writeback: skip balance_dirty_pages() for in-memory fs
[cascardo/linux.git] / mm / page-writeback.c
1 /*
2  * mm/page-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6  *
7  * Contains functions related to writing back dirty pages at the
8  * address_space level.
9  *
10  * 10Apr2002    Andrew Morton
11  *              Initial version
12  */
13
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h>
36 #include <linux/pagevec.h>
37 #include <trace/events/writeback.h>
38
39 /*
40  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
41  * will look to see if it needs to force writeback or throttling.
42  */
43 static long ratelimit_pages = 32;
44
45 /*
46  * When balance_dirty_pages decides that the caller needs to perform some
47  * non-background writeback, this is how many pages it will attempt to write.
48  * It should be somewhat larger than dirtied pages to ensure that reasonably
49  * large amounts of I/O are submitted.
50  */
51 static inline long sync_writeback_pages(unsigned long dirtied)
52 {
53         if (dirtied < ratelimit_pages)
54                 dirtied = ratelimit_pages;
55
56         return dirtied + dirtied / 2;
57 }
58
59 /* The following parameters are exported via /proc/sys/vm */
60
61 /*
62  * Start background writeback (via writeback threads) at this percentage
63  */
64 int dirty_background_ratio = 10;
65
66 /*
67  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
68  * dirty_background_ratio * the amount of dirtyable memory
69  */
70 unsigned long dirty_background_bytes;
71
72 /*
73  * free highmem will not be subtracted from the total free memory
74  * for calculating free ratios if vm_highmem_is_dirtyable is true
75  */
76 int vm_highmem_is_dirtyable;
77
78 /*
79  * The generator of dirty data starts writeback at this percentage
80  */
81 int vm_dirty_ratio = 20;
82
83 /*
84  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
85  * vm_dirty_ratio * the amount of dirtyable memory
86  */
87 unsigned long vm_dirty_bytes;
88
89 /*
90  * The interval between `kupdate'-style writebacks
91  */
92 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
93
94 /*
95  * The longest time for which data is allowed to remain dirty
96  */
97 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
98
99 /*
100  * Flag that makes the machine dump writes/reads and block dirtyings.
101  */
102 int block_dump;
103
104 /*
105  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
106  * a full sync is triggered after this time elapses without any disk activity.
107  */
108 int laptop_mode;
109
110 EXPORT_SYMBOL(laptop_mode);
111
112 /* End of sysctl-exported parameters */
113
114
115 /*
116  * Scale the writeback cache size proportional to the relative writeout speeds.
117  *
118  * We do this by keeping a floating proportion between BDIs, based on page
119  * writeback completions [end_page_writeback()]. Those devices that write out
120  * pages fastest will get the larger share, while the slower will get a smaller
121  * share.
122  *
123  * We use page writeout completions because we are interested in getting rid of
124  * dirty pages. Having them written out is the primary goal.
125  *
126  * We introduce a concept of time, a period over which we measure these events,
127  * because demand can/will vary over time. The length of this period itself is
128  * measured in page writeback completions.
129  *
130  */
131 static struct prop_descriptor vm_completions;
132 static struct prop_descriptor vm_dirties;
133
134 /*
135  * couple the period to the dirty_ratio:
136  *
137  *   period/2 ~ roundup_pow_of_two(dirty limit)
138  */
139 static int calc_period_shift(void)
140 {
141         unsigned long dirty_total;
142
143         if (vm_dirty_bytes)
144                 dirty_total = vm_dirty_bytes / PAGE_SIZE;
145         else
146                 dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
147                                 100;
148         return 2 + ilog2(dirty_total - 1);
149 }
150
151 /*
152  * update the period when the dirty threshold changes.
153  */
154 static void update_completion_period(void)
155 {
156         int shift = calc_period_shift();
157         prop_change_shift(&vm_completions, shift);
158         prop_change_shift(&vm_dirties, shift);
159 }
160
161 int dirty_background_ratio_handler(struct ctl_table *table, int write,
162                 void __user *buffer, size_t *lenp,
163                 loff_t *ppos)
164 {
165         int ret;
166
167         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
168         if (ret == 0 && write)
169                 dirty_background_bytes = 0;
170         return ret;
171 }
172
173 int dirty_background_bytes_handler(struct ctl_table *table, int write,
174                 void __user *buffer, size_t *lenp,
175                 loff_t *ppos)
176 {
177         int ret;
178
179         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
180         if (ret == 0 && write)
181                 dirty_background_ratio = 0;
182         return ret;
183 }
184
185 int dirty_ratio_handler(struct ctl_table *table, int write,
186                 void __user *buffer, size_t *lenp,
187                 loff_t *ppos)
188 {
189         int old_ratio = vm_dirty_ratio;
190         int ret;
191
192         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
193         if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
194                 update_completion_period();
195                 vm_dirty_bytes = 0;
196         }
197         return ret;
198 }
199
200
201 int dirty_bytes_handler(struct ctl_table *table, int write,
202                 void __user *buffer, size_t *lenp,
203                 loff_t *ppos)
204 {
205         unsigned long old_bytes = vm_dirty_bytes;
206         int ret;
207
208         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
209         if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
210                 update_completion_period();
211                 vm_dirty_ratio = 0;
212         }
213         return ret;
214 }
215
216 /*
217  * Increment the BDI's writeout completion count and the global writeout
218  * completion count. Called from test_clear_page_writeback().
219  */
220 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
221 {
222         __prop_inc_percpu_max(&vm_completions, &bdi->completions,
223                               bdi->max_prop_frac);
224 }
225
226 void bdi_writeout_inc(struct backing_dev_info *bdi)
227 {
228         unsigned long flags;
229
230         local_irq_save(flags);
231         __bdi_writeout_inc(bdi);
232         local_irq_restore(flags);
233 }
234 EXPORT_SYMBOL_GPL(bdi_writeout_inc);
235
236 void task_dirty_inc(struct task_struct *tsk)
237 {
238         prop_inc_single(&vm_dirties, &tsk->dirties);
239 }
240
241 /*
242  * Obtain an accurate fraction of the BDI's portion.
243  */
244 static void bdi_writeout_fraction(struct backing_dev_info *bdi,
245                 long *numerator, long *denominator)
246 {
247         prop_fraction_percpu(&vm_completions, &bdi->completions,
248                                 numerator, denominator);
249 }
250
251 static inline void task_dirties_fraction(struct task_struct *tsk,
252                 long *numerator, long *denominator)
253 {
254         prop_fraction_single(&vm_dirties, &tsk->dirties,
255                                 numerator, denominator);
256 }
257
258 /*
259  * task_dirty_limit - scale down dirty throttling threshold for one task
260  *
261  * task specific dirty limit:
262  *
263  *   dirty -= (dirty/8) * p_{t}
264  *
265  * To protect light/slow dirtying tasks from heavier/fast ones, we start
266  * throttling individual tasks before reaching the bdi dirty limit.
267  * Relatively low thresholds will be allocated to heavy dirtiers. So when
268  * dirty pages grow large, heavy dirtiers will be throttled first, which will
269  * effectively curb the growth of dirty pages. Light dirtiers with high enough
270  * dirty threshold may never get throttled.
271  */
272 static unsigned long task_dirty_limit(struct task_struct *tsk,
273                                        unsigned long bdi_dirty)
274 {
275         long numerator, denominator;
276         unsigned long dirty = bdi_dirty;
277         u64 inv = dirty >> 3;
278
279         task_dirties_fraction(tsk, &numerator, &denominator);
280         inv *= numerator;
281         do_div(inv, denominator);
282
283         dirty -= inv;
284
285         return max(dirty, bdi_dirty/2);
286 }
287
288 /*
289  *
290  */
291 static unsigned int bdi_min_ratio;
292
293 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
294 {
295         int ret = 0;
296
297         spin_lock_bh(&bdi_lock);
298         if (min_ratio > bdi->max_ratio) {
299                 ret = -EINVAL;
300         } else {
301                 min_ratio -= bdi->min_ratio;
302                 if (bdi_min_ratio + min_ratio < 100) {
303                         bdi_min_ratio += min_ratio;
304                         bdi->min_ratio += min_ratio;
305                 } else {
306                         ret = -EINVAL;
307                 }
308         }
309         spin_unlock_bh(&bdi_lock);
310
311         return ret;
312 }
313
314 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
315 {
316         int ret = 0;
317
318         if (max_ratio > 100)
319                 return -EINVAL;
320
321         spin_lock_bh(&bdi_lock);
322         if (bdi->min_ratio > max_ratio) {
323                 ret = -EINVAL;
324         } else {
325                 bdi->max_ratio = max_ratio;
326                 bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
327         }
328         spin_unlock_bh(&bdi_lock);
329
330         return ret;
331 }
332 EXPORT_SYMBOL(bdi_set_max_ratio);
333
334 /*
335  * Work out the current dirty-memory clamping and background writeout
336  * thresholds.
337  *
338  * The main aim here is to lower them aggressively if there is a lot of mapped
339  * memory around.  To avoid stressing page reclaim with lots of unreclaimable
340  * pages.  It is better to clamp down on writers than to start swapping, and
341  * performing lots of scanning.
342  *
343  * We only allow 1/2 of the currently-unmapped memory to be dirtied.
344  *
345  * We don't permit the clamping level to fall below 5% - that is getting rather
346  * excessive.
347  *
348  * We make sure that the background writeout level is below the adjusted
349  * clamping level.
350  */
351
352 static unsigned long highmem_dirtyable_memory(unsigned long total)
353 {
354 #ifdef CONFIG_HIGHMEM
355         int node;
356         unsigned long x = 0;
357
358         for_each_node_state(node, N_HIGH_MEMORY) {
359                 struct zone *z =
360                         &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
361
362                 x += zone_page_state(z, NR_FREE_PAGES) +
363                      zone_reclaimable_pages(z);
364         }
365         /*
366          * Make sure that the number of highmem pages is never larger
367          * than the number of the total dirtyable memory. This can only
368          * occur in very strange VM situations but we want to make sure
369          * that this does not occur.
370          */
371         return min(x, total);
372 #else
373         return 0;
374 #endif
375 }
376
377 /**
378  * determine_dirtyable_memory - amount of memory that may be used
379  *
380  * Returns the numebr of pages that can currently be freed and used
381  * by the kernel for direct mappings.
382  */
383 unsigned long determine_dirtyable_memory(void)
384 {
385         unsigned long x;
386
387         x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
388
389         if (!vm_highmem_is_dirtyable)
390                 x -= highmem_dirtyable_memory(x);
391
392         return x + 1;   /* Ensure that we never return 0 */
393 }
394
395 /*
396  * global_dirty_limits - background-writeback and dirty-throttling thresholds
397  *
398  * Calculate the dirty thresholds based on sysctl parameters
399  * - vm.dirty_background_ratio  or  vm.dirty_background_bytes
400  * - vm.dirty_ratio             or  vm.dirty_bytes
401  * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
402  * real-time tasks.
403  */
404 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
405 {
406         unsigned long background;
407         unsigned long dirty;
408         unsigned long uninitialized_var(available_memory);
409         struct task_struct *tsk;
410
411         if (!vm_dirty_bytes || !dirty_background_bytes)
412                 available_memory = determine_dirtyable_memory();
413
414         if (vm_dirty_bytes)
415                 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
416         else
417                 dirty = (vm_dirty_ratio * available_memory) / 100;
418
419         if (dirty_background_bytes)
420                 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
421         else
422                 background = (dirty_background_ratio * available_memory) / 100;
423
424         if (background >= dirty)
425                 background = dirty / 2;
426         tsk = current;
427         if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
428                 background += background / 4;
429                 dirty += dirty / 4;
430         }
431         *pbackground = background;
432         *pdirty = dirty;
433 }
434
435 /**
436  * bdi_dirty_limit - @bdi's share of dirty throttling threshold
437  * @bdi: the backing_dev_info to query
438  * @dirty: global dirty limit in pages
439  *
440  * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
441  * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
442  * And the "limit" in the name is not seriously taken as hard limit in
443  * balance_dirty_pages().
444  *
445  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
446  * - starving fast devices
447  * - piling up dirty pages (that will take long time to sync) on slow devices
448  *
449  * The bdi's share of dirty limit will be adapting to its throughput and
450  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
451  */
452 unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
453 {
454         u64 bdi_dirty;
455         long numerator, denominator;
456
457         /*
458          * Calculate this BDI's share of the dirty ratio.
459          */
460         bdi_writeout_fraction(bdi, &numerator, &denominator);
461
462         bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
463         bdi_dirty *= numerator;
464         do_div(bdi_dirty, denominator);
465
466         bdi_dirty += (dirty * bdi->min_ratio) / 100;
467         if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
468                 bdi_dirty = dirty * bdi->max_ratio / 100;
469
470         return bdi_dirty;
471 }
472
473 /*
474  * balance_dirty_pages() must be called by processes which are generating dirty
475  * data.  It looks at the number of dirty pages in the machine and will force
476  * the caller to perform writeback if the system is over `vm_dirty_ratio'.
477  * If we're over `background_thresh' then the writeback threads are woken to
478  * perform some writeout.
479  */
480 static void balance_dirty_pages(struct address_space *mapping,
481                                 unsigned long write_chunk)
482 {
483         long nr_reclaimable, bdi_nr_reclaimable;
484         long nr_writeback, bdi_nr_writeback;
485         unsigned long background_thresh;
486         unsigned long dirty_thresh;
487         unsigned long bdi_thresh;
488         unsigned long pages_written = 0;
489         unsigned long pause = 1;
490         bool dirty_exceeded = false;
491         struct backing_dev_info *bdi = mapping->backing_dev_info;
492
493         if (!bdi_cap_account_dirty(bdi))
494                 return;
495
496         for (;;) {
497                 struct writeback_control wbc = {
498                         .sync_mode      = WB_SYNC_NONE,
499                         .older_than_this = NULL,
500                         .nr_to_write    = write_chunk,
501                         .range_cyclic   = 1,
502                 };
503
504                 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
505                                         global_page_state(NR_UNSTABLE_NFS);
506                 nr_writeback = global_page_state(NR_WRITEBACK);
507
508                 global_dirty_limits(&background_thresh, &dirty_thresh);
509
510                 /*
511                  * Throttle it only when the background writeback cannot
512                  * catch-up. This avoids (excessively) small writeouts
513                  * when the bdi limits are ramping up.
514                  */
515                 if (nr_reclaimable + nr_writeback <=
516                                 (background_thresh + dirty_thresh) / 2)
517                         break;
518
519                 bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
520                 bdi_thresh = task_dirty_limit(current, bdi_thresh);
521
522                 /*
523                  * In order to avoid the stacked BDI deadlock we need
524                  * to ensure we accurately count the 'dirty' pages when
525                  * the threshold is low.
526                  *
527                  * Otherwise it would be possible to get thresh+n pages
528                  * reported dirty, even though there are thresh-m pages
529                  * actually dirty; with m+n sitting in the percpu
530                  * deltas.
531                  */
532                 if (bdi_thresh < 2*bdi_stat_error(bdi)) {
533                         bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
534                         bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK);
535                 } else {
536                         bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
537                         bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
538                 }
539
540                 /*
541                  * The bdi thresh is somehow "soft" limit derived from the
542                  * global "hard" limit. The former helps to prevent heavy IO
543                  * bdi or process from holding back light ones; The latter is
544                  * the last resort safeguard.
545                  */
546                 dirty_exceeded =
547                         (bdi_nr_reclaimable + bdi_nr_writeback > bdi_thresh)
548                         || (nr_reclaimable + nr_writeback > dirty_thresh);
549
550                 if (!dirty_exceeded)
551                         break;
552
553                 if (!bdi->dirty_exceeded)
554                         bdi->dirty_exceeded = 1;
555
556                 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
557                  * Unstable writes are a feature of certain networked
558                  * filesystems (i.e. NFS) in which data may have been
559                  * written to the server's write cache, but has not yet
560                  * been flushed to permanent storage.
561                  * Only move pages to writeback if this bdi is over its
562                  * threshold otherwise wait until the disk writes catch
563                  * up.
564                  */
565                 trace_wbc_balance_dirty_start(&wbc, bdi);
566                 if (bdi_nr_reclaimable > bdi_thresh) {
567                         writeback_inodes_wb(&bdi->wb, &wbc);
568                         pages_written += write_chunk - wbc.nr_to_write;
569                         trace_wbc_balance_dirty_written(&wbc, bdi);
570                         if (pages_written >= write_chunk)
571                                 break;          /* We've done our duty */
572                 }
573                 trace_wbc_balance_dirty_wait(&wbc, bdi);
574                 __set_current_state(TASK_UNINTERRUPTIBLE);
575                 io_schedule_timeout(pause);
576
577                 /*
578                  * Increase the delay for each loop, up to our previous
579                  * default of taking a 100ms nap.
580                  */
581                 pause <<= 1;
582                 if (pause > HZ / 10)
583                         pause = HZ / 10;
584         }
585
586         if (!dirty_exceeded && bdi->dirty_exceeded)
587                 bdi->dirty_exceeded = 0;
588
589         if (writeback_in_progress(bdi))
590                 return;
591
592         /*
593          * In laptop mode, we wait until hitting the higher threshold before
594          * starting background writeout, and then write out all the way down
595          * to the lower threshold.  So slow writers cause minimal disk activity.
596          *
597          * In normal mode, we start background writeout at the lower
598          * background_thresh, to keep the amount of dirty memory low.
599          */
600         if ((laptop_mode && pages_written) ||
601             (!laptop_mode && (nr_reclaimable > background_thresh)))
602                 bdi_start_background_writeback(bdi);
603 }
604
605 void set_page_dirty_balance(struct page *page, int page_mkwrite)
606 {
607         if (set_page_dirty(page) || page_mkwrite) {
608                 struct address_space *mapping = page_mapping(page);
609
610                 if (mapping)
611                         balance_dirty_pages_ratelimited(mapping);
612         }
613 }
614
615 static DEFINE_PER_CPU(unsigned long, bdp_ratelimits) = 0;
616
617 /**
618  * balance_dirty_pages_ratelimited_nr - balance dirty memory state
619  * @mapping: address_space which was dirtied
620  * @nr_pages_dirtied: number of pages which the caller has just dirtied
621  *
622  * Processes which are dirtying memory should call in here once for each page
623  * which was newly dirtied.  The function will periodically check the system's
624  * dirty state and will initiate writeback if needed.
625  *
626  * On really big machines, get_writeback_state is expensive, so try to avoid
627  * calling it too often (ratelimiting).  But once we're over the dirty memory
628  * limit we decrease the ratelimiting by a lot, to prevent individual processes
629  * from overshooting the limit by (ratelimit_pages) each.
630  */
631 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
632                                         unsigned long nr_pages_dirtied)
633 {
634         unsigned long ratelimit;
635         unsigned long *p;
636
637         ratelimit = ratelimit_pages;
638         if (mapping->backing_dev_info->dirty_exceeded)
639                 ratelimit = 8;
640
641         /*
642          * Check the rate limiting. Also, we do not want to throttle real-time
643          * tasks in balance_dirty_pages(). Period.
644          */
645         preempt_disable();
646         p =  &__get_cpu_var(bdp_ratelimits);
647         *p += nr_pages_dirtied;
648         if (unlikely(*p >= ratelimit)) {
649                 ratelimit = sync_writeback_pages(*p);
650                 *p = 0;
651                 preempt_enable();
652                 balance_dirty_pages(mapping, ratelimit);
653                 return;
654         }
655         preempt_enable();
656 }
657 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
658
659 void throttle_vm_writeout(gfp_t gfp_mask)
660 {
661         unsigned long background_thresh;
662         unsigned long dirty_thresh;
663
664         for ( ; ; ) {
665                 global_dirty_limits(&background_thresh, &dirty_thresh);
666
667                 /*
668                  * Boost the allowable dirty threshold a bit for page
669                  * allocators so they don't get DoS'ed by heavy writers
670                  */
671                 dirty_thresh += dirty_thresh / 10;      /* wheeee... */
672
673                 if (global_page_state(NR_UNSTABLE_NFS) +
674                         global_page_state(NR_WRITEBACK) <= dirty_thresh)
675                                 break;
676                 congestion_wait(BLK_RW_ASYNC, HZ/10);
677
678                 /*
679                  * The caller might hold locks which can prevent IO completion
680                  * or progress in the filesystem.  So we cannot just sit here
681                  * waiting for IO to complete.
682                  */
683                 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
684                         break;
685         }
686 }
687
688 /*
689  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
690  */
691 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
692         void __user *buffer, size_t *length, loff_t *ppos)
693 {
694         proc_dointvec(table, write, buffer, length, ppos);
695         bdi_arm_supers_timer();
696         return 0;
697 }
698
699 #ifdef CONFIG_BLOCK
700 void laptop_mode_timer_fn(unsigned long data)
701 {
702         struct request_queue *q = (struct request_queue *)data;
703         int nr_pages = global_page_state(NR_FILE_DIRTY) +
704                 global_page_state(NR_UNSTABLE_NFS);
705
706         /*
707          * We want to write everything out, not just down to the dirty
708          * threshold
709          */
710         if (bdi_has_dirty_io(&q->backing_dev_info))
711                 bdi_start_writeback(&q->backing_dev_info, nr_pages);
712 }
713
714 /*
715  * We've spun up the disk and we're in laptop mode: schedule writeback
716  * of all dirty data a few seconds from now.  If the flush is already scheduled
717  * then push it back - the user is still using the disk.
718  */
719 void laptop_io_completion(struct backing_dev_info *info)
720 {
721         mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
722 }
723
724 /*
725  * We're in laptop mode and we've just synced. The sync's writes will have
726  * caused another writeback to be scheduled by laptop_io_completion.
727  * Nothing needs to be written back anymore, so we unschedule the writeback.
728  */
729 void laptop_sync_completion(void)
730 {
731         struct backing_dev_info *bdi;
732
733         rcu_read_lock();
734
735         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
736                 del_timer(&bdi->laptop_mode_wb_timer);
737
738         rcu_read_unlock();
739 }
740 #endif
741
742 /*
743  * If ratelimit_pages is too high then we can get into dirty-data overload
744  * if a large number of processes all perform writes at the same time.
745  * If it is too low then SMP machines will call the (expensive)
746  * get_writeback_state too often.
747  *
748  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
749  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
750  * thresholds before writeback cuts in.
751  *
752  * But the limit should not be set too high.  Because it also controls the
753  * amount of memory which the balance_dirty_pages() caller has to write back.
754  * If this is too large then the caller will block on the IO queue all the
755  * time.  So limit it to four megabytes - the balance_dirty_pages() caller
756  * will write six megabyte chunks, max.
757  */
758
759 void writeback_set_ratelimit(void)
760 {
761         ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
762         if (ratelimit_pages < 16)
763                 ratelimit_pages = 16;
764         if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
765                 ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
766 }
767
768 static int __cpuinit
769 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
770 {
771         writeback_set_ratelimit();
772         return NOTIFY_DONE;
773 }
774
775 static struct notifier_block __cpuinitdata ratelimit_nb = {
776         .notifier_call  = ratelimit_handler,
777         .next           = NULL,
778 };
779
780 /*
781  * Called early on to tune the page writeback dirty limits.
782  *
783  * We used to scale dirty pages according to how total memory
784  * related to pages that could be allocated for buffers (by
785  * comparing nr_free_buffer_pages() to vm_total_pages.
786  *
787  * However, that was when we used "dirty_ratio" to scale with
788  * all memory, and we don't do that any more. "dirty_ratio"
789  * is now applied to total non-HIGHPAGE memory (by subtracting
790  * totalhigh_pages from vm_total_pages), and as such we can't
791  * get into the old insane situation any more where we had
792  * large amounts of dirty pages compared to a small amount of
793  * non-HIGHMEM memory.
794  *
795  * But we might still want to scale the dirty_ratio by how
796  * much memory the box has..
797  */
798 void __init page_writeback_init(void)
799 {
800         int shift;
801
802         writeback_set_ratelimit();
803         register_cpu_notifier(&ratelimit_nb);
804
805         shift = calc_period_shift();
806         prop_descriptor_init(&vm_completions, shift);
807         prop_descriptor_init(&vm_dirties, shift);
808 }
809
810 /**
811  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
812  * @mapping: address space structure to write
813  * @start: starting page index
814  * @end: ending page index (inclusive)
815  *
816  * This function scans the page range from @start to @end (inclusive) and tags
817  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
818  * that write_cache_pages (or whoever calls this function) will then use
819  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
820  * used to avoid livelocking of writeback by a process steadily creating new
821  * dirty pages in the file (thus it is important for this function to be quick
822  * so that it can tag pages faster than a dirtying process can create them).
823  */
824 /*
825  * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
826  */
827 void tag_pages_for_writeback(struct address_space *mapping,
828                              pgoff_t start, pgoff_t end)
829 {
830 #define WRITEBACK_TAG_BATCH 4096
831         unsigned long tagged;
832
833         do {
834                 spin_lock_irq(&mapping->tree_lock);
835                 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
836                                 &start, end, WRITEBACK_TAG_BATCH,
837                                 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
838                 spin_unlock_irq(&mapping->tree_lock);
839                 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
840                 cond_resched();
841                 /* We check 'start' to handle wrapping when end == ~0UL */
842         } while (tagged >= WRITEBACK_TAG_BATCH && start);
843 }
844 EXPORT_SYMBOL(tag_pages_for_writeback);
845
846 /**
847  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
848  * @mapping: address space structure to write
849  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
850  * @writepage: function called for each page
851  * @data: data passed to writepage function
852  *
853  * If a page is already under I/O, write_cache_pages() skips it, even
854  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
855  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
856  * and msync() need to guarantee that all the data which was dirty at the time
857  * the call was made get new I/O started against them.  If wbc->sync_mode is
858  * WB_SYNC_ALL then we were called for data integrity and we must wait for
859  * existing IO to complete.
860  *
861  * To avoid livelocks (when other process dirties new pages), we first tag
862  * pages which should be written back with TOWRITE tag and only then start
863  * writing them. For data-integrity sync we have to be careful so that we do
864  * not miss some pages (e.g., because some other process has cleared TOWRITE
865  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
866  * by the process clearing the DIRTY tag (and submitting the page for IO).
867  */
868 int write_cache_pages(struct address_space *mapping,
869                       struct writeback_control *wbc, writepage_t writepage,
870                       void *data)
871 {
872         int ret = 0;
873         int done = 0;
874         struct pagevec pvec;
875         int nr_pages;
876         pgoff_t uninitialized_var(writeback_index);
877         pgoff_t index;
878         pgoff_t end;            /* Inclusive */
879         pgoff_t done_index;
880         int cycled;
881         int range_whole = 0;
882         int tag;
883
884         pagevec_init(&pvec, 0);
885         if (wbc->range_cyclic) {
886                 writeback_index = mapping->writeback_index; /* prev offset */
887                 index = writeback_index;
888                 if (index == 0)
889                         cycled = 1;
890                 else
891                         cycled = 0;
892                 end = -1;
893         } else {
894                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
895                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
896                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
897                         range_whole = 1;
898                 cycled = 1; /* ignore range_cyclic tests */
899         }
900         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
901                 tag = PAGECACHE_TAG_TOWRITE;
902         else
903                 tag = PAGECACHE_TAG_DIRTY;
904 retry:
905         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
906                 tag_pages_for_writeback(mapping, index, end);
907         done_index = index;
908         while (!done && (index <= end)) {
909                 int i;
910
911                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
912                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
913                 if (nr_pages == 0)
914                         break;
915
916                 for (i = 0; i < nr_pages; i++) {
917                         struct page *page = pvec.pages[i];
918
919                         /*
920                          * At this point, the page may be truncated or
921                          * invalidated (changing page->mapping to NULL), or
922                          * even swizzled back from swapper_space to tmpfs file
923                          * mapping. However, page->index will not change
924                          * because we have a reference on the page.
925                          */
926                         if (page->index > end) {
927                                 /*
928                                  * can't be range_cyclic (1st pass) because
929                                  * end == -1 in that case.
930                                  */
931                                 done = 1;
932                                 break;
933                         }
934
935                         done_index = page->index;
936
937                         lock_page(page);
938
939                         /*
940                          * Page truncated or invalidated. We can freely skip it
941                          * then, even for data integrity operations: the page
942                          * has disappeared concurrently, so there could be no
943                          * real expectation of this data interity operation
944                          * even if there is now a new, dirty page at the same
945                          * pagecache address.
946                          */
947                         if (unlikely(page->mapping != mapping)) {
948 continue_unlock:
949                                 unlock_page(page);
950                                 continue;
951                         }
952
953                         if (!PageDirty(page)) {
954                                 /* someone wrote it for us */
955                                 goto continue_unlock;
956                         }
957
958                         if (PageWriteback(page)) {
959                                 if (wbc->sync_mode != WB_SYNC_NONE)
960                                         wait_on_page_writeback(page);
961                                 else
962                                         goto continue_unlock;
963                         }
964
965                         BUG_ON(PageWriteback(page));
966                         if (!clear_page_dirty_for_io(page))
967                                 goto continue_unlock;
968
969                         trace_wbc_writepage(wbc, mapping->backing_dev_info);
970                         ret = (*writepage)(page, wbc, data);
971                         if (unlikely(ret)) {
972                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
973                                         unlock_page(page);
974                                         ret = 0;
975                                 } else {
976                                         /*
977                                          * done_index is set past this page,
978                                          * so media errors will not choke
979                                          * background writeout for the entire
980                                          * file. This has consequences for
981                                          * range_cyclic semantics (ie. it may
982                                          * not be suitable for data integrity
983                                          * writeout).
984                                          */
985                                         done_index = page->index + 1;
986                                         done = 1;
987                                         break;
988                                 }
989                         }
990
991                         /*
992                          * We stop writing back only if we are not doing
993                          * integrity sync. In case of integrity sync we have to
994                          * keep going until we have written all the pages
995                          * we tagged for writeback prior to entering this loop.
996                          */
997                         if (--wbc->nr_to_write <= 0 &&
998                             wbc->sync_mode == WB_SYNC_NONE) {
999                                 done = 1;
1000                                 break;
1001                         }
1002                 }
1003                 pagevec_release(&pvec);
1004                 cond_resched();
1005         }
1006         if (!cycled && !done) {
1007                 /*
1008                  * range_cyclic:
1009                  * We hit the last page and there is more work to be done: wrap
1010                  * back to the start of the file
1011                  */
1012                 cycled = 1;
1013                 index = 0;
1014                 end = writeback_index - 1;
1015                 goto retry;
1016         }
1017         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1018                 mapping->writeback_index = done_index;
1019
1020         return ret;
1021 }
1022 EXPORT_SYMBOL(write_cache_pages);
1023
1024 /*
1025  * Function used by generic_writepages to call the real writepage
1026  * function and set the mapping flags on error
1027  */
1028 static int __writepage(struct page *page, struct writeback_control *wbc,
1029                        void *data)
1030 {
1031         struct address_space *mapping = data;
1032         int ret = mapping->a_ops->writepage(page, wbc);
1033         mapping_set_error(mapping, ret);
1034         return ret;
1035 }
1036
1037 /**
1038  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1039  * @mapping: address space structure to write
1040  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1041  *
1042  * This is a library function, which implements the writepages()
1043  * address_space_operation.
1044  */
1045 int generic_writepages(struct address_space *mapping,
1046                        struct writeback_control *wbc)
1047 {
1048         struct blk_plug plug;
1049         int ret;
1050
1051         /* deal with chardevs and other special file */
1052         if (!mapping->a_ops->writepage)
1053                 return 0;
1054
1055         blk_start_plug(&plug);
1056         ret = write_cache_pages(mapping, wbc, __writepage, mapping);
1057         blk_finish_plug(&plug);
1058         return ret;
1059 }
1060
1061 EXPORT_SYMBOL(generic_writepages);
1062
1063 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1064 {
1065         int ret;
1066
1067         if (wbc->nr_to_write <= 0)
1068                 return 0;
1069         if (mapping->a_ops->writepages)
1070                 ret = mapping->a_ops->writepages(mapping, wbc);
1071         else
1072                 ret = generic_writepages(mapping, wbc);
1073         return ret;
1074 }
1075
1076 /**
1077  * write_one_page - write out a single page and optionally wait on I/O
1078  * @page: the page to write
1079  * @wait: if true, wait on writeout
1080  *
1081  * The page must be locked by the caller and will be unlocked upon return.
1082  *
1083  * write_one_page() returns a negative error code if I/O failed.
1084  */
1085 int write_one_page(struct page *page, int wait)
1086 {
1087         struct address_space *mapping = page->mapping;
1088         int ret = 0;
1089         struct writeback_control wbc = {
1090                 .sync_mode = WB_SYNC_ALL,
1091                 .nr_to_write = 1,
1092         };
1093
1094         BUG_ON(!PageLocked(page));
1095
1096         if (wait)
1097                 wait_on_page_writeback(page);
1098
1099         if (clear_page_dirty_for_io(page)) {
1100                 page_cache_get(page);
1101                 ret = mapping->a_ops->writepage(page, &wbc);
1102                 if (ret == 0 && wait) {
1103                         wait_on_page_writeback(page);
1104                         if (PageError(page))
1105                                 ret = -EIO;
1106                 }
1107                 page_cache_release(page);
1108         } else {
1109                 unlock_page(page);
1110         }
1111         return ret;
1112 }
1113 EXPORT_SYMBOL(write_one_page);
1114
1115 /*
1116  * For address_spaces which do not use buffers nor write back.
1117  */
1118 int __set_page_dirty_no_writeback(struct page *page)
1119 {
1120         if (!PageDirty(page))
1121                 return !TestSetPageDirty(page);
1122         return 0;
1123 }
1124
1125 /*
1126  * Helper function for set_page_dirty family.
1127  * NOTE: This relies on being atomic wrt interrupts.
1128  */
1129 void account_page_dirtied(struct page *page, struct address_space *mapping)
1130 {
1131         if (mapping_cap_account_dirty(mapping)) {
1132                 __inc_zone_page_state(page, NR_FILE_DIRTY);
1133                 __inc_zone_page_state(page, NR_DIRTIED);
1134                 __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1135                 task_dirty_inc(current);
1136                 task_io_account_write(PAGE_CACHE_SIZE);
1137         }
1138 }
1139 EXPORT_SYMBOL(account_page_dirtied);
1140
1141 /*
1142  * Helper function for set_page_writeback family.
1143  * NOTE: Unlike account_page_dirtied this does not rely on being atomic
1144  * wrt interrupts.
1145  */
1146 void account_page_writeback(struct page *page)
1147 {
1148         inc_zone_page_state(page, NR_WRITEBACK);
1149         inc_zone_page_state(page, NR_WRITTEN);
1150 }
1151 EXPORT_SYMBOL(account_page_writeback);
1152
1153 /*
1154  * For address_spaces which do not use buffers.  Just tag the page as dirty in
1155  * its radix tree.
1156  *
1157  * This is also used when a single buffer is being dirtied: we want to set the
1158  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
1159  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1160  *
1161  * Most callers have locked the page, which pins the address_space in memory.
1162  * But zap_pte_range() does not lock the page, however in that case the
1163  * mapping is pinned by the vma's ->vm_file reference.
1164  *
1165  * We take care to handle the case where the page was truncated from the
1166  * mapping by re-checking page_mapping() inside tree_lock.
1167  */
1168 int __set_page_dirty_nobuffers(struct page *page)
1169 {
1170         if (!TestSetPageDirty(page)) {
1171                 struct address_space *mapping = page_mapping(page);
1172                 struct address_space *mapping2;
1173
1174                 if (!mapping)
1175                         return 1;
1176
1177                 spin_lock_irq(&mapping->tree_lock);
1178                 mapping2 = page_mapping(page);
1179                 if (mapping2) { /* Race with truncate? */
1180                         BUG_ON(mapping2 != mapping);
1181                         WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1182                         account_page_dirtied(page, mapping);
1183                         radix_tree_tag_set(&mapping->page_tree,
1184                                 page_index(page), PAGECACHE_TAG_DIRTY);
1185                 }
1186                 spin_unlock_irq(&mapping->tree_lock);
1187                 if (mapping->host) {
1188                         /* !PageAnon && !swapper_space */
1189                         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1190                 }
1191                 return 1;
1192         }
1193         return 0;
1194 }
1195 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1196
1197 /*
1198  * When a writepage implementation decides that it doesn't want to write this
1199  * page for some reason, it should redirty the locked page via
1200  * redirty_page_for_writepage() and it should then unlock the page and return 0
1201  */
1202 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1203 {
1204         wbc->pages_skipped++;
1205         return __set_page_dirty_nobuffers(page);
1206 }
1207 EXPORT_SYMBOL(redirty_page_for_writepage);
1208
1209 /*
1210  * Dirty a page.
1211  *
1212  * For pages with a mapping this should be done under the page lock
1213  * for the benefit of asynchronous memory errors who prefer a consistent
1214  * dirty state. This rule can be broken in some special cases,
1215  * but should be better not to.
1216  *
1217  * If the mapping doesn't provide a set_page_dirty a_op, then
1218  * just fall through and assume that it wants buffer_heads.
1219  */
1220 int set_page_dirty(struct page *page)
1221 {
1222         struct address_space *mapping = page_mapping(page);
1223
1224         if (likely(mapping)) {
1225                 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
1226                 /*
1227                  * readahead/lru_deactivate_page could remain
1228                  * PG_readahead/PG_reclaim due to race with end_page_writeback
1229                  * About readahead, if the page is written, the flags would be
1230                  * reset. So no problem.
1231                  * About lru_deactivate_page, if the page is redirty, the flag
1232                  * will be reset. So no problem. but if the page is used by readahead
1233                  * it will confuse readahead and make it restart the size rampup
1234                  * process. But it's a trivial problem.
1235                  */
1236                 ClearPageReclaim(page);
1237 #ifdef CONFIG_BLOCK
1238                 if (!spd)
1239                         spd = __set_page_dirty_buffers;
1240 #endif
1241                 return (*spd)(page);
1242         }
1243         if (!PageDirty(page)) {
1244                 if (!TestSetPageDirty(page))
1245                         return 1;
1246         }
1247         return 0;
1248 }
1249 EXPORT_SYMBOL(set_page_dirty);
1250
1251 /*
1252  * set_page_dirty() is racy if the caller has no reference against
1253  * page->mapping->host, and if the page is unlocked.  This is because another
1254  * CPU could truncate the page off the mapping and then free the mapping.
1255  *
1256  * Usually, the page _is_ locked, or the caller is a user-space process which
1257  * holds a reference on the inode by having an open file.
1258  *
1259  * In other cases, the page should be locked before running set_page_dirty().
1260  */
1261 int set_page_dirty_lock(struct page *page)
1262 {
1263         int ret;
1264
1265         lock_page(page);
1266         ret = set_page_dirty(page);
1267         unlock_page(page);
1268         return ret;
1269 }
1270 EXPORT_SYMBOL(set_page_dirty_lock);
1271
1272 /*
1273  * Clear a page's dirty flag, while caring for dirty memory accounting.
1274  * Returns true if the page was previously dirty.
1275  *
1276  * This is for preparing to put the page under writeout.  We leave the page
1277  * tagged as dirty in the radix tree so that a concurrent write-for-sync
1278  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
1279  * implementation will run either set_page_writeback() or set_page_dirty(),
1280  * at which stage we bring the page's dirty flag and radix-tree dirty tag
1281  * back into sync.
1282  *
1283  * This incoherency between the page's dirty flag and radix-tree tag is
1284  * unfortunate, but it only exists while the page is locked.
1285  */
1286 int clear_page_dirty_for_io(struct page *page)
1287 {
1288         struct address_space *mapping = page_mapping(page);
1289
1290         BUG_ON(!PageLocked(page));
1291
1292         if (mapping && mapping_cap_account_dirty(mapping)) {
1293                 /*
1294                  * Yes, Virginia, this is indeed insane.
1295                  *
1296                  * We use this sequence to make sure that
1297                  *  (a) we account for dirty stats properly
1298                  *  (b) we tell the low-level filesystem to
1299                  *      mark the whole page dirty if it was
1300                  *      dirty in a pagetable. Only to then
1301                  *  (c) clean the page again and return 1 to
1302                  *      cause the writeback.
1303                  *
1304                  * This way we avoid all nasty races with the
1305                  * dirty bit in multiple places and clearing
1306                  * them concurrently from different threads.
1307                  *
1308                  * Note! Normally the "set_page_dirty(page)"
1309                  * has no effect on the actual dirty bit - since
1310                  * that will already usually be set. But we
1311                  * need the side effects, and it can help us
1312                  * avoid races.
1313                  *
1314                  * We basically use the page "master dirty bit"
1315                  * as a serialization point for all the different
1316                  * threads doing their things.
1317                  */
1318                 if (page_mkclean(page))
1319                         set_page_dirty(page);
1320                 /*
1321                  * We carefully synchronise fault handlers against
1322                  * installing a dirty pte and marking the page dirty
1323                  * at this point. We do this by having them hold the
1324                  * page lock at some point after installing their
1325                  * pte, but before marking the page dirty.
1326                  * Pages are always locked coming in here, so we get
1327                  * the desired exclusion. See mm/memory.c:do_wp_page()
1328                  * for more comments.
1329                  */
1330                 if (TestClearPageDirty(page)) {
1331                         dec_zone_page_state(page, NR_FILE_DIRTY);
1332                         dec_bdi_stat(mapping->backing_dev_info,
1333                                         BDI_RECLAIMABLE);
1334                         return 1;
1335                 }
1336                 return 0;
1337         }
1338         return TestClearPageDirty(page);
1339 }
1340 EXPORT_SYMBOL(clear_page_dirty_for_io);
1341
1342 int test_clear_page_writeback(struct page *page)
1343 {
1344         struct address_space *mapping = page_mapping(page);
1345         int ret;
1346
1347         if (mapping) {
1348                 struct backing_dev_info *bdi = mapping->backing_dev_info;
1349                 unsigned long flags;
1350
1351                 spin_lock_irqsave(&mapping->tree_lock, flags);
1352                 ret = TestClearPageWriteback(page);
1353                 if (ret) {
1354                         radix_tree_tag_clear(&mapping->page_tree,
1355                                                 page_index(page),
1356                                                 PAGECACHE_TAG_WRITEBACK);
1357                         if (bdi_cap_account_writeback(bdi)) {
1358                                 __dec_bdi_stat(bdi, BDI_WRITEBACK);
1359                                 __bdi_writeout_inc(bdi);
1360                         }
1361                 }
1362                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1363         } else {
1364                 ret = TestClearPageWriteback(page);
1365         }
1366         if (ret)
1367                 dec_zone_page_state(page, NR_WRITEBACK);
1368         return ret;
1369 }
1370
1371 int test_set_page_writeback(struct page *page)
1372 {
1373         struct address_space *mapping = page_mapping(page);
1374         int ret;
1375
1376         if (mapping) {
1377                 struct backing_dev_info *bdi = mapping->backing_dev_info;
1378                 unsigned long flags;
1379
1380                 spin_lock_irqsave(&mapping->tree_lock, flags);
1381                 ret = TestSetPageWriteback(page);
1382                 if (!ret) {
1383                         radix_tree_tag_set(&mapping->page_tree,
1384                                                 page_index(page),
1385                                                 PAGECACHE_TAG_WRITEBACK);
1386                         if (bdi_cap_account_writeback(bdi))
1387                                 __inc_bdi_stat(bdi, BDI_WRITEBACK);
1388                 }
1389                 if (!PageDirty(page))
1390                         radix_tree_tag_clear(&mapping->page_tree,
1391                                                 page_index(page),
1392                                                 PAGECACHE_TAG_DIRTY);
1393                 radix_tree_tag_clear(&mapping->page_tree,
1394                                      page_index(page),
1395                                      PAGECACHE_TAG_TOWRITE);
1396                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1397         } else {
1398                 ret = TestSetPageWriteback(page);
1399         }
1400         if (!ret)
1401                 account_page_writeback(page);
1402         return ret;
1403
1404 }
1405 EXPORT_SYMBOL(test_set_page_writeback);
1406
1407 /*
1408  * Return true if any of the pages in the mapping are marked with the
1409  * passed tag.
1410  */
1411 int mapping_tagged(struct address_space *mapping, int tag)
1412 {
1413         int ret;
1414         rcu_read_lock();
1415         ret = radix_tree_tagged(&mapping->page_tree, tag);
1416         rcu_read_unlock();
1417         return ret;
1418 }
1419 EXPORT_SYMBOL(mapping_tagged);