Merge branch 'akpm' (patches from Andrew)
[cascardo/linux.git] / mm / nommu.c
1 /*
2  *  linux/mm/nommu.c
3  *
4  *  Replacement code for mm functions to support CPU's that don't
5  *  have any form of memory management unit (thus no virtual memory).
6  *
7  *  See Documentation/nommu-mmap.txt
8  *
9  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
13  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
14  */
15
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17
18 #include <linux/export.h>
19 #include <linux/mm.h>
20 #include <linux/vmacache.h>
21 #include <linux/mman.h>
22 #include <linux/swap.h>
23 #include <linux/file.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <linux/slab.h>
27 #include <linux/vmalloc.h>
28 #include <linux/blkdev.h>
29 #include <linux/backing-dev.h>
30 #include <linux/compiler.h>
31 #include <linux/mount.h>
32 #include <linux/personality.h>
33 #include <linux/security.h>
34 #include <linux/syscalls.h>
35 #include <linux/audit.h>
36 #include <linux/sched/sysctl.h>
37 #include <linux/printk.h>
38
39 #include <asm/uaccess.h>
40 #include <asm/tlb.h>
41 #include <asm/tlbflush.h>
42 #include <asm/mmu_context.h>
43 #include "internal.h"
44
45 #if 0
46 #define kenter(FMT, ...) \
47         printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
48 #define kleave(FMT, ...) \
49         printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
50 #define kdebug(FMT, ...) \
51         printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
52 #else
53 #define kenter(FMT, ...) \
54         no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
55 #define kleave(FMT, ...) \
56         no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
57 #define kdebug(FMT, ...) \
58         no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
59 #endif
60
61 void *high_memory;
62 EXPORT_SYMBOL(high_memory);
63 struct page *mem_map;
64 unsigned long max_mapnr;
65 unsigned long highest_memmap_pfn;
66 struct percpu_counter vm_committed_as;
67 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
68 int sysctl_overcommit_ratio = 50; /* default is 50% */
69 unsigned long sysctl_overcommit_kbytes __read_mostly;
70 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
71 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
72 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
73 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
74 int heap_stack_gap = 0;
75
76 atomic_long_t mmap_pages_allocated;
77
78 /*
79  * The global memory commitment made in the system can be a metric
80  * that can be used to drive ballooning decisions when Linux is hosted
81  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
82  * balancing memory across competing virtual machines that are hosted.
83  * Several metrics drive this policy engine including the guest reported
84  * memory commitment.
85  */
86 unsigned long vm_memory_committed(void)
87 {
88         return percpu_counter_read_positive(&vm_committed_as);
89 }
90
91 EXPORT_SYMBOL_GPL(vm_memory_committed);
92
93 EXPORT_SYMBOL(mem_map);
94
95 /* list of mapped, potentially shareable regions */
96 static struct kmem_cache *vm_region_jar;
97 struct rb_root nommu_region_tree = RB_ROOT;
98 DECLARE_RWSEM(nommu_region_sem);
99
100 const struct vm_operations_struct generic_file_vm_ops = {
101 };
102
103 /*
104  * Return the total memory allocated for this pointer, not
105  * just what the caller asked for.
106  *
107  * Doesn't have to be accurate, i.e. may have races.
108  */
109 unsigned int kobjsize(const void *objp)
110 {
111         struct page *page;
112
113         /*
114          * If the object we have should not have ksize performed on it,
115          * return size of 0
116          */
117         if (!objp || !virt_addr_valid(objp))
118                 return 0;
119
120         page = virt_to_head_page(objp);
121
122         /*
123          * If the allocator sets PageSlab, we know the pointer came from
124          * kmalloc().
125          */
126         if (PageSlab(page))
127                 return ksize(objp);
128
129         /*
130          * If it's not a compound page, see if we have a matching VMA
131          * region. This test is intentionally done in reverse order,
132          * so if there's no VMA, we still fall through and hand back
133          * PAGE_SIZE for 0-order pages.
134          */
135         if (!PageCompound(page)) {
136                 struct vm_area_struct *vma;
137
138                 vma = find_vma(current->mm, (unsigned long)objp);
139                 if (vma)
140                         return vma->vm_end - vma->vm_start;
141         }
142
143         /*
144          * The ksize() function is only guaranteed to work for pointers
145          * returned by kmalloc(). So handle arbitrary pointers here.
146          */
147         return PAGE_SIZE << compound_order(page);
148 }
149
150 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
151                       unsigned long start, unsigned long nr_pages,
152                       unsigned int foll_flags, struct page **pages,
153                       struct vm_area_struct **vmas, int *nonblocking)
154 {
155         struct vm_area_struct *vma;
156         unsigned long vm_flags;
157         int i;
158
159         /* calculate required read or write permissions.
160          * If FOLL_FORCE is set, we only require the "MAY" flags.
161          */
162         vm_flags  = (foll_flags & FOLL_WRITE) ?
163                         (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
164         vm_flags &= (foll_flags & FOLL_FORCE) ?
165                         (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
166
167         for (i = 0; i < nr_pages; i++) {
168                 vma = find_vma(mm, start);
169                 if (!vma)
170                         goto finish_or_fault;
171
172                 /* protect what we can, including chardevs */
173                 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
174                     !(vm_flags & vma->vm_flags))
175                         goto finish_or_fault;
176
177                 if (pages) {
178                         pages[i] = virt_to_page(start);
179                         if (pages[i])
180                                 page_cache_get(pages[i]);
181                 }
182                 if (vmas)
183                         vmas[i] = vma;
184                 start = (start + PAGE_SIZE) & PAGE_MASK;
185         }
186
187         return i;
188
189 finish_or_fault:
190         return i ? : -EFAULT;
191 }
192
193 /*
194  * get a list of pages in an address range belonging to the specified process
195  * and indicate the VMA that covers each page
196  * - this is potentially dodgy as we may end incrementing the page count of a
197  *   slab page or a secondary page from a compound page
198  * - don't permit access to VMAs that don't support it, such as I/O mappings
199  */
200 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
201                     unsigned long start, unsigned long nr_pages,
202                     int write, int force, struct page **pages,
203                     struct vm_area_struct **vmas)
204 {
205         int flags = 0;
206
207         if (write)
208                 flags |= FOLL_WRITE;
209         if (force)
210                 flags |= FOLL_FORCE;
211
212         return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
213                                 NULL);
214 }
215 EXPORT_SYMBOL(get_user_pages);
216
217 long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
218                            unsigned long start, unsigned long nr_pages,
219                            int write, int force, struct page **pages,
220                            int *locked)
221 {
222         return get_user_pages(tsk, mm, start, nr_pages, write, force,
223                               pages, NULL);
224 }
225 EXPORT_SYMBOL(get_user_pages_locked);
226
227 long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
228                                unsigned long start, unsigned long nr_pages,
229                                int write, int force, struct page **pages,
230                                unsigned int gup_flags)
231 {
232         long ret;
233         down_read(&mm->mmap_sem);
234         ret = get_user_pages(tsk, mm, start, nr_pages, write, force,
235                              pages, NULL);
236         up_read(&mm->mmap_sem);
237         return ret;
238 }
239 EXPORT_SYMBOL(__get_user_pages_unlocked);
240
241 long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
242                              unsigned long start, unsigned long nr_pages,
243                              int write, int force, struct page **pages)
244 {
245         return __get_user_pages_unlocked(tsk, mm, start, nr_pages, write,
246                                          force, pages, 0);
247 }
248 EXPORT_SYMBOL(get_user_pages_unlocked);
249
250 /**
251  * follow_pfn - look up PFN at a user virtual address
252  * @vma: memory mapping
253  * @address: user virtual address
254  * @pfn: location to store found PFN
255  *
256  * Only IO mappings and raw PFN mappings are allowed.
257  *
258  * Returns zero and the pfn at @pfn on success, -ve otherwise.
259  */
260 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
261         unsigned long *pfn)
262 {
263         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
264                 return -EINVAL;
265
266         *pfn = address >> PAGE_SHIFT;
267         return 0;
268 }
269 EXPORT_SYMBOL(follow_pfn);
270
271 LIST_HEAD(vmap_area_list);
272
273 void vfree(const void *addr)
274 {
275         kfree(addr);
276 }
277 EXPORT_SYMBOL(vfree);
278
279 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
280 {
281         /*
282          *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
283          * returns only a logical address.
284          */
285         return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
286 }
287 EXPORT_SYMBOL(__vmalloc);
288
289 void *vmalloc_user(unsigned long size)
290 {
291         void *ret;
292
293         ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
294                         PAGE_KERNEL);
295         if (ret) {
296                 struct vm_area_struct *vma;
297
298                 down_write(&current->mm->mmap_sem);
299                 vma = find_vma(current->mm, (unsigned long)ret);
300                 if (vma)
301                         vma->vm_flags |= VM_USERMAP;
302                 up_write(&current->mm->mmap_sem);
303         }
304
305         return ret;
306 }
307 EXPORT_SYMBOL(vmalloc_user);
308
309 struct page *vmalloc_to_page(const void *addr)
310 {
311         return virt_to_page(addr);
312 }
313 EXPORT_SYMBOL(vmalloc_to_page);
314
315 unsigned long vmalloc_to_pfn(const void *addr)
316 {
317         return page_to_pfn(virt_to_page(addr));
318 }
319 EXPORT_SYMBOL(vmalloc_to_pfn);
320
321 long vread(char *buf, char *addr, unsigned long count)
322 {
323         /* Don't allow overflow */
324         if ((unsigned long) buf + count < count)
325                 count = -(unsigned long) buf;
326
327         memcpy(buf, addr, count);
328         return count;
329 }
330
331 long vwrite(char *buf, char *addr, unsigned long count)
332 {
333         /* Don't allow overflow */
334         if ((unsigned long) addr + count < count)
335                 count = -(unsigned long) addr;
336
337         memcpy(addr, buf, count);
338         return count;
339 }
340
341 /*
342  *      vmalloc  -  allocate virtually continguos memory
343  *
344  *      @size:          allocation size
345  *
346  *      Allocate enough pages to cover @size from the page level
347  *      allocator and map them into continguos kernel virtual space.
348  *
349  *      For tight control over page level allocator and protection flags
350  *      use __vmalloc() instead.
351  */
352 void *vmalloc(unsigned long size)
353 {
354        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
355 }
356 EXPORT_SYMBOL(vmalloc);
357
358 /*
359  *      vzalloc - allocate virtually continguos memory with zero fill
360  *
361  *      @size:          allocation size
362  *
363  *      Allocate enough pages to cover @size from the page level
364  *      allocator and map them into continguos kernel virtual space.
365  *      The memory allocated is set to zero.
366  *
367  *      For tight control over page level allocator and protection flags
368  *      use __vmalloc() instead.
369  */
370 void *vzalloc(unsigned long size)
371 {
372         return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
373                         PAGE_KERNEL);
374 }
375 EXPORT_SYMBOL(vzalloc);
376
377 /**
378  * vmalloc_node - allocate memory on a specific node
379  * @size:       allocation size
380  * @node:       numa node
381  *
382  * Allocate enough pages to cover @size from the page level
383  * allocator and map them into contiguous kernel virtual space.
384  *
385  * For tight control over page level allocator and protection flags
386  * use __vmalloc() instead.
387  */
388 void *vmalloc_node(unsigned long size, int node)
389 {
390         return vmalloc(size);
391 }
392 EXPORT_SYMBOL(vmalloc_node);
393
394 /**
395  * vzalloc_node - allocate memory on a specific node with zero fill
396  * @size:       allocation size
397  * @node:       numa node
398  *
399  * Allocate enough pages to cover @size from the page level
400  * allocator and map them into contiguous kernel virtual space.
401  * The memory allocated is set to zero.
402  *
403  * For tight control over page level allocator and protection flags
404  * use __vmalloc() instead.
405  */
406 void *vzalloc_node(unsigned long size, int node)
407 {
408         return vzalloc(size);
409 }
410 EXPORT_SYMBOL(vzalloc_node);
411
412 #ifndef PAGE_KERNEL_EXEC
413 # define PAGE_KERNEL_EXEC PAGE_KERNEL
414 #endif
415
416 /**
417  *      vmalloc_exec  -  allocate virtually contiguous, executable memory
418  *      @size:          allocation size
419  *
420  *      Kernel-internal function to allocate enough pages to cover @size
421  *      the page level allocator and map them into contiguous and
422  *      executable kernel virtual space.
423  *
424  *      For tight control over page level allocator and protection flags
425  *      use __vmalloc() instead.
426  */
427
428 void *vmalloc_exec(unsigned long size)
429 {
430         return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
431 }
432
433 /**
434  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
435  *      @size:          allocation size
436  *
437  *      Allocate enough 32bit PA addressable pages to cover @size from the
438  *      page level allocator and map them into continguos kernel virtual space.
439  */
440 void *vmalloc_32(unsigned long size)
441 {
442         return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
443 }
444 EXPORT_SYMBOL(vmalloc_32);
445
446 /**
447  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
448  *      @size:          allocation size
449  *
450  * The resulting memory area is 32bit addressable and zeroed so it can be
451  * mapped to userspace without leaking data.
452  *
453  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
454  * remap_vmalloc_range() are permissible.
455  */
456 void *vmalloc_32_user(unsigned long size)
457 {
458         /*
459          * We'll have to sort out the ZONE_DMA bits for 64-bit,
460          * but for now this can simply use vmalloc_user() directly.
461          */
462         return vmalloc_user(size);
463 }
464 EXPORT_SYMBOL(vmalloc_32_user);
465
466 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
467 {
468         BUG();
469         return NULL;
470 }
471 EXPORT_SYMBOL(vmap);
472
473 void vunmap(const void *addr)
474 {
475         BUG();
476 }
477 EXPORT_SYMBOL(vunmap);
478
479 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
480 {
481         BUG();
482         return NULL;
483 }
484 EXPORT_SYMBOL(vm_map_ram);
485
486 void vm_unmap_ram(const void *mem, unsigned int count)
487 {
488         BUG();
489 }
490 EXPORT_SYMBOL(vm_unmap_ram);
491
492 void vm_unmap_aliases(void)
493 {
494 }
495 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
496
497 /*
498  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
499  * have one.
500  */
501 void __weak vmalloc_sync_all(void)
502 {
503 }
504
505 /**
506  *      alloc_vm_area - allocate a range of kernel address space
507  *      @size:          size of the area
508  *
509  *      Returns:        NULL on failure, vm_struct on success
510  *
511  *      This function reserves a range of kernel address space, and
512  *      allocates pagetables to map that range.  No actual mappings
513  *      are created.  If the kernel address space is not shared
514  *      between processes, it syncs the pagetable across all
515  *      processes.
516  */
517 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
518 {
519         BUG();
520         return NULL;
521 }
522 EXPORT_SYMBOL_GPL(alloc_vm_area);
523
524 void free_vm_area(struct vm_struct *area)
525 {
526         BUG();
527 }
528 EXPORT_SYMBOL_GPL(free_vm_area);
529
530 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
531                    struct page *page)
532 {
533         return -EINVAL;
534 }
535 EXPORT_SYMBOL(vm_insert_page);
536
537 /*
538  *  sys_brk() for the most part doesn't need the global kernel
539  *  lock, except when an application is doing something nasty
540  *  like trying to un-brk an area that has already been mapped
541  *  to a regular file.  in this case, the unmapping will need
542  *  to invoke file system routines that need the global lock.
543  */
544 SYSCALL_DEFINE1(brk, unsigned long, brk)
545 {
546         struct mm_struct *mm = current->mm;
547
548         if (brk < mm->start_brk || brk > mm->context.end_brk)
549                 return mm->brk;
550
551         if (mm->brk == brk)
552                 return mm->brk;
553
554         /*
555          * Always allow shrinking brk
556          */
557         if (brk <= mm->brk) {
558                 mm->brk = brk;
559                 return brk;
560         }
561
562         /*
563          * Ok, looks good - let it rip.
564          */
565         flush_icache_range(mm->brk, brk);
566         return mm->brk = brk;
567 }
568
569 /*
570  * initialise the VMA and region record slabs
571  */
572 void __init mmap_init(void)
573 {
574         int ret;
575
576         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
577         VM_BUG_ON(ret);
578         vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
579 }
580
581 /*
582  * validate the region tree
583  * - the caller must hold the region lock
584  */
585 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
586 static noinline void validate_nommu_regions(void)
587 {
588         struct vm_region *region, *last;
589         struct rb_node *p, *lastp;
590
591         lastp = rb_first(&nommu_region_tree);
592         if (!lastp)
593                 return;
594
595         last = rb_entry(lastp, struct vm_region, vm_rb);
596         BUG_ON(unlikely(last->vm_end <= last->vm_start));
597         BUG_ON(unlikely(last->vm_top < last->vm_end));
598
599         while ((p = rb_next(lastp))) {
600                 region = rb_entry(p, struct vm_region, vm_rb);
601                 last = rb_entry(lastp, struct vm_region, vm_rb);
602
603                 BUG_ON(unlikely(region->vm_end <= region->vm_start));
604                 BUG_ON(unlikely(region->vm_top < region->vm_end));
605                 BUG_ON(unlikely(region->vm_start < last->vm_top));
606
607                 lastp = p;
608         }
609 }
610 #else
611 static void validate_nommu_regions(void)
612 {
613 }
614 #endif
615
616 /*
617  * add a region into the global tree
618  */
619 static void add_nommu_region(struct vm_region *region)
620 {
621         struct vm_region *pregion;
622         struct rb_node **p, *parent;
623
624         validate_nommu_regions();
625
626         parent = NULL;
627         p = &nommu_region_tree.rb_node;
628         while (*p) {
629                 parent = *p;
630                 pregion = rb_entry(parent, struct vm_region, vm_rb);
631                 if (region->vm_start < pregion->vm_start)
632                         p = &(*p)->rb_left;
633                 else if (region->vm_start > pregion->vm_start)
634                         p = &(*p)->rb_right;
635                 else if (pregion == region)
636                         return;
637                 else
638                         BUG();
639         }
640
641         rb_link_node(&region->vm_rb, parent, p);
642         rb_insert_color(&region->vm_rb, &nommu_region_tree);
643
644         validate_nommu_regions();
645 }
646
647 /*
648  * delete a region from the global tree
649  */
650 static void delete_nommu_region(struct vm_region *region)
651 {
652         BUG_ON(!nommu_region_tree.rb_node);
653
654         validate_nommu_regions();
655         rb_erase(&region->vm_rb, &nommu_region_tree);
656         validate_nommu_regions();
657 }
658
659 /*
660  * free a contiguous series of pages
661  */
662 static void free_page_series(unsigned long from, unsigned long to)
663 {
664         for (; from < to; from += PAGE_SIZE) {
665                 struct page *page = virt_to_page(from);
666
667                 kdebug("- free %lx", from);
668                 atomic_long_dec(&mmap_pages_allocated);
669                 if (page_count(page) != 1)
670                         kdebug("free page %p: refcount not one: %d",
671                                page, page_count(page));
672                 put_page(page);
673         }
674 }
675
676 /*
677  * release a reference to a region
678  * - the caller must hold the region semaphore for writing, which this releases
679  * - the region may not have been added to the tree yet, in which case vm_top
680  *   will equal vm_start
681  */
682 static void __put_nommu_region(struct vm_region *region)
683         __releases(nommu_region_sem)
684 {
685         kenter("%p{%d}", region, region->vm_usage);
686
687         BUG_ON(!nommu_region_tree.rb_node);
688
689         if (--region->vm_usage == 0) {
690                 if (region->vm_top > region->vm_start)
691                         delete_nommu_region(region);
692                 up_write(&nommu_region_sem);
693
694                 if (region->vm_file)
695                         fput(region->vm_file);
696
697                 /* IO memory and memory shared directly out of the pagecache
698                  * from ramfs/tmpfs mustn't be released here */
699                 if (region->vm_flags & VM_MAPPED_COPY) {
700                         kdebug("free series");
701                         free_page_series(region->vm_start, region->vm_top);
702                 }
703                 kmem_cache_free(vm_region_jar, region);
704         } else {
705                 up_write(&nommu_region_sem);
706         }
707 }
708
709 /*
710  * release a reference to a region
711  */
712 static void put_nommu_region(struct vm_region *region)
713 {
714         down_write(&nommu_region_sem);
715         __put_nommu_region(region);
716 }
717
718 /*
719  * update protection on a vma
720  */
721 static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
722 {
723 #ifdef CONFIG_MPU
724         struct mm_struct *mm = vma->vm_mm;
725         long start = vma->vm_start & PAGE_MASK;
726         while (start < vma->vm_end) {
727                 protect_page(mm, start, flags);
728                 start += PAGE_SIZE;
729         }
730         update_protections(mm);
731 #endif
732 }
733
734 /*
735  * add a VMA into a process's mm_struct in the appropriate place in the list
736  * and tree and add to the address space's page tree also if not an anonymous
737  * page
738  * - should be called with mm->mmap_sem held writelocked
739  */
740 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
741 {
742         struct vm_area_struct *pvma, *prev;
743         struct address_space *mapping;
744         struct rb_node **p, *parent, *rb_prev;
745
746         kenter(",%p", vma);
747
748         BUG_ON(!vma->vm_region);
749
750         mm->map_count++;
751         vma->vm_mm = mm;
752
753         protect_vma(vma, vma->vm_flags);
754
755         /* add the VMA to the mapping */
756         if (vma->vm_file) {
757                 mapping = vma->vm_file->f_mapping;
758
759                 i_mmap_lock_write(mapping);
760                 flush_dcache_mmap_lock(mapping);
761                 vma_interval_tree_insert(vma, &mapping->i_mmap);
762                 flush_dcache_mmap_unlock(mapping);
763                 i_mmap_unlock_write(mapping);
764         }
765
766         /* add the VMA to the tree */
767         parent = rb_prev = NULL;
768         p = &mm->mm_rb.rb_node;
769         while (*p) {
770                 parent = *p;
771                 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
772
773                 /* sort by: start addr, end addr, VMA struct addr in that order
774                  * (the latter is necessary as we may get identical VMAs) */
775                 if (vma->vm_start < pvma->vm_start)
776                         p = &(*p)->rb_left;
777                 else if (vma->vm_start > pvma->vm_start) {
778                         rb_prev = parent;
779                         p = &(*p)->rb_right;
780                 } else if (vma->vm_end < pvma->vm_end)
781                         p = &(*p)->rb_left;
782                 else if (vma->vm_end > pvma->vm_end) {
783                         rb_prev = parent;
784                         p = &(*p)->rb_right;
785                 } else if (vma < pvma)
786                         p = &(*p)->rb_left;
787                 else if (vma > pvma) {
788                         rb_prev = parent;
789                         p = &(*p)->rb_right;
790                 } else
791                         BUG();
792         }
793
794         rb_link_node(&vma->vm_rb, parent, p);
795         rb_insert_color(&vma->vm_rb, &mm->mm_rb);
796
797         /* add VMA to the VMA list also */
798         prev = NULL;
799         if (rb_prev)
800                 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
801
802         __vma_link_list(mm, vma, prev, parent);
803 }
804
805 /*
806  * delete a VMA from its owning mm_struct and address space
807  */
808 static void delete_vma_from_mm(struct vm_area_struct *vma)
809 {
810         int i;
811         struct address_space *mapping;
812         struct mm_struct *mm = vma->vm_mm;
813         struct task_struct *curr = current;
814
815         kenter("%p", vma);
816
817         protect_vma(vma, 0);
818
819         mm->map_count--;
820         for (i = 0; i < VMACACHE_SIZE; i++) {
821                 /* if the vma is cached, invalidate the entire cache */
822                 if (curr->vmacache[i] == vma) {
823                         vmacache_invalidate(mm);
824                         break;
825                 }
826         }
827
828         /* remove the VMA from the mapping */
829         if (vma->vm_file) {
830                 mapping = vma->vm_file->f_mapping;
831
832                 i_mmap_lock_write(mapping);
833                 flush_dcache_mmap_lock(mapping);
834                 vma_interval_tree_remove(vma, &mapping->i_mmap);
835                 flush_dcache_mmap_unlock(mapping);
836                 i_mmap_unlock_write(mapping);
837         }
838
839         /* remove from the MM's tree and list */
840         rb_erase(&vma->vm_rb, &mm->mm_rb);
841
842         if (vma->vm_prev)
843                 vma->vm_prev->vm_next = vma->vm_next;
844         else
845                 mm->mmap = vma->vm_next;
846
847         if (vma->vm_next)
848                 vma->vm_next->vm_prev = vma->vm_prev;
849 }
850
851 /*
852  * destroy a VMA record
853  */
854 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
855 {
856         kenter("%p", vma);
857         if (vma->vm_ops && vma->vm_ops->close)
858                 vma->vm_ops->close(vma);
859         if (vma->vm_file)
860                 fput(vma->vm_file);
861         put_nommu_region(vma->vm_region);
862         kmem_cache_free(vm_area_cachep, vma);
863 }
864
865 /*
866  * look up the first VMA in which addr resides, NULL if none
867  * - should be called with mm->mmap_sem at least held readlocked
868  */
869 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
870 {
871         struct vm_area_struct *vma;
872
873         /* check the cache first */
874         vma = vmacache_find(mm, addr);
875         if (likely(vma))
876                 return vma;
877
878         /* trawl the list (there may be multiple mappings in which addr
879          * resides) */
880         for (vma = mm->mmap; vma; vma = vma->vm_next) {
881                 if (vma->vm_start > addr)
882                         return NULL;
883                 if (vma->vm_end > addr) {
884                         vmacache_update(addr, vma);
885                         return vma;
886                 }
887         }
888
889         return NULL;
890 }
891 EXPORT_SYMBOL(find_vma);
892
893 /*
894  * find a VMA
895  * - we don't extend stack VMAs under NOMMU conditions
896  */
897 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
898 {
899         return find_vma(mm, addr);
900 }
901
902 /*
903  * expand a stack to a given address
904  * - not supported under NOMMU conditions
905  */
906 int expand_stack(struct vm_area_struct *vma, unsigned long address)
907 {
908         return -ENOMEM;
909 }
910
911 /*
912  * look up the first VMA exactly that exactly matches addr
913  * - should be called with mm->mmap_sem at least held readlocked
914  */
915 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
916                                              unsigned long addr,
917                                              unsigned long len)
918 {
919         struct vm_area_struct *vma;
920         unsigned long end = addr + len;
921
922         /* check the cache first */
923         vma = vmacache_find_exact(mm, addr, end);
924         if (vma)
925                 return vma;
926
927         /* trawl the list (there may be multiple mappings in which addr
928          * resides) */
929         for (vma = mm->mmap; vma; vma = vma->vm_next) {
930                 if (vma->vm_start < addr)
931                         continue;
932                 if (vma->vm_start > addr)
933                         return NULL;
934                 if (vma->vm_end == end) {
935                         vmacache_update(addr, vma);
936                         return vma;
937                 }
938         }
939
940         return NULL;
941 }
942
943 /*
944  * determine whether a mapping should be permitted and, if so, what sort of
945  * mapping we're capable of supporting
946  */
947 static int validate_mmap_request(struct file *file,
948                                  unsigned long addr,
949                                  unsigned long len,
950                                  unsigned long prot,
951                                  unsigned long flags,
952                                  unsigned long pgoff,
953                                  unsigned long *_capabilities)
954 {
955         unsigned long capabilities, rlen;
956         int ret;
957
958         /* do the simple checks first */
959         if (flags & MAP_FIXED) {
960                 printk(KERN_DEBUG
961                        "%d: Can't do fixed-address/overlay mmap of RAM\n",
962                        current->pid);
963                 return -EINVAL;
964         }
965
966         if ((flags & MAP_TYPE) != MAP_PRIVATE &&
967             (flags & MAP_TYPE) != MAP_SHARED)
968                 return -EINVAL;
969
970         if (!len)
971                 return -EINVAL;
972
973         /* Careful about overflows.. */
974         rlen = PAGE_ALIGN(len);
975         if (!rlen || rlen > TASK_SIZE)
976                 return -ENOMEM;
977
978         /* offset overflow? */
979         if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
980                 return -EOVERFLOW;
981
982         if (file) {
983                 /* validate file mapping requests */
984                 struct address_space *mapping;
985
986                 /* files must support mmap */
987                 if (!file->f_op->mmap)
988                         return -ENODEV;
989
990                 /* work out if what we've got could possibly be shared
991                  * - we support chardevs that provide their own "memory"
992                  * - we support files/blockdevs that are memory backed
993                  */
994                 mapping = file->f_mapping;
995                 if (!mapping)
996                         mapping = file_inode(file)->i_mapping;
997
998                 capabilities = 0;
999                 if (mapping && mapping->backing_dev_info)
1000                         capabilities = mapping->backing_dev_info->capabilities;
1001
1002                 if (!capabilities) {
1003                         /* no explicit capabilities set, so assume some
1004                          * defaults */
1005                         switch (file_inode(file)->i_mode & S_IFMT) {
1006                         case S_IFREG:
1007                         case S_IFBLK:
1008                                 capabilities = BDI_CAP_MAP_COPY;
1009                                 break;
1010
1011                         case S_IFCHR:
1012                                 capabilities =
1013                                         BDI_CAP_MAP_DIRECT |
1014                                         BDI_CAP_READ_MAP |
1015                                         BDI_CAP_WRITE_MAP;
1016                                 break;
1017
1018                         default:
1019                                 return -EINVAL;
1020                         }
1021                 }
1022
1023                 /* eliminate any capabilities that we can't support on this
1024                  * device */
1025                 if (!file->f_op->get_unmapped_area)
1026                         capabilities &= ~BDI_CAP_MAP_DIRECT;
1027                 if (!file->f_op->read)
1028                         capabilities &= ~BDI_CAP_MAP_COPY;
1029
1030                 /* The file shall have been opened with read permission. */
1031                 if (!(file->f_mode & FMODE_READ))
1032                         return -EACCES;
1033
1034                 if (flags & MAP_SHARED) {
1035                         /* do checks for writing, appending and locking */
1036                         if ((prot & PROT_WRITE) &&
1037                             !(file->f_mode & FMODE_WRITE))
1038                                 return -EACCES;
1039
1040                         if (IS_APPEND(file_inode(file)) &&
1041                             (file->f_mode & FMODE_WRITE))
1042                                 return -EACCES;
1043
1044                         if (locks_verify_locked(file))
1045                                 return -EAGAIN;
1046
1047                         if (!(capabilities & BDI_CAP_MAP_DIRECT))
1048                                 return -ENODEV;
1049
1050                         /* we mustn't privatise shared mappings */
1051                         capabilities &= ~BDI_CAP_MAP_COPY;
1052                 } else {
1053                         /* we're going to read the file into private memory we
1054                          * allocate */
1055                         if (!(capabilities & BDI_CAP_MAP_COPY))
1056                                 return -ENODEV;
1057
1058                         /* we don't permit a private writable mapping to be
1059                          * shared with the backing device */
1060                         if (prot & PROT_WRITE)
1061                                 capabilities &= ~BDI_CAP_MAP_DIRECT;
1062                 }
1063
1064                 if (capabilities & BDI_CAP_MAP_DIRECT) {
1065                         if (((prot & PROT_READ)  && !(capabilities & BDI_CAP_READ_MAP))  ||
1066                             ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
1067                             ((prot & PROT_EXEC)  && !(capabilities & BDI_CAP_EXEC_MAP))
1068                             ) {
1069                                 capabilities &= ~BDI_CAP_MAP_DIRECT;
1070                                 if (flags & MAP_SHARED) {
1071                                         printk(KERN_WARNING
1072                                                "MAP_SHARED not completely supported on !MMU\n");
1073                                         return -EINVAL;
1074                                 }
1075                         }
1076                 }
1077
1078                 /* handle executable mappings and implied executable
1079                  * mappings */
1080                 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1081                         if (prot & PROT_EXEC)
1082                                 return -EPERM;
1083                 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
1084                         /* handle implication of PROT_EXEC by PROT_READ */
1085                         if (current->personality & READ_IMPLIES_EXEC) {
1086                                 if (capabilities & BDI_CAP_EXEC_MAP)
1087                                         prot |= PROT_EXEC;
1088                         }
1089                 } else if ((prot & PROT_READ) &&
1090                          (prot & PROT_EXEC) &&
1091                          !(capabilities & BDI_CAP_EXEC_MAP)
1092                          ) {
1093                         /* backing file is not executable, try to copy */
1094                         capabilities &= ~BDI_CAP_MAP_DIRECT;
1095                 }
1096         } else {
1097                 /* anonymous mappings are always memory backed and can be
1098                  * privately mapped
1099                  */
1100                 capabilities = BDI_CAP_MAP_COPY;
1101
1102                 /* handle PROT_EXEC implication by PROT_READ */
1103                 if ((prot & PROT_READ) &&
1104                     (current->personality & READ_IMPLIES_EXEC))
1105                         prot |= PROT_EXEC;
1106         }
1107
1108         /* allow the security API to have its say */
1109         ret = security_mmap_addr(addr);
1110         if (ret < 0)
1111                 return ret;
1112
1113         /* looks okay */
1114         *_capabilities = capabilities;
1115         return 0;
1116 }
1117
1118 /*
1119  * we've determined that we can make the mapping, now translate what we
1120  * now know into VMA flags
1121  */
1122 static unsigned long determine_vm_flags(struct file *file,
1123                                         unsigned long prot,
1124                                         unsigned long flags,
1125                                         unsigned long capabilities)
1126 {
1127         unsigned long vm_flags;
1128
1129         vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1130         /* vm_flags |= mm->def_flags; */
1131
1132         if (!(capabilities & BDI_CAP_MAP_DIRECT)) {
1133                 /* attempt to share read-only copies of mapped file chunks */
1134                 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1135                 if (file && !(prot & PROT_WRITE))
1136                         vm_flags |= VM_MAYSHARE;
1137         } else {
1138                 /* overlay a shareable mapping on the backing device or inode
1139                  * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1140                  * romfs/cramfs */
1141                 vm_flags |= VM_MAYSHARE | (capabilities & BDI_CAP_VMFLAGS);
1142                 if (flags & MAP_SHARED)
1143                         vm_flags |= VM_SHARED;
1144         }
1145
1146         /* refuse to let anyone share private mappings with this process if
1147          * it's being traced - otherwise breakpoints set in it may interfere
1148          * with another untraced process
1149          */
1150         if ((flags & MAP_PRIVATE) && current->ptrace)
1151                 vm_flags &= ~VM_MAYSHARE;
1152
1153         return vm_flags;
1154 }
1155
1156 /*
1157  * set up a shared mapping on a file (the driver or filesystem provides and
1158  * pins the storage)
1159  */
1160 static int do_mmap_shared_file(struct vm_area_struct *vma)
1161 {
1162         int ret;
1163
1164         ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1165         if (ret == 0) {
1166                 vma->vm_region->vm_top = vma->vm_region->vm_end;
1167                 return 0;
1168         }
1169         if (ret != -ENOSYS)
1170                 return ret;
1171
1172         /* getting -ENOSYS indicates that direct mmap isn't possible (as
1173          * opposed to tried but failed) so we can only give a suitable error as
1174          * it's not possible to make a private copy if MAP_SHARED was given */
1175         return -ENODEV;
1176 }
1177
1178 /*
1179  * set up a private mapping or an anonymous shared mapping
1180  */
1181 static int do_mmap_private(struct vm_area_struct *vma,
1182                            struct vm_region *region,
1183                            unsigned long len,
1184                            unsigned long capabilities)
1185 {
1186         unsigned long total, point;
1187         void *base;
1188         int ret, order;
1189
1190         /* invoke the file's mapping function so that it can keep track of
1191          * shared mappings on devices or memory
1192          * - VM_MAYSHARE will be set if it may attempt to share
1193          */
1194         if (capabilities & BDI_CAP_MAP_DIRECT) {
1195                 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1196                 if (ret == 0) {
1197                         /* shouldn't return success if we're not sharing */
1198                         BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1199                         vma->vm_region->vm_top = vma->vm_region->vm_end;
1200                         return 0;
1201                 }
1202                 if (ret != -ENOSYS)
1203                         return ret;
1204
1205                 /* getting an ENOSYS error indicates that direct mmap isn't
1206                  * possible (as opposed to tried but failed) so we'll try to
1207                  * make a private copy of the data and map that instead */
1208         }
1209
1210
1211         /* allocate some memory to hold the mapping
1212          * - note that this may not return a page-aligned address if the object
1213          *   we're allocating is smaller than a page
1214          */
1215         order = get_order(len);
1216         kdebug("alloc order %d for %lx", order, len);
1217
1218         total = 1 << order;
1219         point = len >> PAGE_SHIFT;
1220
1221         /* we don't want to allocate a power-of-2 sized page set */
1222         if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1223                 total = point;
1224                 kdebug("try to alloc exact %lu pages", total);
1225                 base = alloc_pages_exact(len, GFP_KERNEL);
1226         } else {
1227                 base = (void *)__get_free_pages(GFP_KERNEL, order);
1228         }
1229
1230         if (!base)
1231                 goto enomem;
1232
1233         atomic_long_add(total, &mmap_pages_allocated);
1234
1235         region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1236         region->vm_start = (unsigned long) base;
1237         region->vm_end   = region->vm_start + len;
1238         region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1239
1240         vma->vm_start = region->vm_start;
1241         vma->vm_end   = region->vm_start + len;
1242
1243         if (vma->vm_file) {
1244                 /* read the contents of a file into the copy */
1245                 mm_segment_t old_fs;
1246                 loff_t fpos;
1247
1248                 fpos = vma->vm_pgoff;
1249                 fpos <<= PAGE_SHIFT;
1250
1251                 old_fs = get_fs();
1252                 set_fs(KERNEL_DS);
1253                 ret = vma->vm_file->f_op->read(vma->vm_file, base, len, &fpos);
1254                 set_fs(old_fs);
1255
1256                 if (ret < 0)
1257                         goto error_free;
1258
1259                 /* clear the last little bit */
1260                 if (ret < len)
1261                         memset(base + ret, 0, len - ret);
1262
1263         }
1264
1265         return 0;
1266
1267 error_free:
1268         free_page_series(region->vm_start, region->vm_top);
1269         region->vm_start = vma->vm_start = 0;
1270         region->vm_end   = vma->vm_end = 0;
1271         region->vm_top   = 0;
1272         return ret;
1273
1274 enomem:
1275         pr_err("Allocation of length %lu from process %d (%s) failed\n",
1276                len, current->pid, current->comm);
1277         show_free_areas(0);
1278         return -ENOMEM;
1279 }
1280
1281 /*
1282  * handle mapping creation for uClinux
1283  */
1284 unsigned long do_mmap_pgoff(struct file *file,
1285                             unsigned long addr,
1286                             unsigned long len,
1287                             unsigned long prot,
1288                             unsigned long flags,
1289                             unsigned long pgoff,
1290                             unsigned long *populate)
1291 {
1292         struct vm_area_struct *vma;
1293         struct vm_region *region;
1294         struct rb_node *rb;
1295         unsigned long capabilities, vm_flags, result;
1296         int ret;
1297
1298         kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1299
1300         *populate = 0;
1301
1302         /* decide whether we should attempt the mapping, and if so what sort of
1303          * mapping */
1304         ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1305                                     &capabilities);
1306         if (ret < 0) {
1307                 kleave(" = %d [val]", ret);
1308                 return ret;
1309         }
1310
1311         /* we ignore the address hint */
1312         addr = 0;
1313         len = PAGE_ALIGN(len);
1314
1315         /* we've determined that we can make the mapping, now translate what we
1316          * now know into VMA flags */
1317         vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1318
1319         /* we're going to need to record the mapping */
1320         region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1321         if (!region)
1322                 goto error_getting_region;
1323
1324         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1325         if (!vma)
1326                 goto error_getting_vma;
1327
1328         region->vm_usage = 1;
1329         region->vm_flags = vm_flags;
1330         region->vm_pgoff = pgoff;
1331
1332         INIT_LIST_HEAD(&vma->anon_vma_chain);
1333         vma->vm_flags = vm_flags;
1334         vma->vm_pgoff = pgoff;
1335
1336         if (file) {
1337                 region->vm_file = get_file(file);
1338                 vma->vm_file = get_file(file);
1339         }
1340
1341         down_write(&nommu_region_sem);
1342
1343         /* if we want to share, we need to check for regions created by other
1344          * mmap() calls that overlap with our proposed mapping
1345          * - we can only share with a superset match on most regular files
1346          * - shared mappings on character devices and memory backed files are
1347          *   permitted to overlap inexactly as far as we are concerned for in
1348          *   these cases, sharing is handled in the driver or filesystem rather
1349          *   than here
1350          */
1351         if (vm_flags & VM_MAYSHARE) {
1352                 struct vm_region *pregion;
1353                 unsigned long pglen, rpglen, pgend, rpgend, start;
1354
1355                 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1356                 pgend = pgoff + pglen;
1357
1358                 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1359                         pregion = rb_entry(rb, struct vm_region, vm_rb);
1360
1361                         if (!(pregion->vm_flags & VM_MAYSHARE))
1362                                 continue;
1363
1364                         /* search for overlapping mappings on the same file */
1365                         if (file_inode(pregion->vm_file) !=
1366                             file_inode(file))
1367                                 continue;
1368
1369                         if (pregion->vm_pgoff >= pgend)
1370                                 continue;
1371
1372                         rpglen = pregion->vm_end - pregion->vm_start;
1373                         rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1374                         rpgend = pregion->vm_pgoff + rpglen;
1375                         if (pgoff >= rpgend)
1376                                 continue;
1377
1378                         /* handle inexactly overlapping matches between
1379                          * mappings */
1380                         if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1381                             !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1382                                 /* new mapping is not a subset of the region */
1383                                 if (!(capabilities & BDI_CAP_MAP_DIRECT))
1384                                         goto sharing_violation;
1385                                 continue;
1386                         }
1387
1388                         /* we've found a region we can share */
1389                         pregion->vm_usage++;
1390                         vma->vm_region = pregion;
1391                         start = pregion->vm_start;
1392                         start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1393                         vma->vm_start = start;
1394                         vma->vm_end = start + len;
1395
1396                         if (pregion->vm_flags & VM_MAPPED_COPY) {
1397                                 kdebug("share copy");
1398                                 vma->vm_flags |= VM_MAPPED_COPY;
1399                         } else {
1400                                 kdebug("share mmap");
1401                                 ret = do_mmap_shared_file(vma);
1402                                 if (ret < 0) {
1403                                         vma->vm_region = NULL;
1404                                         vma->vm_start = 0;
1405                                         vma->vm_end = 0;
1406                                         pregion->vm_usage--;
1407                                         pregion = NULL;
1408                                         goto error_just_free;
1409                                 }
1410                         }
1411                         fput(region->vm_file);
1412                         kmem_cache_free(vm_region_jar, region);
1413                         region = pregion;
1414                         result = start;
1415                         goto share;
1416                 }
1417
1418                 /* obtain the address at which to make a shared mapping
1419                  * - this is the hook for quasi-memory character devices to
1420                  *   tell us the location of a shared mapping
1421                  */
1422                 if (capabilities & BDI_CAP_MAP_DIRECT) {
1423                         addr = file->f_op->get_unmapped_area(file, addr, len,
1424                                                              pgoff, flags);
1425                         if (IS_ERR_VALUE(addr)) {
1426                                 ret = addr;
1427                                 if (ret != -ENOSYS)
1428                                         goto error_just_free;
1429
1430                                 /* the driver refused to tell us where to site
1431                                  * the mapping so we'll have to attempt to copy
1432                                  * it */
1433                                 ret = -ENODEV;
1434                                 if (!(capabilities & BDI_CAP_MAP_COPY))
1435                                         goto error_just_free;
1436
1437                                 capabilities &= ~BDI_CAP_MAP_DIRECT;
1438                         } else {
1439                                 vma->vm_start = region->vm_start = addr;
1440                                 vma->vm_end = region->vm_end = addr + len;
1441                         }
1442                 }
1443         }
1444
1445         vma->vm_region = region;
1446
1447         /* set up the mapping
1448          * - the region is filled in if BDI_CAP_MAP_DIRECT is still set
1449          */
1450         if (file && vma->vm_flags & VM_SHARED)
1451                 ret = do_mmap_shared_file(vma);
1452         else
1453                 ret = do_mmap_private(vma, region, len, capabilities);
1454         if (ret < 0)
1455                 goto error_just_free;
1456         add_nommu_region(region);
1457
1458         /* clear anonymous mappings that don't ask for uninitialized data */
1459         if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1460                 memset((void *)region->vm_start, 0,
1461                        region->vm_end - region->vm_start);
1462
1463         /* okay... we have a mapping; now we have to register it */
1464         result = vma->vm_start;
1465
1466         current->mm->total_vm += len >> PAGE_SHIFT;
1467
1468 share:
1469         add_vma_to_mm(current->mm, vma);
1470
1471         /* we flush the region from the icache only when the first executable
1472          * mapping of it is made  */
1473         if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1474                 flush_icache_range(region->vm_start, region->vm_end);
1475                 region->vm_icache_flushed = true;
1476         }
1477
1478         up_write(&nommu_region_sem);
1479
1480         kleave(" = %lx", result);
1481         return result;
1482
1483 error_just_free:
1484         up_write(&nommu_region_sem);
1485 error:
1486         if (region->vm_file)
1487                 fput(region->vm_file);
1488         kmem_cache_free(vm_region_jar, region);
1489         if (vma->vm_file)
1490                 fput(vma->vm_file);
1491         kmem_cache_free(vm_area_cachep, vma);
1492         kleave(" = %d", ret);
1493         return ret;
1494
1495 sharing_violation:
1496         up_write(&nommu_region_sem);
1497         printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1498         ret = -EINVAL;
1499         goto error;
1500
1501 error_getting_vma:
1502         kmem_cache_free(vm_region_jar, region);
1503         printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1504                " from process %d failed\n",
1505                len, current->pid);
1506         show_free_areas(0);
1507         return -ENOMEM;
1508
1509 error_getting_region:
1510         printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1511                " from process %d failed\n",
1512                len, current->pid);
1513         show_free_areas(0);
1514         return -ENOMEM;
1515 }
1516
1517 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1518                 unsigned long, prot, unsigned long, flags,
1519                 unsigned long, fd, unsigned long, pgoff)
1520 {
1521         struct file *file = NULL;
1522         unsigned long retval = -EBADF;
1523
1524         audit_mmap_fd(fd, flags);
1525         if (!(flags & MAP_ANONYMOUS)) {
1526                 file = fget(fd);
1527                 if (!file)
1528                         goto out;
1529         }
1530
1531         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1532
1533         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1534
1535         if (file)
1536                 fput(file);
1537 out:
1538         return retval;
1539 }
1540
1541 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1542 struct mmap_arg_struct {
1543         unsigned long addr;
1544         unsigned long len;
1545         unsigned long prot;
1546         unsigned long flags;
1547         unsigned long fd;
1548         unsigned long offset;
1549 };
1550
1551 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1552 {
1553         struct mmap_arg_struct a;
1554
1555         if (copy_from_user(&a, arg, sizeof(a)))
1556                 return -EFAULT;
1557         if (a.offset & ~PAGE_MASK)
1558                 return -EINVAL;
1559
1560         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1561                               a.offset >> PAGE_SHIFT);
1562 }
1563 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1564
1565 /*
1566  * split a vma into two pieces at address 'addr', a new vma is allocated either
1567  * for the first part or the tail.
1568  */
1569 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1570               unsigned long addr, int new_below)
1571 {
1572         struct vm_area_struct *new;
1573         struct vm_region *region;
1574         unsigned long npages;
1575
1576         kenter("");
1577
1578         /* we're only permitted to split anonymous regions (these should have
1579          * only a single usage on the region) */
1580         if (vma->vm_file)
1581                 return -ENOMEM;
1582
1583         if (mm->map_count >= sysctl_max_map_count)
1584                 return -ENOMEM;
1585
1586         region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1587         if (!region)
1588                 return -ENOMEM;
1589
1590         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1591         if (!new) {
1592                 kmem_cache_free(vm_region_jar, region);
1593                 return -ENOMEM;
1594         }
1595
1596         /* most fields are the same, copy all, and then fixup */
1597         *new = *vma;
1598         *region = *vma->vm_region;
1599         new->vm_region = region;
1600
1601         npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1602
1603         if (new_below) {
1604                 region->vm_top = region->vm_end = new->vm_end = addr;
1605         } else {
1606                 region->vm_start = new->vm_start = addr;
1607                 region->vm_pgoff = new->vm_pgoff += npages;
1608         }
1609
1610         if (new->vm_ops && new->vm_ops->open)
1611                 new->vm_ops->open(new);
1612
1613         delete_vma_from_mm(vma);
1614         down_write(&nommu_region_sem);
1615         delete_nommu_region(vma->vm_region);
1616         if (new_below) {
1617                 vma->vm_region->vm_start = vma->vm_start = addr;
1618                 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1619         } else {
1620                 vma->vm_region->vm_end = vma->vm_end = addr;
1621                 vma->vm_region->vm_top = addr;
1622         }
1623         add_nommu_region(vma->vm_region);
1624         add_nommu_region(new->vm_region);
1625         up_write(&nommu_region_sem);
1626         add_vma_to_mm(mm, vma);
1627         add_vma_to_mm(mm, new);
1628         return 0;
1629 }
1630
1631 /*
1632  * shrink a VMA by removing the specified chunk from either the beginning or
1633  * the end
1634  */
1635 static int shrink_vma(struct mm_struct *mm,
1636                       struct vm_area_struct *vma,
1637                       unsigned long from, unsigned long to)
1638 {
1639         struct vm_region *region;
1640
1641         kenter("");
1642
1643         /* adjust the VMA's pointers, which may reposition it in the MM's tree
1644          * and list */
1645         delete_vma_from_mm(vma);
1646         if (from > vma->vm_start)
1647                 vma->vm_end = from;
1648         else
1649                 vma->vm_start = to;
1650         add_vma_to_mm(mm, vma);
1651
1652         /* cut the backing region down to size */
1653         region = vma->vm_region;
1654         BUG_ON(region->vm_usage != 1);
1655
1656         down_write(&nommu_region_sem);
1657         delete_nommu_region(region);
1658         if (from > region->vm_start) {
1659                 to = region->vm_top;
1660                 region->vm_top = region->vm_end = from;
1661         } else {
1662                 region->vm_start = to;
1663         }
1664         add_nommu_region(region);
1665         up_write(&nommu_region_sem);
1666
1667         free_page_series(from, to);
1668         return 0;
1669 }
1670
1671 /*
1672  * release a mapping
1673  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1674  *   VMA, though it need not cover the whole VMA
1675  */
1676 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1677 {
1678         struct vm_area_struct *vma;
1679         unsigned long end;
1680         int ret;
1681
1682         kenter(",%lx,%zx", start, len);
1683
1684         len = PAGE_ALIGN(len);
1685         if (len == 0)
1686                 return -EINVAL;
1687
1688         end = start + len;
1689
1690         /* find the first potentially overlapping VMA */
1691         vma = find_vma(mm, start);
1692         if (!vma) {
1693                 static int limit;
1694                 if (limit < 5) {
1695                         printk(KERN_WARNING
1696                                "munmap of memory not mmapped by process %d"
1697                                " (%s): 0x%lx-0x%lx\n",
1698                                current->pid, current->comm,
1699                                start, start + len - 1);
1700                         limit++;
1701                 }
1702                 return -EINVAL;
1703         }
1704
1705         /* we're allowed to split an anonymous VMA but not a file-backed one */
1706         if (vma->vm_file) {
1707                 do {
1708                         if (start > vma->vm_start) {
1709                                 kleave(" = -EINVAL [miss]");
1710                                 return -EINVAL;
1711                         }
1712                         if (end == vma->vm_end)
1713                                 goto erase_whole_vma;
1714                         vma = vma->vm_next;
1715                 } while (vma);
1716                 kleave(" = -EINVAL [split file]");
1717                 return -EINVAL;
1718         } else {
1719                 /* the chunk must be a subset of the VMA found */
1720                 if (start == vma->vm_start && end == vma->vm_end)
1721                         goto erase_whole_vma;
1722                 if (start < vma->vm_start || end > vma->vm_end) {
1723                         kleave(" = -EINVAL [superset]");
1724                         return -EINVAL;
1725                 }
1726                 if (start & ~PAGE_MASK) {
1727                         kleave(" = -EINVAL [unaligned start]");
1728                         return -EINVAL;
1729                 }
1730                 if (end != vma->vm_end && end & ~PAGE_MASK) {
1731                         kleave(" = -EINVAL [unaligned split]");
1732                         return -EINVAL;
1733                 }
1734                 if (start != vma->vm_start && end != vma->vm_end) {
1735                         ret = split_vma(mm, vma, start, 1);
1736                         if (ret < 0) {
1737                                 kleave(" = %d [split]", ret);
1738                                 return ret;
1739                         }
1740                 }
1741                 return shrink_vma(mm, vma, start, end);
1742         }
1743
1744 erase_whole_vma:
1745         delete_vma_from_mm(vma);
1746         delete_vma(mm, vma);
1747         kleave(" = 0");
1748         return 0;
1749 }
1750 EXPORT_SYMBOL(do_munmap);
1751
1752 int vm_munmap(unsigned long addr, size_t len)
1753 {
1754         struct mm_struct *mm = current->mm;
1755         int ret;
1756
1757         down_write(&mm->mmap_sem);
1758         ret = do_munmap(mm, addr, len);
1759         up_write(&mm->mmap_sem);
1760         return ret;
1761 }
1762 EXPORT_SYMBOL(vm_munmap);
1763
1764 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1765 {
1766         return vm_munmap(addr, len);
1767 }
1768
1769 /*
1770  * release all the mappings made in a process's VM space
1771  */
1772 void exit_mmap(struct mm_struct *mm)
1773 {
1774         struct vm_area_struct *vma;
1775
1776         if (!mm)
1777                 return;
1778
1779         kenter("");
1780
1781         mm->total_vm = 0;
1782
1783         while ((vma = mm->mmap)) {
1784                 mm->mmap = vma->vm_next;
1785                 delete_vma_from_mm(vma);
1786                 delete_vma(mm, vma);
1787                 cond_resched();
1788         }
1789
1790         kleave("");
1791 }
1792
1793 unsigned long vm_brk(unsigned long addr, unsigned long len)
1794 {
1795         return -ENOMEM;
1796 }
1797
1798 /*
1799  * expand (or shrink) an existing mapping, potentially moving it at the same
1800  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1801  *
1802  * under NOMMU conditions, we only permit changing a mapping's size, and only
1803  * as long as it stays within the region allocated by do_mmap_private() and the
1804  * block is not shareable
1805  *
1806  * MREMAP_FIXED is not supported under NOMMU conditions
1807  */
1808 static unsigned long do_mremap(unsigned long addr,
1809                         unsigned long old_len, unsigned long new_len,
1810                         unsigned long flags, unsigned long new_addr)
1811 {
1812         struct vm_area_struct *vma;
1813
1814         /* insanity checks first */
1815         old_len = PAGE_ALIGN(old_len);
1816         new_len = PAGE_ALIGN(new_len);
1817         if (old_len == 0 || new_len == 0)
1818                 return (unsigned long) -EINVAL;
1819
1820         if (addr & ~PAGE_MASK)
1821                 return -EINVAL;
1822
1823         if (flags & MREMAP_FIXED && new_addr != addr)
1824                 return (unsigned long) -EINVAL;
1825
1826         vma = find_vma_exact(current->mm, addr, old_len);
1827         if (!vma)
1828                 return (unsigned long) -EINVAL;
1829
1830         if (vma->vm_end != vma->vm_start + old_len)
1831                 return (unsigned long) -EFAULT;
1832
1833         if (vma->vm_flags & VM_MAYSHARE)
1834                 return (unsigned long) -EPERM;
1835
1836         if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1837                 return (unsigned long) -ENOMEM;
1838
1839         /* all checks complete - do it */
1840         vma->vm_end = vma->vm_start + new_len;
1841         return vma->vm_start;
1842 }
1843
1844 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1845                 unsigned long, new_len, unsigned long, flags,
1846                 unsigned long, new_addr)
1847 {
1848         unsigned long ret;
1849
1850         down_write(&current->mm->mmap_sem);
1851         ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1852         up_write(&current->mm->mmap_sem);
1853         return ret;
1854 }
1855
1856 struct page *follow_page_mask(struct vm_area_struct *vma,
1857                               unsigned long address, unsigned int flags,
1858                               unsigned int *page_mask)
1859 {
1860         *page_mask = 0;
1861         return NULL;
1862 }
1863
1864 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1865                 unsigned long pfn, unsigned long size, pgprot_t prot)
1866 {
1867         if (addr != (pfn << PAGE_SHIFT))
1868                 return -EINVAL;
1869
1870         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1871         return 0;
1872 }
1873 EXPORT_SYMBOL(remap_pfn_range);
1874
1875 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1876 {
1877         unsigned long pfn = start >> PAGE_SHIFT;
1878         unsigned long vm_len = vma->vm_end - vma->vm_start;
1879
1880         pfn += vma->vm_pgoff;
1881         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1882 }
1883 EXPORT_SYMBOL(vm_iomap_memory);
1884
1885 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1886                         unsigned long pgoff)
1887 {
1888         unsigned int size = vma->vm_end - vma->vm_start;
1889
1890         if (!(vma->vm_flags & VM_USERMAP))
1891                 return -EINVAL;
1892
1893         vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1894         vma->vm_end = vma->vm_start + size;
1895
1896         return 0;
1897 }
1898 EXPORT_SYMBOL(remap_vmalloc_range);
1899
1900 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1901         unsigned long len, unsigned long pgoff, unsigned long flags)
1902 {
1903         return -ENOMEM;
1904 }
1905
1906 void unmap_mapping_range(struct address_space *mapping,
1907                          loff_t const holebegin, loff_t const holelen,
1908                          int even_cows)
1909 {
1910 }
1911 EXPORT_SYMBOL(unmap_mapping_range);
1912
1913 /*
1914  * Check that a process has enough memory to allocate a new virtual
1915  * mapping. 0 means there is enough memory for the allocation to
1916  * succeed and -ENOMEM implies there is not.
1917  *
1918  * We currently support three overcommit policies, which are set via the
1919  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
1920  *
1921  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1922  * Additional code 2002 Jul 20 by Robert Love.
1923  *
1924  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1925  *
1926  * Note this is a helper function intended to be used by LSMs which
1927  * wish to use this logic.
1928  */
1929 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1930 {
1931         long free, allowed, reserve;
1932
1933         vm_acct_memory(pages);
1934
1935         /*
1936          * Sometimes we want to use more memory than we have
1937          */
1938         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1939                 return 0;
1940
1941         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1942                 free = global_page_state(NR_FREE_PAGES);
1943                 free += global_page_state(NR_FILE_PAGES);
1944
1945                 /*
1946                  * shmem pages shouldn't be counted as free in this
1947                  * case, they can't be purged, only swapped out, and
1948                  * that won't affect the overall amount of available
1949                  * memory in the system.
1950                  */
1951                 free -= global_page_state(NR_SHMEM);
1952
1953                 free += get_nr_swap_pages();
1954
1955                 /*
1956                  * Any slabs which are created with the
1957                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1958                  * which are reclaimable, under pressure.  The dentry
1959                  * cache and most inode caches should fall into this
1960                  */
1961                 free += global_page_state(NR_SLAB_RECLAIMABLE);
1962
1963                 /*
1964                  * Leave reserved pages. The pages are not for anonymous pages.
1965                  */
1966                 if (free <= totalreserve_pages)
1967                         goto error;
1968                 else
1969                         free -= totalreserve_pages;
1970
1971                 /*
1972                  * Reserve some for root
1973                  */
1974                 if (!cap_sys_admin)
1975                         free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1976
1977                 if (free > pages)
1978                         return 0;
1979
1980                 goto error;
1981         }
1982
1983         allowed = vm_commit_limit();
1984         /*
1985          * Reserve some 3% for root
1986          */
1987         if (!cap_sys_admin)
1988                 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1989
1990         /*
1991          * Don't let a single process grow so big a user can't recover
1992          */
1993         if (mm) {
1994                 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
1995                 allowed -= min_t(long, mm->total_vm / 32, reserve);
1996         }
1997
1998         if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1999                 return 0;
2000
2001 error:
2002         vm_unacct_memory(pages);
2003
2004         return -ENOMEM;
2005 }
2006
2007 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2008 {
2009         BUG();
2010         return 0;
2011 }
2012 EXPORT_SYMBOL(filemap_fault);
2013
2014 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
2015 {
2016         BUG();
2017 }
2018 EXPORT_SYMBOL(filemap_map_pages);
2019
2020 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
2021                 unsigned long addr, void *buf, int len, int write)
2022 {
2023         struct vm_area_struct *vma;
2024
2025         down_read(&mm->mmap_sem);
2026
2027         /* the access must start within one of the target process's mappings */
2028         vma = find_vma(mm, addr);
2029         if (vma) {
2030                 /* don't overrun this mapping */
2031                 if (addr + len >= vma->vm_end)
2032                         len = vma->vm_end - addr;
2033
2034                 /* only read or write mappings where it is permitted */
2035                 if (write && vma->vm_flags & VM_MAYWRITE)
2036                         copy_to_user_page(vma, NULL, addr,
2037                                          (void *) addr, buf, len);
2038                 else if (!write && vma->vm_flags & VM_MAYREAD)
2039                         copy_from_user_page(vma, NULL, addr,
2040                                             buf, (void *) addr, len);
2041                 else
2042                         len = 0;
2043         } else {
2044                 len = 0;
2045         }
2046
2047         up_read(&mm->mmap_sem);
2048
2049         return len;
2050 }
2051
2052 /**
2053  * @access_remote_vm - access another process' address space
2054  * @mm:         the mm_struct of the target address space
2055  * @addr:       start address to access
2056  * @buf:        source or destination buffer
2057  * @len:        number of bytes to transfer
2058  * @write:      whether the access is a write
2059  *
2060  * The caller must hold a reference on @mm.
2061  */
2062 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2063                 void *buf, int len, int write)
2064 {
2065         return __access_remote_vm(NULL, mm, addr, buf, len, write);
2066 }
2067
2068 /*
2069  * Access another process' address space.
2070  * - source/target buffer must be kernel space
2071  */
2072 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2073 {
2074         struct mm_struct *mm;
2075
2076         if (addr + len < addr)
2077                 return 0;
2078
2079         mm = get_task_mm(tsk);
2080         if (!mm)
2081                 return 0;
2082
2083         len = __access_remote_vm(tsk, mm, addr, buf, len, write);
2084
2085         mmput(mm);
2086         return len;
2087 }
2088
2089 /**
2090  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
2091  * @inode: The inode to check
2092  * @size: The current filesize of the inode
2093  * @newsize: The proposed filesize of the inode
2094  *
2095  * Check the shared mappings on an inode on behalf of a shrinking truncate to
2096  * make sure that that any outstanding VMAs aren't broken and then shrink the
2097  * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
2098  * automatically grant mappings that are too large.
2099  */
2100 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
2101                                 size_t newsize)
2102 {
2103         struct vm_area_struct *vma;
2104         struct vm_region *region;
2105         pgoff_t low, high;
2106         size_t r_size, r_top;
2107
2108         low = newsize >> PAGE_SHIFT;
2109         high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2110
2111         down_write(&nommu_region_sem);
2112         i_mmap_lock_read(inode->i_mapping);
2113
2114         /* search for VMAs that fall within the dead zone */
2115         vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
2116                 /* found one - only interested if it's shared out of the page
2117                  * cache */
2118                 if (vma->vm_flags & VM_SHARED) {
2119                         i_mmap_unlock_read(inode->i_mapping);
2120                         up_write(&nommu_region_sem);
2121                         return -ETXTBSY; /* not quite true, but near enough */
2122                 }
2123         }
2124
2125         /* reduce any regions that overlap the dead zone - if in existence,
2126          * these will be pointed to by VMAs that don't overlap the dead zone
2127          *
2128          * we don't check for any regions that start beyond the EOF as there
2129          * shouldn't be any
2130          */
2131         vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
2132                 if (!(vma->vm_flags & VM_SHARED))
2133                         continue;
2134
2135                 region = vma->vm_region;
2136                 r_size = region->vm_top - region->vm_start;
2137                 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
2138
2139                 if (r_top > newsize) {
2140                         region->vm_top -= r_top - newsize;
2141                         if (region->vm_end > region->vm_top)
2142                                 region->vm_end = region->vm_top;
2143                 }
2144         }
2145
2146         i_mmap_unlock_read(inode->i_mapping);
2147         up_write(&nommu_region_sem);
2148         return 0;
2149 }
2150
2151 /*
2152  * Initialise sysctl_user_reserve_kbytes.
2153  *
2154  * This is intended to prevent a user from starting a single memory hogging
2155  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
2156  * mode.
2157  *
2158  * The default value is min(3% of free memory, 128MB)
2159  * 128MB is enough to recover with sshd/login, bash, and top/kill.
2160  */
2161 static int __meminit init_user_reserve(void)
2162 {
2163         unsigned long free_kbytes;
2164
2165         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
2166
2167         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
2168         return 0;
2169 }
2170 module_init(init_user_reserve)
2171
2172 /*
2173  * Initialise sysctl_admin_reserve_kbytes.
2174  *
2175  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
2176  * to log in and kill a memory hogging process.
2177  *
2178  * Systems with more than 256MB will reserve 8MB, enough to recover
2179  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
2180  * only reserve 3% of free pages by default.
2181  */
2182 static int __meminit init_admin_reserve(void)
2183 {
2184         unsigned long free_kbytes;
2185
2186         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
2187
2188         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
2189         return 0;
2190 }
2191 module_init(init_admin_reserve)