writeback: move global_dirty_limit into wb_domain
[cascardo/linux.git] / mm / page-writeback.c
1 /*
2  * mm/page-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6  *
7  * Contains functions related to writing back dirty pages at the
8  * address_space level.
9  *
10  * 10Apr2002    Andrew Morton
11  *              Initial version
12  */
13
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <linux/mm_inline.h>
40 #include <trace/events/writeback.h>
41
42 #include "internal.h"
43
44 /*
45  * Sleep at most 200ms at a time in balance_dirty_pages().
46  */
47 #define MAX_PAUSE               max(HZ/5, 1)
48
49 /*
50  * Try to keep balance_dirty_pages() call intervals higher than this many pages
51  * by raising pause time to max_pause when falls below it.
52  */
53 #define DIRTY_POLL_THRESH       (128 >> (PAGE_SHIFT - 10))
54
55 /*
56  * Estimate write bandwidth at 200ms intervals.
57  */
58 #define BANDWIDTH_INTERVAL      max(HZ/5, 1)
59
60 #define RATELIMIT_CALC_SHIFT    10
61
62 /*
63  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
64  * will look to see if it needs to force writeback or throttling.
65  */
66 static long ratelimit_pages = 32;
67
68 /* The following parameters are exported via /proc/sys/vm */
69
70 /*
71  * Start background writeback (via writeback threads) at this percentage
72  */
73 int dirty_background_ratio = 10;
74
75 /*
76  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
77  * dirty_background_ratio * the amount of dirtyable memory
78  */
79 unsigned long dirty_background_bytes;
80
81 /*
82  * free highmem will not be subtracted from the total free memory
83  * for calculating free ratios if vm_highmem_is_dirtyable is true
84  */
85 int vm_highmem_is_dirtyable;
86
87 /*
88  * The generator of dirty data starts writeback at this percentage
89  */
90 int vm_dirty_ratio = 20;
91
92 /*
93  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
94  * vm_dirty_ratio * the amount of dirtyable memory
95  */
96 unsigned long vm_dirty_bytes;
97
98 /*
99  * The interval between `kupdate'-style writebacks
100  */
101 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
102
103 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
104
105 /*
106  * The longest time for which data is allowed to remain dirty
107  */
108 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
109
110 /*
111  * Flag that makes the machine dump writes/reads and block dirtyings.
112  */
113 int block_dump;
114
115 /*
116  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
117  * a full sync is triggered after this time elapses without any disk activity.
118  */
119 int laptop_mode;
120
121 EXPORT_SYMBOL(laptop_mode);
122
123 /* End of sysctl-exported parameters */
124
125 struct wb_domain global_wb_domain;
126
127 /*
128  * Length of period for aging writeout fractions of bdis. This is an
129  * arbitrarily chosen number. The longer the period, the slower fractions will
130  * reflect changes in current writeout rate.
131  */
132 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
133
134 #ifdef CONFIG_CGROUP_WRITEBACK
135
136 static void wb_min_max_ratio(struct bdi_writeback *wb,
137                              unsigned long *minp, unsigned long *maxp)
138 {
139         unsigned long this_bw = wb->avg_write_bandwidth;
140         unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
141         unsigned long long min = wb->bdi->min_ratio;
142         unsigned long long max = wb->bdi->max_ratio;
143
144         /*
145          * @wb may already be clean by the time control reaches here and
146          * the total may not include its bw.
147          */
148         if (this_bw < tot_bw) {
149                 if (min) {
150                         min *= this_bw;
151                         do_div(min, tot_bw);
152                 }
153                 if (max < 100) {
154                         max *= this_bw;
155                         do_div(max, tot_bw);
156                 }
157         }
158
159         *minp = min;
160         *maxp = max;
161 }
162
163 #else   /* CONFIG_CGROUP_WRITEBACK */
164
165 static void wb_min_max_ratio(struct bdi_writeback *wb,
166                              unsigned long *minp, unsigned long *maxp)
167 {
168         *minp = wb->bdi->min_ratio;
169         *maxp = wb->bdi->max_ratio;
170 }
171
172 #endif  /* CONFIG_CGROUP_WRITEBACK */
173
174 /*
175  * In a memory zone, there is a certain amount of pages we consider
176  * available for the page cache, which is essentially the number of
177  * free and reclaimable pages, minus some zone reserves to protect
178  * lowmem and the ability to uphold the zone's watermarks without
179  * requiring writeback.
180  *
181  * This number of dirtyable pages is the base value of which the
182  * user-configurable dirty ratio is the effictive number of pages that
183  * are allowed to be actually dirtied.  Per individual zone, or
184  * globally by using the sum of dirtyable pages over all zones.
185  *
186  * Because the user is allowed to specify the dirty limit globally as
187  * absolute number of bytes, calculating the per-zone dirty limit can
188  * require translating the configured limit into a percentage of
189  * global dirtyable memory first.
190  */
191
192 /**
193  * zone_dirtyable_memory - number of dirtyable pages in a zone
194  * @zone: the zone
195  *
196  * Returns the zone's number of pages potentially available for dirty
197  * page cache.  This is the base value for the per-zone dirty limits.
198  */
199 static unsigned long zone_dirtyable_memory(struct zone *zone)
200 {
201         unsigned long nr_pages;
202
203         nr_pages = zone_page_state(zone, NR_FREE_PAGES);
204         nr_pages -= min(nr_pages, zone->dirty_balance_reserve);
205
206         nr_pages += zone_page_state(zone, NR_INACTIVE_FILE);
207         nr_pages += zone_page_state(zone, NR_ACTIVE_FILE);
208
209         return nr_pages;
210 }
211
212 static unsigned long highmem_dirtyable_memory(unsigned long total)
213 {
214 #ifdef CONFIG_HIGHMEM
215         int node;
216         unsigned long x = 0;
217
218         for_each_node_state(node, N_HIGH_MEMORY) {
219                 struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
220
221                 x += zone_dirtyable_memory(z);
222         }
223         /*
224          * Unreclaimable memory (kernel memory or anonymous memory
225          * without swap) can bring down the dirtyable pages below
226          * the zone's dirty balance reserve and the above calculation
227          * will underflow.  However we still want to add in nodes
228          * which are below threshold (negative values) to get a more
229          * accurate calculation but make sure that the total never
230          * underflows.
231          */
232         if ((long)x < 0)
233                 x = 0;
234
235         /*
236          * Make sure that the number of highmem pages is never larger
237          * than the number of the total dirtyable memory. This can only
238          * occur in very strange VM situations but we want to make sure
239          * that this does not occur.
240          */
241         return min(x, total);
242 #else
243         return 0;
244 #endif
245 }
246
247 /**
248  * global_dirtyable_memory - number of globally dirtyable pages
249  *
250  * Returns the global number of pages potentially available for dirty
251  * page cache.  This is the base value for the global dirty limits.
252  */
253 static unsigned long global_dirtyable_memory(void)
254 {
255         unsigned long x;
256
257         x = global_page_state(NR_FREE_PAGES);
258         x -= min(x, dirty_balance_reserve);
259
260         x += global_page_state(NR_INACTIVE_FILE);
261         x += global_page_state(NR_ACTIVE_FILE);
262
263         if (!vm_highmem_is_dirtyable)
264                 x -= highmem_dirtyable_memory(x);
265
266         return x + 1;   /* Ensure that we never return 0 */
267 }
268
269 /*
270  * global_dirty_limits - background-writeback and dirty-throttling thresholds
271  *
272  * Calculate the dirty thresholds based on sysctl parameters
273  * - vm.dirty_background_ratio  or  vm.dirty_background_bytes
274  * - vm.dirty_ratio             or  vm.dirty_bytes
275  * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
276  * real-time tasks.
277  */
278 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
279 {
280         const unsigned long available_memory = global_dirtyable_memory();
281         unsigned long background;
282         unsigned long dirty;
283         struct task_struct *tsk;
284
285         if (vm_dirty_bytes)
286                 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
287         else
288                 dirty = (vm_dirty_ratio * available_memory) / 100;
289
290         if (dirty_background_bytes)
291                 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
292         else
293                 background = (dirty_background_ratio * available_memory) / 100;
294
295         if (background >= dirty)
296                 background = dirty / 2;
297         tsk = current;
298         if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
299                 background += background / 4;
300                 dirty += dirty / 4;
301         }
302         *pbackground = background;
303         *pdirty = dirty;
304         trace_global_dirty_state(background, dirty);
305 }
306
307 /**
308  * zone_dirty_limit - maximum number of dirty pages allowed in a zone
309  * @zone: the zone
310  *
311  * Returns the maximum number of dirty pages allowed in a zone, based
312  * on the zone's dirtyable memory.
313  */
314 static unsigned long zone_dirty_limit(struct zone *zone)
315 {
316         unsigned long zone_memory = zone_dirtyable_memory(zone);
317         struct task_struct *tsk = current;
318         unsigned long dirty;
319
320         if (vm_dirty_bytes)
321                 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
322                         zone_memory / global_dirtyable_memory();
323         else
324                 dirty = vm_dirty_ratio * zone_memory / 100;
325
326         if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
327                 dirty += dirty / 4;
328
329         return dirty;
330 }
331
332 /**
333  * zone_dirty_ok - tells whether a zone is within its dirty limits
334  * @zone: the zone to check
335  *
336  * Returns %true when the dirty pages in @zone are within the zone's
337  * dirty limit, %false if the limit is exceeded.
338  */
339 bool zone_dirty_ok(struct zone *zone)
340 {
341         unsigned long limit = zone_dirty_limit(zone);
342
343         return zone_page_state(zone, NR_FILE_DIRTY) +
344                zone_page_state(zone, NR_UNSTABLE_NFS) +
345                zone_page_state(zone, NR_WRITEBACK) <= limit;
346 }
347
348 int dirty_background_ratio_handler(struct ctl_table *table, int write,
349                 void __user *buffer, size_t *lenp,
350                 loff_t *ppos)
351 {
352         int ret;
353
354         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
355         if (ret == 0 && write)
356                 dirty_background_bytes = 0;
357         return ret;
358 }
359
360 int dirty_background_bytes_handler(struct ctl_table *table, int write,
361                 void __user *buffer, size_t *lenp,
362                 loff_t *ppos)
363 {
364         int ret;
365
366         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
367         if (ret == 0 && write)
368                 dirty_background_ratio = 0;
369         return ret;
370 }
371
372 int dirty_ratio_handler(struct ctl_table *table, int write,
373                 void __user *buffer, size_t *lenp,
374                 loff_t *ppos)
375 {
376         int old_ratio = vm_dirty_ratio;
377         int ret;
378
379         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
380         if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
381                 writeback_set_ratelimit();
382                 vm_dirty_bytes = 0;
383         }
384         return ret;
385 }
386
387 int dirty_bytes_handler(struct ctl_table *table, int write,
388                 void __user *buffer, size_t *lenp,
389                 loff_t *ppos)
390 {
391         unsigned long old_bytes = vm_dirty_bytes;
392         int ret;
393
394         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
395         if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
396                 writeback_set_ratelimit();
397                 vm_dirty_ratio = 0;
398         }
399         return ret;
400 }
401
402 static unsigned long wp_next_time(unsigned long cur_time)
403 {
404         cur_time += VM_COMPLETIONS_PERIOD_LEN;
405         /* 0 has a special meaning... */
406         if (!cur_time)
407                 return 1;
408         return cur_time;
409 }
410
411 /*
412  * Increment the wb's writeout completion count and the global writeout
413  * completion count. Called from test_clear_page_writeback().
414  */
415 static inline void __wb_writeout_inc(struct bdi_writeback *wb)
416 {
417         struct wb_domain *dom = &global_wb_domain;
418
419         __inc_wb_stat(wb, WB_WRITTEN);
420         __fprop_inc_percpu_max(&dom->completions, &wb->completions,
421                                wb->bdi->max_prop_frac);
422         /* First event after period switching was turned off? */
423         if (!unlikely(dom->period_time)) {
424                 /*
425                  * We can race with other __bdi_writeout_inc calls here but
426                  * it does not cause any harm since the resulting time when
427                  * timer will fire and what is in writeout_period_time will be
428                  * roughly the same.
429                  */
430                 dom->period_time = wp_next_time(jiffies);
431                 mod_timer(&dom->period_timer, dom->period_time);
432         }
433 }
434
435 void wb_writeout_inc(struct bdi_writeback *wb)
436 {
437         unsigned long flags;
438
439         local_irq_save(flags);
440         __wb_writeout_inc(wb);
441         local_irq_restore(flags);
442 }
443 EXPORT_SYMBOL_GPL(wb_writeout_inc);
444
445 /*
446  * On idle system, we can be called long after we scheduled because we use
447  * deferred timers so count with missed periods.
448  */
449 static void writeout_period(unsigned long t)
450 {
451         struct wb_domain *dom = (void *)t;
452         int miss_periods = (jiffies - dom->period_time) /
453                                                  VM_COMPLETIONS_PERIOD_LEN;
454
455         if (fprop_new_period(&dom->completions, miss_periods + 1)) {
456                 dom->period_time = wp_next_time(dom->period_time +
457                                 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
458                 mod_timer(&dom->period_timer, dom->period_time);
459         } else {
460                 /*
461                  * Aging has zeroed all fractions. Stop wasting CPU on period
462                  * updates.
463                  */
464                 dom->period_time = 0;
465         }
466 }
467
468 int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
469 {
470         memset(dom, 0, sizeof(*dom));
471
472         spin_lock_init(&dom->lock);
473
474         init_timer_deferrable(&dom->period_timer);
475         dom->period_timer.function = writeout_period;
476         dom->period_timer.data = (unsigned long)dom;
477
478         dom->dirty_limit_tstamp = jiffies;
479
480         return fprop_global_init(&dom->completions, gfp);
481 }
482
483 /*
484  * bdi_min_ratio keeps the sum of the minimum dirty shares of all
485  * registered backing devices, which, for obvious reasons, can not
486  * exceed 100%.
487  */
488 static unsigned int bdi_min_ratio;
489
490 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
491 {
492         int ret = 0;
493
494         spin_lock_bh(&bdi_lock);
495         if (min_ratio > bdi->max_ratio) {
496                 ret = -EINVAL;
497         } else {
498                 min_ratio -= bdi->min_ratio;
499                 if (bdi_min_ratio + min_ratio < 100) {
500                         bdi_min_ratio += min_ratio;
501                         bdi->min_ratio += min_ratio;
502                 } else {
503                         ret = -EINVAL;
504                 }
505         }
506         spin_unlock_bh(&bdi_lock);
507
508         return ret;
509 }
510
511 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
512 {
513         int ret = 0;
514
515         if (max_ratio > 100)
516                 return -EINVAL;
517
518         spin_lock_bh(&bdi_lock);
519         if (bdi->min_ratio > max_ratio) {
520                 ret = -EINVAL;
521         } else {
522                 bdi->max_ratio = max_ratio;
523                 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
524         }
525         spin_unlock_bh(&bdi_lock);
526
527         return ret;
528 }
529 EXPORT_SYMBOL(bdi_set_max_ratio);
530
531 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
532                                            unsigned long bg_thresh)
533 {
534         return (thresh + bg_thresh) / 2;
535 }
536
537 static unsigned long hard_dirty_limit(unsigned long thresh)
538 {
539         struct wb_domain *dom = &global_wb_domain;
540
541         return max(thresh, dom->dirty_limit);
542 }
543
544 /**
545  * wb_calc_thresh - @wb's share of dirty throttling threshold
546  * @wb: bdi_writeback to query
547  * @dirty: global dirty limit in pages
548  *
549  * Returns @wb's dirty limit in pages. The term "dirty" in the context of
550  * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
551  *
552  * Note that balance_dirty_pages() will only seriously take it as a hard limit
553  * when sleeping max_pause per page is not enough to keep the dirty pages under
554  * control. For example, when the device is completely stalled due to some error
555  * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
556  * In the other normal situations, it acts more gently by throttling the tasks
557  * more (rather than completely block them) when the wb dirty pages go high.
558  *
559  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
560  * - starving fast devices
561  * - piling up dirty pages (that will take long time to sync) on slow devices
562  *
563  * The wb's share of dirty limit will be adapting to its throughput and
564  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
565  */
566 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
567 {
568         struct wb_domain *dom = &global_wb_domain;
569         u64 wb_thresh;
570         long numerator, denominator;
571         unsigned long wb_min_ratio, wb_max_ratio;
572
573         /*
574          * Calculate this BDI's share of the thresh ratio.
575          */
576         fprop_fraction_percpu(&dom->completions, &wb->completions,
577                               &numerator, &denominator);
578
579         wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
580         wb_thresh *= numerator;
581         do_div(wb_thresh, denominator);
582
583         wb_min_max_ratio(wb, &wb_min_ratio, &wb_max_ratio);
584
585         wb_thresh += (thresh * wb_min_ratio) / 100;
586         if (wb_thresh > (thresh * wb_max_ratio) / 100)
587                 wb_thresh = thresh * wb_max_ratio / 100;
588
589         return wb_thresh;
590 }
591
592 /*
593  *                           setpoint - dirty 3
594  *        f(dirty) := 1.0 + (----------------)
595  *                           limit - setpoint
596  *
597  * it's a 3rd order polynomial that subjects to
598  *
599  * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
600  * (2) f(setpoint) = 1.0 => the balance point
601  * (3) f(limit)    = 0   => the hard limit
602  * (4) df/dx      <= 0   => negative feedback control
603  * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
604  *     => fast response on large errors; small oscillation near setpoint
605  */
606 static long long pos_ratio_polynom(unsigned long setpoint,
607                                           unsigned long dirty,
608                                           unsigned long limit)
609 {
610         long long pos_ratio;
611         long x;
612
613         x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
614                     limit - setpoint + 1);
615         pos_ratio = x;
616         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
617         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
618         pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
619
620         return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
621 }
622
623 /*
624  * Dirty position control.
625  *
626  * (o) global/bdi setpoints
627  *
628  * We want the dirty pages be balanced around the global/wb setpoints.
629  * When the number of dirty pages is higher/lower than the setpoint, the
630  * dirty position control ratio (and hence task dirty ratelimit) will be
631  * decreased/increased to bring the dirty pages back to the setpoint.
632  *
633  *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
634  *
635  *     if (dirty < setpoint) scale up   pos_ratio
636  *     if (dirty > setpoint) scale down pos_ratio
637  *
638  *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
639  *     if (wb_dirty > wb_setpoint) scale down pos_ratio
640  *
641  *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
642  *
643  * (o) global control line
644  *
645  *     ^ pos_ratio
646  *     |
647  *     |            |<===== global dirty control scope ======>|
648  * 2.0 .............*
649  *     |            .*
650  *     |            . *
651  *     |            .   *
652  *     |            .     *
653  *     |            .        *
654  *     |            .            *
655  * 1.0 ................................*
656  *     |            .                  .     *
657  *     |            .                  .          *
658  *     |            .                  .              *
659  *     |            .                  .                 *
660  *     |            .                  .                    *
661  *   0 +------------.------------------.----------------------*------------->
662  *           freerun^          setpoint^                 limit^   dirty pages
663  *
664  * (o) wb control line
665  *
666  *     ^ pos_ratio
667  *     |
668  *     |            *
669  *     |              *
670  *     |                *
671  *     |                  *
672  *     |                    * |<=========== span ============>|
673  * 1.0 .......................*
674  *     |                      . *
675  *     |                      .   *
676  *     |                      .     *
677  *     |                      .       *
678  *     |                      .         *
679  *     |                      .           *
680  *     |                      .             *
681  *     |                      .               *
682  *     |                      .                 *
683  *     |                      .                   *
684  *     |                      .                     *
685  * 1/4 ...............................................* * * * * * * * * * * *
686  *     |                      .                         .
687  *     |                      .                           .
688  *     |                      .                             .
689  *   0 +----------------------.-------------------------------.------------->
690  *                wb_setpoint^                    x_intercept^
691  *
692  * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
693  * be smoothly throttled down to normal if it starts high in situations like
694  * - start writing to a slow SD card and a fast disk at the same time. The SD
695  *   card's wb_dirty may rush to many times higher than wb_setpoint.
696  * - the wb dirty thresh drops quickly due to change of JBOD workload
697  */
698 static unsigned long wb_position_ratio(struct bdi_writeback *wb,
699                                        unsigned long thresh,
700                                        unsigned long bg_thresh,
701                                        unsigned long dirty,
702                                        unsigned long wb_thresh,
703                                        unsigned long wb_dirty)
704 {
705         unsigned long write_bw = wb->avg_write_bandwidth;
706         unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
707         unsigned long limit = hard_dirty_limit(thresh);
708         unsigned long x_intercept;
709         unsigned long setpoint;         /* dirty pages' target balance point */
710         unsigned long wb_setpoint;
711         unsigned long span;
712         long long pos_ratio;            /* for scaling up/down the rate limit */
713         long x;
714
715         if (unlikely(dirty >= limit))
716                 return 0;
717
718         /*
719          * global setpoint
720          *
721          * See comment for pos_ratio_polynom().
722          */
723         setpoint = (freerun + limit) / 2;
724         pos_ratio = pos_ratio_polynom(setpoint, dirty, limit);
725
726         /*
727          * The strictlimit feature is a tool preventing mistrusted filesystems
728          * from growing a large number of dirty pages before throttling. For
729          * such filesystems balance_dirty_pages always checks wb counters
730          * against wb limits. Even if global "nr_dirty" is under "freerun".
731          * This is especially important for fuse which sets bdi->max_ratio to
732          * 1% by default. Without strictlimit feature, fuse writeback may
733          * consume arbitrary amount of RAM because it is accounted in
734          * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
735          *
736          * Here, in wb_position_ratio(), we calculate pos_ratio based on
737          * two values: wb_dirty and wb_thresh. Let's consider an example:
738          * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
739          * limits are set by default to 10% and 20% (background and throttle).
740          * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
741          * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
742          * about ~6K pages (as the average of background and throttle wb
743          * limits). The 3rd order polynomial will provide positive feedback if
744          * wb_dirty is under wb_setpoint and vice versa.
745          *
746          * Note, that we cannot use global counters in these calculations
747          * because we want to throttle process writing to a strictlimit wb
748          * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
749          * in the example above).
750          */
751         if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
752                 long long wb_pos_ratio;
753                 unsigned long wb_bg_thresh;
754
755                 if (wb_dirty < 8)
756                         return min_t(long long, pos_ratio * 2,
757                                      2 << RATELIMIT_CALC_SHIFT);
758
759                 if (wb_dirty >= wb_thresh)
760                         return 0;
761
762                 wb_bg_thresh = div_u64((u64)wb_thresh * bg_thresh, thresh);
763                 wb_setpoint = dirty_freerun_ceiling(wb_thresh, wb_bg_thresh);
764
765                 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
766                         return 0;
767
768                 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, wb_dirty,
769                                                  wb_thresh);
770
771                 /*
772                  * Typically, for strictlimit case, wb_setpoint << setpoint
773                  * and pos_ratio >> wb_pos_ratio. In the other words global
774                  * state ("dirty") is not limiting factor and we have to
775                  * make decision based on wb counters. But there is an
776                  * important case when global pos_ratio should get precedence:
777                  * global limits are exceeded (e.g. due to activities on other
778                  * wb's) while given strictlimit wb is below limit.
779                  *
780                  * "pos_ratio * wb_pos_ratio" would work for the case above,
781                  * but it would look too non-natural for the case of all
782                  * activity in the system coming from a single strictlimit wb
783                  * with bdi->max_ratio == 100%.
784                  *
785                  * Note that min() below somewhat changes the dynamics of the
786                  * control system. Normally, pos_ratio value can be well over 3
787                  * (when globally we are at freerun and wb is well below wb
788                  * setpoint). Now the maximum pos_ratio in the same situation
789                  * is 2. We might want to tweak this if we observe the control
790                  * system is too slow to adapt.
791                  */
792                 return min(pos_ratio, wb_pos_ratio);
793         }
794
795         /*
796          * We have computed basic pos_ratio above based on global situation. If
797          * the wb is over/under its share of dirty pages, we want to scale
798          * pos_ratio further down/up. That is done by the following mechanism.
799          */
800
801         /*
802          * wb setpoint
803          *
804          *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
805          *
806          *                        x_intercept - wb_dirty
807          *                     := --------------------------
808          *                        x_intercept - wb_setpoint
809          *
810          * The main wb control line is a linear function that subjects to
811          *
812          * (1) f(wb_setpoint) = 1.0
813          * (2) k = - 1 / (8 * write_bw)  (in single wb case)
814          *     or equally: x_intercept = wb_setpoint + 8 * write_bw
815          *
816          * For single wb case, the dirty pages are observed to fluctuate
817          * regularly within range
818          *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
819          * for various filesystems, where (2) can yield in a reasonable 12.5%
820          * fluctuation range for pos_ratio.
821          *
822          * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
823          * own size, so move the slope over accordingly and choose a slope that
824          * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
825          */
826         if (unlikely(wb_thresh > thresh))
827                 wb_thresh = thresh;
828         /*
829          * It's very possible that wb_thresh is close to 0 not because the
830          * device is slow, but that it has remained inactive for long time.
831          * Honour such devices a reasonable good (hopefully IO efficient)
832          * threshold, so that the occasional writes won't be blocked and active
833          * writes can rampup the threshold quickly.
834          */
835         wb_thresh = max(wb_thresh, (limit - dirty) / 8);
836         /*
837          * scale global setpoint to wb's:
838          *      wb_setpoint = setpoint * wb_thresh / thresh
839          */
840         x = div_u64((u64)wb_thresh << 16, thresh + 1);
841         wb_setpoint = setpoint * (u64)x >> 16;
842         /*
843          * Use span=(8*write_bw) in single wb case as indicated by
844          * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
845          *
846          *        wb_thresh                    thresh - wb_thresh
847          * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
848          *         thresh                           thresh
849          */
850         span = (thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
851         x_intercept = wb_setpoint + span;
852
853         if (wb_dirty < x_intercept - span / 4) {
854                 pos_ratio = div64_u64(pos_ratio * (x_intercept - wb_dirty),
855                                     x_intercept - wb_setpoint + 1);
856         } else
857                 pos_ratio /= 4;
858
859         /*
860          * wb reserve area, safeguard against dirty pool underrun and disk idle
861          * It may push the desired control point of global dirty pages higher
862          * than setpoint.
863          */
864         x_intercept = wb_thresh / 2;
865         if (wb_dirty < x_intercept) {
866                 if (wb_dirty > x_intercept / 8)
867                         pos_ratio = div_u64(pos_ratio * x_intercept, wb_dirty);
868                 else
869                         pos_ratio *= 8;
870         }
871
872         return pos_ratio;
873 }
874
875 static void wb_update_write_bandwidth(struct bdi_writeback *wb,
876                                       unsigned long elapsed,
877                                       unsigned long written)
878 {
879         const unsigned long period = roundup_pow_of_two(3 * HZ);
880         unsigned long avg = wb->avg_write_bandwidth;
881         unsigned long old = wb->write_bandwidth;
882         u64 bw;
883
884         /*
885          * bw = written * HZ / elapsed
886          *
887          *                   bw * elapsed + write_bandwidth * (period - elapsed)
888          * write_bandwidth = ---------------------------------------------------
889          *                                          period
890          *
891          * @written may have decreased due to account_page_redirty().
892          * Avoid underflowing @bw calculation.
893          */
894         bw = written - min(written, wb->written_stamp);
895         bw *= HZ;
896         if (unlikely(elapsed > period)) {
897                 do_div(bw, elapsed);
898                 avg = bw;
899                 goto out;
900         }
901         bw += (u64)wb->write_bandwidth * (period - elapsed);
902         bw >>= ilog2(period);
903
904         /*
905          * one more level of smoothing, for filtering out sudden spikes
906          */
907         if (avg > old && old >= (unsigned long)bw)
908                 avg -= (avg - old) >> 3;
909
910         if (avg < old && old <= (unsigned long)bw)
911                 avg += (old - avg) >> 3;
912
913 out:
914         /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
915         avg = max(avg, 1LU);
916         if (wb_has_dirty_io(wb)) {
917                 long delta = avg - wb->avg_write_bandwidth;
918                 WARN_ON_ONCE(atomic_long_add_return(delta,
919                                         &wb->bdi->tot_write_bandwidth) <= 0);
920         }
921         wb->write_bandwidth = bw;
922         wb->avg_write_bandwidth = avg;
923 }
924
925 static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
926 {
927         struct wb_domain *dom = &global_wb_domain;
928         unsigned long limit = dom->dirty_limit;
929
930         /*
931          * Follow up in one step.
932          */
933         if (limit < thresh) {
934                 limit = thresh;
935                 goto update;
936         }
937
938         /*
939          * Follow down slowly. Use the higher one as the target, because thresh
940          * may drop below dirty. This is exactly the reason to introduce
941          * dom->dirty_limit which is guaranteed to lie above the dirty pages.
942          */
943         thresh = max(thresh, dirty);
944         if (limit > thresh) {
945                 limit -= (limit - thresh) >> 5;
946                 goto update;
947         }
948         return;
949 update:
950         dom->dirty_limit = limit;
951 }
952
953 static void global_update_bandwidth(unsigned long thresh,
954                                     unsigned long dirty,
955                                     unsigned long now)
956 {
957         struct wb_domain *dom = &global_wb_domain;
958
959         /*
960          * check locklessly first to optimize away locking for the most time
961          */
962         if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
963                 return;
964
965         spin_lock(&dom->lock);
966         if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
967                 update_dirty_limit(thresh, dirty);
968                 dom->dirty_limit_tstamp = now;
969         }
970         spin_unlock(&dom->lock);
971 }
972
973 /*
974  * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
975  *
976  * Normal wb tasks will be curbed at or below it in long term.
977  * Obviously it should be around (write_bw / N) when there are N dd tasks.
978  */
979 static void wb_update_dirty_ratelimit(struct bdi_writeback *wb,
980                                       unsigned long thresh,
981                                       unsigned long bg_thresh,
982                                       unsigned long dirty,
983                                       unsigned long wb_thresh,
984                                       unsigned long wb_dirty,
985                                       unsigned long dirtied,
986                                       unsigned long elapsed)
987 {
988         unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
989         unsigned long limit = hard_dirty_limit(thresh);
990         unsigned long setpoint = (freerun + limit) / 2;
991         unsigned long write_bw = wb->avg_write_bandwidth;
992         unsigned long dirty_ratelimit = wb->dirty_ratelimit;
993         unsigned long dirty_rate;
994         unsigned long task_ratelimit;
995         unsigned long balanced_dirty_ratelimit;
996         unsigned long pos_ratio;
997         unsigned long step;
998         unsigned long x;
999
1000         /*
1001          * The dirty rate will match the writeout rate in long term, except
1002          * when dirty pages are truncated by userspace or re-dirtied by FS.
1003          */
1004         dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1005
1006         pos_ratio = wb_position_ratio(wb, thresh, bg_thresh, dirty,
1007                                       wb_thresh, wb_dirty);
1008         /*
1009          * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1010          */
1011         task_ratelimit = (u64)dirty_ratelimit *
1012                                         pos_ratio >> RATELIMIT_CALC_SHIFT;
1013         task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1014
1015         /*
1016          * A linear estimation of the "balanced" throttle rate. The theory is,
1017          * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1018          * dirty_rate will be measured to be (N * task_ratelimit). So the below
1019          * formula will yield the balanced rate limit (write_bw / N).
1020          *
1021          * Note that the expanded form is not a pure rate feedback:
1022          *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate)              (1)
1023          * but also takes pos_ratio into account:
1024          *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
1025          *
1026          * (1) is not realistic because pos_ratio also takes part in balancing
1027          * the dirty rate.  Consider the state
1028          *      pos_ratio = 0.5                                              (3)
1029          *      rate = 2 * (write_bw / N)                                    (4)
1030          * If (1) is used, it will stuck in that state! Because each dd will
1031          * be throttled at
1032          *      task_ratelimit = pos_ratio * rate = (write_bw / N)           (5)
1033          * yielding
1034          *      dirty_rate = N * task_ratelimit = write_bw                   (6)
1035          * put (6) into (1) we get
1036          *      rate_(i+1) = rate_(i)                                        (7)
1037          *
1038          * So we end up using (2) to always keep
1039          *      rate_(i+1) ~= (write_bw / N)                                 (8)
1040          * regardless of the value of pos_ratio. As long as (8) is satisfied,
1041          * pos_ratio is able to drive itself to 1.0, which is not only where
1042          * the dirty count meet the setpoint, but also where the slope of
1043          * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1044          */
1045         balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1046                                            dirty_rate | 1);
1047         /*
1048          * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1049          */
1050         if (unlikely(balanced_dirty_ratelimit > write_bw))
1051                 balanced_dirty_ratelimit = write_bw;
1052
1053         /*
1054          * We could safely do this and return immediately:
1055          *
1056          *      wb->dirty_ratelimit = balanced_dirty_ratelimit;
1057          *
1058          * However to get a more stable dirty_ratelimit, the below elaborated
1059          * code makes use of task_ratelimit to filter out singular points and
1060          * limit the step size.
1061          *
1062          * The below code essentially only uses the relative value of
1063          *
1064          *      task_ratelimit - dirty_ratelimit
1065          *      = (pos_ratio - 1) * dirty_ratelimit
1066          *
1067          * which reflects the direction and size of dirty position error.
1068          */
1069
1070         /*
1071          * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1072          * task_ratelimit is on the same side of dirty_ratelimit, too.
1073          * For example, when
1074          * - dirty_ratelimit > balanced_dirty_ratelimit
1075          * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1076          * lowering dirty_ratelimit will help meet both the position and rate
1077          * control targets. Otherwise, don't update dirty_ratelimit if it will
1078          * only help meet the rate target. After all, what the users ultimately
1079          * feel and care are stable dirty rate and small position error.
1080          *
1081          * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1082          * and filter out the singular points of balanced_dirty_ratelimit. Which
1083          * keeps jumping around randomly and can even leap far away at times
1084          * due to the small 200ms estimation period of dirty_rate (we want to
1085          * keep that period small to reduce time lags).
1086          */
1087         step = 0;
1088
1089         /*
1090          * For strictlimit case, calculations above were based on wb counters
1091          * and limits (starting from pos_ratio = wb_position_ratio() and up to
1092          * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1093          * Hence, to calculate "step" properly, we have to use wb_dirty as
1094          * "dirty" and wb_setpoint as "setpoint".
1095          *
1096          * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1097          * it's possible that wb_thresh is close to zero due to inactivity
1098          * of backing device (see the implementation of wb_calc_thresh()).
1099          */
1100         if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1101                 dirty = wb_dirty;
1102                 if (wb_dirty < 8)
1103                         setpoint = wb_dirty + 1;
1104                 else
1105                         setpoint = (wb_thresh +
1106                                     wb_calc_thresh(wb, bg_thresh)) / 2;
1107         }
1108
1109         if (dirty < setpoint) {
1110                 x = min3(wb->balanced_dirty_ratelimit,
1111                          balanced_dirty_ratelimit, task_ratelimit);
1112                 if (dirty_ratelimit < x)
1113                         step = x - dirty_ratelimit;
1114         } else {
1115                 x = max3(wb->balanced_dirty_ratelimit,
1116                          balanced_dirty_ratelimit, task_ratelimit);
1117                 if (dirty_ratelimit > x)
1118                         step = dirty_ratelimit - x;
1119         }
1120
1121         /*
1122          * Don't pursue 100% rate matching. It's impossible since the balanced
1123          * rate itself is constantly fluctuating. So decrease the track speed
1124          * when it gets close to the target. Helps eliminate pointless tremors.
1125          */
1126         step >>= dirty_ratelimit / (2 * step + 1);
1127         /*
1128          * Limit the tracking speed to avoid overshooting.
1129          */
1130         step = (step + 7) / 8;
1131
1132         if (dirty_ratelimit < balanced_dirty_ratelimit)
1133                 dirty_ratelimit += step;
1134         else
1135                 dirty_ratelimit -= step;
1136
1137         wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1138         wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1139
1140         trace_bdi_dirty_ratelimit(wb->bdi, dirty_rate, task_ratelimit);
1141 }
1142
1143 static void __wb_update_bandwidth(struct bdi_writeback *wb,
1144                                   unsigned long thresh,
1145                                   unsigned long bg_thresh,
1146                                   unsigned long dirty,
1147                                   unsigned long wb_thresh,
1148                                   unsigned long wb_dirty,
1149                                   unsigned long start_time,
1150                                   bool update_ratelimit)
1151 {
1152         unsigned long now = jiffies;
1153         unsigned long elapsed = now - wb->bw_time_stamp;
1154         unsigned long dirtied;
1155         unsigned long written;
1156
1157         lockdep_assert_held(&wb->list_lock);
1158
1159         /*
1160          * rate-limit, only update once every 200ms.
1161          */
1162         if (elapsed < BANDWIDTH_INTERVAL)
1163                 return;
1164
1165         dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1166         written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1167
1168         /*
1169          * Skip quiet periods when disk bandwidth is under-utilized.
1170          * (at least 1s idle time between two flusher runs)
1171          */
1172         if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1173                 goto snapshot;
1174
1175         if (update_ratelimit) {
1176                 global_update_bandwidth(thresh, dirty, now);
1177                 wb_update_dirty_ratelimit(wb, thresh, bg_thresh, dirty,
1178                                           wb_thresh, wb_dirty,
1179                                           dirtied, elapsed);
1180         }
1181         wb_update_write_bandwidth(wb, elapsed, written);
1182
1183 snapshot:
1184         wb->dirtied_stamp = dirtied;
1185         wb->written_stamp = written;
1186         wb->bw_time_stamp = now;
1187 }
1188
1189 void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
1190 {
1191         __wb_update_bandwidth(wb, 0, 0, 0, 0, 0, start_time, false);
1192 }
1193
1194 /*
1195  * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1196  * will look to see if it needs to start dirty throttling.
1197  *
1198  * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1199  * global_page_state() too often. So scale it near-sqrt to the safety margin
1200  * (the number of pages we may dirty without exceeding the dirty limits).
1201  */
1202 static unsigned long dirty_poll_interval(unsigned long dirty,
1203                                          unsigned long thresh)
1204 {
1205         if (thresh > dirty)
1206                 return 1UL << (ilog2(thresh - dirty) >> 1);
1207
1208         return 1;
1209 }
1210
1211 static unsigned long wb_max_pause(struct bdi_writeback *wb,
1212                                   unsigned long wb_dirty)
1213 {
1214         unsigned long bw = wb->avg_write_bandwidth;
1215         unsigned long t;
1216
1217         /*
1218          * Limit pause time for small memory systems. If sleeping for too long
1219          * time, a small pool of dirty/writeback pages may go empty and disk go
1220          * idle.
1221          *
1222          * 8 serves as the safety ratio.
1223          */
1224         t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1225         t++;
1226
1227         return min_t(unsigned long, t, MAX_PAUSE);
1228 }
1229
1230 static long wb_min_pause(struct bdi_writeback *wb,
1231                          long max_pause,
1232                          unsigned long task_ratelimit,
1233                          unsigned long dirty_ratelimit,
1234                          int *nr_dirtied_pause)
1235 {
1236         long hi = ilog2(wb->avg_write_bandwidth);
1237         long lo = ilog2(wb->dirty_ratelimit);
1238         long t;         /* target pause */
1239         long pause;     /* estimated next pause */
1240         int pages;      /* target nr_dirtied_pause */
1241
1242         /* target for 10ms pause on 1-dd case */
1243         t = max(1, HZ / 100);
1244
1245         /*
1246          * Scale up pause time for concurrent dirtiers in order to reduce CPU
1247          * overheads.
1248          *
1249          * (N * 10ms) on 2^N concurrent tasks.
1250          */
1251         if (hi > lo)
1252                 t += (hi - lo) * (10 * HZ) / 1024;
1253
1254         /*
1255          * This is a bit convoluted. We try to base the next nr_dirtied_pause
1256          * on the much more stable dirty_ratelimit. However the next pause time
1257          * will be computed based on task_ratelimit and the two rate limits may
1258          * depart considerably at some time. Especially if task_ratelimit goes
1259          * below dirty_ratelimit/2 and the target pause is max_pause, the next
1260          * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1261          * result task_ratelimit won't be executed faithfully, which could
1262          * eventually bring down dirty_ratelimit.
1263          *
1264          * We apply two rules to fix it up:
1265          * 1) try to estimate the next pause time and if necessary, use a lower
1266          *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1267          *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1268          * 2) limit the target pause time to max_pause/2, so that the normal
1269          *    small fluctuations of task_ratelimit won't trigger rule (1) and
1270          *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1271          */
1272         t = min(t, 1 + max_pause / 2);
1273         pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1274
1275         /*
1276          * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1277          * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1278          * When the 16 consecutive reads are often interrupted by some dirty
1279          * throttling pause during the async writes, cfq will go into idles
1280          * (deadline is fine). So push nr_dirtied_pause as high as possible
1281          * until reaches DIRTY_POLL_THRESH=32 pages.
1282          */
1283         if (pages < DIRTY_POLL_THRESH) {
1284                 t = max_pause;
1285                 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1286                 if (pages > DIRTY_POLL_THRESH) {
1287                         pages = DIRTY_POLL_THRESH;
1288                         t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1289                 }
1290         }
1291
1292         pause = HZ * pages / (task_ratelimit + 1);
1293         if (pause > max_pause) {
1294                 t = max_pause;
1295                 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1296         }
1297
1298         *nr_dirtied_pause = pages;
1299         /*
1300          * The minimal pause time will normally be half the target pause time.
1301          */
1302         return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1303 }
1304
1305 static inline void wb_dirty_limits(struct bdi_writeback *wb,
1306                                    unsigned long dirty_thresh,
1307                                    unsigned long background_thresh,
1308                                    unsigned long *wb_dirty,
1309                                    unsigned long *wb_thresh,
1310                                    unsigned long *wb_bg_thresh)
1311 {
1312         unsigned long wb_reclaimable;
1313
1314         /*
1315          * wb_thresh is not treated as some limiting factor as
1316          * dirty_thresh, due to reasons
1317          * - in JBOD setup, wb_thresh can fluctuate a lot
1318          * - in a system with HDD and USB key, the USB key may somehow
1319          *   go into state (wb_dirty >> wb_thresh) either because
1320          *   wb_dirty starts high, or because wb_thresh drops low.
1321          *   In this case we don't want to hard throttle the USB key
1322          *   dirtiers for 100 seconds until wb_dirty drops under
1323          *   wb_thresh. Instead the auxiliary wb control line in
1324          *   wb_position_ratio() will let the dirtier task progress
1325          *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1326          */
1327         *wb_thresh = wb_calc_thresh(wb, dirty_thresh);
1328
1329         if (wb_bg_thresh)
1330                 *wb_bg_thresh = dirty_thresh ? div_u64((u64)*wb_thresh *
1331                                                        background_thresh,
1332                                                        dirty_thresh) : 0;
1333
1334         /*
1335          * In order to avoid the stacked BDI deadlock we need
1336          * to ensure we accurately count the 'dirty' pages when
1337          * the threshold is low.
1338          *
1339          * Otherwise it would be possible to get thresh+n pages
1340          * reported dirty, even though there are thresh-m pages
1341          * actually dirty; with m+n sitting in the percpu
1342          * deltas.
1343          */
1344         if (*wb_thresh < 2 * wb_stat_error(wb)) {
1345                 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1346                 *wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1347         } else {
1348                 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1349                 *wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1350         }
1351 }
1352
1353 /*
1354  * balance_dirty_pages() must be called by processes which are generating dirty
1355  * data.  It looks at the number of dirty pages in the machine and will force
1356  * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1357  * If we're over `background_thresh' then the writeback threads are woken to
1358  * perform some writeout.
1359  */
1360 static void balance_dirty_pages(struct address_space *mapping,
1361                                 struct bdi_writeback *wb,
1362                                 unsigned long pages_dirtied)
1363 {
1364         unsigned long nr_reclaimable;   /* = file_dirty + unstable_nfs */
1365         unsigned long nr_dirty;  /* = file_dirty + writeback + unstable_nfs */
1366         unsigned long background_thresh;
1367         unsigned long dirty_thresh;
1368         long period;
1369         long pause;
1370         long max_pause;
1371         long min_pause;
1372         int nr_dirtied_pause;
1373         bool dirty_exceeded = false;
1374         unsigned long task_ratelimit;
1375         unsigned long dirty_ratelimit;
1376         unsigned long pos_ratio;
1377         struct backing_dev_info *bdi = wb->bdi;
1378         bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1379         unsigned long start_time = jiffies;
1380
1381         for (;;) {
1382                 unsigned long now = jiffies;
1383                 unsigned long uninitialized_var(wb_thresh);
1384                 unsigned long thresh;
1385                 unsigned long uninitialized_var(wb_dirty);
1386                 unsigned long dirty;
1387                 unsigned long bg_thresh;
1388
1389                 /*
1390                  * Unstable writes are a feature of certain networked
1391                  * filesystems (i.e. NFS) in which data may have been
1392                  * written to the server's write cache, but has not yet
1393                  * been flushed to permanent storage.
1394                  */
1395                 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1396                                         global_page_state(NR_UNSTABLE_NFS);
1397                 nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1398
1399                 global_dirty_limits(&background_thresh, &dirty_thresh);
1400
1401                 if (unlikely(strictlimit)) {
1402                         wb_dirty_limits(wb, dirty_thresh, background_thresh,
1403                                         &wb_dirty, &wb_thresh, &bg_thresh);
1404
1405                         dirty = wb_dirty;
1406                         thresh = wb_thresh;
1407                 } else {
1408                         dirty = nr_dirty;
1409                         thresh = dirty_thresh;
1410                         bg_thresh = background_thresh;
1411                 }
1412
1413                 /*
1414                  * Throttle it only when the background writeback cannot
1415                  * catch-up. This avoids (excessively) small writeouts
1416                  * when the wb limits are ramping up in case of !strictlimit.
1417                  *
1418                  * In strictlimit case make decision based on the wb counters
1419                  * and limits. Small writeouts when the wb limits are ramping
1420                  * up are the price we consciously pay for strictlimit-ing.
1421                  */
1422                 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh)) {
1423                         current->dirty_paused_when = now;
1424                         current->nr_dirtied = 0;
1425                         current->nr_dirtied_pause =
1426                                 dirty_poll_interval(dirty, thresh);
1427                         break;
1428                 }
1429
1430                 if (unlikely(!writeback_in_progress(wb)))
1431                         wb_start_background_writeback(wb);
1432
1433                 if (!strictlimit)
1434                         wb_dirty_limits(wb, dirty_thresh, background_thresh,
1435                                         &wb_dirty, &wb_thresh, NULL);
1436
1437                 dirty_exceeded = (wb_dirty > wb_thresh) &&
1438                                  ((nr_dirty > dirty_thresh) || strictlimit);
1439                 if (dirty_exceeded && !wb->dirty_exceeded)
1440                         wb->dirty_exceeded = 1;
1441
1442                 if (time_is_before_jiffies(wb->bw_time_stamp +
1443                                            BANDWIDTH_INTERVAL)) {
1444                         spin_lock(&wb->list_lock);
1445                         __wb_update_bandwidth(wb, dirty_thresh,
1446                                               background_thresh, nr_dirty,
1447                                               wb_thresh, wb_dirty, start_time,
1448                                               true);
1449                         spin_unlock(&wb->list_lock);
1450                 }
1451
1452                 dirty_ratelimit = wb->dirty_ratelimit;
1453                 pos_ratio = wb_position_ratio(wb, dirty_thresh,
1454                                               background_thresh, nr_dirty,
1455                                               wb_thresh, wb_dirty);
1456                 task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
1457                                                         RATELIMIT_CALC_SHIFT;
1458                 max_pause = wb_max_pause(wb, wb_dirty);
1459                 min_pause = wb_min_pause(wb, max_pause,
1460                                          task_ratelimit, dirty_ratelimit,
1461                                          &nr_dirtied_pause);
1462
1463                 if (unlikely(task_ratelimit == 0)) {
1464                         period = max_pause;
1465                         pause = max_pause;
1466                         goto pause;
1467                 }
1468                 period = HZ * pages_dirtied / task_ratelimit;
1469                 pause = period;
1470                 if (current->dirty_paused_when)
1471                         pause -= now - current->dirty_paused_when;
1472                 /*
1473                  * For less than 1s think time (ext3/4 may block the dirtier
1474                  * for up to 800ms from time to time on 1-HDD; so does xfs,
1475                  * however at much less frequency), try to compensate it in
1476                  * future periods by updating the virtual time; otherwise just
1477                  * do a reset, as it may be a light dirtier.
1478                  */
1479                 if (pause < min_pause) {
1480                         trace_balance_dirty_pages(bdi,
1481                                                   dirty_thresh,
1482                                                   background_thresh,
1483                                                   nr_dirty,
1484                                                   wb_thresh,
1485                                                   wb_dirty,
1486                                                   dirty_ratelimit,
1487                                                   task_ratelimit,
1488                                                   pages_dirtied,
1489                                                   period,
1490                                                   min(pause, 0L),
1491                                                   start_time);
1492                         if (pause < -HZ) {
1493                                 current->dirty_paused_when = now;
1494                                 current->nr_dirtied = 0;
1495                         } else if (period) {
1496                                 current->dirty_paused_when += period;
1497                                 current->nr_dirtied = 0;
1498                         } else if (current->nr_dirtied_pause <= pages_dirtied)
1499                                 current->nr_dirtied_pause += pages_dirtied;
1500                         break;
1501                 }
1502                 if (unlikely(pause > max_pause)) {
1503                         /* for occasional dropped task_ratelimit */
1504                         now += min(pause - max_pause, max_pause);
1505                         pause = max_pause;
1506                 }
1507
1508 pause:
1509                 trace_balance_dirty_pages(bdi,
1510                                           dirty_thresh,
1511                                           background_thresh,
1512                                           nr_dirty,
1513                                           wb_thresh,
1514                                           wb_dirty,
1515                                           dirty_ratelimit,
1516                                           task_ratelimit,
1517                                           pages_dirtied,
1518                                           period,
1519                                           pause,
1520                                           start_time);
1521                 __set_current_state(TASK_KILLABLE);
1522                 io_schedule_timeout(pause);
1523
1524                 current->dirty_paused_when = now + pause;
1525                 current->nr_dirtied = 0;
1526                 current->nr_dirtied_pause = nr_dirtied_pause;
1527
1528                 /*
1529                  * This is typically equal to (nr_dirty < dirty_thresh) and can
1530                  * also keep "1000+ dd on a slow USB stick" under control.
1531                  */
1532                 if (task_ratelimit)
1533                         break;
1534
1535                 /*
1536                  * In the case of an unresponding NFS server and the NFS dirty
1537                  * pages exceeds dirty_thresh, give the other good wb's a pipe
1538                  * to go through, so that tasks on them still remain responsive.
1539                  *
1540                  * In theory 1 page is enough to keep the comsumer-producer
1541                  * pipe going: the flusher cleans 1 page => the task dirties 1
1542                  * more page. However wb_dirty has accounting errors.  So use
1543                  * the larger and more IO friendly wb_stat_error.
1544                  */
1545                 if (wb_dirty <= wb_stat_error(wb))
1546                         break;
1547
1548                 if (fatal_signal_pending(current))
1549                         break;
1550         }
1551
1552         if (!dirty_exceeded && wb->dirty_exceeded)
1553                 wb->dirty_exceeded = 0;
1554
1555         if (writeback_in_progress(wb))
1556                 return;
1557
1558         /*
1559          * In laptop mode, we wait until hitting the higher threshold before
1560          * starting background writeout, and then write out all the way down
1561          * to the lower threshold.  So slow writers cause minimal disk activity.
1562          *
1563          * In normal mode, we start background writeout at the lower
1564          * background_thresh, to keep the amount of dirty memory low.
1565          */
1566         if (laptop_mode)
1567                 return;
1568
1569         if (nr_reclaimable > background_thresh)
1570                 wb_start_background_writeback(wb);
1571 }
1572
1573 static DEFINE_PER_CPU(int, bdp_ratelimits);
1574
1575 /*
1576  * Normal tasks are throttled by
1577  *      loop {
1578  *              dirty tsk->nr_dirtied_pause pages;
1579  *              take a snap in balance_dirty_pages();
1580  *      }
1581  * However there is a worst case. If every task exit immediately when dirtied
1582  * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1583  * called to throttle the page dirties. The solution is to save the not yet
1584  * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1585  * randomly into the running tasks. This works well for the above worst case,
1586  * as the new task will pick up and accumulate the old task's leaked dirty
1587  * count and eventually get throttled.
1588  */
1589 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1590
1591 /**
1592  * balance_dirty_pages_ratelimited - balance dirty memory state
1593  * @mapping: address_space which was dirtied
1594  *
1595  * Processes which are dirtying memory should call in here once for each page
1596  * which was newly dirtied.  The function will periodically check the system's
1597  * dirty state and will initiate writeback if needed.
1598  *
1599  * On really big machines, get_writeback_state is expensive, so try to avoid
1600  * calling it too often (ratelimiting).  But once we're over the dirty memory
1601  * limit we decrease the ratelimiting by a lot, to prevent individual processes
1602  * from overshooting the limit by (ratelimit_pages) each.
1603  */
1604 void balance_dirty_pages_ratelimited(struct address_space *mapping)
1605 {
1606         struct inode *inode = mapping->host;
1607         struct backing_dev_info *bdi = inode_to_bdi(inode);
1608         struct bdi_writeback *wb = NULL;
1609         int ratelimit;
1610         int *p;
1611
1612         if (!bdi_cap_account_dirty(bdi))
1613                 return;
1614
1615         if (inode_cgwb_enabled(inode))
1616                 wb = wb_get_create_current(bdi, GFP_KERNEL);
1617         if (!wb)
1618                 wb = &bdi->wb;
1619
1620         ratelimit = current->nr_dirtied_pause;
1621         if (wb->dirty_exceeded)
1622                 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1623
1624         preempt_disable();
1625         /*
1626          * This prevents one CPU to accumulate too many dirtied pages without
1627          * calling into balance_dirty_pages(), which can happen when there are
1628          * 1000+ tasks, all of them start dirtying pages at exactly the same
1629          * time, hence all honoured too large initial task->nr_dirtied_pause.
1630          */
1631         p =  this_cpu_ptr(&bdp_ratelimits);
1632         if (unlikely(current->nr_dirtied >= ratelimit))
1633                 *p = 0;
1634         else if (unlikely(*p >= ratelimit_pages)) {
1635                 *p = 0;
1636                 ratelimit = 0;
1637         }
1638         /*
1639          * Pick up the dirtied pages by the exited tasks. This avoids lots of
1640          * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1641          * the dirty throttling and livelock other long-run dirtiers.
1642          */
1643         p = this_cpu_ptr(&dirty_throttle_leaks);
1644         if (*p > 0 && current->nr_dirtied < ratelimit) {
1645                 unsigned long nr_pages_dirtied;
1646                 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1647                 *p -= nr_pages_dirtied;
1648                 current->nr_dirtied += nr_pages_dirtied;
1649         }
1650         preempt_enable();
1651
1652         if (unlikely(current->nr_dirtied >= ratelimit))
1653                 balance_dirty_pages(mapping, wb, current->nr_dirtied);
1654
1655         wb_put(wb);
1656 }
1657 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1658
1659 void throttle_vm_writeout(gfp_t gfp_mask)
1660 {
1661         unsigned long background_thresh;
1662         unsigned long dirty_thresh;
1663
1664         for ( ; ; ) {
1665                 global_dirty_limits(&background_thresh, &dirty_thresh);
1666                 dirty_thresh = hard_dirty_limit(dirty_thresh);
1667
1668                 /*
1669                  * Boost the allowable dirty threshold a bit for page
1670                  * allocators so they don't get DoS'ed by heavy writers
1671                  */
1672                 dirty_thresh += dirty_thresh / 10;      /* wheeee... */
1673
1674                 if (global_page_state(NR_UNSTABLE_NFS) +
1675                         global_page_state(NR_WRITEBACK) <= dirty_thresh)
1676                                 break;
1677                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1678
1679                 /*
1680                  * The caller might hold locks which can prevent IO completion
1681                  * or progress in the filesystem.  So we cannot just sit here
1682                  * waiting for IO to complete.
1683                  */
1684                 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1685                         break;
1686         }
1687 }
1688
1689 /*
1690  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1691  */
1692 int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1693         void __user *buffer, size_t *length, loff_t *ppos)
1694 {
1695         proc_dointvec(table, write, buffer, length, ppos);
1696         return 0;
1697 }
1698
1699 #ifdef CONFIG_BLOCK
1700 void laptop_mode_timer_fn(unsigned long data)
1701 {
1702         struct request_queue *q = (struct request_queue *)data;
1703         int nr_pages = global_page_state(NR_FILE_DIRTY) +
1704                 global_page_state(NR_UNSTABLE_NFS);
1705         struct bdi_writeback *wb;
1706         struct wb_iter iter;
1707
1708         /*
1709          * We want to write everything out, not just down to the dirty
1710          * threshold
1711          */
1712         if (!bdi_has_dirty_io(&q->backing_dev_info))
1713                 return;
1714
1715         bdi_for_each_wb(wb, &q->backing_dev_info, &iter, 0)
1716                 if (wb_has_dirty_io(wb))
1717                         wb_start_writeback(wb, nr_pages, true,
1718                                            WB_REASON_LAPTOP_TIMER);
1719 }
1720
1721 /*
1722  * We've spun up the disk and we're in laptop mode: schedule writeback
1723  * of all dirty data a few seconds from now.  If the flush is already scheduled
1724  * then push it back - the user is still using the disk.
1725  */
1726 void laptop_io_completion(struct backing_dev_info *info)
1727 {
1728         mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1729 }
1730
1731 /*
1732  * We're in laptop mode and we've just synced. The sync's writes will have
1733  * caused another writeback to be scheduled by laptop_io_completion.
1734  * Nothing needs to be written back anymore, so we unschedule the writeback.
1735  */
1736 void laptop_sync_completion(void)
1737 {
1738         struct backing_dev_info *bdi;
1739
1740         rcu_read_lock();
1741
1742         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1743                 del_timer(&bdi->laptop_mode_wb_timer);
1744
1745         rcu_read_unlock();
1746 }
1747 #endif
1748
1749 /*
1750  * If ratelimit_pages is too high then we can get into dirty-data overload
1751  * if a large number of processes all perform writes at the same time.
1752  * If it is too low then SMP machines will call the (expensive)
1753  * get_writeback_state too often.
1754  *
1755  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1756  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
1757  * thresholds.
1758  */
1759
1760 void writeback_set_ratelimit(void)
1761 {
1762         struct wb_domain *dom = &global_wb_domain;
1763         unsigned long background_thresh;
1764         unsigned long dirty_thresh;
1765
1766         global_dirty_limits(&background_thresh, &dirty_thresh);
1767         dom->dirty_limit = dirty_thresh;
1768         ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1769         if (ratelimit_pages < 16)
1770                 ratelimit_pages = 16;
1771 }
1772
1773 static int
1774 ratelimit_handler(struct notifier_block *self, unsigned long action,
1775                   void *hcpu)
1776 {
1777
1778         switch (action & ~CPU_TASKS_FROZEN) {
1779         case CPU_ONLINE:
1780         case CPU_DEAD:
1781                 writeback_set_ratelimit();
1782                 return NOTIFY_OK;
1783         default:
1784                 return NOTIFY_DONE;
1785         }
1786 }
1787
1788 static struct notifier_block ratelimit_nb = {
1789         .notifier_call  = ratelimit_handler,
1790         .next           = NULL,
1791 };
1792
1793 /*
1794  * Called early on to tune the page writeback dirty limits.
1795  *
1796  * We used to scale dirty pages according to how total memory
1797  * related to pages that could be allocated for buffers (by
1798  * comparing nr_free_buffer_pages() to vm_total_pages.
1799  *
1800  * However, that was when we used "dirty_ratio" to scale with
1801  * all memory, and we don't do that any more. "dirty_ratio"
1802  * is now applied to total non-HIGHPAGE memory (by subtracting
1803  * totalhigh_pages from vm_total_pages), and as such we can't
1804  * get into the old insane situation any more where we had
1805  * large amounts of dirty pages compared to a small amount of
1806  * non-HIGHMEM memory.
1807  *
1808  * But we might still want to scale the dirty_ratio by how
1809  * much memory the box has..
1810  */
1811 void __init page_writeback_init(void)
1812 {
1813         writeback_set_ratelimit();
1814         register_cpu_notifier(&ratelimit_nb);
1815
1816         BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
1817 }
1818
1819 /**
1820  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1821  * @mapping: address space structure to write
1822  * @start: starting page index
1823  * @end: ending page index (inclusive)
1824  *
1825  * This function scans the page range from @start to @end (inclusive) and tags
1826  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1827  * that write_cache_pages (or whoever calls this function) will then use
1828  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
1829  * used to avoid livelocking of writeback by a process steadily creating new
1830  * dirty pages in the file (thus it is important for this function to be quick
1831  * so that it can tag pages faster than a dirtying process can create them).
1832  */
1833 /*
1834  * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1835  */
1836 void tag_pages_for_writeback(struct address_space *mapping,
1837                              pgoff_t start, pgoff_t end)
1838 {
1839 #define WRITEBACK_TAG_BATCH 4096
1840         unsigned long tagged;
1841
1842         do {
1843                 spin_lock_irq(&mapping->tree_lock);
1844                 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1845                                 &start, end, WRITEBACK_TAG_BATCH,
1846                                 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1847                 spin_unlock_irq(&mapping->tree_lock);
1848                 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1849                 cond_resched();
1850                 /* We check 'start' to handle wrapping when end == ~0UL */
1851         } while (tagged >= WRITEBACK_TAG_BATCH && start);
1852 }
1853 EXPORT_SYMBOL(tag_pages_for_writeback);
1854
1855 /**
1856  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
1857  * @mapping: address space structure to write
1858  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1859  * @writepage: function called for each page
1860  * @data: data passed to writepage function
1861  *
1862  * If a page is already under I/O, write_cache_pages() skips it, even
1863  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
1864  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
1865  * and msync() need to guarantee that all the data which was dirty at the time
1866  * the call was made get new I/O started against them.  If wbc->sync_mode is
1867  * WB_SYNC_ALL then we were called for data integrity and we must wait for
1868  * existing IO to complete.
1869  *
1870  * To avoid livelocks (when other process dirties new pages), we first tag
1871  * pages which should be written back with TOWRITE tag and only then start
1872  * writing them. For data-integrity sync we have to be careful so that we do
1873  * not miss some pages (e.g., because some other process has cleared TOWRITE
1874  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1875  * by the process clearing the DIRTY tag (and submitting the page for IO).
1876  */
1877 int write_cache_pages(struct address_space *mapping,
1878                       struct writeback_control *wbc, writepage_t writepage,
1879                       void *data)
1880 {
1881         int ret = 0;
1882         int done = 0;
1883         struct pagevec pvec;
1884         int nr_pages;
1885         pgoff_t uninitialized_var(writeback_index);
1886         pgoff_t index;
1887         pgoff_t end;            /* Inclusive */
1888         pgoff_t done_index;
1889         int cycled;
1890         int range_whole = 0;
1891         int tag;
1892
1893         pagevec_init(&pvec, 0);
1894         if (wbc->range_cyclic) {
1895                 writeback_index = mapping->writeback_index; /* prev offset */
1896                 index = writeback_index;
1897                 if (index == 0)
1898                         cycled = 1;
1899                 else
1900                         cycled = 0;
1901                 end = -1;
1902         } else {
1903                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1904                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1905                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1906                         range_whole = 1;
1907                 cycled = 1; /* ignore range_cyclic tests */
1908         }
1909         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1910                 tag = PAGECACHE_TAG_TOWRITE;
1911         else
1912                 tag = PAGECACHE_TAG_DIRTY;
1913 retry:
1914         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1915                 tag_pages_for_writeback(mapping, index, end);
1916         done_index = index;
1917         while (!done && (index <= end)) {
1918                 int i;
1919
1920                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1921                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1922                 if (nr_pages == 0)
1923                         break;
1924
1925                 for (i = 0; i < nr_pages; i++) {
1926                         struct page *page = pvec.pages[i];
1927
1928                         /*
1929                          * At this point, the page may be truncated or
1930                          * invalidated (changing page->mapping to NULL), or
1931                          * even swizzled back from swapper_space to tmpfs file
1932                          * mapping. However, page->index will not change
1933                          * because we have a reference on the page.
1934                          */
1935                         if (page->index > end) {
1936                                 /*
1937                                  * can't be range_cyclic (1st pass) because
1938                                  * end == -1 in that case.
1939                                  */
1940                                 done = 1;
1941                                 break;
1942                         }
1943
1944                         done_index = page->index;
1945
1946                         lock_page(page);
1947
1948                         /*
1949                          * Page truncated or invalidated. We can freely skip it
1950                          * then, even for data integrity operations: the page
1951                          * has disappeared concurrently, so there could be no
1952                          * real expectation of this data interity operation
1953                          * even if there is now a new, dirty page at the same
1954                          * pagecache address.
1955                          */
1956                         if (unlikely(page->mapping != mapping)) {
1957 continue_unlock:
1958                                 unlock_page(page);
1959                                 continue;
1960                         }
1961
1962                         if (!PageDirty(page)) {
1963                                 /* someone wrote it for us */
1964                                 goto continue_unlock;
1965                         }
1966
1967                         if (PageWriteback(page)) {
1968                                 if (wbc->sync_mode != WB_SYNC_NONE)
1969                                         wait_on_page_writeback(page);
1970                                 else
1971                                         goto continue_unlock;
1972                         }
1973
1974                         BUG_ON(PageWriteback(page));
1975                         if (!clear_page_dirty_for_io(page))
1976                                 goto continue_unlock;
1977
1978                         trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
1979                         ret = (*writepage)(page, wbc, data);
1980                         if (unlikely(ret)) {
1981                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1982                                         unlock_page(page);
1983                                         ret = 0;
1984                                 } else {
1985                                         /*
1986                                          * done_index is set past this page,
1987                                          * so media errors will not choke
1988                                          * background writeout for the entire
1989                                          * file. This has consequences for
1990                                          * range_cyclic semantics (ie. it may
1991                                          * not be suitable for data integrity
1992                                          * writeout).
1993                                          */
1994                                         done_index = page->index + 1;
1995                                         done = 1;
1996                                         break;
1997                                 }
1998                         }
1999
2000                         /*
2001                          * We stop writing back only if we are not doing
2002                          * integrity sync. In case of integrity sync we have to
2003                          * keep going until we have written all the pages
2004                          * we tagged for writeback prior to entering this loop.
2005                          */
2006                         if (--wbc->nr_to_write <= 0 &&
2007                             wbc->sync_mode == WB_SYNC_NONE) {
2008                                 done = 1;
2009                                 break;
2010                         }
2011                 }
2012                 pagevec_release(&pvec);
2013                 cond_resched();
2014         }
2015         if (!cycled && !done) {
2016                 /*
2017                  * range_cyclic:
2018                  * We hit the last page and there is more work to be done: wrap
2019                  * back to the start of the file
2020                  */
2021                 cycled = 1;
2022                 index = 0;
2023                 end = writeback_index - 1;
2024                 goto retry;
2025         }
2026         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2027                 mapping->writeback_index = done_index;
2028
2029         return ret;
2030 }
2031 EXPORT_SYMBOL(write_cache_pages);
2032
2033 /*
2034  * Function used by generic_writepages to call the real writepage
2035  * function and set the mapping flags on error
2036  */
2037 static int __writepage(struct page *page, struct writeback_control *wbc,
2038                        void *data)
2039 {
2040         struct address_space *mapping = data;
2041         int ret = mapping->a_ops->writepage(page, wbc);
2042         mapping_set_error(mapping, ret);
2043         return ret;
2044 }
2045
2046 /**
2047  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2048  * @mapping: address space structure to write
2049  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2050  *
2051  * This is a library function, which implements the writepages()
2052  * address_space_operation.
2053  */
2054 int generic_writepages(struct address_space *mapping,
2055                        struct writeback_control *wbc)
2056 {
2057         struct blk_plug plug;
2058         int ret;
2059
2060         /* deal with chardevs and other special file */
2061         if (!mapping->a_ops->writepage)
2062                 return 0;
2063
2064         blk_start_plug(&plug);
2065         ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2066         blk_finish_plug(&plug);
2067         return ret;
2068 }
2069
2070 EXPORT_SYMBOL(generic_writepages);
2071
2072 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2073 {
2074         int ret;
2075
2076         if (wbc->nr_to_write <= 0)
2077                 return 0;
2078         if (mapping->a_ops->writepages)
2079                 ret = mapping->a_ops->writepages(mapping, wbc);
2080         else
2081                 ret = generic_writepages(mapping, wbc);
2082         return ret;
2083 }
2084
2085 /**
2086  * write_one_page - write out a single page and optionally wait on I/O
2087  * @page: the page to write
2088  * @wait: if true, wait on writeout
2089  *
2090  * The page must be locked by the caller and will be unlocked upon return.
2091  *
2092  * write_one_page() returns a negative error code if I/O failed.
2093  */
2094 int write_one_page(struct page *page, int wait)
2095 {
2096         struct address_space *mapping = page->mapping;
2097         int ret = 0;
2098         struct writeback_control wbc = {
2099                 .sync_mode = WB_SYNC_ALL,
2100                 .nr_to_write = 1,
2101         };
2102
2103         BUG_ON(!PageLocked(page));
2104
2105         if (wait)
2106                 wait_on_page_writeback(page);
2107
2108         if (clear_page_dirty_for_io(page)) {
2109                 page_cache_get(page);
2110                 ret = mapping->a_ops->writepage(page, &wbc);
2111                 if (ret == 0 && wait) {
2112                         wait_on_page_writeback(page);
2113                         if (PageError(page))
2114                                 ret = -EIO;
2115                 }
2116                 page_cache_release(page);
2117         } else {
2118                 unlock_page(page);
2119         }
2120         return ret;
2121 }
2122 EXPORT_SYMBOL(write_one_page);
2123
2124 /*
2125  * For address_spaces which do not use buffers nor write back.
2126  */
2127 int __set_page_dirty_no_writeback(struct page *page)
2128 {
2129         if (!PageDirty(page))
2130                 return !TestSetPageDirty(page);
2131         return 0;
2132 }
2133
2134 /*
2135  * Helper function for set_page_dirty family.
2136  *
2137  * Caller must hold mem_cgroup_begin_page_stat().
2138  *
2139  * NOTE: This relies on being atomic wrt interrupts.
2140  */
2141 void account_page_dirtied(struct page *page, struct address_space *mapping,
2142                           struct mem_cgroup *memcg)
2143 {
2144         struct inode *inode = mapping->host;
2145
2146         trace_writeback_dirty_page(page, mapping);
2147
2148         if (mapping_cap_account_dirty(mapping)) {
2149                 struct bdi_writeback *wb;
2150
2151                 inode_attach_wb(inode, page);
2152                 wb = inode_to_wb(inode);
2153
2154                 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2155                 __inc_zone_page_state(page, NR_FILE_DIRTY);
2156                 __inc_zone_page_state(page, NR_DIRTIED);
2157                 __inc_wb_stat(wb, WB_RECLAIMABLE);
2158                 __inc_wb_stat(wb, WB_DIRTIED);
2159                 task_io_account_write(PAGE_CACHE_SIZE);
2160                 current->nr_dirtied++;
2161                 this_cpu_inc(bdp_ratelimits);
2162         }
2163 }
2164 EXPORT_SYMBOL(account_page_dirtied);
2165
2166 /*
2167  * Helper function for deaccounting dirty page without writeback.
2168  *
2169  * Caller must hold mem_cgroup_begin_page_stat().
2170  */
2171 void account_page_cleaned(struct page *page, struct address_space *mapping,
2172                           struct mem_cgroup *memcg)
2173 {
2174         if (mapping_cap_account_dirty(mapping)) {
2175                 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2176                 dec_zone_page_state(page, NR_FILE_DIRTY);
2177                 dec_wb_stat(inode_to_wb(mapping->host), WB_RECLAIMABLE);
2178                 task_io_account_cancelled_write(PAGE_CACHE_SIZE);
2179         }
2180 }
2181
2182 /*
2183  * For address_spaces which do not use buffers.  Just tag the page as dirty in
2184  * its radix tree.
2185  *
2186  * This is also used when a single buffer is being dirtied: we want to set the
2187  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
2188  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2189  *
2190  * The caller must ensure this doesn't race with truncation.  Most will simply
2191  * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2192  * the pte lock held, which also locks out truncation.
2193  */
2194 int __set_page_dirty_nobuffers(struct page *page)
2195 {
2196         struct mem_cgroup *memcg;
2197
2198         memcg = mem_cgroup_begin_page_stat(page);
2199         if (!TestSetPageDirty(page)) {
2200                 struct address_space *mapping = page_mapping(page);
2201                 unsigned long flags;
2202
2203                 if (!mapping) {
2204                         mem_cgroup_end_page_stat(memcg);
2205                         return 1;
2206                 }
2207
2208                 spin_lock_irqsave(&mapping->tree_lock, flags);
2209                 BUG_ON(page_mapping(page) != mapping);
2210                 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2211                 account_page_dirtied(page, mapping, memcg);
2212                 radix_tree_tag_set(&mapping->page_tree, page_index(page),
2213                                    PAGECACHE_TAG_DIRTY);
2214                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2215                 mem_cgroup_end_page_stat(memcg);
2216
2217                 if (mapping->host) {
2218                         /* !PageAnon && !swapper_space */
2219                         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2220                 }
2221                 return 1;
2222         }
2223         mem_cgroup_end_page_stat(memcg);
2224         return 0;
2225 }
2226 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2227
2228 /*
2229  * Call this whenever redirtying a page, to de-account the dirty counters
2230  * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2231  * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2232  * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2233  * control.
2234  */
2235 void account_page_redirty(struct page *page)
2236 {
2237         struct address_space *mapping = page->mapping;
2238
2239         if (mapping && mapping_cap_account_dirty(mapping)) {
2240                 struct bdi_writeback *wb = inode_to_wb(mapping->host);
2241
2242                 current->nr_dirtied--;
2243                 dec_zone_page_state(page, NR_DIRTIED);
2244                 dec_wb_stat(wb, WB_DIRTIED);
2245         }
2246 }
2247 EXPORT_SYMBOL(account_page_redirty);
2248
2249 /*
2250  * When a writepage implementation decides that it doesn't want to write this
2251  * page for some reason, it should redirty the locked page via
2252  * redirty_page_for_writepage() and it should then unlock the page and return 0
2253  */
2254 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2255 {
2256         int ret;
2257
2258         wbc->pages_skipped++;
2259         ret = __set_page_dirty_nobuffers(page);
2260         account_page_redirty(page);
2261         return ret;
2262 }
2263 EXPORT_SYMBOL(redirty_page_for_writepage);
2264
2265 /*
2266  * Dirty a page.
2267  *
2268  * For pages with a mapping this should be done under the page lock
2269  * for the benefit of asynchronous memory errors who prefer a consistent
2270  * dirty state. This rule can be broken in some special cases,
2271  * but should be better not to.
2272  *
2273  * If the mapping doesn't provide a set_page_dirty a_op, then
2274  * just fall through and assume that it wants buffer_heads.
2275  */
2276 int set_page_dirty(struct page *page)
2277 {
2278         struct address_space *mapping = page_mapping(page);
2279
2280         if (likely(mapping)) {
2281                 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2282                 /*
2283                  * readahead/lru_deactivate_page could remain
2284                  * PG_readahead/PG_reclaim due to race with end_page_writeback
2285                  * About readahead, if the page is written, the flags would be
2286                  * reset. So no problem.
2287                  * About lru_deactivate_page, if the page is redirty, the flag
2288                  * will be reset. So no problem. but if the page is used by readahead
2289                  * it will confuse readahead and make it restart the size rampup
2290                  * process. But it's a trivial problem.
2291                  */
2292                 if (PageReclaim(page))
2293                         ClearPageReclaim(page);
2294 #ifdef CONFIG_BLOCK
2295                 if (!spd)
2296                         spd = __set_page_dirty_buffers;
2297 #endif
2298                 return (*spd)(page);
2299         }
2300         if (!PageDirty(page)) {
2301                 if (!TestSetPageDirty(page))
2302                         return 1;
2303         }
2304         return 0;
2305 }
2306 EXPORT_SYMBOL(set_page_dirty);
2307
2308 /*
2309  * set_page_dirty() is racy if the caller has no reference against
2310  * page->mapping->host, and if the page is unlocked.  This is because another
2311  * CPU could truncate the page off the mapping and then free the mapping.
2312  *
2313  * Usually, the page _is_ locked, or the caller is a user-space process which
2314  * holds a reference on the inode by having an open file.
2315  *
2316  * In other cases, the page should be locked before running set_page_dirty().
2317  */
2318 int set_page_dirty_lock(struct page *page)
2319 {
2320         int ret;
2321
2322         lock_page(page);
2323         ret = set_page_dirty(page);
2324         unlock_page(page);
2325         return ret;
2326 }
2327 EXPORT_SYMBOL(set_page_dirty_lock);
2328
2329 /*
2330  * This cancels just the dirty bit on the kernel page itself, it does NOT
2331  * actually remove dirty bits on any mmap's that may be around. It also
2332  * leaves the page tagged dirty, so any sync activity will still find it on
2333  * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2334  * look at the dirty bits in the VM.
2335  *
2336  * Doing this should *normally* only ever be done when a page is truncated,
2337  * and is not actually mapped anywhere at all. However, fs/buffer.c does
2338  * this when it notices that somebody has cleaned out all the buffers on a
2339  * page without actually doing it through the VM. Can you say "ext3 is
2340  * horribly ugly"? Thought you could.
2341  */
2342 void cancel_dirty_page(struct page *page)
2343 {
2344         struct address_space *mapping = page_mapping(page);
2345
2346         if (mapping_cap_account_dirty(mapping)) {
2347                 struct mem_cgroup *memcg;
2348
2349                 memcg = mem_cgroup_begin_page_stat(page);
2350
2351                 if (TestClearPageDirty(page))
2352                         account_page_cleaned(page, mapping, memcg);
2353
2354                 mem_cgroup_end_page_stat(memcg);
2355         } else {
2356                 ClearPageDirty(page);
2357         }
2358 }
2359 EXPORT_SYMBOL(cancel_dirty_page);
2360
2361 /*
2362  * Clear a page's dirty flag, while caring for dirty memory accounting.
2363  * Returns true if the page was previously dirty.
2364  *
2365  * This is for preparing to put the page under writeout.  We leave the page
2366  * tagged as dirty in the radix tree so that a concurrent write-for-sync
2367  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
2368  * implementation will run either set_page_writeback() or set_page_dirty(),
2369  * at which stage we bring the page's dirty flag and radix-tree dirty tag
2370  * back into sync.
2371  *
2372  * This incoherency between the page's dirty flag and radix-tree tag is
2373  * unfortunate, but it only exists while the page is locked.
2374  */
2375 int clear_page_dirty_for_io(struct page *page)
2376 {
2377         struct address_space *mapping = page_mapping(page);
2378         struct mem_cgroup *memcg;
2379         int ret = 0;
2380
2381         BUG_ON(!PageLocked(page));
2382
2383         if (mapping && mapping_cap_account_dirty(mapping)) {
2384                 /*
2385                  * Yes, Virginia, this is indeed insane.
2386                  *
2387                  * We use this sequence to make sure that
2388                  *  (a) we account for dirty stats properly
2389                  *  (b) we tell the low-level filesystem to
2390                  *      mark the whole page dirty if it was
2391                  *      dirty in a pagetable. Only to then
2392                  *  (c) clean the page again and return 1 to
2393                  *      cause the writeback.
2394                  *
2395                  * This way we avoid all nasty races with the
2396                  * dirty bit in multiple places and clearing
2397                  * them concurrently from different threads.
2398                  *
2399                  * Note! Normally the "set_page_dirty(page)"
2400                  * has no effect on the actual dirty bit - since
2401                  * that will already usually be set. But we
2402                  * need the side effects, and it can help us
2403                  * avoid races.
2404                  *
2405                  * We basically use the page "master dirty bit"
2406                  * as a serialization point for all the different
2407                  * threads doing their things.
2408                  */
2409                 if (page_mkclean(page))
2410                         set_page_dirty(page);
2411                 /*
2412                  * We carefully synchronise fault handlers against
2413                  * installing a dirty pte and marking the page dirty
2414                  * at this point.  We do this by having them hold the
2415                  * page lock while dirtying the page, and pages are
2416                  * always locked coming in here, so we get the desired
2417                  * exclusion.
2418                  */
2419                 memcg = mem_cgroup_begin_page_stat(page);
2420                 if (TestClearPageDirty(page)) {
2421                         mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2422                         dec_zone_page_state(page, NR_FILE_DIRTY);
2423                         dec_wb_stat(inode_to_wb(mapping->host), WB_RECLAIMABLE);
2424                         ret = 1;
2425                 }
2426                 mem_cgroup_end_page_stat(memcg);
2427                 return ret;
2428         }
2429         return TestClearPageDirty(page);
2430 }
2431 EXPORT_SYMBOL(clear_page_dirty_for_io);
2432
2433 int test_clear_page_writeback(struct page *page)
2434 {
2435         struct address_space *mapping = page_mapping(page);
2436         struct mem_cgroup *memcg;
2437         int ret;
2438
2439         memcg = mem_cgroup_begin_page_stat(page);
2440         if (mapping) {
2441                 struct inode *inode = mapping->host;
2442                 struct backing_dev_info *bdi = inode_to_bdi(inode);
2443                 unsigned long flags;
2444
2445                 spin_lock_irqsave(&mapping->tree_lock, flags);
2446                 ret = TestClearPageWriteback(page);
2447                 if (ret) {
2448                         radix_tree_tag_clear(&mapping->page_tree,
2449                                                 page_index(page),
2450                                                 PAGECACHE_TAG_WRITEBACK);
2451                         if (bdi_cap_account_writeback(bdi)) {
2452                                 struct bdi_writeback *wb = inode_to_wb(inode);
2453
2454                                 __dec_wb_stat(wb, WB_WRITEBACK);
2455                                 __wb_writeout_inc(wb);
2456                         }
2457                 }
2458                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2459         } else {
2460                 ret = TestClearPageWriteback(page);
2461         }
2462         if (ret) {
2463                 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
2464                 dec_zone_page_state(page, NR_WRITEBACK);
2465                 inc_zone_page_state(page, NR_WRITTEN);
2466         }
2467         mem_cgroup_end_page_stat(memcg);
2468         return ret;
2469 }
2470
2471 int __test_set_page_writeback(struct page *page, bool keep_write)
2472 {
2473         struct address_space *mapping = page_mapping(page);
2474         struct mem_cgroup *memcg;
2475         int ret;
2476
2477         memcg = mem_cgroup_begin_page_stat(page);
2478         if (mapping) {
2479                 struct inode *inode = mapping->host;
2480                 struct backing_dev_info *bdi = inode_to_bdi(inode);
2481                 unsigned long flags;
2482
2483                 spin_lock_irqsave(&mapping->tree_lock, flags);
2484                 ret = TestSetPageWriteback(page);
2485                 if (!ret) {
2486                         radix_tree_tag_set(&mapping->page_tree,
2487                                                 page_index(page),
2488                                                 PAGECACHE_TAG_WRITEBACK);
2489                         if (bdi_cap_account_writeback(bdi))
2490                                 __inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
2491                 }
2492                 if (!PageDirty(page))
2493                         radix_tree_tag_clear(&mapping->page_tree,
2494                                                 page_index(page),
2495                                                 PAGECACHE_TAG_DIRTY);
2496                 if (!keep_write)
2497                         radix_tree_tag_clear(&mapping->page_tree,
2498                                                 page_index(page),
2499                                                 PAGECACHE_TAG_TOWRITE);
2500                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2501         } else {
2502                 ret = TestSetPageWriteback(page);
2503         }
2504         if (!ret) {
2505                 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
2506                 inc_zone_page_state(page, NR_WRITEBACK);
2507         }
2508         mem_cgroup_end_page_stat(memcg);
2509         return ret;
2510
2511 }
2512 EXPORT_SYMBOL(__test_set_page_writeback);
2513
2514 /*
2515  * Return true if any of the pages in the mapping are marked with the
2516  * passed tag.
2517  */
2518 int mapping_tagged(struct address_space *mapping, int tag)
2519 {
2520         return radix_tree_tagged(&mapping->page_tree, tag);
2521 }
2522 EXPORT_SYMBOL(mapping_tagged);
2523
2524 /**
2525  * wait_for_stable_page() - wait for writeback to finish, if necessary.
2526  * @page:       The page to wait on.
2527  *
2528  * This function determines if the given page is related to a backing device
2529  * that requires page contents to be held stable during writeback.  If so, then
2530  * it will wait for any pending writeback to complete.
2531  */
2532 void wait_for_stable_page(struct page *page)
2533 {
2534         if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2535                 wait_on_page_writeback(page);
2536 }
2537 EXPORT_SYMBOL_GPL(wait_for_stable_page);