its limit; but let map_count go just above
2525                  * its limit temporarily, to help free resources as expected.
2526                  */
2527                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2528                         return -ENOMEM;
2529
2530                 error = __split_vma(mm, vma, start, 0);
2531                 if (error)
2532                         return error;
2533                 prev = vma;
2534         }
2535
2536         /* Does it split the last one? */
2537         last = find_vma(mm, end);
2538         if (last && end > last->vm_start) {
2539                 int error = __split_vma(mm, last, end, 1);
2540                 if (error)
2541                         return error;
2542         }
2543         vma = prev? prev->vm_next: mm->mmap;
2544
2545         /*
2546          * unlock any mlock()ed ranges before detaching vmas
2547          */
2548         if (mm->locked_vm) {
2549                 struct vm_area_struct *tmp = vma;
2550                 while (tmp && tmp->vm_start < end) {
2551                         if (tmp->vm_flags & VM_LOCKED) {
2552                                 mm->locked_vm -= vma_pages(tmp);
2553                                 munlock_vma_pages_all(tmp);
2554                         }
2555                         tmp = tmp->vm_next;
2556                 }
2557         }
2558
2559         /*
2560          * Remove the vma's, and unmap the actual pages
2561          */
2562         detach_vmas_to_be_unmapped(mm, vma, prev, end);
2563         unmap_region(mm, vma, prev, start, end);
2564
2565         /* Fix up all other VM information */
2566         remove_vma_list(mm, vma);
2567
2568         return 0;
2569 }
2570
2571 int vm_munmap(unsigned long start, size_t len)
2572 {
2573         int ret;
2574         struct mm_struct *mm = current->mm;
2575
2576         down_write(&mm->mmap_sem);
2577         ret = do_munmap(mm, start, len);
2578         up_write(&mm->mmap_sem);
2579         return ret;
2580 }
2581 EXPORT_SYMBOL(vm_munmap);
2582
2583 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2584 {
2585         profile_munmap(addr);
2586         return vm_munmap(addr, len);
2587 }
2588
2589 static inline void verify_mm_writelocked(struct mm_struct *mm)
2590 {
2591 #ifdef CONFIG_DEBUG_VM
2592         if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2593                 WARN_ON(1);
2594                 up_read(&mm->mmap_sem);
2595         }
2596 #endif
2597 }
2598
2599 /*
2600  *  this is really a simplified "do_mmap".  it only handles
2601  *  anonymous maps.  eventually we may be able to do some
2602  *  brk-specific accounting here.
2603  */
2604 static unsigned long do_brk(unsigned long addr, unsigned long len)
2605 {
2606         struct mm_struct * mm = current->mm;
2607         struct vm_area_struct * vma, * prev;
2608         unsigned long flags;
2609         struct rb_node ** rb_link, * rb_parent;
2610         pgoff_t pgoff = addr >> PAGE_SHIFT;
2611         int error;
2612
2613         len = PAGE_ALIGN(len);
2614         if (!len)
2615                 return addr;
2616
2617         flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2618
2619         error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2620         if (error & ~PAGE_MASK)
2621                 return error;
2622
2623         error = mlock_future_check(mm, mm->def_flags, len);
2624         if (error)
2625                 return error;
2626
2627         /*
2628          * mm->mmap_sem is required to protect against another thread
2629          * changing the mappings in case we sleep.
2630          */
2631         verify_mm_writelocked(mm);
2632
2633         /*
2634          * Clear old maps.  this also does some error checking for us
2635          */
2636  munmap_back:
2637         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
2638                 if (do_munmap(mm, addr, len))
2639                         return -ENOMEM;
2640                 goto munmap_back;
2641         }
2642
2643         /* Check against address space limits *after* clearing old maps... */
2644         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2645                 return -ENOMEM;
2646
2647         if (mm->map_count > sysctl_max_map_count)
2648                 return -ENOMEM;
2649
2650         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2651                 return -ENOMEM;
2652
2653         /* Can we just expand an old private anonymous mapping? */
2654         vma = vma_merge(mm, prev, addr, addr + len, flags,
2655                                         NULL, NULL, pgoff, NULL);
2656         if (vma)
2657                 goto out;
2658
2659         /*
2660          * create a vma struct for an anonymous mapping
2661          */
2662         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2663         if (!vma) {
2664                 vm_unacct_memory(len >> PAGE_SHIFT);
2665                 return -ENOMEM;
2666         }
2667
2668         INIT_LIST_HEAD(&vma->anon_vma_chain);
2669         vma->vm_mm = mm;
2670         vma->vm_start = addr;
2671         vma->vm_end = addr + len;
2672         vma->vm_pgoff = pgoff;
2673         vma->vm_flags = flags;
2674         vma->vm_page_prot = vm_get_page_prot(flags);
2675         vma_link(mm, vma, prev, rb_link, rb_parent);
2676 out:
2677         perf_event_mmap(vma);
2678         mm->total_vm += len >> PAGE_SHIFT;
2679         if (flags & VM_LOCKED)
2680                 mm->locked_vm += (len >> PAGE_SHIFT);
2681         vma->vm_flags |= VM_SOFTDIRTY;
2682         return addr;
2683 }
2684
2685 unsigned long vm_brk(unsigned long addr, unsigned long len)
2686 {
2687         struct mm_struct *mm = current->mm;
2688         unsigned long ret;
2689         bool populate;
2690
2691         down_write(&mm->mmap_sem);
2692         ret = do_brk(addr, len);
2693         populate = ((mm->def_flags & VM_LOCKED) != 0);
2694         up_write(&mm->mmap_sem);
2695         if (populate)
2696                 mm_populate(addr, len);
2697         return ret;
2698 }
2699 EXPORT_SYMBOL(vm_brk);
2700
2701 /* Release all mmaps. */
2702 void exit_mmap(struct mm_struct *mm)
2703 {
2704         struct mmu_gather tlb;
2705         struct vm_area_struct *vma;
2706         unsigned long nr_accounted = 0;
2707
2708         /* mm's last user has gone, and its about to be pulled down */
2709         mmu_notifier_release(mm);
2710
2711         if (mm->locked_vm) {
2712                 vma = mm->mmap;
2713                 while (vma) {
2714                         if (vma->vm_flags & VM_LOCKED)
2715                                 munlock_vma_pages_all(vma);
2716                         vma = vma->vm_next;
2717                 }
2718         }
2719
2720         arch_exit_mmap(mm);
2721
2722         vma = mm->mmap;
2723         if (!vma)       /* Can happen if dup_mmap() received an OOM */
2724                 return;
2725
2726         lru_add_drain();
2727         flush_cache_mm(mm);
2728         tlb_gather_mmu(&tlb, mm, 0, -1);
2729         /* update_hiwater_rss(mm) here? but nobody should be looking */
2730         /* Use -1 here to ensure all VMAs in the mm are unmapped */
2731         unmap_vmas(&tlb, vma, 0, -1);
2732
2733         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2734         tlb_finish_mmu(&tlb, 0, -1);
2735
2736         /*
2737          * Walk the list again, actually closing and freeing it,
2738          * with preemption enabled, without holding any MM locks.
2739          */
2740         while (vma) {
2741                 if (vma->vm_flags & VM_ACCOUNT)
2742                         nr_accounted += vma_pages(vma);
2743                 vma = remove_vma(vma);
2744         }
2745         vm_unacct_memory(nr_accounted);
2746
2747         WARN_ON(atomic_long_read(&mm->nr_ptes) >
2748                         (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2749 }
2750
2751 /* Insert vm structure into process list sorted by address
2752  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2753  * then i_mmap_mutex is taken here.
2754  */
2755 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2756 {
2757         struct vm_area_struct *prev;
2758         struct rb_node **rb_link, *rb_parent;
2759
2760         /*
2761          * The vm_pgoff of a purely anonymous vma should be irrelevant
2762          * until its first write fault, when page's anon_vma and index
2763          * are set.  But now set the vm_pgoff it will almost certainly
2764          * end up with (unless mremap moves it elsewhere before that
2765          * first wfault), so /proc/pid/maps tells a consistent story.
2766          *
2767          * By setting it to reflect the virtual start address of the
2768          * vma, merges and splits can happen in a seamless way, just
2769          * using the existing file pgoff checks and manipulations.
2770          * Similarly in do_mmap_pgoff and in do_brk.
2771          */
2772         if (!vma->vm_file) {
2773                 BUG_ON(vma->anon_vma);
2774                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2775         }
2776         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2777                            &prev, &rb_link, &rb_parent))
2778                 return -ENOMEM;
2779         if ((vma->vm_flags & VM_ACCOUNT) &&
2780              security_vm_enough_memory_mm(mm, vma_pages(vma)))
2781                 return -ENOMEM;
2782
2783         vma_link(mm, vma, prev, rb_link, rb_parent);
2784         return 0;
2785 }
2786
2787 /*
2788  * Copy the vma structure to a new location in the same mm,
2789  * prior to moving page table entries, to effect an mremap move.
2790  */
2791 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2792         unsigned long addr, unsigned long len, pgoff_t pgoff,
2793         bool *need_rmap_locks)
2794 {
2795         struct vm_area_struct *vma = *vmap;
2796         unsigned long vma_start = vma->vm_start;
2797         struct mm_struct *mm = vma->vm_mm;
2798         struct vm_area_struct *new_vma, *prev;
2799         struct rb_node **rb_link, *rb_parent;
2800         bool faulted_in_anon_vma = true;
2801
2802         /*
2803          * If anonymous vma has not yet been faulted, update new pgoff
2804          * to match new location, to increase its chance of merging.
2805          */
2806         if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2807                 pgoff = addr >> PAGE_SHIFT;
2808                 faulted_in_anon_vma = false;
2809         }
2810
2811         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2812                 return NULL;    /* should never get here */
2813         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2814                         vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2815         if (new_vma) {
2816                 /*
2817                  * Source vma may have been merged into new_vma
2818                  */
2819                 if (unlikely(vma_start >= new_vma->vm_start &&
2820                              vma_start < new_vma->vm_end)) {
2821                         /*
2822                          * The only way we can get a vma_merge with
2823                          * self during an mremap is if the vma hasn't
2824                          * been faulted in yet and we were allowed to
2825                          * reset the dst vma->vm_pgoff to the
2826                          * destination address of the mremap to allow
2827                          * the merge to happen. mremap must change the
2828                          * vm_pgoff linearity between src and dst vmas
2829                          * (in turn preventing a vma_merge) to be
2830                          * safe. It is only safe to keep the vm_pgoff
2831                          * linear if there are no pages mapped yet.
2832                          */
2833                         VM_BUG_ON(faulted_in_anon_vma);
2834                         *vmap = vma = new_vma;
2835                 }
2836                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2837         } else {
2838                 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2839                 if (new_vma) {
2840                         *new_vma = *vma;
2841                         new_vma->vm_start = addr;
2842                         new_vma->vm_end = addr + len;
2843                         new_vma->vm_pgoff = pgoff;
2844                         if (vma_dup_policy(vma, new_vma))
2845                                 goto out_free_vma;
2846                         INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2847                         if (anon_vma_clone(new_vma, vma))
2848                                 goto out_free_mempol;
2849                         if (new_vma->vm_file)
2850                                 get_file(new_vma->vm_file);
2851                         if (new_vma->vm_ops && new_vma->vm_ops->open)
2852                                 new_vma->vm_ops->open(new_vma);
2853                         vma_link(mm, new_vma, prev, rb_link, rb_parent);
2854                         *need_rmap_locks = false;
2855                 }
2856         }
2857         return new_vma;
2858
2859  out_free_mempol:
2860         mpol_put(vma_policy(new_vma));
2861  out_free_vma:
2862         kmem_cache_free(vm_area_cachep, new_vma);
2863         return NULL;
2864 }
2865
2866 /*
2867  * Return true if the calling process may expand its vm space by the passed
2868  * number of pages
2869  */
2870 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2871 {
2872         unsigned long cur = mm->total_vm;       /* pages */
2873         unsigned long lim;
2874
2875         lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2876
2877         if (cur + npages > lim)
2878                 return 0;
2879         return 1;
2880 }
2881
2882 static int special_mapping_fault(struct vm_area_struct *vma,
2883                                  struct vm_fault *vmf);
2884
2885 /*
2886  * Having a close hook prevents vma merging regardless of flags.
2887  */
2888 static void special_mapping_close(struct vm_area_struct *vma)
2889 {
2890 }
2891
2892 static const char *special_mapping_name(struct vm_area_struct *vma)
2893 {
2894         return ((struct vm_special_mapping *)vma->vm_private_data)->name;
2895 }
2896
2897 static const struct vm_operations_struct special_mapping_vmops = {
2898         .close = special_mapping_close,
2899         .fault = special_mapping_fault,
2900         .name = special_mapping_name,
2901 };
2902
2903 static const struct vm_operations_struct legacy_special_mapping_vmops = {
2904         .close = special_mapping_close,
2905         .fault = special_mapping_fault,
2906 };
2907
2908 static int special_mapping_fault(struct vm_area_struct *vma,
2909                                 struct vm_fault *vmf)
2910 {
2911         pgoff_t pgoff;
2912         struct page **pages;
2913
2914         /*
2915          * special mappings have no vm_file, and in that case, the mm
2916          * uses vm_pgoff internally. So we have to subtract it from here.
2917          * We are allowed to do this because we are the mm; do not copy
2918          * this code into drivers!
2919          */
2920         pgoff = vmf->pgoff - vma->vm_pgoff;
2921
2922         if (vma->vm_ops == &legacy_special_mapping_vmops)
2923                 pages = vma->vm_private_data;
2924         else
2925                 pages = ((struct vm_special_mapping *)vma->vm_private_data)->
2926                         pages;
2927
2928         for (; pgoff && *pages; ++pages)
2929                 pgoff--;
2930
2931         if (*pages) {
2932                 struct page *page = *pages;
2933                 get_page(page);
2934                 vmf->page = page;
2935                 return 0;
2936         }
2937
2938         return VM_FAULT_SIGBUS;
2939 }
2940
2941 static struct vm_area_struct *__install_special_mapping(
2942         struct mm_struct *mm,
2943         unsigned long addr, unsigned long len,
2944         unsigned long vm_flags, const struct vm_operations_struct *ops,
2945         void *priv)
2946 {
2947         int ret;
2948         struct vm_area_struct *vma;
2949
2950         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2951         if (unlikely(vma == NULL))
2952                 return ERR_PTR(-ENOMEM);
2953
2954         INIT_LIST_HEAD(&vma->anon_vma_chain);
2955         vma->vm_mm = mm;
2956         vma->vm_start = addr;
2957         vma->vm_end = addr + len;
2958
2959         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
2960         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2961
2962         vma->vm_ops = ops;
2963         vma->vm_private_data = priv;
2964
2965         ret = insert_vm_struct(mm, vma);
2966         if (ret)
2967                 goto out;
2968
2969         mm->total_vm += len >> PAGE_SHIFT;
2970
2971         perf_event_mmap(vma);
2972
2973         return vma;
2974
2975 out:
2976         kmem_cache_free(vm_area_cachep, vma);
2977         return ERR_PTR(ret);
2978 }
2979
2980 /*
2981  * Called with mm->mmap_sem held for writing.
2982  * Insert a new vma covering the given region, with the given flags.
2983  * Its pages are supplied by the given array of struct page *.
2984  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2985  * The region past the last page supplied will always produce SIGBUS.
2986  * The array pointer and the pages it points to are assumed to stay alive
2987  * for as long as this mapping might exist.
2988  */
2989 struct vm_area_struct *_install_special_mapping(
2990         struct mm_struct *mm,
2991         unsigned long addr, unsigned long len,
2992         unsigned long vm_flags, const struct vm_special_mapping *spec)
2993 {
2994         return __install_special_mapping(mm, addr, len, vm_flags,
2995                                          &special_mapping_vmops, (void *)spec);
2996 }
2997
2998 int install_special_mapping(struct mm_struct *mm,
2999                             unsigned long addr, unsigned long len,
3000                             unsigned long vm_flags, struct page **pages)
3001 {
3002         struct vm_area_struct *vma = __install_special_mapping(
3003                 mm, addr, len, vm_flags, &legacy_special_mapping_vmops,
3004                 (void *)pages);
3005
3006         return PTR_ERR_OR_ZERO(vma);
3007 }
3008
3009 static DEFINE_MUTEX(mm_all_locks_mutex);
3010
3011 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3012 {
3013         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3014                 /*
3015                  * The LSB of head.next can't change from under us
3016                  * because we hold the mm_all_locks_mutex.
3017                  */
3018                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3019                 /*
3020                  * We can safely modify head.next after taking the
3021                  * anon_vma->root->rwsem. If some other vma in this mm shares
3022                  * the same anon_vma we won't take it again.
3023                  *
3024                  * No need of atomic instructions here, head.next
3025                  * can't change from under us thanks to the
3026                  * anon_vma->root->rwsem.
3027                  */
3028                 if (__test_and_set_bit(0, (unsigned long *)
3029                                        &anon_vma->root->rb_root.rb_node))
3030                         BUG();
3031         }
3032 }
3033
3034 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3035 {
3036         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3037                 /*
3038                  * AS_MM_ALL_LOCKS can't change from under us because
3039                  * we hold the mm_all_locks_mutex.
3040                  *
3041                  * Operations on ->flags have to be atomic because
3042                  * even if AS_MM_ALL_LOCKS is stable thanks to the
3043                  * mm_all_locks_mutex, there may be other cpus
3044                  * changing other bitflags in parallel to us.
3045                  */
3046                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3047                         BUG();
3048                 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
3049         }
3050 }
3051
3052 /*
3053  * This operation locks against the VM for all pte/vma/mm related
3054  * operations that could ever happen on a certain mm. This includes
3055  * vmtruncate, try_to_unmap, and all page faults.
3056  *
3057  * The caller must take the mmap_sem in write mode before calling
3058  * mm_take_all_locks(). The caller isn't allowed to release the
3059  * mmap_sem until mm_drop_all_locks() returns.
3060  *
3061  * mmap_sem in write mode is required in order to block all operations
3062  * that could modify pagetables and free pages without need of
3063  * altering the vma layout (for example populate_range() with
3064  * nonlinear vmas). It's also needed in write mode to avoid new
3065  * anon_vmas to be associated with existing vmas.
3066  *
3067  * A single task can't take more than one mm_take_all_locks() in a row
3068  * or it would deadlock.
3069  *
3070  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3071  * mapping->flags avoid to take the same lock twice, if more than one
3072  * vma in this mm is backed by the same anon_vma or address_space.
3073  *
3074  * We can take all the locks in random order because the VM code
3075  * taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never
3076  * takes more than one of them in a row. Secondly we're protected
3077  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3078  *
3079  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3080  * that may have to take thousand of locks.
3081  *
3082  * mm_take_all_locks() can fail if it's interrupted by signals.
3083  */
3084 int mm_take_all_locks(struct mm_struct *mm)
3085 {
3086         struct vm_area_struct *vma;
3087         struct anon_vma_chain *avc;
3088
3089         BUG_ON(down_read_trylock(&mm->mmap_sem));
3090
3091         mutex_lock(&mm_all_locks_mutex);
3092
3093         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3094                 if (signal_pending(current))
3095                         goto out_unlock;
3096                 if (vma->vm_file && vma->vm_file->f_mapping)
3097                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3098         }
3099
3100         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3101                 if (signal_pending(current))
3102                         goto out_unlock;
3103                 if (vma->anon_vma)
3104                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3105                                 vm_lock_anon_vma(mm, avc->anon_vma);
3106         }
3107
3108         return 0;
3109
3110 out_unlock:
3111         mm_drop_all_locks(mm);
3112         return -EINTR;
3113 }
3114
3115 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3116 {
3117         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3118                 /*
3119                  * The LSB of head.next can't change to 0 from under
3120                  * us because we hold the mm_all_locks_mutex.
3121                  *
3122                  * We must however clear the bitflag before unlocking
3123                  * the vma so the users using the anon_vma->rb_root will
3124                  * never see our bitflag.
3125                  *
3126                  * No need of atomic instructions here, head.next
3127                  * can't change from under us until we release the
3128                  * anon_vma->root->rwsem.
3129                  */
3130                 if (!__test_and_clear_bit(0, (unsigned long *)
3131                                           &anon_vma->root->rb_root.rb_node))
3132                         BUG();
3133                 anon_vma_unlock_write(anon_vma);
3134         }
3135 }
3136
3137 static void vm_unlock_mapping(struct address_space *mapping)
3138 {
3139         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3140                 /*
3141                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3142                  * because we hold the mm_all_locks_mutex.
3143                  */
3144                 mutex_unlock(&mapping->i_mmap_mutex);
3145                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3146                                         &mapping->flags))
3147                         BUG();
3148         }
3149 }
3150
3151 /*
3152  * The mmap_sem cannot be released by the caller until
3153  * mm_drop_all_locks() returns.
3154  */
3155 void mm_drop_all_locks(struct mm_struct *mm)
3156 {
3157         struct vm_area_struct *vma;
3158         struct anon_vma_chain *avc;
3159
3160         BUG_ON(down_read_trylock(&mm->mmap_sem));
3161         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3162
3163         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3164                 if (vma->anon_vma)
3165                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3166                                 vm_unlock_anon_vma(avc->anon_vma);
3167                 if (vma->vm_file && vma->vm_file->f_mapping)
3168                         vm_unlock_mapping(vma->vm_file->f_mapping);
3169         }
3170
3171         mutex_unlock(&mm_all_locks_mutex);
3172 }
3173
3174 /*
3175  * initialise the VMA slab
3176  */
3177 void __init mmap_init(void)
3178 {
3179         int ret;
3180
3181         ret = percpu_counter_init(&vm_committed_as, 0);
3182         VM_BUG_ON(ret);
3183 }
3184
3185 /*
3186  * Initialise sysctl_user_reserve_kbytes.
3187  *
3188  * This is intended to prevent a user from starting a single memory hogging
3189  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3190  * mode.
3191  *
3192  * The default value is min(3% of free memory, 128MB)
3193  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3194  */
3195 static int init_user_reserve(void)
3196 {
3197         unsigned long free_kbytes;
3198
3199         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3200
3201         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3202         return 0;
3203 }
3204 subsys_initcall(init_user_reserve);
3205
3206 /*
3207  * Initialise sysctl_admin_reserve_kbytes.
3208  *
3209  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3210  * to log in and kill a memory hogging process.
3211  *
3212  * Systems with more than 256MB will reserve 8MB, enough to recover
3213  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3214  * only reserve 3% of free pages by default.
3215  */
3216 static int init_admin_reserve(void)
3217 {
3218         unsigned long free_kbytes;
3219
3220         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3221
3222         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3223         return 0;
3224 }
3225 subsys_initcall(init_admin_reserve);
3226
3227 /*
3228  * Reinititalise user and admin reserves if memory is added or removed.
3229  *
3230  * The default user reserve max is 128MB, and the default max for the
3231  * admin reserve is 8MB. These are usually, but not always, enough to
3232  * enable recovery from a memory hogging process using login/sshd, a shell,
3233  * and tools like top. It may make sense to increase or even disable the
3234  * reserve depending on the existence of swap or variations in the recovery
3235  * tools. So, the admin may have changed them.
3236  *
3237  * If memory is added and the reserves have been eliminated or increased above
3238  * the default max, then we'll trust the admin.
3239  *
3240  * If memory is removed and there isn't enough free memory, then we
3241  * need to reset the reserves.
3242  *
3243  * Otherwise keep the reserve set by the admin.
3244  */
3245 static int reserve_mem_notifier(struct notifier_block *nb,
3246                              unsigned long action, void *data)
3247 {
3248         unsigned long tmp, free_kbytes;
3249
3250         switch (action) {
3251         case MEM_ONLINE:
3252                 /* Default max is 128MB. Leave alone if modified by operator. */
3253                 tmp = sysctl_user_reserve_kbytes;
3254                 if (0 < tmp && tmp < (1UL << 17))
3255                         init_user_reserve();
3256
3257                 /* Default max is 8MB.  Leave alone if modified by operator. */
3258                 tmp = sysctl_admin_reserve_kbytes;
3259                 if (0 < tmp && tmp < (1UL << 13))
3260                         init_admin_reserve();
3261
3262                 break;
3263         case MEM_OFFLINE:
3264                 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3265
3266                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3267                         init_user_reserve();
3268                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3269                                 sysctl_user_reserve_kbytes);
3270                 }
3271
3272                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3273                         init_admin_reserve();
3274                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3275                                 sysctl_admin_reserve_kbytes);
3276                 }
3277                 break;
3278         default:
3279                 break;
3280         }
3281         return NOTIFY_OK;
3282 }
3283
3284 static struct notifier_block reserve_mem_nb = {
3285         .notifier_call = reserve_mem_notifier,
3286 };
3287
3288 static int __meminit init_reserve_notifier(void)
3289 {
3290         if (register_hotmemory_notifier(&reserve_mem_nb))
3291                 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3292
3293         return 0;
3294 }
3295 subsys_initcall(init_reserve_notifier);