mm: track vma changes with VM_SOFTDIRTY bit
[cascardo/linux.git] / mm / mmap.c
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
7  */
8
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/backing-dev.h>
12 #include <linux/mm.h>
13 #include <linux/shm.h>
14 #include <linux/mman.h>
15 #include <linux/pagemap.h>
16 #include <linux/swap.h>
17 #include <linux/syscalls.h>
18 #include <linux/capability.h>
19 #include <linux/init.h>
20 #include <linux/file.h>
21 #include <linux/fs.h>
22 #include <linux/personality.h>
23 #include <linux/security.h>
24 #include <linux/hugetlb.h>
25 #include <linux/profile.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/mempolicy.h>
29 #include <linux/rmap.h>
30 #include <linux/mmu_notifier.h>
31 #include <linux/perf_event.h>
32 #include <linux/audit.h>
33 #include <linux/khugepaged.h>
34 #include <linux/uprobes.h>
35 #include <linux/rbtree_augmented.h>
36 #include <linux/sched/sysctl.h>
37 #include <linux/notifier.h>
38 #include <linux/memory.h>
39
40 #include <asm/uaccess.h>
41 #include <asm/cacheflush.h>
42 #include <asm/tlb.h>
43 #include <asm/mmu_context.h>
44
45 #include "internal.h"
46
47 #ifndef arch_mmap_check
48 #define arch_mmap_check(addr, len, flags)       (0)
49 #endif
50
51 #ifndef arch_rebalance_pgtables
52 #define arch_rebalance_pgtables(addr, len)              (addr)
53 #endif
54
55 static void unmap_region(struct mm_struct *mm,
56                 struct vm_area_struct *vma, struct vm_area_struct *prev,
57                 unsigned long start, unsigned long end);
58
59 /* description of effects of mapping type and prot in current implementation.
60  * this is due to the limited x86 page protection hardware.  The expected
61  * behavior is in parens:
62  *
63  * map_type     prot
64  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
65  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
66  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
67  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
68  *              
69  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
70  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
71  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
72  *
73  */
74 pgprot_t protection_map[16] = {
75         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
76         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
77 };
78
79 pgprot_t vm_get_page_prot(unsigned long vm_flags)
80 {
81         return __pgprot(pgprot_val(protection_map[vm_flags &
82                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
83                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
84 }
85 EXPORT_SYMBOL(vm_get_page_prot);
86
87 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
88 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
89 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
90 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
91 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
92 /*
93  * Make sure vm_committed_as in one cacheline and not cacheline shared with
94  * other variables. It can be updated by several CPUs frequently.
95  */
96 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
97
98 /*
99  * The global memory commitment made in the system can be a metric
100  * that can be used to drive ballooning decisions when Linux is hosted
101  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
102  * balancing memory across competing virtual machines that are hosted.
103  * Several metrics drive this policy engine including the guest reported
104  * memory commitment.
105  */
106 unsigned long vm_memory_committed(void)
107 {
108         return percpu_counter_read_positive(&vm_committed_as);
109 }
110 EXPORT_SYMBOL_GPL(vm_memory_committed);
111
112 /*
113  * Check that a process has enough memory to allocate a new virtual
114  * mapping. 0 means there is enough memory for the allocation to
115  * succeed and -ENOMEM implies there is not.
116  *
117  * We currently support three overcommit policies, which are set via the
118  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
119  *
120  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
121  * Additional code 2002 Jul 20 by Robert Love.
122  *
123  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
124  *
125  * Note this is a helper function intended to be used by LSMs which
126  * wish to use this logic.
127  */
128 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
129 {
130         unsigned long free, allowed, reserve;
131
132         vm_acct_memory(pages);
133
134         /*
135          * Sometimes we want to use more memory than we have
136          */
137         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
138                 return 0;
139
140         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
141                 free = global_page_state(NR_FREE_PAGES);
142                 free += global_page_state(NR_FILE_PAGES);
143
144                 /*
145                  * shmem pages shouldn't be counted as free in this
146                  * case, they can't be purged, only swapped out, and
147                  * that won't affect the overall amount of available
148                  * memory in the system.
149                  */
150                 free -= global_page_state(NR_SHMEM);
151
152                 free += get_nr_swap_pages();
153
154                 /*
155                  * Any slabs which are created with the
156                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
157                  * which are reclaimable, under pressure.  The dentry
158                  * cache and most inode caches should fall into this
159                  */
160                 free += global_page_state(NR_SLAB_RECLAIMABLE);
161
162                 /*
163                  * Leave reserved pages. The pages are not for anonymous pages.
164                  */
165                 if (free <= totalreserve_pages)
166                         goto error;
167                 else
168                         free -= totalreserve_pages;
169
170                 /*
171                  * Reserve some for root
172                  */
173                 if (!cap_sys_admin)
174                         free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
175
176                 if (free > pages)
177                         return 0;
178
179                 goto error;
180         }
181
182         allowed = (totalram_pages - hugetlb_total_pages())
183                 * sysctl_overcommit_ratio / 100;
184         /*
185          * Reserve some for root
186          */
187         if (!cap_sys_admin)
188                 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
189         allowed += total_swap_pages;
190
191         /*
192          * Don't let a single process grow so big a user can't recover
193          */
194         if (mm) {
195                 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
196                 allowed -= min(mm->total_vm / 32, reserve);
197         }
198
199         if (percpu_counter_read_positive(&vm_committed_as) < allowed)
200                 return 0;
201 error:
202         vm_unacct_memory(pages);
203
204         return -ENOMEM;
205 }
206
207 /*
208  * Requires inode->i_mapping->i_mmap_mutex
209  */
210 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
211                 struct file *file, struct address_space *mapping)
212 {
213         if (vma->vm_flags & VM_DENYWRITE)
214                 atomic_inc(&file_inode(file)->i_writecount);
215         if (vma->vm_flags & VM_SHARED)
216                 mapping->i_mmap_writable--;
217
218         flush_dcache_mmap_lock(mapping);
219         if (unlikely(vma->vm_flags & VM_NONLINEAR))
220                 list_del_init(&vma->shared.nonlinear);
221         else
222                 vma_interval_tree_remove(vma, &mapping->i_mmap);
223         flush_dcache_mmap_unlock(mapping);
224 }
225
226 /*
227  * Unlink a file-based vm structure from its interval tree, to hide
228  * vma from rmap and vmtruncate before freeing its page tables.
229  */
230 void unlink_file_vma(struct vm_area_struct *vma)
231 {
232         struct file *file = vma->vm_file;
233
234         if (file) {
235                 struct address_space *mapping = file->f_mapping;
236                 mutex_lock(&mapping->i_mmap_mutex);
237                 __remove_shared_vm_struct(vma, file, mapping);
238                 mutex_unlock(&mapping->i_mmap_mutex);
239         }
240 }
241
242 /*
243  * Close a vm structure and free it, returning the next.
244  */
245 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
246 {
247         struct vm_area_struct *next = vma->vm_next;
248
249         might_sleep();
250         if (vma->vm_ops && vma->vm_ops->close)
251                 vma->vm_ops->close(vma);
252         if (vma->vm_file)
253                 fput(vma->vm_file);
254         mpol_put(vma_policy(vma));
255         kmem_cache_free(vm_area_cachep, vma);
256         return next;
257 }
258
259 static unsigned long do_brk(unsigned long addr, unsigned long len);
260
261 SYSCALL_DEFINE1(brk, unsigned long, brk)
262 {
263         unsigned long rlim, retval;
264         unsigned long newbrk, oldbrk;
265         struct mm_struct *mm = current->mm;
266         unsigned long min_brk;
267         bool populate;
268
269         down_write(&mm->mmap_sem);
270
271 #ifdef CONFIG_COMPAT_BRK
272         /*
273          * CONFIG_COMPAT_BRK can still be overridden by setting
274          * randomize_va_space to 2, which will still cause mm->start_brk
275          * to be arbitrarily shifted
276          */
277         if (current->brk_randomized)
278                 min_brk = mm->start_brk;
279         else
280                 min_brk = mm->end_data;
281 #else
282         min_brk = mm->start_brk;
283 #endif
284         if (brk < min_brk)
285                 goto out;
286
287         /*
288          * Check against rlimit here. If this check is done later after the test
289          * of oldbrk with newbrk then it can escape the test and let the data
290          * segment grow beyond its set limit the in case where the limit is
291          * not page aligned -Ram Gupta
292          */
293         rlim = rlimit(RLIMIT_DATA);
294         if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
295                         (mm->end_data - mm->start_data) > rlim)
296                 goto out;
297
298         newbrk = PAGE_ALIGN(brk);
299         oldbrk = PAGE_ALIGN(mm->brk);
300         if (oldbrk == newbrk)
301                 goto set_brk;
302
303         /* Always allow shrinking brk. */
304         if (brk <= mm->brk) {
305                 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
306                         goto set_brk;
307                 goto out;
308         }
309
310         /* Check against existing mmap mappings. */
311         if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
312                 goto out;
313
314         /* Ok, looks good - let it rip. */
315         if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
316                 goto out;
317
318 set_brk:
319         mm->brk = brk;
320         populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
321         up_write(&mm->mmap_sem);
322         if (populate)
323                 mm_populate(oldbrk, newbrk - oldbrk);
324         return brk;
325
326 out:
327         retval = mm->brk;
328         up_write(&mm->mmap_sem);
329         return retval;
330 }
331
332 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
333 {
334         unsigned long max, subtree_gap;
335         max = vma->vm_start;
336         if (vma->vm_prev)
337                 max -= vma->vm_prev->vm_end;
338         if (vma->vm_rb.rb_left) {
339                 subtree_gap = rb_entry(vma->vm_rb.rb_left,
340                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
341                 if (subtree_gap > max)
342                         max = subtree_gap;
343         }
344         if (vma->vm_rb.rb_right) {
345                 subtree_gap = rb_entry(vma->vm_rb.rb_right,
346                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
347                 if (subtree_gap > max)
348                         max = subtree_gap;
349         }
350         return max;
351 }
352
353 #ifdef CONFIG_DEBUG_VM_RB
354 static int browse_rb(struct rb_root *root)
355 {
356         int i = 0, j, bug = 0;
357         struct rb_node *nd, *pn = NULL;
358         unsigned long prev = 0, pend = 0;
359
360         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
361                 struct vm_area_struct *vma;
362                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
363                 if (vma->vm_start < prev) {
364                         printk("vm_start %lx prev %lx\n", vma->vm_start, prev);
365                         bug = 1;
366                 }
367                 if (vma->vm_start < pend) {
368                         printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
369                         bug = 1;
370                 }
371                 if (vma->vm_start > vma->vm_end) {
372                         printk("vm_end %lx < vm_start %lx\n",
373                                 vma->vm_end, vma->vm_start);
374                         bug = 1;
375                 }
376                 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
377                         printk("free gap %lx, correct %lx\n",
378                                vma->rb_subtree_gap,
379                                vma_compute_subtree_gap(vma));
380                         bug = 1;
381                 }
382                 i++;
383                 pn = nd;
384                 prev = vma->vm_start;
385                 pend = vma->vm_end;
386         }
387         j = 0;
388         for (nd = pn; nd; nd = rb_prev(nd))
389                 j++;
390         if (i != j) {
391                 printk("backwards %d, forwards %d\n", j, i);
392                 bug = 1;
393         }
394         return bug ? -1 : i;
395 }
396
397 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
398 {
399         struct rb_node *nd;
400
401         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
402                 struct vm_area_struct *vma;
403                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
404                 BUG_ON(vma != ignore &&
405                        vma->rb_subtree_gap != vma_compute_subtree_gap(vma));
406         }
407 }
408
409 void validate_mm(struct mm_struct *mm)
410 {
411         int bug = 0;
412         int i = 0;
413         unsigned long highest_address = 0;
414         struct vm_area_struct *vma = mm->mmap;
415         while (vma) {
416                 struct anon_vma_chain *avc;
417                 vma_lock_anon_vma(vma);
418                 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
419                         anon_vma_interval_tree_verify(avc);
420                 vma_unlock_anon_vma(vma);
421                 highest_address = vma->vm_end;
422                 vma = vma->vm_next;
423                 i++;
424         }
425         if (i != mm->map_count) {
426                 printk("map_count %d vm_next %d\n", mm->map_count, i);
427                 bug = 1;
428         }
429         if (highest_address != mm->highest_vm_end) {
430                 printk("mm->highest_vm_end %lx, found %lx\n",
431                        mm->highest_vm_end, highest_address);
432                 bug = 1;
433         }
434         i = browse_rb(&mm->mm_rb);
435         if (i != mm->map_count) {
436                 printk("map_count %d rb %d\n", mm->map_count, i);
437                 bug = 1;
438         }
439         BUG_ON(bug);
440 }
441 #else
442 #define validate_mm_rb(root, ignore) do { } while (0)
443 #define validate_mm(mm) do { } while (0)
444 #endif
445
446 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
447                      unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
448
449 /*
450  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
451  * vma->vm_prev->vm_end values changed, without modifying the vma's position
452  * in the rbtree.
453  */
454 static void vma_gap_update(struct vm_area_struct *vma)
455 {
456         /*
457          * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
458          * function that does exacltly what we want.
459          */
460         vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
461 }
462
463 static inline void vma_rb_insert(struct vm_area_struct *vma,
464                                  struct rb_root *root)
465 {
466         /* All rb_subtree_gap values must be consistent prior to insertion */
467         validate_mm_rb(root, NULL);
468
469         rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
470 }
471
472 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
473 {
474         /*
475          * All rb_subtree_gap values must be consistent prior to erase,
476          * with the possible exception of the vma being erased.
477          */
478         validate_mm_rb(root, vma);
479
480         /*
481          * Note rb_erase_augmented is a fairly large inline function,
482          * so make sure we instantiate it only once with our desired
483          * augmented rbtree callbacks.
484          */
485         rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
486 }
487
488 /*
489  * vma has some anon_vma assigned, and is already inserted on that
490  * anon_vma's interval trees.
491  *
492  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
493  * vma must be removed from the anon_vma's interval trees using
494  * anon_vma_interval_tree_pre_update_vma().
495  *
496  * After the update, the vma will be reinserted using
497  * anon_vma_interval_tree_post_update_vma().
498  *
499  * The entire update must be protected by exclusive mmap_sem and by
500  * the root anon_vma's mutex.
501  */
502 static inline void
503 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
504 {
505         struct anon_vma_chain *avc;
506
507         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
508                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
509 }
510
511 static inline void
512 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
513 {
514         struct anon_vma_chain *avc;
515
516         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
517                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
518 }
519
520 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
521                 unsigned long end, struct vm_area_struct **pprev,
522                 struct rb_node ***rb_link, struct rb_node **rb_parent)
523 {
524         struct rb_node **__rb_link, *__rb_parent, *rb_prev;
525
526         __rb_link = &mm->mm_rb.rb_node;
527         rb_prev = __rb_parent = NULL;
528
529         while (*__rb_link) {
530                 struct vm_area_struct *vma_tmp;
531
532                 __rb_parent = *__rb_link;
533                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
534
535                 if (vma_tmp->vm_end > addr) {
536                         /* Fail if an existing vma overlaps the area */
537                         if (vma_tmp->vm_start < end)
538                                 return -ENOMEM;
539                         __rb_link = &__rb_parent->rb_left;
540                 } else {
541                         rb_prev = __rb_parent;
542                         __rb_link = &__rb_parent->rb_right;
543                 }
544         }
545
546         *pprev = NULL;
547         if (rb_prev)
548                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
549         *rb_link = __rb_link;
550         *rb_parent = __rb_parent;
551         return 0;
552 }
553
554 static unsigned long count_vma_pages_range(struct mm_struct *mm,
555                 unsigned long addr, unsigned long end)
556 {
557         unsigned long nr_pages = 0;
558         struct vm_area_struct *vma;
559
560         /* Find first overlaping mapping */
561         vma = find_vma_intersection(mm, addr, end);
562         if (!vma)
563                 return 0;
564
565         nr_pages = (min(end, vma->vm_end) -
566                 max(addr, vma->vm_start)) >> PAGE_SHIFT;
567
568         /* Iterate over the rest of the overlaps */
569         for (vma = vma->vm_next; vma; vma = vma->vm_next) {
570                 unsigned long overlap_len;
571
572                 if (vma->vm_start > end)
573                         break;
574
575                 overlap_len = min(end, vma->vm_end) - vma->vm_start;
576                 nr_pages += overlap_len >> PAGE_SHIFT;
577         }
578
579         return nr_pages;
580 }
581
582 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
583                 struct rb_node **rb_link, struct rb_node *rb_parent)
584 {
585         /* Update tracking information for the gap following the new vma. */
586         if (vma->vm_next)
587                 vma_gap_update(vma->vm_next);
588         else
589                 mm->highest_vm_end = vma->vm_end;
590
591         /*
592          * vma->vm_prev wasn't known when we followed the rbtree to find the
593          * correct insertion point for that vma. As a result, we could not
594          * update the vma vm_rb parents rb_subtree_gap values on the way down.
595          * So, we first insert the vma with a zero rb_subtree_gap value
596          * (to be consistent with what we did on the way down), and then
597          * immediately update the gap to the correct value. Finally we
598          * rebalance the rbtree after all augmented values have been set.
599          */
600         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
601         vma->rb_subtree_gap = 0;
602         vma_gap_update(vma);
603         vma_rb_insert(vma, &mm->mm_rb);
604 }
605
606 static void __vma_link_file(struct vm_area_struct *vma)
607 {
608         struct file *file;
609
610         file = vma->vm_file;
611         if (file) {
612                 struct address_space *mapping = file->f_mapping;
613
614                 if (vma->vm_flags & VM_DENYWRITE)
615                         atomic_dec(&file_inode(file)->i_writecount);
616                 if (vma->vm_flags & VM_SHARED)
617                         mapping->i_mmap_writable++;
618
619                 flush_dcache_mmap_lock(mapping);
620                 if (unlikely(vma->vm_flags & VM_NONLINEAR))
621                         vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
622                 else
623                         vma_interval_tree_insert(vma, &mapping->i_mmap);
624                 flush_dcache_mmap_unlock(mapping);
625         }
626 }
627
628 static void
629 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
630         struct vm_area_struct *prev, struct rb_node **rb_link,
631         struct rb_node *rb_parent)
632 {
633         __vma_link_list(mm, vma, prev, rb_parent);
634         __vma_link_rb(mm, vma, rb_link, rb_parent);
635 }
636
637 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
638                         struct vm_area_struct *prev, struct rb_node **rb_link,
639                         struct rb_node *rb_parent)
640 {
641         struct address_space *mapping = NULL;
642
643         if (vma->vm_file)
644                 mapping = vma->vm_file->f_mapping;
645
646         if (mapping)
647                 mutex_lock(&mapping->i_mmap_mutex);
648
649         __vma_link(mm, vma, prev, rb_link, rb_parent);
650         __vma_link_file(vma);
651
652         if (mapping)
653                 mutex_unlock(&mapping->i_mmap_mutex);
654
655         mm->map_count++;
656         validate_mm(mm);
657 }
658
659 /*
660  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
661  * mm's list and rbtree.  It has already been inserted into the interval tree.
662  */
663 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
664 {
665         struct vm_area_struct *prev;
666         struct rb_node **rb_link, *rb_parent;
667
668         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
669                            &prev, &rb_link, &rb_parent))
670                 BUG();
671         __vma_link(mm, vma, prev, rb_link, rb_parent);
672         mm->map_count++;
673 }
674
675 static inline void
676 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
677                 struct vm_area_struct *prev)
678 {
679         struct vm_area_struct *next;
680
681         vma_rb_erase(vma, &mm->mm_rb);
682         prev->vm_next = next = vma->vm_next;
683         if (next)
684                 next->vm_prev = prev;
685         if (mm->mmap_cache == vma)
686                 mm->mmap_cache = prev;
687 }
688
689 /*
690  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
691  * is already present in an i_mmap tree without adjusting the tree.
692  * The following helper function should be used when such adjustments
693  * are necessary.  The "insert" vma (if any) is to be inserted
694  * before we drop the necessary locks.
695  */
696 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
697         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
698 {
699         struct mm_struct *mm = vma->vm_mm;
700         struct vm_area_struct *next = vma->vm_next;
701         struct vm_area_struct *importer = NULL;
702         struct address_space *mapping = NULL;
703         struct rb_root *root = NULL;
704         struct anon_vma *anon_vma = NULL;
705         struct file *file = vma->vm_file;
706         bool start_changed = false, end_changed = false;
707         long adjust_next = 0;
708         int remove_next = 0;
709
710         if (next && !insert) {
711                 struct vm_area_struct *exporter = NULL;
712
713                 if (end >= next->vm_end) {
714                         /*
715                          * vma expands, overlapping all the next, and
716                          * perhaps the one after too (mprotect case 6).
717                          */
718 again:                  remove_next = 1 + (end > next->vm_end);
719                         end = next->vm_end;
720                         exporter = next;
721                         importer = vma;
722                 } else if (end > next->vm_start) {
723                         /*
724                          * vma expands, overlapping part of the next:
725                          * mprotect case 5 shifting the boundary up.
726                          */
727                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
728                         exporter = next;
729                         importer = vma;
730                 } else if (end < vma->vm_end) {
731                         /*
732                          * vma shrinks, and !insert tells it's not
733                          * split_vma inserting another: so it must be
734                          * mprotect case 4 shifting the boundary down.
735                          */
736                         adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
737                         exporter = vma;
738                         importer = next;
739                 }
740
741                 /*
742                  * Easily overlooked: when mprotect shifts the boundary,
743                  * make sure the expanding vma has anon_vma set if the
744                  * shrinking vma had, to cover any anon pages imported.
745                  */
746                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
747                         if (anon_vma_clone(importer, exporter))
748                                 return -ENOMEM;
749                         importer->anon_vma = exporter->anon_vma;
750                 }
751         }
752
753         if (file) {
754                 mapping = file->f_mapping;
755                 if (!(vma->vm_flags & VM_NONLINEAR)) {
756                         root = &mapping->i_mmap;
757                         uprobe_munmap(vma, vma->vm_start, vma->vm_end);
758
759                         if (adjust_next)
760                                 uprobe_munmap(next, next->vm_start,
761                                                         next->vm_end);
762                 }
763
764                 mutex_lock(&mapping->i_mmap_mutex);
765                 if (insert) {
766                         /*
767                          * Put into interval tree now, so instantiated pages
768                          * are visible to arm/parisc __flush_dcache_page
769                          * throughout; but we cannot insert into address
770                          * space until vma start or end is updated.
771                          */
772                         __vma_link_file(insert);
773                 }
774         }
775
776         vma_adjust_trans_huge(vma, start, end, adjust_next);
777
778         anon_vma = vma->anon_vma;
779         if (!anon_vma && adjust_next)
780                 anon_vma = next->anon_vma;
781         if (anon_vma) {
782                 VM_BUG_ON(adjust_next && next->anon_vma &&
783                           anon_vma != next->anon_vma);
784                 anon_vma_lock_write(anon_vma);
785                 anon_vma_interval_tree_pre_update_vma(vma);
786                 if (adjust_next)
787                         anon_vma_interval_tree_pre_update_vma(next);
788         }
789
790         if (root) {
791                 flush_dcache_mmap_lock(mapping);
792                 vma_interval_tree_remove(vma, root);
793                 if (adjust_next)
794                         vma_interval_tree_remove(next, root);
795         }
796
797         if (start != vma->vm_start) {
798                 vma->vm_start = start;
799                 start_changed = true;
800         }
801         if (end != vma->vm_end) {
802                 vma->vm_end = end;
803                 end_changed = true;
804         }
805         vma->vm_pgoff = pgoff;
806         if (adjust_next) {
807                 next->vm_start += adjust_next << PAGE_SHIFT;
808                 next->vm_pgoff += adjust_next;
809         }
810
811         if (root) {
812                 if (adjust_next)
813                         vma_interval_tree_insert(next, root);
814                 vma_interval_tree_insert(vma, root);
815                 flush_dcache_mmap_unlock(mapping);
816         }
817
818         if (remove_next) {
819                 /*
820                  * vma_merge has merged next into vma, and needs
821                  * us to remove next before dropping the locks.
822                  */
823                 __vma_unlink(mm, next, vma);
824                 if (file)
825                         __remove_shared_vm_struct(next, file, mapping);
826         } else if (insert) {
827                 /*
828                  * split_vma has split insert from vma, and needs
829                  * us to insert it before dropping the locks
830                  * (it may either follow vma or precede it).
831                  */
832                 __insert_vm_struct(mm, insert);
833         } else {
834                 if (start_changed)
835                         vma_gap_update(vma);
836                 if (end_changed) {
837                         if (!next)
838                                 mm->highest_vm_end = end;
839                         else if (!adjust_next)
840                                 vma_gap_update(next);
841                 }
842         }
843
844         if (anon_vma) {
845                 anon_vma_interval_tree_post_update_vma(vma);
846                 if (adjust_next)
847                         anon_vma_interval_tree_post_update_vma(next);
848                 anon_vma_unlock_write(anon_vma);
849         }
850         if (mapping)
851                 mutex_unlock(&mapping->i_mmap_mutex);
852
853         if (root) {
854                 uprobe_mmap(vma);
855
856                 if (adjust_next)
857                         uprobe_mmap(next);
858         }
859
860         if (remove_next) {
861                 if (file) {
862                         uprobe_munmap(next, next->vm_start, next->vm_end);
863                         fput(file);
864                 }
865                 if (next->anon_vma)
866                         anon_vma_merge(vma, next);
867                 mm->map_count--;
868                 mpol_put(vma_policy(next));
869                 kmem_cache_free(vm_area_cachep, next);
870                 /*
871                  * In mprotect's case 6 (see comments on vma_merge),
872                  * we must remove another next too. It would clutter
873                  * up the code too much to do both in one go.
874                  */
875                 next = vma->vm_next;
876                 if (remove_next == 2)
877                         goto again;
878                 else if (next)
879                         vma_gap_update(next);
880                 else
881                         mm->highest_vm_end = end;
882         }
883         if (insert && file)
884                 uprobe_mmap(insert);
885
886         validate_mm(mm);
887
888         return 0;
889 }
890
891 /*
892  * If the vma has a ->close operation then the driver probably needs to release
893  * per-vma resources, so we don't attempt to merge those.
894  */
895 static inline int is_mergeable_vma(struct vm_area_struct *vma,
896                         struct file *file, unsigned long vm_flags)
897 {
898         if (vma->vm_flags ^ vm_flags)
899                 return 0;
900         if (vma->vm_file != file)
901                 return 0;
902         if (vma->vm_ops && vma->vm_ops->close)
903                 return 0;
904         return 1;
905 }
906
907 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
908                                         struct anon_vma *anon_vma2,
909                                         struct vm_area_struct *vma)
910 {
911         /*
912          * The list_is_singular() test is to avoid merging VMA cloned from
913          * parents. This can improve scalability caused by anon_vma lock.
914          */
915         if ((!anon_vma1 || !anon_vma2) && (!vma ||
916                 list_is_singular(&vma->anon_vma_chain)))
917                 return 1;
918         return anon_vma1 == anon_vma2;
919 }
920
921 /*
922  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
923  * in front of (at a lower virtual address and file offset than) the vma.
924  *
925  * We cannot merge two vmas if they have differently assigned (non-NULL)
926  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
927  *
928  * We don't check here for the merged mmap wrapping around the end of pagecache
929  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
930  * wrap, nor mmaps which cover the final page at index -1UL.
931  */
932 static int
933 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
934         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
935 {
936         if (is_mergeable_vma(vma, file, vm_flags) &&
937             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
938                 if (vma->vm_pgoff == vm_pgoff)
939                         return 1;
940         }
941         return 0;
942 }
943
944 /*
945  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
946  * beyond (at a higher virtual address and file offset than) the vma.
947  *
948  * We cannot merge two vmas if they have differently assigned (non-NULL)
949  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
950  */
951 static int
952 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
953         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
954 {
955         if (is_mergeable_vma(vma, file, vm_flags) &&
956             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
957                 pgoff_t vm_pglen;
958                 vm_pglen = vma_pages(vma);
959                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
960                         return 1;
961         }
962         return 0;
963 }
964
965 /*
966  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
967  * whether that can be merged with its predecessor or its successor.
968  * Or both (it neatly fills a hole).
969  *
970  * In most cases - when called for mmap, brk or mremap - [addr,end) is
971  * certain not to be mapped by the time vma_merge is called; but when
972  * called for mprotect, it is certain to be already mapped (either at
973  * an offset within prev, or at the start of next), and the flags of
974  * this area are about to be changed to vm_flags - and the no-change
975  * case has already been eliminated.
976  *
977  * The following mprotect cases have to be considered, where AAAA is
978  * the area passed down from mprotect_fixup, never extending beyond one
979  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
980  *
981  *     AAAA             AAAA                AAAA          AAAA
982  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
983  *    cannot merge    might become    might become    might become
984  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
985  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
986  *    mremap move:                                    PPPPNNNNNNNN 8
987  *        AAAA
988  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
989  *    might become    case 1 below    case 2 below    case 3 below
990  *
991  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
992  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
993  */
994 struct vm_area_struct *vma_merge(struct mm_struct *mm,
995                         struct vm_area_struct *prev, unsigned long addr,
996                         unsigned long end, unsigned long vm_flags,
997                         struct anon_vma *anon_vma, struct file *file,
998                         pgoff_t pgoff, struct mempolicy *policy)
999 {
1000         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1001         struct vm_area_struct *area, *next;
1002         int err;
1003
1004         /*
1005          * We later require that vma->vm_flags == vm_flags,
1006          * so this tests vma->vm_flags & VM_SPECIAL, too.
1007          */
1008         if (vm_flags & VM_SPECIAL)
1009                 return NULL;
1010
1011         if (prev)
1012                 next = prev->vm_next;
1013         else
1014                 next = mm->mmap;
1015         area = next;
1016         if (next && next->vm_end == end)                /* cases 6, 7, 8 */
1017                 next = next->vm_next;
1018
1019         /*
1020          * Can it merge with the predecessor?
1021          */
1022         if (prev && prev->vm_end == addr &&
1023                         mpol_equal(vma_policy(prev), policy) &&
1024                         can_vma_merge_after(prev, vm_flags,
1025                                                 anon_vma, file, pgoff)) {
1026                 /*
1027                  * OK, it can.  Can we now merge in the successor as well?
1028                  */
1029                 if (next && end == next->vm_start &&
1030                                 mpol_equal(policy, vma_policy(next)) &&
1031                                 can_vma_merge_before(next, vm_flags,
1032                                         anon_vma, file, pgoff+pglen) &&
1033                                 is_mergeable_anon_vma(prev->anon_vma,
1034                                                       next->anon_vma, NULL)) {
1035                                                         /* cases 1, 6 */
1036                         err = vma_adjust(prev, prev->vm_start,
1037                                 next->vm_end, prev->vm_pgoff, NULL);
1038                 } else                                  /* cases 2, 5, 7 */
1039                         err = vma_adjust(prev, prev->vm_start,
1040                                 end, prev->vm_pgoff, NULL);
1041                 if (err)
1042                         return NULL;
1043                 khugepaged_enter_vma_merge(prev);
1044                 return prev;
1045         }
1046
1047         /*
1048          * Can this new request be merged in front of next?
1049          */
1050         if (next && end == next->vm_start &&
1051                         mpol_equal(policy, vma_policy(next)) &&
1052                         can_vma_merge_before(next, vm_flags,
1053                                         anon_vma, file, pgoff+pglen)) {
1054                 if (prev && addr < prev->vm_end)        /* case 4 */
1055                         err = vma_adjust(prev, prev->vm_start,
1056                                 addr, prev->vm_pgoff, NULL);
1057                 else                                    /* cases 3, 8 */
1058                         err = vma_adjust(area, addr, next->vm_end,
1059                                 next->vm_pgoff - pglen, NULL);
1060                 if (err)
1061                         return NULL;
1062                 khugepaged_enter_vma_merge(area);
1063                 return area;
1064         }
1065
1066         return NULL;
1067 }
1068
1069 /*
1070  * Rough compatbility check to quickly see if it's even worth looking
1071  * at sharing an anon_vma.
1072  *
1073  * They need to have the same vm_file, and the flags can only differ
1074  * in things that mprotect may change.
1075  *
1076  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1077  * we can merge the two vma's. For example, we refuse to merge a vma if
1078  * there is a vm_ops->close() function, because that indicates that the
1079  * driver is doing some kind of reference counting. But that doesn't
1080  * really matter for the anon_vma sharing case.
1081  */
1082 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1083 {
1084         return a->vm_end == b->vm_start &&
1085                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1086                 a->vm_file == b->vm_file &&
1087                 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
1088                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1089 }
1090
1091 /*
1092  * Do some basic sanity checking to see if we can re-use the anon_vma
1093  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1094  * the same as 'old', the other will be the new one that is trying
1095  * to share the anon_vma.
1096  *
1097  * NOTE! This runs with mm_sem held for reading, so it is possible that
1098  * the anon_vma of 'old' is concurrently in the process of being set up
1099  * by another page fault trying to merge _that_. But that's ok: if it
1100  * is being set up, that automatically means that it will be a singleton
1101  * acceptable for merging, so we can do all of this optimistically. But
1102  * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
1103  *
1104  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1105  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1106  * is to return an anon_vma that is "complex" due to having gone through
1107  * a fork).
1108  *
1109  * We also make sure that the two vma's are compatible (adjacent,
1110  * and with the same memory policies). That's all stable, even with just
1111  * a read lock on the mm_sem.
1112  */
1113 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1114 {
1115         if (anon_vma_compatible(a, b)) {
1116                 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
1117
1118                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1119                         return anon_vma;
1120         }
1121         return NULL;
1122 }
1123
1124 /*
1125  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1126  * neighbouring vmas for a suitable anon_vma, before it goes off
1127  * to allocate a new anon_vma.  It checks because a repetitive
1128  * sequence of mprotects and faults may otherwise lead to distinct
1129  * anon_vmas being allocated, preventing vma merge in subsequent
1130  * mprotect.
1131  */
1132 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1133 {
1134         struct anon_vma *anon_vma;
1135         struct vm_area_struct *near;
1136
1137         near = vma->vm_next;
1138         if (!near)
1139                 goto try_prev;
1140
1141         anon_vma = reusable_anon_vma(near, vma, near);
1142         if (anon_vma)
1143                 return anon_vma;
1144 try_prev:
1145         near = vma->vm_prev;
1146         if (!near)
1147                 goto none;
1148
1149         anon_vma = reusable_anon_vma(near, near, vma);
1150         if (anon_vma)
1151                 return anon_vma;
1152 none:
1153         /*
1154          * There's no absolute need to look only at touching neighbours:
1155          * we could search further afield for "compatible" anon_vmas.
1156          * But it would probably just be a waste of time searching,
1157          * or lead to too many vmas hanging off the same anon_vma.
1158          * We're trying to allow mprotect remerging later on,
1159          * not trying to minimize memory used for anon_vmas.
1160          */
1161         return NULL;
1162 }
1163
1164 #ifdef CONFIG_PROC_FS
1165 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1166                                                 struct file *file, long pages)
1167 {
1168         const unsigned long stack_flags
1169                 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1170
1171         mm->total_vm += pages;
1172
1173         if (file) {
1174                 mm->shared_vm += pages;
1175                 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1176                         mm->exec_vm += pages;
1177         } else if (flags & stack_flags)
1178                 mm->stack_vm += pages;
1179 }
1180 #endif /* CONFIG_PROC_FS */
1181
1182 /*
1183  * If a hint addr is less than mmap_min_addr change hint to be as
1184  * low as possible but still greater than mmap_min_addr
1185  */
1186 static inline unsigned long round_hint_to_min(unsigned long hint)
1187 {
1188         hint &= PAGE_MASK;
1189         if (((void *)hint != NULL) &&
1190             (hint < mmap_min_addr))
1191                 return PAGE_ALIGN(mmap_min_addr);
1192         return hint;
1193 }
1194
1195 /*
1196  * The caller must hold down_write(&current->mm->mmap_sem).
1197  */
1198
1199 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1200                         unsigned long len, unsigned long prot,
1201                         unsigned long flags, unsigned long pgoff,
1202                         unsigned long *populate)
1203 {
1204         struct mm_struct * mm = current->mm;
1205         vm_flags_t vm_flags;
1206
1207         *populate = 0;
1208
1209         /*
1210          * Does the application expect PROT_READ to imply PROT_EXEC?
1211          *
1212          * (the exception is when the underlying filesystem is noexec
1213          *  mounted, in which case we dont add PROT_EXEC.)
1214          */
1215         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1216                 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1217                         prot |= PROT_EXEC;
1218
1219         if (!len)
1220                 return -EINVAL;
1221
1222         if (!(flags & MAP_FIXED))
1223                 addr = round_hint_to_min(addr);
1224
1225         /* Careful about overflows.. */
1226         len = PAGE_ALIGN(len);
1227         if (!len)
1228                 return -ENOMEM;
1229
1230         /* offset overflow? */
1231         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1232                return -EOVERFLOW;
1233
1234         /* Too many mappings? */
1235         if (mm->map_count > sysctl_max_map_count)
1236                 return -ENOMEM;
1237
1238         /* Obtain the address to map to. we verify (or select) it and ensure
1239          * that it represents a valid section of the address space.
1240          */
1241         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1242         if (addr & ~PAGE_MASK)
1243                 return addr;
1244
1245         /* Do simple checking here so the lower-level routines won't have
1246          * to. we assume access permissions have been handled by the open
1247          * of the memory object, so we don't do any here.
1248          */
1249         vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1250                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1251
1252         if (flags & MAP_LOCKED)
1253                 if (!can_do_mlock())
1254                         return -EPERM;
1255
1256         /* mlock MCL_FUTURE? */
1257         if (vm_flags & VM_LOCKED) {
1258                 unsigned long locked, lock_limit;
1259                 locked = len >> PAGE_SHIFT;
1260                 locked += mm->locked_vm;
1261                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1262                 lock_limit >>= PAGE_SHIFT;
1263                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1264                         return -EAGAIN;
1265         }
1266
1267         if (file) {
1268                 struct inode *inode = file_inode(file);
1269
1270                 switch (flags & MAP_TYPE) {
1271                 case MAP_SHARED:
1272                         if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1273                                 return -EACCES;
1274
1275                         /*
1276                          * Make sure we don't allow writing to an append-only
1277                          * file..
1278                          */
1279                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1280                                 return -EACCES;
1281
1282                         /*
1283                          * Make sure there are no mandatory locks on the file.
1284                          */
1285                         if (locks_verify_locked(inode))
1286                                 return -EAGAIN;
1287
1288                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1289                         if (!(file->f_mode & FMODE_WRITE))
1290                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1291
1292                         /* fall through */
1293                 case MAP_PRIVATE:
1294                         if (!(file->f_mode & FMODE_READ))
1295                                 return -EACCES;
1296                         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1297                                 if (vm_flags & VM_EXEC)
1298                                         return -EPERM;
1299                                 vm_flags &= ~VM_MAYEXEC;
1300                         }
1301
1302                         if (!file->f_op || !file->f_op->mmap)
1303                                 return -ENODEV;
1304                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1305                                 return -EINVAL;
1306                         break;
1307
1308                 default:
1309                         return -EINVAL;
1310                 }
1311         } else {
1312                 switch (flags & MAP_TYPE) {
1313                 case MAP_SHARED:
1314                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1315                                 return -EINVAL;
1316                         /*
1317                          * Ignore pgoff.
1318                          */
1319                         pgoff = 0;
1320                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1321                         break;
1322                 case MAP_PRIVATE:
1323                         /*
1324                          * Set pgoff according to addr for anon_vma.
1325                          */
1326                         pgoff = addr >> PAGE_SHIFT;
1327                         break;
1328                 default:
1329                         return -EINVAL;
1330                 }
1331         }
1332
1333         /*
1334          * Set 'VM_NORESERVE' if we should not account for the
1335          * memory use of this mapping.
1336          */
1337         if (flags & MAP_NORESERVE) {
1338                 /* We honor MAP_NORESERVE if allowed to overcommit */
1339                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1340                         vm_flags |= VM_NORESERVE;
1341
1342                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1343                 if (file && is_file_hugepages(file))
1344                         vm_flags |= VM_NORESERVE;
1345         }
1346
1347         addr = mmap_region(file, addr, len, vm_flags, pgoff);
1348         if (!IS_ERR_VALUE(addr) &&
1349             ((vm_flags & VM_LOCKED) ||
1350              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1351                 *populate = len;
1352         return addr;
1353 }
1354
1355 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1356                 unsigned long, prot, unsigned long, flags,
1357                 unsigned long, fd, unsigned long, pgoff)
1358 {
1359         struct file *file = NULL;
1360         unsigned long retval = -EBADF;
1361
1362         if (!(flags & MAP_ANONYMOUS)) {
1363                 audit_mmap_fd(fd, flags);
1364                 file = fget(fd);
1365                 if (!file)
1366                         goto out;
1367                 if (is_file_hugepages(file))
1368                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1369                 retval = -EINVAL;
1370                 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1371                         goto out_fput;
1372         } else if (flags & MAP_HUGETLB) {
1373                 struct user_struct *user = NULL;
1374                 struct hstate *hs;
1375
1376                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1377                 if (!hs)
1378                         return -EINVAL;
1379
1380                 len = ALIGN(len, huge_page_size(hs));
1381                 /*
1382                  * VM_NORESERVE is used because the reservations will be
1383                  * taken when vm_ops->mmap() is called
1384                  * A dummy user value is used because we are not locking
1385                  * memory so no accounting is necessary
1386                  */
1387                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1388                                 VM_NORESERVE,
1389                                 &user, HUGETLB_ANONHUGE_INODE,
1390                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1391                 if (IS_ERR(file))
1392                         return PTR_ERR(file);
1393         }
1394
1395         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1396
1397         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1398 out_fput:
1399         if (file)
1400                 fput(file);
1401 out:
1402         return retval;
1403 }
1404
1405 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1406 struct mmap_arg_struct {
1407         unsigned long addr;
1408         unsigned long len;
1409         unsigned long prot;
1410         unsigned long flags;
1411         unsigned long fd;
1412         unsigned long offset;
1413 };
1414
1415 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1416 {
1417         struct mmap_arg_struct a;
1418
1419         if (copy_from_user(&a, arg, sizeof(a)))
1420                 return -EFAULT;
1421         if (a.offset & ~PAGE_MASK)
1422                 return -EINVAL;
1423
1424         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1425                               a.offset >> PAGE_SHIFT);
1426 }
1427 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1428
1429 /*
1430  * Some shared mappigns will want the pages marked read-only
1431  * to track write events. If so, we'll downgrade vm_page_prot
1432  * to the private version (using protection_map[] without the
1433  * VM_SHARED bit).
1434  */
1435 int vma_wants_writenotify(struct vm_area_struct *vma)
1436 {
1437         vm_flags_t vm_flags = vma->vm_flags;
1438
1439         /* If it was private or non-writable, the write bit is already clear */
1440         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1441                 return 0;
1442
1443         /* The backer wishes to know when pages are first written to? */
1444         if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1445                 return 1;
1446
1447         /* The open routine did something to the protections already? */
1448         if (pgprot_val(vma->vm_page_prot) !=
1449             pgprot_val(vm_get_page_prot(vm_flags)))
1450                 return 0;
1451
1452         /* Specialty mapping? */
1453         if (vm_flags & VM_PFNMAP)
1454                 return 0;
1455
1456         /* Can the mapping track the dirty pages? */
1457         return vma->vm_file && vma->vm_file->f_mapping &&
1458                 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1459 }
1460
1461 /*
1462  * We account for memory if it's a private writeable mapping,
1463  * not hugepages and VM_NORESERVE wasn't set.
1464  */
1465 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1466 {
1467         /*
1468          * hugetlb has its own accounting separate from the core VM
1469          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1470          */
1471         if (file && is_file_hugepages(file))
1472                 return 0;
1473
1474         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1475 }
1476
1477 unsigned long mmap_region(struct file *file, unsigned long addr,
1478                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1479 {
1480         struct mm_struct *mm = current->mm;
1481         struct vm_area_struct *vma, *prev;
1482         int error;
1483         struct rb_node **rb_link, *rb_parent;
1484         unsigned long charged = 0;
1485
1486         /* Check against address space limit. */
1487         if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1488                 unsigned long nr_pages;
1489
1490                 /*
1491                  * MAP_FIXED may remove pages of mappings that intersects with
1492                  * requested mapping. Account for the pages it would unmap.
1493                  */
1494                 if (!(vm_flags & MAP_FIXED))
1495                         return -ENOMEM;
1496
1497                 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1498
1499                 if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1500                         return -ENOMEM;
1501         }
1502
1503         /* Clear old maps */
1504         error = -ENOMEM;
1505 munmap_back:
1506         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1507                 if (do_munmap(mm, addr, len))
1508                         return -ENOMEM;
1509                 goto munmap_back;
1510         }
1511
1512         /*
1513          * Private writable mapping: check memory availability
1514          */
1515         if (accountable_mapping(file, vm_flags)) {
1516                 charged = len >> PAGE_SHIFT;
1517                 if (security_vm_enough_memory_mm(mm, charged))
1518                         return -ENOMEM;
1519                 vm_flags |= VM_ACCOUNT;
1520         }
1521
1522         /*
1523          * Can we just expand an old mapping?
1524          */
1525         vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1526         if (vma)
1527                 goto out;
1528
1529         /*
1530          * Determine the object being mapped and call the appropriate
1531          * specific mapper. the address has already been validated, but
1532          * not unmapped, but the maps are removed from the list.
1533          */
1534         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1535         if (!vma) {
1536                 error = -ENOMEM;
1537                 goto unacct_error;
1538         }
1539
1540         vma->vm_mm = mm;
1541         vma->vm_start = addr;
1542         vma->vm_end = addr + len;
1543         vma->vm_flags = vm_flags;
1544         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1545         vma->vm_pgoff = pgoff;
1546         INIT_LIST_HEAD(&vma->anon_vma_chain);
1547
1548         if (file) {
1549                 if (vm_flags & VM_DENYWRITE) {
1550                         error = deny_write_access(file);
1551                         if (error)
1552                                 goto free_vma;
1553                 }
1554                 vma->vm_file = get_file(file);
1555                 error = file->f_op->mmap(file, vma);
1556                 if (error)
1557                         goto unmap_and_free_vma;
1558
1559                 /* Can addr have changed??
1560                  *
1561                  * Answer: Yes, several device drivers can do it in their
1562                  *         f_op->mmap method. -DaveM
1563                  * Bug: If addr is changed, prev, rb_link, rb_parent should
1564                  *      be updated for vma_link()
1565                  */
1566                 WARN_ON_ONCE(addr != vma->vm_start);
1567
1568                 addr = vma->vm_start;
1569                 pgoff = vma->vm_pgoff;
1570                 vm_flags = vma->vm_flags;
1571         } else if (vm_flags & VM_SHARED) {
1572                 error = shmem_zero_setup(vma);
1573                 if (error)
1574                         goto free_vma;
1575         }
1576
1577         if (vma_wants_writenotify(vma)) {
1578                 pgprot_t pprot = vma->vm_page_prot;
1579
1580                 /* Can vma->vm_page_prot have changed??
1581                  *
1582                  * Answer: Yes, drivers may have changed it in their
1583                  *         f_op->mmap method.
1584                  *
1585                  * Ensures that vmas marked as uncached stay that way.
1586                  */
1587                 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1588                 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1589                         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1590         }
1591
1592         vma_link(mm, vma, prev, rb_link, rb_parent);
1593         /* Once vma denies write, undo our temporary denial count */
1594         if (vm_flags & VM_DENYWRITE)
1595                 allow_write_access(file);
1596         file = vma->vm_file;
1597 out:
1598         perf_event_mmap(vma);
1599
1600         vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1601         if (vm_flags & VM_LOCKED) {
1602                 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1603                                         vma == get_gate_vma(current->mm)))
1604                         mm->locked_vm += (len >> PAGE_SHIFT);
1605                 else
1606                         vma->vm_flags &= ~VM_LOCKED;
1607         }
1608
1609         if (file)
1610                 uprobe_mmap(vma);
1611
1612         /*
1613          * New (or expanded) vma always get soft dirty status.
1614          * Otherwise user-space soft-dirty page tracker won't
1615          * be able to distinguish situation when vma area unmapped,
1616          * then new mapped in-place (which must be aimed as
1617          * a completely new data area).
1618          */
1619         vma->vm_flags |= VM_SOFTDIRTY;
1620
1621         return addr;
1622
1623 unmap_and_free_vma:
1624         if (vm_flags & VM_DENYWRITE)
1625                 allow_write_access(file);
1626         vma->vm_file = NULL;
1627         fput(file);
1628
1629         /* Undo any partial mapping done by a device driver. */
1630         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1631         charged = 0;
1632 free_vma:
1633         kmem_cache_free(vm_area_cachep, vma);
1634 unacct_error:
1635         if (charged)
1636                 vm_unacct_memory(charged);
1637         return error;
1638 }
1639
1640 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1641 {
1642         /*
1643          * We implement the search by looking for an rbtree node that
1644          * immediately follows a suitable gap. That is,
1645          * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1646          * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1647          * - gap_end - gap_start >= length
1648          */
1649
1650         struct mm_struct *mm = current->mm;
1651         struct vm_area_struct *vma;
1652         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1653
1654         /* Adjust search length to account for worst case alignment overhead */
1655         length = info->length + info->align_mask;
1656         if (length < info->length)
1657                 return -ENOMEM;
1658
1659         /* Adjust search limits by the desired length */
1660         if (info->high_limit < length)
1661                 return -ENOMEM;
1662         high_limit = info->high_limit - length;
1663
1664         if (info->low_limit > high_limit)
1665                 return -ENOMEM;
1666         low_limit = info->low_limit + length;
1667
1668         /* Check if rbtree root looks promising */
1669         if (RB_EMPTY_ROOT(&mm->mm_rb))
1670                 goto check_highest;
1671         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1672         if (vma->rb_subtree_gap < length)
1673                 goto check_highest;
1674
1675         while (true) {
1676                 /* Visit left subtree if it looks promising */
1677                 gap_end = vma->vm_start;
1678                 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1679                         struct vm_area_struct *left =
1680                                 rb_entry(vma->vm_rb.rb_left,
1681                                          struct vm_area_struct, vm_rb);
1682                         if (left->rb_subtree_gap >= length) {
1683                                 vma = left;
1684                                 continue;
1685                         }
1686                 }
1687
1688                 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1689 check_current:
1690                 /* Check if current node has a suitable gap */
1691                 if (gap_start > high_limit)
1692                         return -ENOMEM;
1693                 if (gap_end >= low_limit && gap_end - gap_start >= length)
1694                         goto found;
1695
1696                 /* Visit right subtree if it looks promising */
1697                 if (vma->vm_rb.rb_right) {
1698                         struct vm_area_struct *right =
1699                                 rb_entry(vma->vm_rb.rb_right,
1700                                          struct vm_area_struct, vm_rb);
1701                         if (right->rb_subtree_gap >= length) {
1702                                 vma = right;
1703                                 continue;
1704                         }
1705                 }
1706
1707                 /* Go back up the rbtree to find next candidate node */
1708                 while (true) {
1709                         struct rb_node *prev = &vma->vm_rb;
1710                         if (!rb_parent(prev))
1711                                 goto check_highest;
1712                         vma = rb_entry(rb_parent(prev),
1713                                        struct vm_area_struct, vm_rb);
1714                         if (prev == vma->vm_rb.rb_left) {
1715                                 gap_start = vma->vm_prev->vm_end;
1716                                 gap_end = vma->vm_start;
1717                                 goto check_current;
1718                         }
1719                 }
1720         }
1721
1722 check_highest:
1723         /* Check highest gap, which does not precede any rbtree node */
1724         gap_start = mm->highest_vm_end;
1725         gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1726         if (gap_start > high_limit)
1727                 return -ENOMEM;
1728
1729 found:
1730         /* We found a suitable gap. Clip it with the original low_limit. */
1731         if (gap_start < info->low_limit)
1732                 gap_start = info->low_limit;
1733
1734         /* Adjust gap address to the desired alignment */
1735         gap_start += (info->align_offset - gap_start) & info->align_mask;
1736
1737         VM_BUG_ON(gap_start + info->length > info->high_limit);
1738         VM_BUG_ON(gap_start + info->length > gap_end);
1739         return gap_start;
1740 }
1741
1742 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1743 {
1744         struct mm_struct *mm = current->mm;
1745         struct vm_area_struct *vma;
1746         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1747
1748         /* Adjust search length to account for worst case alignment overhead */
1749         length = info->length + info->align_mask;
1750         if (length < info->length)
1751                 return -ENOMEM;
1752
1753         /*
1754          * Adjust search limits by the desired length.
1755          * See implementation comment at top of unmapped_area().
1756          */
1757         gap_end = info->high_limit;
1758         if (gap_end < length)
1759                 return -ENOMEM;
1760         high_limit = gap_end - length;
1761
1762         if (info->low_limit > high_limit)
1763                 return -ENOMEM;
1764         low_limit = info->low_limit + length;
1765
1766         /* Check highest gap, which does not precede any rbtree node */
1767         gap_start = mm->highest_vm_end;
1768         if (gap_start <= high_limit)
1769                 goto found_highest;
1770
1771         /* Check if rbtree root looks promising */
1772         if (RB_EMPTY_ROOT(&mm->mm_rb))
1773                 return -ENOMEM;
1774         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1775         if (vma->rb_subtree_gap < length)
1776                 return -ENOMEM;
1777
1778         while (true) {
1779                 /* Visit right subtree if it looks promising */
1780                 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1781                 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1782                         struct vm_area_struct *right =
1783                                 rb_entry(vma->vm_rb.rb_right,
1784                                          struct vm_area_struct, vm_rb);
1785                         if (right->rb_subtree_gap >= length) {
1786                                 vma = right;
1787                                 continue;
1788                         }
1789                 }
1790
1791 check_current:
1792                 /* Check if current node has a suitable gap */
1793                 gap_end = vma->vm_start;
1794                 if (gap_end < low_limit)
1795                         return -ENOMEM;
1796                 if (gap_start <= high_limit && gap_end - gap_start >= length)
1797                         goto found;
1798
1799                 /* Visit left subtree if it looks promising */
1800                 if (vma->vm_rb.rb_left) {
1801                         struct vm_area_struct *left =
1802                                 rb_entry(vma->vm_rb.rb_left,
1803                                          struct vm_area_struct, vm_rb);
1804                         if (left->rb_subtree_gap >= length) {
1805                                 vma = left;
1806                                 continue;
1807                         }
1808                 }
1809
1810                 /* Go back up the rbtree to find next candidate node */
1811                 while (true) {
1812                         struct rb_node *prev = &vma->vm_rb;
1813                         if (!rb_parent(prev))
1814                                 return -ENOMEM;
1815                         vma = rb_entry(rb_parent(prev),
1816                                        struct vm_area_struct, vm_rb);
1817                         if (prev == vma->vm_rb.rb_right) {
1818                                 gap_start = vma->vm_prev ?
1819                                         vma->vm_prev->vm_end : 0;
1820                                 goto check_current;
1821                         }
1822                 }
1823         }
1824
1825 found:
1826         /* We found a suitable gap. Clip it with the original high_limit. */
1827         if (gap_end > info->high_limit)
1828                 gap_end = info->high_limit;
1829
1830 found_highest:
1831         /* Compute highest gap address at the desired alignment */
1832         gap_end -= info->length;
1833         gap_end -= (gap_end - info->align_offset) & info->align_mask;
1834
1835         VM_BUG_ON(gap_end < info->low_limit);
1836         VM_BUG_ON(gap_end < gap_start);
1837         return gap_end;
1838 }
1839
1840 /* Get an address range which is currently unmapped.
1841  * For shmat() with addr=0.
1842  *
1843  * Ugly calling convention alert:
1844  * Return value with the low bits set means error value,
1845  * ie
1846  *      if (ret & ~PAGE_MASK)
1847  *              error = ret;
1848  *
1849  * This function "knows" that -ENOMEM has the bits set.
1850  */
1851 #ifndef HAVE_ARCH_UNMAPPED_AREA
1852 unsigned long
1853 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1854                 unsigned long len, unsigned long pgoff, unsigned long flags)
1855 {
1856         struct mm_struct *mm = current->mm;
1857         struct vm_area_struct *vma;
1858         struct vm_unmapped_area_info info;
1859
1860         if (len > TASK_SIZE)
1861                 return -ENOMEM;
1862
1863         if (flags & MAP_FIXED)
1864                 return addr;
1865
1866         if (addr) {
1867                 addr = PAGE_ALIGN(addr);
1868                 vma = find_vma(mm, addr);
1869                 if (TASK_SIZE - len >= addr &&
1870                     (!vma || addr + len <= vma->vm_start))
1871                         return addr;
1872         }
1873
1874         info.flags = 0;
1875         info.length = len;
1876         info.low_limit = TASK_UNMAPPED_BASE;
1877         info.high_limit = TASK_SIZE;
1878         info.align_mask = 0;
1879         return vm_unmapped_area(&info);
1880 }
1881 #endif  
1882
1883 /*
1884  * This mmap-allocator allocates new areas top-down from below the
1885  * stack's low limit (the base):
1886  */
1887 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1888 unsigned long
1889 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1890                           const unsigned long len, const unsigned long pgoff,
1891                           const unsigned long flags)
1892 {
1893         struct vm_area_struct *vma;
1894         struct mm_struct *mm = current->mm;
1895         unsigned long addr = addr0;
1896         struct vm_unmapped_area_info info;
1897
1898         /* requested length too big for entire address space */
1899         if (len > TASK_SIZE)
1900                 return -ENOMEM;
1901
1902         if (flags & MAP_FIXED)
1903                 return addr;
1904
1905         /* requesting a specific address */
1906         if (addr) {
1907                 addr = PAGE_ALIGN(addr);
1908                 vma = find_vma(mm, addr);
1909                 if (TASK_SIZE - len >= addr &&
1910                                 (!vma || addr + len <= vma->vm_start))
1911                         return addr;
1912         }
1913
1914         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1915         info.length = len;
1916         info.low_limit = PAGE_SIZE;
1917         info.high_limit = mm->mmap_base;
1918         info.align_mask = 0;
1919         addr = vm_unmapped_area(&info);
1920
1921         /*
1922          * A failed mmap() very likely causes application failure,
1923          * so fall back to the bottom-up function here. This scenario
1924          * can happen with large stack limits and large mmap()
1925          * allocations.
1926          */
1927         if (addr & ~PAGE_MASK) {
1928                 VM_BUG_ON(addr != -ENOMEM);
1929                 info.flags = 0;
1930                 info.low_limit = TASK_UNMAPPED_BASE;
1931                 info.high_limit = TASK_SIZE;
1932                 addr = vm_unmapped_area(&info);
1933         }
1934
1935         return addr;
1936 }
1937 #endif
1938
1939 unsigned long
1940 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1941                 unsigned long pgoff, unsigned long flags)
1942 {
1943         unsigned long (*get_area)(struct file *, unsigned long,
1944                                   unsigned long, unsigned long, unsigned long);
1945
1946         unsigned long error = arch_mmap_check(addr, len, flags);
1947         if (error)
1948                 return error;
1949
1950         /* Careful about overflows.. */
1951         if (len > TASK_SIZE)
1952                 return -ENOMEM;
1953
1954         get_area = current->mm->get_unmapped_area;
1955         if (file && file->f_op && file->f_op->get_unmapped_area)
1956                 get_area = file->f_op->get_unmapped_area;
1957         addr = get_area(file, addr, len, pgoff, flags);
1958         if (IS_ERR_VALUE(addr))
1959                 return addr;
1960
1961         if (addr > TASK_SIZE - len)
1962                 return -ENOMEM;
1963         if (addr & ~PAGE_MASK)
1964                 return -EINVAL;
1965
1966         addr = arch_rebalance_pgtables(addr, len);
1967         error = security_mmap_addr(addr);
1968         return error ? error : addr;
1969 }
1970
1971 EXPORT_SYMBOL(get_unmapped_area);
1972
1973 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1974 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1975 {
1976         struct vm_area_struct *vma = NULL;
1977
1978         /* Check the cache first. */
1979         /* (Cache hit rate is typically around 35%.) */
1980         vma = ACCESS_ONCE(mm->mmap_cache);
1981         if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1982                 struct rb_node *rb_node;
1983
1984                 rb_node = mm->mm_rb.rb_node;
1985                 vma = NULL;
1986
1987                 while (rb_node) {
1988                         struct vm_area_struct *vma_tmp;
1989
1990                         vma_tmp = rb_entry(rb_node,
1991                                            struct vm_area_struct, vm_rb);
1992
1993                         if (vma_tmp->vm_end > addr) {
1994                                 vma = vma_tmp;
1995                                 if (vma_tmp->vm_start <= addr)
1996                                         break;
1997                                 rb_node = rb_node->rb_left;
1998                         } else
1999                                 rb_node = rb_node->rb_right;
2000                 }
2001                 if (vma)
2002                         mm->mmap_cache = vma;
2003         }
2004         return vma;
2005 }
2006
2007 EXPORT_SYMBOL(find_vma);
2008
2009 /*
2010  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2011  */
2012 struct vm_area_struct *
2013 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2014                         struct vm_area_struct **pprev)
2015 {
2016         struct vm_area_struct *vma;
2017
2018         vma = find_vma(mm, addr);
2019         if (vma) {
2020                 *pprev = vma->vm_prev;
2021         } else {
2022                 struct rb_node *rb_node = mm->mm_rb.rb_node;
2023                 *pprev = NULL;
2024                 while (rb_node) {
2025                         *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2026                         rb_node = rb_node->rb_right;
2027                 }
2028         }
2029         return vma;
2030 }
2031
2032 /*
2033  * Verify that the stack growth is acceptable and
2034  * update accounting. This is shared with both the
2035  * grow-up and grow-down cases.
2036  */
2037 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2038 {
2039         struct mm_struct *mm = vma->vm_mm;
2040         struct rlimit *rlim = current->signal->rlim;
2041         unsigned long new_start;
2042
2043         /* address space limit tests */
2044         if (!may_expand_vm(mm, grow))
2045                 return -ENOMEM;
2046
2047         /* Stack limit test */
2048         if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2049                 return -ENOMEM;
2050
2051         /* mlock limit tests */
2052         if (vma->vm_flags & VM_LOCKED) {
2053                 unsigned long locked;
2054                 unsigned long limit;
2055                 locked = mm->locked_vm + grow;
2056                 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2057                 limit >>= PAGE_SHIFT;
2058                 if (locked > limit && !capable(CAP_IPC_LOCK))
2059                         return -ENOMEM;
2060         }
2061
2062         /* Check to ensure the stack will not grow into a hugetlb-only region */
2063         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2064                         vma->vm_end - size;
2065         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2066                 return -EFAULT;
2067
2068         /*
2069          * Overcommit..  This must be the final test, as it will
2070          * update security statistics.
2071          */
2072         if (security_vm_enough_memory_mm(mm, grow))
2073                 return -ENOMEM;
2074
2075         /* Ok, everything looks good - let it rip */
2076         if (vma->vm_flags & VM_LOCKED)
2077                 mm->locked_vm += grow;
2078         vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
2079         return 0;
2080 }
2081
2082 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2083 /*
2084  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2085  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2086  */
2087 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2088 {
2089         int error;
2090
2091         if (!(vma->vm_flags & VM_GROWSUP))
2092                 return -EFAULT;
2093
2094         /*
2095          * We must make sure the anon_vma is allocated
2096          * so that the anon_vma locking is not a noop.
2097          */
2098         if (unlikely(anon_vma_prepare(vma)))
2099                 return -ENOMEM;
2100         vma_lock_anon_vma(vma);
2101
2102         /*
2103          * vma->vm_start/vm_end cannot change under us because the caller
2104          * is required to hold the mmap_sem in read mode.  We need the
2105          * anon_vma lock to serialize against concurrent expand_stacks.
2106          * Also guard against wrapping around to address 0.
2107          */
2108         if (address < PAGE_ALIGN(address+4))
2109                 address = PAGE_ALIGN(address+4);
2110         else {
2111                 vma_unlock_anon_vma(vma);
2112                 return -ENOMEM;
2113         }
2114         error = 0;
2115
2116         /* Somebody else might have raced and expanded it already */
2117         if (address > vma->vm_end) {
2118                 unsigned long size, grow;
2119
2120                 size = address - vma->vm_start;
2121                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2122
2123                 error = -ENOMEM;
2124                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2125                         error = acct_stack_growth(vma, size, grow);
2126                         if (!error) {
2127                                 /*
2128                                  * vma_gap_update() doesn't support concurrent
2129                                  * updates, but we only hold a shared mmap_sem
2130                                  * lock here, so we need to protect against
2131                                  * concurrent vma expansions.
2132                                  * vma_lock_anon_vma() doesn't help here, as
2133                                  * we don't guarantee that all growable vmas
2134                                  * in a mm share the same root anon vma.
2135                                  * So, we reuse mm->page_table_lock to guard
2136                                  * against concurrent vma expansions.
2137                                  */
2138                                 spin_lock(&vma->vm_mm->page_table_lock);
2139                                 anon_vma_interval_tree_pre_update_vma(vma);
2140                                 vma->vm_end = address;
2141                                 anon_vma_interval_tree_post_update_vma(vma);
2142                                 if (vma->vm_next)
2143                                         vma_gap_update(vma->vm_next);
2144                                 else
2145                                         vma->vm_mm->highest_vm_end = address;
2146                                 spin_unlock(&vma->vm_mm->page_table_lock);
2147
2148                                 perf_event_mmap(vma);
2149                         }
2150                 }
2151         }
2152         vma_unlock_anon_vma(vma);
2153         khugepaged_enter_vma_merge(vma);
2154         validate_mm(vma->vm_mm);
2155         return error;
2156 }
2157 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2158
2159 /*
2160  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2161  */
2162 int expand_downwards(struct vm_area_struct *vma,
2163                                    unsigned long address)
2164 {
2165         int error;
2166
2167         /*
2168          * We must make sure the anon_vma is allocated
2169          * so that the anon_vma locking is not a noop.
2170          */
2171         if (unlikely(anon_vma_prepare(vma)))
2172                 return -ENOMEM;
2173
2174         address &= PAGE_MASK;
2175         error = security_mmap_addr(address);
2176         if (error)
2177                 return error;
2178
2179         vma_lock_anon_vma(vma);
2180
2181         /*
2182          * vma->vm_start/vm_end cannot change under us because the caller
2183          * is required to hold the mmap_sem in read mode.  We need the
2184          * anon_vma lock to serialize against concurrent expand_stacks.
2185          */
2186
2187         /* Somebody else might have raced and expanded it already */
2188         if (address < vma->vm_start) {
2189                 unsigned long size, grow;
2190
2191                 size = vma->vm_end - address;
2192                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2193
2194                 error = -ENOMEM;
2195                 if (grow <= vma->vm_pgoff) {
2196                         error = acct_stack_growth(vma, size, grow);
2197                         if (!error) {
2198                                 /*
2199                                  * vma_gap_update() doesn't support concurrent
2200                                  * updates, but we only hold a shared mmap_sem
2201                                  * lock here, so we need to protect against
2202                                  * concurrent vma expansions.
2203                                  * vma_lock_anon_vma() doesn't help here, as
2204                                  * we don't guarantee that all growable vmas
2205                                  * in a mm share the same root anon vma.
2206                                  * So, we reuse mm->page_table_lock to guard
2207                                  * against concurrent vma expansions.
2208                                  */
2209                                 spin_lock(&vma->vm_mm->page_table_lock);
2210                                 anon_vma_interval_tree_pre_update_vma(vma);
2211                                 vma->vm_start = address;
2212                                 vma->vm_pgoff -= grow;
2213                                 anon_vma_interval_tree_post_update_vma(vma);
2214                                 vma_gap_update(vma);
2215                                 spin_unlock(&vma->vm_mm->page_table_lock);
2216
2217                                 perf_event_mmap(vma);
2218                         }
2219                 }
2220         }
2221         vma_unlock_anon_vma(vma);
2222         khugepaged_enter_vma_merge(vma);
2223         validate_mm(vma->vm_mm);
2224         return error;
2225 }
2226
2227 /*
2228  * Note how expand_stack() refuses to expand the stack all the way to
2229  * abut the next virtual mapping, *unless* that mapping itself is also
2230  * a stack mapping. We want to leave room for a guard page, after all
2231  * (the guard page itself is not added here, that is done by the
2232  * actual page faulting logic)
2233  *
2234  * This matches the behavior of the guard page logic (see mm/memory.c:
2235  * check_stack_guard_page()), which only allows the guard page to be
2236  * removed under these circumstances.
2237  */
2238 #ifdef CONFIG_STACK_GROWSUP
2239 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2240 {
2241         struct vm_area_struct *next;
2242
2243         address &= PAGE_MASK;
2244         next = vma->vm_next;
2245         if (next && next->vm_start == address + PAGE_SIZE) {
2246                 if (!(next->vm_flags & VM_GROWSUP))
2247                         return -ENOMEM;
2248         }
2249         return expand_upwards(vma, address);
2250 }
2251
2252 struct vm_area_struct *
2253 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2254 {
2255         struct vm_area_struct *vma, *prev;
2256
2257         addr &= PAGE_MASK;
2258         vma = find_vma_prev(mm, addr, &prev);
2259         if (vma && (vma->vm_start <= addr))
2260                 return vma;
2261         if (!prev || expand_stack(prev, addr))
2262                 return NULL;
2263         if (prev->vm_flags & VM_LOCKED)
2264                 __mlock_vma_pages_range(prev, addr, prev->vm_end, NULL);
2265         return prev;
2266 }
2267 #else
2268 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2269 {
2270         struct vm_area_struct *prev;
2271
2272         address &= PAGE_MASK;
2273         prev = vma->vm_prev;
2274         if (prev && prev->vm_end == address) {
2275                 if (!(prev->vm_flags & VM_GROWSDOWN))
2276                         return -ENOMEM;
2277         }
2278         return expand_downwards(vma, address);
2279 }
2280
2281 struct vm_area_struct *
2282 find_extend_vma(struct mm_struct * mm, unsigned long addr)
2283 {
2284         struct vm_area_struct * vma;
2285         unsigned long start;
2286
2287         addr &= PAGE_MASK;
2288         vma = find_vma(mm,addr);
2289         if (!vma)
2290                 return NULL;
2291         if (vma->vm_start <= addr)
2292                 return vma;
2293         if (!(vma->vm_flags & VM_GROWSDOWN))
2294                 return NULL;
2295         start = vma->vm_start;
2296         if (expand_stack(vma, addr))
2297                 return NULL;
2298         if (vma->vm_flags & VM_LOCKED)
2299                 __mlock_vma_pages_range(vma, addr, start, NULL);
2300         return vma;
2301 }
2302 #endif
2303
2304 /*
2305  * Ok - we have the memory areas we should free on the vma list,
2306  * so release them, and do the vma updates.
2307  *
2308  * Called with the mm semaphore held.
2309  */
2310 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2311 {
2312         unsigned long nr_accounted = 0;
2313
2314         /* Update high watermark before we lower total_vm */
2315         update_hiwater_vm(mm);
2316         do {
2317                 long nrpages = vma_pages(vma);
2318
2319                 if (vma->vm_flags & VM_ACCOUNT)
2320                         nr_accounted += nrpages;
2321                 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2322                 vma = remove_vma(vma);
2323         } while (vma);
2324         vm_unacct_memory(nr_accounted);
2325         validate_mm(mm);
2326 }
2327
2328 /*
2329  * Get rid of page table information in the indicated region.
2330  *
2331  * Called with the mm semaphore held.
2332  */
2333 static void unmap_region(struct mm_struct *mm,
2334                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2335                 unsigned long start, unsigned long end)
2336 {
2337         struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
2338         struct mmu_gather tlb;
2339
2340         lru_add_drain();
2341         tlb_gather_mmu(&tlb, mm, start, end);
2342         update_hiwater_rss(mm);
2343         unmap_vmas(&tlb, vma, start, end);
2344         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2345                                  next ? next->vm_start : USER_PGTABLES_CEILING);
2346         tlb_finish_mmu(&tlb, start, end);
2347 }
2348
2349 /*
2350  * Create a list of vma's touched by the unmap, removing them from the mm's
2351  * vma list as we go..
2352  */
2353 static void
2354 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2355         struct vm_area_struct *prev, unsigned long end)
2356 {
2357         struct vm_area_struct **insertion_point;
2358         struct vm_area_struct *tail_vma = NULL;
2359
2360         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2361         vma->vm_prev = NULL;
2362         do {
2363                 vma_rb_erase(vma, &mm->mm_rb);
2364                 mm->map_count--;
2365                 tail_vma = vma;
2366                 vma = vma->vm_next;
2367         } while (vma && vma->vm_start < end);
2368         *insertion_point = vma;
2369         if (vma) {
2370                 vma->vm_prev = prev;
2371                 vma_gap_update(vma);
2372         } else
2373                 mm->highest_vm_end = prev ? prev->vm_end : 0;
2374         tail_vma->vm_next = NULL;
2375         mm->mmap_cache = NULL;          /* Kill the cache. */
2376 }
2377
2378 /*
2379  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2380  * munmap path where it doesn't make sense to fail.
2381  */
2382 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
2383               unsigned long addr, int new_below)
2384 {
2385         struct vm_area_struct *new;
2386         int err = -ENOMEM;
2387
2388         if (is_vm_hugetlb_page(vma) && (addr &
2389                                         ~(huge_page_mask(hstate_vma(vma)))))
2390                 return -EINVAL;
2391
2392         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2393         if (!new)
2394                 goto out_err;
2395
2396         /* most fields are the same, copy all, and then fixup */
2397         *new = *vma;
2398
2399         INIT_LIST_HEAD(&new->anon_vma_chain);
2400
2401         if (new_below)
2402                 new->vm_end = addr;
2403         else {
2404                 new->vm_start = addr;
2405                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2406         }
2407
2408         err = vma_dup_policy(vma, new);
2409         if (err)
2410                 goto out_free_vma;
2411
2412         if (anon_vma_clone(new, vma))
2413                 goto out_free_mpol;
2414
2415         if (new->vm_file)
2416                 get_file(new->vm_file);
2417
2418         if (new->vm_ops && new->vm_ops->open)
2419                 new->vm_ops->open(new);
2420
2421         if (new_below)
2422                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2423                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
2424         else
2425                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2426
2427         /* Success. */
2428         if (!err)
2429                 return 0;
2430
2431         /* Clean everything up if vma_adjust failed. */
2432         if (new->vm_ops && new->vm_ops->close)
2433                 new->vm_ops->close(new);
2434         if (new->vm_file)
2435                 fput(new->vm_file);
2436         unlink_anon_vmas(new);
2437  out_free_mpol:
2438         mpol_put(vma_policy(new));
2439  out_free_vma:
2440         kmem_cache_free(vm_area_cachep, new);
2441  out_err:
2442         return err;
2443 }
2444
2445 /*
2446  * Split a vma into two pieces at address 'addr', a new vma is allocated
2447  * either for the first part or the tail.
2448  */
2449 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2450               unsigned long addr, int new_below)
2451 {
2452         if (mm->map_count >= sysctl_max_map_count)
2453                 return -ENOMEM;
2454
2455         return __split_vma(mm, vma, addr, new_below);
2456 }
2457
2458 /* Munmap is split into 2 main parts -- this part which finds
2459  * what needs doing, and the areas themselves, which do the
2460  * work.  This now handles partial unmappings.
2461  * Jeremy Fitzhardinge <jeremy@goop.org>
2462  */
2463 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2464 {
2465         unsigned long end;
2466         struct vm_area_struct *vma, *prev, *last;
2467
2468         if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2469                 return -EINVAL;
2470
2471         if ((len = PAGE_ALIGN(len)) == 0)
2472                 return -EINVAL;
2473
2474         /* Find the first overlapping VMA */
2475         vma = find_vma(mm, start);
2476         if (!vma)
2477                 return 0;
2478         prev = vma->vm_prev;
2479         /* we have  start < vma->vm_end  */
2480
2481         /* if it doesn't overlap, we have nothing.. */
2482         end = start + len;
2483         if (vma->vm_start >= end)
2484                 return 0;
2485
2486         /*
2487          * If we need to split any vma, do it now to save pain later.
2488          *
2489          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2490          * unmapped vm_area_struct will remain in use: so lower split_vma
2491          * places tmp vma above, and higher split_vma places tmp vma below.
2492          */
2493         if (start > vma->vm_start) {
2494                 int error;
2495
2496                 /*
2497                  * Make sure that map_count on return from munmap() will
2498                  * not exceed its limit; but let map_count go just above
2499                  * its limit temporarily, to help free resources as expected.
2500                  */
2501                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2502                         return -ENOMEM;
2503
2504                 error = __split_vma(mm, vma, start, 0);
2505                 if (error)
2506                         return error;
2507                 prev = vma;
2508         }
2509
2510         /* Does it split the last one? */
2511         last = find_vma(mm, end);
2512         if (last && end > last->vm_start) {
2513                 int error = __split_vma(mm, last, end, 1);
2514                 if (error)
2515                         return error;
2516         }
2517         vma = prev? prev->vm_next: mm->mmap;
2518
2519         /*
2520          * unlock any mlock()ed ranges before detaching vmas
2521          */
2522         if (mm->locked_vm) {
2523                 struct vm_area_struct *tmp = vma;
2524                 while (tmp && tmp->vm_start < end) {
2525                         if (tmp->vm_flags & VM_LOCKED) {
2526                                 mm->locked_vm -= vma_pages(tmp);
2527                                 munlock_vma_pages_all(tmp);
2528                         }
2529                         tmp = tmp->vm_next;
2530                 }
2531         }
2532
2533         /*
2534          * Remove the vma's, and unmap the actual pages
2535          */
2536         detach_vmas_to_be_unmapped(mm, vma, prev, end);
2537         unmap_region(mm, vma, prev, start, end);
2538
2539         /* Fix up all other VM information */
2540         remove_vma_list(mm, vma);
2541
2542         return 0;
2543 }
2544
2545 int vm_munmap(unsigned long start, size_t len)
2546 {
2547         int ret;
2548         struct mm_struct *mm = current->mm;
2549
2550         down_write(&mm->mmap_sem);
2551         ret = do_munmap(mm, start, len);
2552         up_write(&mm->mmap_sem);
2553         return ret;
2554 }
2555 EXPORT_SYMBOL(vm_munmap);
2556
2557 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2558 {
2559         profile_munmap(addr);
2560         return vm_munmap(addr, len);
2561 }
2562
2563 static inline void verify_mm_writelocked(struct mm_struct *mm)
2564 {
2565 #ifdef CONFIG_DEBUG_VM
2566         if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2567                 WARN_ON(1);
2568                 up_read(&mm->mmap_sem);
2569         }
2570 #endif
2571 }
2572
2573 /*
2574  *  this is really a simplified "do_mmap".  it only handles
2575  *  anonymous maps.  eventually we may be able to do some
2576  *  brk-specific accounting here.
2577  */
2578 static unsigned long do_brk(unsigned long addr, unsigned long len)
2579 {
2580         struct mm_struct * mm = current->mm;
2581         struct vm_area_struct * vma, * prev;
2582         unsigned long flags;
2583         struct rb_node ** rb_link, * rb_parent;
2584         pgoff_t pgoff = addr >> PAGE_SHIFT;
2585         int error;
2586
2587         len = PAGE_ALIGN(len);
2588         if (!len)
2589                 return addr;
2590
2591         flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2592
2593         error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2594         if (error & ~PAGE_MASK)
2595                 return error;
2596
2597         /*
2598          * mlock MCL_FUTURE?
2599          */
2600         if (mm->def_flags & VM_LOCKED) {
2601                 unsigned long locked, lock_limit;
2602                 locked = len >> PAGE_SHIFT;
2603                 locked += mm->locked_vm;
2604                 lock_limit = rlimit(RLIMIT_MEMLOCK);
2605                 lock_limit >>= PAGE_SHIFT;
2606                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2607                         return -EAGAIN;
2608         }
2609
2610         /*
2611          * mm->mmap_sem is required to protect against another thread
2612          * changing the mappings in case we sleep.
2613          */
2614         verify_mm_writelocked(mm);
2615
2616         /*
2617          * Clear old maps.  this also does some error checking for us
2618          */
2619  munmap_back:
2620         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
2621                 if (do_munmap(mm, addr, len))
2622                         return -ENOMEM;
2623                 goto munmap_back;
2624         }
2625
2626         /* Check against address space limits *after* clearing old maps... */
2627         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2628                 return -ENOMEM;
2629
2630         if (mm->map_count > sysctl_max_map_count)
2631                 return -ENOMEM;
2632
2633         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2634                 return -ENOMEM;
2635
2636         /* Can we just expand an old private anonymous mapping? */
2637         vma = vma_merge(mm, prev, addr, addr + len, flags,
2638                                         NULL, NULL, pgoff, NULL);
2639         if (vma)
2640                 goto out;
2641
2642         /*
2643          * create a vma struct for an anonymous mapping
2644          */
2645         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2646         if (!vma) {
2647                 vm_unacct_memory(len >> PAGE_SHIFT);
2648                 return -ENOMEM;
2649         }
2650
2651         INIT_LIST_HEAD(&vma->anon_vma_chain);
2652         vma->vm_mm = mm;
2653         vma->vm_start = addr;
2654         vma->vm_end = addr + len;
2655         vma->vm_pgoff = pgoff;
2656         vma->vm_flags = flags;
2657         vma->vm_page_prot = vm_get_page_prot(flags);
2658         vma_link(mm, vma, prev, rb_link, rb_parent);
2659 out:
2660         perf_event_mmap(vma);
2661         mm->total_vm += len >> PAGE_SHIFT;
2662         if (flags & VM_LOCKED)
2663                 mm->locked_vm += (len >> PAGE_SHIFT);
2664         vma->vm_flags |= VM_SOFTDIRTY;
2665         return addr;
2666 }
2667
2668 unsigned long vm_brk(unsigned long addr, unsigned long len)
2669 {
2670         struct mm_struct *mm = current->mm;
2671         unsigned long ret;
2672         bool populate;
2673
2674         down_write(&mm->mmap_sem);
2675         ret = do_brk(addr, len);
2676         populate = ((mm->def_flags & VM_LOCKED) != 0);
2677         up_write(&mm->mmap_sem);
2678         if (populate)
2679                 mm_populate(addr, len);
2680         return ret;
2681 }
2682 EXPORT_SYMBOL(vm_brk);
2683
2684 /* Release all mmaps. */
2685 void exit_mmap(struct mm_struct *mm)
2686 {
2687         struct mmu_gather tlb;
2688         struct vm_area_struct *vma;
2689         unsigned long nr_accounted = 0;
2690
2691         /* mm's last user has gone, and its about to be pulled down */
2692         mmu_notifier_release(mm);
2693
2694         if (mm->locked_vm) {
2695                 vma = mm->mmap;
2696                 while (vma) {
2697                         if (vma->vm_flags & VM_LOCKED)
2698                                 munlock_vma_pages_all(vma);
2699                         vma = vma->vm_next;
2700                 }
2701         }
2702
2703         arch_exit_mmap(mm);
2704
2705         vma = mm->mmap;
2706         if (!vma)       /* Can happen if dup_mmap() received an OOM */
2707                 return;
2708
2709         lru_add_drain();
2710         flush_cache_mm(mm);
2711         tlb_gather_mmu(&tlb, mm, 0, -1);
2712         /* update_hiwater_rss(mm) here? but nobody should be looking */
2713         /* Use -1 here to ensure all VMAs in the mm are unmapped */
2714         unmap_vmas(&tlb, vma, 0, -1);
2715
2716         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2717         tlb_finish_mmu(&tlb, 0, -1);
2718
2719         /*
2720          * Walk the list again, actually closing and freeing it,
2721          * with preemption enabled, without holding any MM locks.
2722          */
2723         while (vma) {
2724                 if (vma->vm_flags & VM_ACCOUNT)
2725                         nr_accounted += vma_pages(vma);
2726                 vma = remove_vma(vma);
2727         }
2728         vm_unacct_memory(nr_accounted);
2729
2730         WARN_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2731 }
2732
2733 /* Insert vm structure into process list sorted by address
2734  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2735  * then i_mmap_mutex is taken here.
2736  */
2737 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2738 {
2739         struct vm_area_struct *prev;
2740         struct rb_node **rb_link, *rb_parent;
2741
2742         /*
2743          * The vm_pgoff of a purely anonymous vma should be irrelevant
2744          * until its first write fault, when page's anon_vma and index
2745          * are set.  But now set the vm_pgoff it will almost certainly
2746          * end up with (unless mremap moves it elsewhere before that
2747          * first wfault), so /proc/pid/maps tells a consistent story.
2748          *
2749          * By setting it to reflect the virtual start address of the
2750          * vma, merges and splits can happen in a seamless way, just
2751          * using the existing file pgoff checks and manipulations.
2752          * Similarly in do_mmap_pgoff and in do_brk.
2753          */
2754         if (!vma->vm_file) {
2755                 BUG_ON(vma->anon_vma);
2756                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2757         }
2758         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2759                            &prev, &rb_link, &rb_parent))
2760                 return -ENOMEM;
2761         if ((vma->vm_flags & VM_ACCOUNT) &&
2762              security_vm_enough_memory_mm(mm, vma_pages(vma)))
2763                 return -ENOMEM;
2764
2765         vma_link(mm, vma, prev, rb_link, rb_parent);
2766         return 0;
2767 }
2768
2769 /*
2770  * Copy the vma structure to a new location in the same mm,
2771  * prior to moving page table entries, to effect an mremap move.
2772  */
2773 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2774         unsigned long addr, unsigned long len, pgoff_t pgoff,
2775         bool *need_rmap_locks)
2776 {
2777         struct vm_area_struct *vma = *vmap;
2778         unsigned long vma_start = vma->vm_start;
2779         struct mm_struct *mm = vma->vm_mm;
2780         struct vm_area_struct *new_vma, *prev;
2781         struct rb_node **rb_link, *rb_parent;
2782         bool faulted_in_anon_vma = true;
2783
2784         /*
2785          * If anonymous vma has not yet been faulted, update new pgoff
2786          * to match new location, to increase its chance of merging.
2787          */
2788         if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2789                 pgoff = addr >> PAGE_SHIFT;
2790                 faulted_in_anon_vma = false;
2791         }
2792
2793         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2794                 return NULL;    /* should never get here */
2795         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2796                         vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2797         if (new_vma) {
2798                 /*
2799                  * Source vma may have been merged into new_vma
2800                  */
2801                 if (unlikely(vma_start >= new_vma->vm_start &&
2802                              vma_start < new_vma->vm_end)) {
2803                         /*
2804                          * The only way we can get a vma_merge with
2805                          * self during an mremap is if the vma hasn't
2806                          * been faulted in yet and we were allowed to
2807                          * reset the dst vma->vm_pgoff to the
2808                          * destination address of the mremap to allow
2809                          * the merge to happen. mremap must change the
2810                          * vm_pgoff linearity between src and dst vmas
2811                          * (in turn preventing a vma_merge) to be
2812                          * safe. It is only safe to keep the vm_pgoff
2813                          * linear if there are no pages mapped yet.
2814                          */
2815                         VM_BUG_ON(faulted_in_anon_vma);
2816                         *vmap = vma = new_vma;
2817                 }
2818                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2819         } else {
2820                 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2821                 if (new_vma) {
2822                         *new_vma = *vma;
2823                         new_vma->vm_start = addr;
2824                         new_vma->vm_end = addr + len;
2825                         new_vma->vm_pgoff = pgoff;
2826                         if (vma_dup_policy(vma, new_vma))
2827                                 goto out_free_vma;
2828                         INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2829                         if (anon_vma_clone(new_vma, vma))
2830                                 goto out_free_mempol;
2831                         if (new_vma->vm_file)
2832                                 get_file(new_vma->vm_file);
2833                         if (new_vma->vm_ops && new_vma->vm_ops->open)
2834                                 new_vma->vm_ops->open(new_vma);
2835                         vma_link(mm, new_vma, prev, rb_link, rb_parent);
2836                         *need_rmap_locks = false;
2837                 }
2838         }
2839         return new_vma;
2840
2841  out_free_mempol:
2842         mpol_put(vma_policy(new_vma));
2843  out_free_vma:
2844         kmem_cache_free(vm_area_cachep, new_vma);
2845         return NULL;
2846 }
2847
2848 /*
2849  * Return true if the calling process may expand its vm space by the passed
2850  * number of pages
2851  */
2852 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2853 {
2854         unsigned long cur = mm->total_vm;       /* pages */
2855         unsigned long lim;
2856
2857         lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2858
2859         if (cur + npages > lim)
2860                 return 0;
2861         return 1;
2862 }
2863
2864
2865 static int special_mapping_fault(struct vm_area_struct *vma,
2866                                 struct vm_fault *vmf)
2867 {
2868         pgoff_t pgoff;
2869         struct page **pages;
2870
2871         /*
2872          * special mappings have no vm_file, and in that case, the mm
2873          * uses vm_pgoff internally. So we have to subtract it from here.
2874          * We are allowed to do this because we are the mm; do not copy
2875          * this code into drivers!
2876          */
2877         pgoff = vmf->pgoff - vma->vm_pgoff;
2878
2879         for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2880                 pgoff--;
2881
2882         if (*pages) {
2883                 struct page *page = *pages;
2884                 get_page(page);
2885                 vmf->page = page;
2886                 return 0;
2887         }
2888
2889         return VM_FAULT_SIGBUS;
2890 }
2891
2892 /*
2893  * Having a close hook prevents vma merging regardless of flags.
2894  */
2895 static void special_mapping_close(struct vm_area_struct *vma)
2896 {
2897 }
2898
2899 static const struct vm_operations_struct special_mapping_vmops = {
2900         .close = special_mapping_close,
2901         .fault = special_mapping_fault,
2902 };
2903
2904 /*
2905  * Called with mm->mmap_sem held for writing.
2906  * Insert a new vma covering the given region, with the given flags.
2907  * Its pages are supplied by the given array of struct page *.
2908  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2909  * The region past the last page supplied will always produce SIGBUS.
2910  * The array pointer and the pages it points to are assumed to stay alive
2911  * for as long as this mapping might exist.
2912  */
2913 int install_special_mapping(struct mm_struct *mm,
2914                             unsigned long addr, unsigned long len,
2915                             unsigned long vm_flags, struct page **pages)
2916 {
2917         int ret;
2918         struct vm_area_struct *vma;
2919
2920         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2921         if (unlikely(vma == NULL))
2922                 return -ENOMEM;
2923
2924         INIT_LIST_HEAD(&vma->anon_vma_chain);
2925         vma->vm_mm = mm;
2926         vma->vm_start = addr;
2927         vma->vm_end = addr + len;
2928
2929         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
2930         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2931
2932         vma->vm_ops = &special_mapping_vmops;
2933         vma->vm_private_data = pages;
2934
2935         ret = insert_vm_struct(mm, vma);
2936         if (ret)
2937                 goto out;
2938
2939         mm->total_vm += len >> PAGE_SHIFT;
2940
2941         perf_event_mmap(vma);
2942
2943         return 0;
2944
2945 out:
2946         kmem_cache_free(vm_area_cachep, vma);
2947         return ret;
2948 }
2949
2950 static DEFINE_MUTEX(mm_all_locks_mutex);
2951
2952 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2953 {
2954         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
2955                 /*
2956                  * The LSB of head.next can't change from under us
2957                  * because we hold the mm_all_locks_mutex.
2958                  */
2959                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
2960                 /*
2961                  * We can safely modify head.next after taking the
2962                  * anon_vma->root->rwsem. If some other vma in this mm shares
2963                  * the same anon_vma we won't take it again.
2964                  *
2965                  * No need of atomic instructions here, head.next
2966                  * can't change from under us thanks to the
2967                  * anon_vma->root->rwsem.
2968                  */
2969                 if (__test_and_set_bit(0, (unsigned long *)
2970                                        &anon_vma->root->rb_root.rb_node))
2971                         BUG();
2972         }
2973 }
2974
2975 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2976 {
2977         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2978                 /*
2979                  * AS_MM_ALL_LOCKS can't change from under us because
2980                  * we hold the mm_all_locks_mutex.
2981                  *
2982                  * Operations on ->flags have to be atomic because
2983                  * even if AS_MM_ALL_LOCKS is stable thanks to the
2984                  * mm_all_locks_mutex, there may be other cpus
2985                  * changing other bitflags in parallel to us.
2986                  */
2987                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2988                         BUG();
2989                 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
2990         }
2991 }
2992
2993 /*
2994  * This operation locks against the VM for all pte/vma/mm related
2995  * operations that could ever happen on a certain mm. This includes
2996  * vmtruncate, try_to_unmap, and all page faults.
2997  *
2998  * The caller must take the mmap_sem in write mode before calling
2999  * mm_take_all_locks(). The caller isn't allowed to release the
3000  * mmap_sem until mm_drop_all_locks() returns.
3001  *
3002  * mmap_sem in write mode is required in order to block all operations
3003  * that could modify pagetables and free pages without need of
3004  * altering the vma layout (for example populate_range() with
3005  * nonlinear vmas). It's also needed in write mode to avoid new
3006  * anon_vmas to be associated with existing vmas.
3007  *
3008  * A single task can't take more than one mm_take_all_locks() in a row
3009  * or it would deadlock.
3010  *
3011  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3012  * mapping->flags avoid to take the same lock twice, if more than one
3013  * vma in this mm is backed by the same anon_vma or address_space.
3014  *
3015  * We can take all the locks in random order because the VM code
3016  * taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never
3017  * takes more than one of them in a row. Secondly we're protected
3018  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3019  *
3020  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3021  * that may have to take thousand of locks.
3022  *
3023  * mm_take_all_locks() can fail if it's interrupted by signals.
3024  */
3025 int mm_take_all_locks(struct mm_struct *mm)
3026 {
3027         struct vm_area_struct *vma;
3028         struct anon_vma_chain *avc;
3029
3030         BUG_ON(down_read_trylock(&mm->mmap_sem));
3031
3032         mutex_lock(&mm_all_locks_mutex);
3033
3034         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3035                 if (signal_pending(current))
3036                         goto out_unlock;
3037                 if (vma->vm_file && vma->vm_file->f_mapping)
3038                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3039         }
3040
3041         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3042                 if (signal_pending(current))
3043                         goto out_unlock;
3044                 if (vma->anon_vma)
3045                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3046                                 vm_lock_anon_vma(mm, avc->anon_vma);
3047         }
3048
3049         return 0;
3050
3051 out_unlock:
3052         mm_drop_all_locks(mm);
3053         return -EINTR;
3054 }
3055
3056 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3057 {
3058         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3059                 /*
3060                  * The LSB of head.next can't change to 0 from under
3061                  * us because we hold the mm_all_locks_mutex.
3062                  *
3063                  * We must however clear the bitflag before unlocking
3064                  * the vma so the users using the anon_vma->rb_root will
3065                  * never see our bitflag.
3066                  *
3067                  * No need of atomic instructions here, head.next
3068                  * can't change from under us until we release the
3069                  * anon_vma->root->rwsem.
3070                  */
3071                 if (!__test_and_clear_bit(0, (unsigned long *)
3072                                           &anon_vma->root->rb_root.rb_node))
3073                         BUG();
3074                 anon_vma_unlock_write(anon_vma);
3075         }
3076 }
3077
3078 static void vm_unlock_mapping(struct address_space *mapping)
3079 {
3080         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3081                 /*
3082                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3083                  * because we hold the mm_all_locks_mutex.
3084                  */
3085                 mutex_unlock(&mapping->i_mmap_mutex);
3086                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3087                                         &mapping->flags))
3088                         BUG();
3089         }
3090 }
3091
3092 /*
3093  * The mmap_sem cannot be released by the caller until
3094  * mm_drop_all_locks() returns.
3095  */
3096 void mm_drop_all_locks(struct mm_struct *mm)
3097 {
3098         struct vm_area_struct *vma;
3099         struct anon_vma_chain *avc;
3100
3101         BUG_ON(down_read_trylock(&mm->mmap_sem));
3102         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3103
3104         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3105                 if (vma->anon_vma)
3106                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3107                                 vm_unlock_anon_vma(avc->anon_vma);
3108                 if (vma->vm_file && vma->vm_file->f_mapping)
3109                         vm_unlock_mapping(vma->vm_file->f_mapping);
3110         }
3111
3112         mutex_unlock(&mm_all_locks_mutex);
3113 }
3114
3115 /*
3116  * initialise the VMA slab
3117  */
3118 void __init mmap_init(void)
3119 {
3120         int ret;
3121
3122         ret = percpu_counter_init(&vm_committed_as, 0);
3123         VM_BUG_ON(ret);
3124 }
3125
3126 /*
3127  * Initialise sysctl_user_reserve_kbytes.
3128  *
3129  * This is intended to prevent a user from starting a single memory hogging
3130  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3131  * mode.
3132  *
3133  * The default value is min(3% of free memory, 128MB)
3134  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3135  */
3136 static int init_user_reserve(void)
3137 {
3138         unsigned long free_kbytes;
3139
3140         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3141
3142         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3143         return 0;
3144 }
3145 module_init(init_user_reserve)
3146
3147 /*
3148  * Initialise sysctl_admin_reserve_kbytes.
3149  *
3150  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3151  * to log in and kill a memory hogging process.
3152  *
3153  * Systems with more than 256MB will reserve 8MB, enough to recover
3154  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3155  * only reserve 3% of free pages by default.
3156  */
3157 static int init_admin_reserve(void)
3158 {
3159         unsigned long free_kbytes;
3160
3161         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3162
3163         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3164         return 0;
3165 }
3166 module_init(init_admin_reserve)
3167
3168 /*
3169  * Reinititalise user and admin reserves if memory is added or removed.
3170  *
3171  * The default user reserve max is 128MB, and the default max for the
3172  * admin reserve is 8MB. These are usually, but not always, enough to
3173  * enable recovery from a memory hogging process using login/sshd, a shell,
3174  * and tools like top. It may make sense to increase or even disable the
3175  * reserve depending on the existence of swap or variations in the recovery
3176  * tools. So, the admin may have changed them.
3177  *
3178  * If memory is added and the reserves have been eliminated or increased above
3179  * the default max, then we'll trust the admin.
3180  *
3181  * If memory is removed and there isn't enough free memory, then we
3182  * need to reset the reserves.
3183  *
3184  * Otherwise keep the reserve set by the admin.
3185  */
3186 static int reserve_mem_notifier(struct notifier_block *nb,
3187                              unsigned long action, void *data)
3188 {
3189         unsigned long tmp, free_kbytes;
3190
3191         switch (action) {
3192         case MEM_ONLINE:
3193                 /* Default max is 128MB. Leave alone if modified by operator. */
3194                 tmp = sysctl_user_reserve_kbytes;
3195                 if (0 < tmp && tmp < (1UL << 17))
3196                         init_user_reserve();
3197
3198                 /* Default max is 8MB.  Leave alone if modified by operator. */
3199                 tmp = sysctl_admin_reserve_kbytes;
3200                 if (0 < tmp && tmp < (1UL << 13))
3201                         init_admin_reserve();
3202
3203                 break;
3204         case MEM_OFFLINE:
3205                 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3206
3207                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3208                         init_user_reserve();
3209                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3210                                 sysctl_user_reserve_kbytes);
3211                 }
3212
3213                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3214                         init_admin_reserve();
3215                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3216                                 sysctl_admin_reserve_kbytes);
3217                 }
3218                 break;
3219         default:
3220                 break;
3221         }
3222         return NOTIFY_OK;
3223 }
3224
3225 static struct notifier_block reserve_mem_nb = {
3226         .notifier_call = reserve_mem_notifier,
3227 };
3228
3229 static int __meminit init_reserve_notifier(void)
3230 {
3231         if (register_hotmemory_notifier(&reserve_mem_nb))
3232                 printk("Failed registering memory add/remove notifier for admin reserve");
3233
3234         return 0;
3235 }
3236 module_init(init_reserve_notifier)