Merge tag 'trace-v4.7-3' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[cascardo/linux.git] / mm / page-writeback.c
1 /*
2  * mm/page-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
6  *
7  * Contains functions related to writing back dirty pages at the
8  * address_space level.
9  *
10  * 10Apr2002    Andrew Morton
11  *              Initial version
12  */
13
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <linux/mm_inline.h>
40 #include <trace/events/writeback.h>
41
42 #include "internal.h"
43
44 /*
45  * Sleep at most 200ms at a time in balance_dirty_pages().
46  */
47 #define MAX_PAUSE               max(HZ/5, 1)
48
49 /*
50  * Try to keep balance_dirty_pages() call intervals higher than this many pages
51  * by raising pause time to max_pause when falls below it.
52  */
53 #define DIRTY_POLL_THRESH       (128 >> (PAGE_SHIFT - 10))
54
55 /*
56  * Estimate write bandwidth at 200ms intervals.
57  */
58 #define BANDWIDTH_INTERVAL      max(HZ/5, 1)
59
60 #define RATELIMIT_CALC_SHIFT    10
61
62 /*
63  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
64  * will look to see if it needs to force writeback or throttling.
65  */
66 static long ratelimit_pages = 32;
67
68 /* The following parameters are exported via /proc/sys/vm */
69
70 /*
71  * Start background writeback (via writeback threads) at this percentage
72  */
73 int dirty_background_ratio = 10;
74
75 /*
76  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
77  * dirty_background_ratio * the amount of dirtyable memory
78  */
79 unsigned long dirty_background_bytes;
80
81 /*
82  * free highmem will not be subtracted from the total free memory
83  * for calculating free ratios if vm_highmem_is_dirtyable is true
84  */
85 int vm_highmem_is_dirtyable;
86
87 /*
88  * The generator of dirty data starts writeback at this percentage
89  */
90 int vm_dirty_ratio = 20;
91
92 /*
93  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
94  * vm_dirty_ratio * the amount of dirtyable memory
95  */
96 unsigned long vm_dirty_bytes;
97
98 /*
99  * The interval between `kupdate'-style writebacks
100  */
101 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
102
103 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
104
105 /*
106  * The longest time for which data is allowed to remain dirty
107  */
108 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
109
110 /*
111  * Flag that makes the machine dump writes/reads and block dirtyings.
112  */
113 int block_dump;
114
115 /*
116  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
117  * a full sync is triggered after this time elapses without any disk activity.
118  */
119 int laptop_mode;
120
121 EXPORT_SYMBOL(laptop_mode);
122
123 /* End of sysctl-exported parameters */
124
125 struct wb_domain global_wb_domain;
126
127 /* consolidated parameters for balance_dirty_pages() and its subroutines */
128 struct dirty_throttle_control {
129 #ifdef CONFIG_CGROUP_WRITEBACK
130         struct wb_domain        *dom;
131         struct dirty_throttle_control *gdtc;    /* only set in memcg dtc's */
132 #endif
133         struct bdi_writeback    *wb;
134         struct fprop_local_percpu *wb_completions;
135
136         unsigned long           avail;          /* dirtyable */
137         unsigned long           dirty;          /* file_dirty + write + nfs */
138         unsigned long           thresh;         /* dirty threshold */
139         unsigned long           bg_thresh;      /* dirty background threshold */
140
141         unsigned long           wb_dirty;       /* per-wb counterparts */
142         unsigned long           wb_thresh;
143         unsigned long           wb_bg_thresh;
144
145         unsigned long           pos_ratio;
146 };
147
148 /*
149  * Length of period for aging writeout fractions of bdis. This is an
150  * arbitrarily chosen number. The longer the period, the slower fractions will
151  * reflect changes in current writeout rate.
152  */
153 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
154
155 #ifdef CONFIG_CGROUP_WRITEBACK
156
157 #define GDTC_INIT(__wb)         .wb = (__wb),                           \
158                                 .dom = &global_wb_domain,               \
159                                 .wb_completions = &(__wb)->completions
160
161 #define GDTC_INIT_NO_WB         .dom = &global_wb_domain
162
163 #define MDTC_INIT(__wb, __gdtc) .wb = (__wb),                           \
164                                 .dom = mem_cgroup_wb_domain(__wb),      \
165                                 .wb_completions = &(__wb)->memcg_completions, \
166                                 .gdtc = __gdtc
167
168 static bool mdtc_valid(struct dirty_throttle_control *dtc)
169 {
170         return dtc->dom;
171 }
172
173 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
174 {
175         return dtc->dom;
176 }
177
178 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
179 {
180         return mdtc->gdtc;
181 }
182
183 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
184 {
185         return &wb->memcg_completions;
186 }
187
188 static void wb_min_max_ratio(struct bdi_writeback *wb,
189                              unsigned long *minp, unsigned long *maxp)
190 {
191         unsigned long this_bw = wb->avg_write_bandwidth;
192         unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
193         unsigned long long min = wb->bdi->min_ratio;
194         unsigned long long max = wb->bdi->max_ratio;
195
196         /*
197          * @wb may already be clean by the time control reaches here and
198          * the total may not include its bw.
199          */
200         if (this_bw < tot_bw) {
201                 if (min) {
202                         min *= this_bw;
203                         do_div(min, tot_bw);
204                 }
205                 if (max < 100) {
206                         max *= this_bw;
207                         do_div(max, tot_bw);
208                 }
209         }
210
211         *minp = min;
212         *maxp = max;
213 }
214
215 #else   /* CONFIG_CGROUP_WRITEBACK */
216
217 #define GDTC_INIT(__wb)         .wb = (__wb),                           \
218                                 .wb_completions = &(__wb)->completions
219 #define GDTC_INIT_NO_WB
220 #define MDTC_INIT(__wb, __gdtc)
221
222 static bool mdtc_valid(struct dirty_throttle_control *dtc)
223 {
224         return false;
225 }
226
227 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
228 {
229         return &global_wb_domain;
230 }
231
232 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
233 {
234         return NULL;
235 }
236
237 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
238 {
239         return NULL;
240 }
241
242 static void wb_min_max_ratio(struct bdi_writeback *wb,
243                              unsigned long *minp, unsigned long *maxp)
244 {
245         *minp = wb->bdi->min_ratio;
246         *maxp = wb->bdi->max_ratio;
247 }
248
249 #endif  /* CONFIG_CGROUP_WRITEBACK */
250
251 /*
252  * In a memory zone, there is a certain amount of pages we consider
253  * available for the page cache, which is essentially the number of
254  * free and reclaimable pages, minus some zone reserves to protect
255  * lowmem and the ability to uphold the zone's watermarks without
256  * requiring writeback.
257  *
258  * This number of dirtyable pages is the base value of which the
259  * user-configurable dirty ratio is the effictive number of pages that
260  * are allowed to be actually dirtied.  Per individual zone, or
261  * globally by using the sum of dirtyable pages over all zones.
262  *
263  * Because the user is allowed to specify the dirty limit globally as
264  * absolute number of bytes, calculating the per-zone dirty limit can
265  * require translating the configured limit into a percentage of
266  * global dirtyable memory first.
267  */
268
269 /**
270  * zone_dirtyable_memory - number of dirtyable pages in a zone
271  * @zone: the zone
272  *
273  * Returns the zone's number of pages potentially available for dirty
274  * page cache.  This is the base value for the per-zone dirty limits.
275  */
276 static unsigned long zone_dirtyable_memory(struct zone *zone)
277 {
278         unsigned long nr_pages;
279
280         nr_pages = zone_page_state(zone, NR_FREE_PAGES);
281         /*
282          * Pages reserved for the kernel should not be considered
283          * dirtyable, to prevent a situation where reclaim has to
284          * clean pages in order to balance the zones.
285          */
286         nr_pages -= min(nr_pages, zone->totalreserve_pages);
287
288         nr_pages += zone_page_state(zone, NR_INACTIVE_FILE);
289         nr_pages += zone_page_state(zone, NR_ACTIVE_FILE);
290
291         return nr_pages;
292 }
293
294 static unsigned long highmem_dirtyable_memory(unsigned long total)
295 {
296 #ifdef CONFIG_HIGHMEM
297         int node;
298         unsigned long x = 0;
299         int i;
300
301         for_each_node_state(node, N_HIGH_MEMORY) {
302                 for (i = 0; i < MAX_NR_ZONES; i++) {
303                         struct zone *z = &NODE_DATA(node)->node_zones[i];
304
305                         if (is_highmem(z))
306                                 x += zone_dirtyable_memory(z);
307                 }
308         }
309         /*
310          * Unreclaimable memory (kernel memory or anonymous memory
311          * without swap) can bring down the dirtyable pages below
312          * the zone's dirty balance reserve and the above calculation
313          * will underflow.  However we still want to add in nodes
314          * which are below threshold (negative values) to get a more
315          * accurate calculation but make sure that the total never
316          * underflows.
317          */
318         if ((long)x < 0)
319                 x = 0;
320
321         /*
322          * Make sure that the number of highmem pages is never larger
323          * than the number of the total dirtyable memory. This can only
324          * occur in very strange VM situations but we want to make sure
325          * that this does not occur.
326          */
327         return min(x, total);
328 #else
329         return 0;
330 #endif
331 }
332
333 /**
334  * global_dirtyable_memory - number of globally dirtyable pages
335  *
336  * Returns the global number of pages potentially available for dirty
337  * page cache.  This is the base value for the global dirty limits.
338  */
339 static unsigned long global_dirtyable_memory(void)
340 {
341         unsigned long x;
342
343         x = global_page_state(NR_FREE_PAGES);
344         /*
345          * Pages reserved for the kernel should not be considered
346          * dirtyable, to prevent a situation where reclaim has to
347          * clean pages in order to balance the zones.
348          */
349         x -= min(x, totalreserve_pages);
350
351         x += global_page_state(NR_INACTIVE_FILE);
352         x += global_page_state(NR_ACTIVE_FILE);
353
354         if (!vm_highmem_is_dirtyable)
355                 x -= highmem_dirtyable_memory(x);
356
357         return x + 1;   /* Ensure that we never return 0 */
358 }
359
360 /**
361  * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
362  * @dtc: dirty_throttle_control of interest
363  *
364  * Calculate @dtc->thresh and ->bg_thresh considering
365  * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
366  * must ensure that @dtc->avail is set before calling this function.  The
367  * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
368  * real-time tasks.
369  */
370 static void domain_dirty_limits(struct dirty_throttle_control *dtc)
371 {
372         const unsigned long available_memory = dtc->avail;
373         struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
374         unsigned long bytes = vm_dirty_bytes;
375         unsigned long bg_bytes = dirty_background_bytes;
376         unsigned long ratio = vm_dirty_ratio;
377         unsigned long bg_ratio = dirty_background_ratio;
378         unsigned long thresh;
379         unsigned long bg_thresh;
380         struct task_struct *tsk;
381
382         /* gdtc is !NULL iff @dtc is for memcg domain */
383         if (gdtc) {
384                 unsigned long global_avail = gdtc->avail;
385
386                 /*
387                  * The byte settings can't be applied directly to memcg
388                  * domains.  Convert them to ratios by scaling against
389                  * globally available memory.
390                  */
391                 if (bytes)
392                         ratio = min(DIV_ROUND_UP(bytes, PAGE_SIZE) * 100 /
393                                     global_avail, 100UL);
394                 if (bg_bytes)
395                         bg_ratio = min(DIV_ROUND_UP(bg_bytes, PAGE_SIZE) * 100 /
396                                        global_avail, 100UL);
397                 bytes = bg_bytes = 0;
398         }
399
400         if (bytes)
401                 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
402         else
403                 thresh = (ratio * available_memory) / 100;
404
405         if (bg_bytes)
406                 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
407         else
408                 bg_thresh = (bg_ratio * available_memory) / 100;
409
410         if (bg_thresh >= thresh)
411                 bg_thresh = thresh / 2;
412         tsk = current;
413         if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
414                 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
415                 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
416         }
417         dtc->thresh = thresh;
418         dtc->bg_thresh = bg_thresh;
419
420         /* we should eventually report the domain in the TP */
421         if (!gdtc)
422                 trace_global_dirty_state(bg_thresh, thresh);
423 }
424
425 /**
426  * global_dirty_limits - background-writeback and dirty-throttling thresholds
427  * @pbackground: out parameter for bg_thresh
428  * @pdirty: out parameter for thresh
429  *
430  * Calculate bg_thresh and thresh for global_wb_domain.  See
431  * domain_dirty_limits() for details.
432  */
433 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
434 {
435         struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
436
437         gdtc.avail = global_dirtyable_memory();
438         domain_dirty_limits(&gdtc);
439
440         *pbackground = gdtc.bg_thresh;
441         *pdirty = gdtc.thresh;
442 }
443
444 /**
445  * zone_dirty_limit - maximum number of dirty pages allowed in a zone
446  * @zone: the zone
447  *
448  * Returns the maximum number of dirty pages allowed in a zone, based
449  * on the zone's dirtyable memory.
450  */
451 static unsigned long zone_dirty_limit(struct zone *zone)
452 {
453         unsigned long zone_memory = zone_dirtyable_memory(zone);
454         struct task_struct *tsk = current;
455         unsigned long dirty;
456
457         if (vm_dirty_bytes)
458                 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
459                         zone_memory / global_dirtyable_memory();
460         else
461                 dirty = vm_dirty_ratio * zone_memory / 100;
462
463         if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
464                 dirty += dirty / 4;
465
466         return dirty;
467 }
468
469 /**
470  * zone_dirty_ok - tells whether a zone is within its dirty limits
471  * @zone: the zone to check
472  *
473  * Returns %true when the dirty pages in @zone are within the zone's
474  * dirty limit, %false if the limit is exceeded.
475  */
476 bool zone_dirty_ok(struct zone *zone)
477 {
478         unsigned long limit = zone_dirty_limit(zone);
479
480         return zone_page_state(zone, NR_FILE_DIRTY) +
481                zone_page_state(zone, NR_UNSTABLE_NFS) +
482                zone_page_state(zone, NR_WRITEBACK) <= limit;
483 }
484
485 int dirty_background_ratio_handler(struct ctl_table *table, int write,
486                 void __user *buffer, size_t *lenp,
487                 loff_t *ppos)
488 {
489         int ret;
490
491         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
492         if (ret == 0 && write)
493                 dirty_background_bytes = 0;
494         return ret;
495 }
496
497 int dirty_background_bytes_handler(struct ctl_table *table, int write,
498                 void __user *buffer, size_t *lenp,
499                 loff_t *ppos)
500 {
501         int ret;
502
503         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
504         if (ret == 0 && write)
505                 dirty_background_ratio = 0;
506         return ret;
507 }
508
509 int dirty_ratio_handler(struct ctl_table *table, int write,
510                 void __user *buffer, size_t *lenp,
511                 loff_t *ppos)
512 {
513         int old_ratio = vm_dirty_ratio;
514         int ret;
515
516         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
517         if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
518                 writeback_set_ratelimit();
519                 vm_dirty_bytes = 0;
520         }
521         return ret;
522 }
523
524 int dirty_bytes_handler(struct ctl_table *table, int write,
525                 void __user *buffer, size_t *lenp,
526                 loff_t *ppos)
527 {
528         unsigned long old_bytes = vm_dirty_bytes;
529         int ret;
530
531         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
532         if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
533                 writeback_set_ratelimit();
534                 vm_dirty_ratio = 0;
535         }
536         return ret;
537 }
538
539 static unsigned long wp_next_time(unsigned long cur_time)
540 {
541         cur_time += VM_COMPLETIONS_PERIOD_LEN;
542         /* 0 has a special meaning... */
543         if (!cur_time)
544                 return 1;
545         return cur_time;
546 }
547
548 static void wb_domain_writeout_inc(struct wb_domain *dom,
549                                    struct fprop_local_percpu *completions,
550                                    unsigned int max_prop_frac)
551 {
552         __fprop_inc_percpu_max(&dom->completions, completions,
553                                max_prop_frac);
554         /* First event after period switching was turned off? */
555         if (!unlikely(dom->period_time)) {
556                 /*
557                  * We can race with other __bdi_writeout_inc calls here but
558                  * it does not cause any harm since the resulting time when
559                  * timer will fire and what is in writeout_period_time will be
560                  * roughly the same.
561                  */
562                 dom->period_time = wp_next_time(jiffies);
563                 mod_timer(&dom->period_timer, dom->period_time);
564         }
565 }
566
567 /*
568  * Increment @wb's writeout completion count and the global writeout
569  * completion count. Called from test_clear_page_writeback().
570  */
571 static inline void __wb_writeout_inc(struct bdi_writeback *wb)
572 {
573         struct wb_domain *cgdom;
574
575         __inc_wb_stat(wb, WB_WRITTEN);
576         wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
577                                wb->bdi->max_prop_frac);
578
579         cgdom = mem_cgroup_wb_domain(wb);
580         if (cgdom)
581                 wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
582                                        wb->bdi->max_prop_frac);
583 }
584
585 void wb_writeout_inc(struct bdi_writeback *wb)
586 {
587         unsigned long flags;
588
589         local_irq_save(flags);
590         __wb_writeout_inc(wb);
591         local_irq_restore(flags);
592 }
593 EXPORT_SYMBOL_GPL(wb_writeout_inc);
594
595 /*
596  * On idle system, we can be called long after we scheduled because we use
597  * deferred timers so count with missed periods.
598  */
599 static void writeout_period(unsigned long t)
600 {
601         struct wb_domain *dom = (void *)t;
602         int miss_periods = (jiffies - dom->period_time) /
603                                                  VM_COMPLETIONS_PERIOD_LEN;
604
605         if (fprop_new_period(&dom->completions, miss_periods + 1)) {
606                 dom->period_time = wp_next_time(dom->period_time +
607                                 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
608                 mod_timer(&dom->period_timer, dom->period_time);
609         } else {
610                 /*
611                  * Aging has zeroed all fractions. Stop wasting CPU on period
612                  * updates.
613                  */
614                 dom->period_time = 0;
615         }
616 }
617
618 int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
619 {
620         memset(dom, 0, sizeof(*dom));
621
622         spin_lock_init(&dom->lock);
623
624         init_timer_deferrable(&dom->period_timer);
625         dom->period_timer.function = writeout_period;
626         dom->period_timer.data = (unsigned long)dom;
627
628         dom->dirty_limit_tstamp = jiffies;
629
630         return fprop_global_init(&dom->completions, gfp);
631 }
632
633 #ifdef CONFIG_CGROUP_WRITEBACK
634 void wb_domain_exit(struct wb_domain *dom)
635 {
636         del_timer_sync(&dom->period_timer);
637         fprop_global_destroy(&dom->completions);
638 }
639 #endif
640
641 /*
642  * bdi_min_ratio keeps the sum of the minimum dirty shares of all
643  * registered backing devices, which, for obvious reasons, can not
644  * exceed 100%.
645  */
646 static unsigned int bdi_min_ratio;
647
648 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
649 {
650         int ret = 0;
651
652         spin_lock_bh(&bdi_lock);
653         if (min_ratio > bdi->max_ratio) {
654                 ret = -EINVAL;
655         } else {
656                 min_ratio -= bdi->min_ratio;
657                 if (bdi_min_ratio + min_ratio < 100) {
658                         bdi_min_ratio += min_ratio;
659                         bdi->min_ratio += min_ratio;
660                 } else {
661                         ret = -EINVAL;
662                 }
663         }
664         spin_unlock_bh(&bdi_lock);
665
666         return ret;
667 }
668
669 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
670 {
671         int ret = 0;
672
673         if (max_ratio > 100)
674                 return -EINVAL;
675
676         spin_lock_bh(&bdi_lock);
677         if (bdi->min_ratio > max_ratio) {
678                 ret = -EINVAL;
679         } else {
680                 bdi->max_ratio = max_ratio;
681                 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
682         }
683         spin_unlock_bh(&bdi_lock);
684
685         return ret;
686 }
687 EXPORT_SYMBOL(bdi_set_max_ratio);
688
689 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
690                                            unsigned long bg_thresh)
691 {
692         return (thresh + bg_thresh) / 2;
693 }
694
695 static unsigned long hard_dirty_limit(struct wb_domain *dom,
696                                       unsigned long thresh)
697 {
698         return max(thresh, dom->dirty_limit);
699 }
700
701 /*
702  * Memory which can be further allocated to a memcg domain is capped by
703  * system-wide clean memory excluding the amount being used in the domain.
704  */
705 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
706                             unsigned long filepages, unsigned long headroom)
707 {
708         struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
709         unsigned long clean = filepages - min(filepages, mdtc->dirty);
710         unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
711         unsigned long other_clean = global_clean - min(global_clean, clean);
712
713         mdtc->avail = filepages + min(headroom, other_clean);
714 }
715
716 /**
717  * __wb_calc_thresh - @wb's share of dirty throttling threshold
718  * @dtc: dirty_throttle_context of interest
719  *
720  * Returns @wb's dirty limit in pages. The term "dirty" in the context of
721  * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
722  *
723  * Note that balance_dirty_pages() will only seriously take it as a hard limit
724  * when sleeping max_pause per page is not enough to keep the dirty pages under
725  * control. For example, when the device is completely stalled due to some error
726  * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
727  * In the other normal situations, it acts more gently by throttling the tasks
728  * more (rather than completely block them) when the wb dirty pages go high.
729  *
730  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
731  * - starving fast devices
732  * - piling up dirty pages (that will take long time to sync) on slow devices
733  *
734  * The wb's share of dirty limit will be adapting to its throughput and
735  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
736  */
737 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
738 {
739         struct wb_domain *dom = dtc_dom(dtc);
740         unsigned long thresh = dtc->thresh;
741         u64 wb_thresh;
742         long numerator, denominator;
743         unsigned long wb_min_ratio, wb_max_ratio;
744
745         /*
746          * Calculate this BDI's share of the thresh ratio.
747          */
748         fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
749                               &numerator, &denominator);
750
751         wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
752         wb_thresh *= numerator;
753         do_div(wb_thresh, denominator);
754
755         wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
756
757         wb_thresh += (thresh * wb_min_ratio) / 100;
758         if (wb_thresh > (thresh * wb_max_ratio) / 100)
759                 wb_thresh = thresh * wb_max_ratio / 100;
760
761         return wb_thresh;
762 }
763
764 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
765 {
766         struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
767                                                .thresh = thresh };
768         return __wb_calc_thresh(&gdtc);
769 }
770
771 /*
772  *                           setpoint - dirty 3
773  *        f(dirty) := 1.0 + (----------------)
774  *                           limit - setpoint
775  *
776  * it's a 3rd order polynomial that subjects to
777  *
778  * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
779  * (2) f(setpoint) = 1.0 => the balance point
780  * (3) f(limit)    = 0   => the hard limit
781  * (4) df/dx      <= 0   => negative feedback control
782  * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
783  *     => fast response on large errors; small oscillation near setpoint
784  */
785 static long long pos_ratio_polynom(unsigned long setpoint,
786                                           unsigned long dirty,
787                                           unsigned long limit)
788 {
789         long long pos_ratio;
790         long x;
791
792         x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
793                       (limit - setpoint) | 1);
794         pos_ratio = x;
795         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
796         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
797         pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
798
799         return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
800 }
801
802 /*
803  * Dirty position control.
804  *
805  * (o) global/bdi setpoints
806  *
807  * We want the dirty pages be balanced around the global/wb setpoints.
808  * When the number of dirty pages is higher/lower than the setpoint, the
809  * dirty position control ratio (and hence task dirty ratelimit) will be
810  * decreased/increased to bring the dirty pages back to the setpoint.
811  *
812  *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
813  *
814  *     if (dirty < setpoint) scale up   pos_ratio
815  *     if (dirty > setpoint) scale down pos_ratio
816  *
817  *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
818  *     if (wb_dirty > wb_setpoint) scale down pos_ratio
819  *
820  *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
821  *
822  * (o) global control line
823  *
824  *     ^ pos_ratio
825  *     |
826  *     |            |<===== global dirty control scope ======>|
827  * 2.0 .............*
828  *     |            .*
829  *     |            . *
830  *     |            .   *
831  *     |            .     *
832  *     |            .        *
833  *     |            .            *
834  * 1.0 ................................*
835  *     |            .                  .     *
836  *     |            .                  .          *
837  *     |            .                  .              *
838  *     |            .                  .                 *
839  *     |            .                  .                    *
840  *   0 +------------.------------------.----------------------*------------->
841  *           freerun^          setpoint^                 limit^   dirty pages
842  *
843  * (o) wb control line
844  *
845  *     ^ pos_ratio
846  *     |
847  *     |            *
848  *     |              *
849  *     |                *
850  *     |                  *
851  *     |                    * |<=========== span ============>|
852  * 1.0 .......................*
853  *     |                      . *
854  *     |                      .   *
855  *     |                      .     *
856  *     |                      .       *
857  *     |                      .         *
858  *     |                      .           *
859  *     |                      .             *
860  *     |                      .               *
861  *     |                      .                 *
862  *     |                      .                   *
863  *     |                      .                     *
864  * 1/4 ...............................................* * * * * * * * * * * *
865  *     |                      .                         .
866  *     |                      .                           .
867  *     |                      .                             .
868  *   0 +----------------------.-------------------------------.------------->
869  *                wb_setpoint^                    x_intercept^
870  *
871  * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
872  * be smoothly throttled down to normal if it starts high in situations like
873  * - start writing to a slow SD card and a fast disk at the same time. The SD
874  *   card's wb_dirty may rush to many times higher than wb_setpoint.
875  * - the wb dirty thresh drops quickly due to change of JBOD workload
876  */
877 static void wb_position_ratio(struct dirty_throttle_control *dtc)
878 {
879         struct bdi_writeback *wb = dtc->wb;
880         unsigned long write_bw = wb->avg_write_bandwidth;
881         unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
882         unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
883         unsigned long wb_thresh = dtc->wb_thresh;
884         unsigned long x_intercept;
885         unsigned long setpoint;         /* dirty pages' target balance point */
886         unsigned long wb_setpoint;
887         unsigned long span;
888         long long pos_ratio;            /* for scaling up/down the rate limit */
889         long x;
890
891         dtc->pos_ratio = 0;
892
893         if (unlikely(dtc->dirty >= limit))
894                 return;
895
896         /*
897          * global setpoint
898          *
899          * See comment for pos_ratio_polynom().
900          */
901         setpoint = (freerun + limit) / 2;
902         pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
903
904         /*
905          * The strictlimit feature is a tool preventing mistrusted filesystems
906          * from growing a large number of dirty pages before throttling. For
907          * such filesystems balance_dirty_pages always checks wb counters
908          * against wb limits. Even if global "nr_dirty" is under "freerun".
909          * This is especially important for fuse which sets bdi->max_ratio to
910          * 1% by default. Without strictlimit feature, fuse writeback may
911          * consume arbitrary amount of RAM because it is accounted in
912          * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
913          *
914          * Here, in wb_position_ratio(), we calculate pos_ratio based on
915          * two values: wb_dirty and wb_thresh. Let's consider an example:
916          * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
917          * limits are set by default to 10% and 20% (background and throttle).
918          * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
919          * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
920          * about ~6K pages (as the average of background and throttle wb
921          * limits). The 3rd order polynomial will provide positive feedback if
922          * wb_dirty is under wb_setpoint and vice versa.
923          *
924          * Note, that we cannot use global counters in these calculations
925          * because we want to throttle process writing to a strictlimit wb
926          * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
927          * in the example above).
928          */
929         if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
930                 long long wb_pos_ratio;
931
932                 if (dtc->wb_dirty < 8) {
933                         dtc->pos_ratio = min_t(long long, pos_ratio * 2,
934                                            2 << RATELIMIT_CALC_SHIFT);
935                         return;
936                 }
937
938                 if (dtc->wb_dirty >= wb_thresh)
939                         return;
940
941                 wb_setpoint = dirty_freerun_ceiling(wb_thresh,
942                                                     dtc->wb_bg_thresh);
943
944                 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
945                         return;
946
947                 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
948                                                  wb_thresh);
949
950                 /*
951                  * Typically, for strictlimit case, wb_setpoint << setpoint
952                  * and pos_ratio >> wb_pos_ratio. In the other words global
953                  * state ("dirty") is not limiting factor and we have to
954                  * make decision based on wb counters. But there is an
955                  * important case when global pos_ratio should get precedence:
956                  * global limits are exceeded (e.g. due to activities on other
957                  * wb's) while given strictlimit wb is below limit.
958                  *
959                  * "pos_ratio * wb_pos_ratio" would work for the case above,
960                  * but it would look too non-natural for the case of all
961                  * activity in the system coming from a single strictlimit wb
962                  * with bdi->max_ratio == 100%.
963                  *
964                  * Note that min() below somewhat changes the dynamics of the
965                  * control system. Normally, pos_ratio value can be well over 3
966                  * (when globally we are at freerun and wb is well below wb
967                  * setpoint). Now the maximum pos_ratio in the same situation
968                  * is 2. We might want to tweak this if we observe the control
969                  * system is too slow to adapt.
970                  */
971                 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
972                 return;
973         }
974
975         /*
976          * We have computed basic pos_ratio above based on global situation. If
977          * the wb is over/under its share of dirty pages, we want to scale
978          * pos_ratio further down/up. That is done by the following mechanism.
979          */
980
981         /*
982          * wb setpoint
983          *
984          *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
985          *
986          *                        x_intercept - wb_dirty
987          *                     := --------------------------
988          *                        x_intercept - wb_setpoint
989          *
990          * The main wb control line is a linear function that subjects to
991          *
992          * (1) f(wb_setpoint) = 1.0
993          * (2) k = - 1 / (8 * write_bw)  (in single wb case)
994          *     or equally: x_intercept = wb_setpoint + 8 * write_bw
995          *
996          * For single wb case, the dirty pages are observed to fluctuate
997          * regularly within range
998          *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
999          * for various filesystems, where (2) can yield in a reasonable 12.5%
1000          * fluctuation range for pos_ratio.
1001          *
1002          * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1003          * own size, so move the slope over accordingly and choose a slope that
1004          * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1005          */
1006         if (unlikely(wb_thresh > dtc->thresh))
1007                 wb_thresh = dtc->thresh;
1008         /*
1009          * It's very possible that wb_thresh is close to 0 not because the
1010          * device is slow, but that it has remained inactive for long time.
1011          * Honour such devices a reasonable good (hopefully IO efficient)
1012          * threshold, so that the occasional writes won't be blocked and active
1013          * writes can rampup the threshold quickly.
1014          */
1015         wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1016         /*
1017          * scale global setpoint to wb's:
1018          *      wb_setpoint = setpoint * wb_thresh / thresh
1019          */
1020         x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1021         wb_setpoint = setpoint * (u64)x >> 16;
1022         /*
1023          * Use span=(8*write_bw) in single wb case as indicated by
1024          * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1025          *
1026          *        wb_thresh                    thresh - wb_thresh
1027          * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1028          *         thresh                           thresh
1029          */
1030         span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1031         x_intercept = wb_setpoint + span;
1032
1033         if (dtc->wb_dirty < x_intercept - span / 4) {
1034                 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1035                                       (x_intercept - wb_setpoint) | 1);
1036         } else
1037                 pos_ratio /= 4;
1038
1039         /*
1040          * wb reserve area, safeguard against dirty pool underrun and disk idle
1041          * It may push the desired control point of global dirty pages higher
1042          * than setpoint.
1043          */
1044         x_intercept = wb_thresh / 2;
1045         if (dtc->wb_dirty < x_intercept) {
1046                 if (dtc->wb_dirty > x_intercept / 8)
1047                         pos_ratio = div_u64(pos_ratio * x_intercept,
1048                                             dtc->wb_dirty);
1049                 else
1050                         pos_ratio *= 8;
1051         }
1052
1053         dtc->pos_ratio = pos_ratio;
1054 }
1055
1056 static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1057                                       unsigned long elapsed,
1058                                       unsigned long written)
1059 {
1060         const unsigned long period = roundup_pow_of_two(3 * HZ);
1061         unsigned long avg = wb->avg_write_bandwidth;
1062         unsigned long old = wb->write_bandwidth;
1063         u64 bw;
1064
1065         /*
1066          * bw = written * HZ / elapsed
1067          *
1068          *                   bw * elapsed + write_bandwidth * (period - elapsed)
1069          * write_bandwidth = ---------------------------------------------------
1070          *                                          period
1071          *
1072          * @written may have decreased due to account_page_redirty().
1073          * Avoid underflowing @bw calculation.
1074          */
1075         bw = written - min(written, wb->written_stamp);
1076         bw *= HZ;
1077         if (unlikely(elapsed > period)) {
1078                 do_div(bw, elapsed);
1079                 avg = bw;
1080                 goto out;
1081         }
1082         bw += (u64)wb->write_bandwidth * (period - elapsed);
1083         bw >>= ilog2(period);
1084
1085         /*
1086          * one more level of smoothing, for filtering out sudden spikes
1087          */
1088         if (avg > old && old >= (unsigned long)bw)
1089                 avg -= (avg - old) >> 3;
1090
1091         if (avg < old && old <= (unsigned long)bw)
1092                 avg += (old - avg) >> 3;
1093
1094 out:
1095         /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1096         avg = max(avg, 1LU);
1097         if (wb_has_dirty_io(wb)) {
1098                 long delta = avg - wb->avg_write_bandwidth;
1099                 WARN_ON_ONCE(atomic_long_add_return(delta,
1100                                         &wb->bdi->tot_write_bandwidth) <= 0);
1101         }
1102         wb->write_bandwidth = bw;
1103         wb->avg_write_bandwidth = avg;
1104 }
1105
1106 static void update_dirty_limit(struct dirty_throttle_control *dtc)
1107 {
1108         struct wb_domain *dom = dtc_dom(dtc);
1109         unsigned long thresh = dtc->thresh;
1110         unsigned long limit = dom->dirty_limit;
1111
1112         /*
1113          * Follow up in one step.
1114          */
1115         if (limit < thresh) {
1116                 limit = thresh;
1117                 goto update;
1118         }
1119
1120         /*
1121          * Follow down slowly. Use the higher one as the target, because thresh
1122          * may drop below dirty. This is exactly the reason to introduce
1123          * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1124          */
1125         thresh = max(thresh, dtc->dirty);
1126         if (limit > thresh) {
1127                 limit -= (limit - thresh) >> 5;
1128                 goto update;
1129         }
1130         return;
1131 update:
1132         dom->dirty_limit = limit;
1133 }
1134
1135 static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
1136                                     unsigned long now)
1137 {
1138         struct wb_domain *dom = dtc_dom(dtc);
1139
1140         /*
1141          * check locklessly first to optimize away locking for the most time
1142          */
1143         if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1144                 return;
1145
1146         spin_lock(&dom->lock);
1147         if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1148                 update_dirty_limit(dtc);
1149                 dom->dirty_limit_tstamp = now;
1150         }
1151         spin_unlock(&dom->lock);
1152 }
1153
1154 /*
1155  * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1156  *
1157  * Normal wb tasks will be curbed at or below it in long term.
1158  * Obviously it should be around (write_bw / N) when there are N dd tasks.
1159  */
1160 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1161                                       unsigned long dirtied,
1162                                       unsigned long elapsed)
1163 {
1164         struct bdi_writeback *wb = dtc->wb;
1165         unsigned long dirty = dtc->dirty;
1166         unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1167         unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1168         unsigned long setpoint = (freerun + limit) / 2;
1169         unsigned long write_bw = wb->avg_write_bandwidth;
1170         unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1171         unsigned long dirty_rate;
1172         unsigned long task_ratelimit;
1173         unsigned long balanced_dirty_ratelimit;
1174         unsigned long step;
1175         unsigned long x;
1176         unsigned long shift;
1177
1178         /*
1179          * The dirty rate will match the writeout rate in long term, except
1180          * when dirty pages are truncated by userspace or re-dirtied by FS.
1181          */
1182         dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1183
1184         /*
1185          * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1186          */
1187         task_ratelimit = (u64)dirty_ratelimit *
1188                                         dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1189         task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1190
1191         /*
1192          * A linear estimation of the "balanced" throttle rate. The theory is,
1193          * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1194          * dirty_rate will be measured to be (N * task_ratelimit). So the below
1195          * formula will yield the balanced rate limit (write_bw / N).
1196          *
1197          * Note that the expanded form is not a pure rate feedback:
1198          *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate)              (1)
1199          * but also takes pos_ratio into account:
1200          *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
1201          *
1202          * (1) is not realistic because pos_ratio also takes part in balancing
1203          * the dirty rate.  Consider the state
1204          *      pos_ratio = 0.5                                              (3)
1205          *      rate = 2 * (write_bw / N)                                    (4)
1206          * If (1) is used, it will stuck in that state! Because each dd will
1207          * be throttled at
1208          *      task_ratelimit = pos_ratio * rate = (write_bw / N)           (5)
1209          * yielding
1210          *      dirty_rate = N * task_ratelimit = write_bw                   (6)
1211          * put (6) into (1) we get
1212          *      rate_(i+1) = rate_(i)                                        (7)
1213          *
1214          * So we end up using (2) to always keep
1215          *      rate_(i+1) ~= (write_bw / N)                                 (8)
1216          * regardless of the value of pos_ratio. As long as (8) is satisfied,
1217          * pos_ratio is able to drive itself to 1.0, which is not only where
1218          * the dirty count meet the setpoint, but also where the slope of
1219          * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1220          */
1221         balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1222                                            dirty_rate | 1);
1223         /*
1224          * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1225          */
1226         if (unlikely(balanced_dirty_ratelimit > write_bw))
1227                 balanced_dirty_ratelimit = write_bw;
1228
1229         /*
1230          * We could safely do this and return immediately:
1231          *
1232          *      wb->dirty_ratelimit = balanced_dirty_ratelimit;
1233          *
1234          * However to get a more stable dirty_ratelimit, the below elaborated
1235          * code makes use of task_ratelimit to filter out singular points and
1236          * limit the step size.
1237          *
1238          * The below code essentially only uses the relative value of
1239          *
1240          *      task_ratelimit - dirty_ratelimit
1241          *      = (pos_ratio - 1) * dirty_ratelimit
1242          *
1243          * which reflects the direction and size of dirty position error.
1244          */
1245
1246         /*
1247          * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1248          * task_ratelimit is on the same side of dirty_ratelimit, too.
1249          * For example, when
1250          * - dirty_ratelimit > balanced_dirty_ratelimit
1251          * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1252          * lowering dirty_ratelimit will help meet both the position and rate
1253          * control targets. Otherwise, don't update dirty_ratelimit if it will
1254          * only help meet the rate target. After all, what the users ultimately
1255          * feel and care are stable dirty rate and small position error.
1256          *
1257          * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1258          * and filter out the singular points of balanced_dirty_ratelimit. Which
1259          * keeps jumping around randomly and can even leap far away at times
1260          * due to the small 200ms estimation period of dirty_rate (we want to
1261          * keep that period small to reduce time lags).
1262          */
1263         step = 0;
1264
1265         /*
1266          * For strictlimit case, calculations above were based on wb counters
1267          * and limits (starting from pos_ratio = wb_position_ratio() and up to
1268          * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1269          * Hence, to calculate "step" properly, we have to use wb_dirty as
1270          * "dirty" and wb_setpoint as "setpoint".
1271          *
1272          * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1273          * it's possible that wb_thresh is close to zero due to inactivity
1274          * of backing device.
1275          */
1276         if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1277                 dirty = dtc->wb_dirty;
1278                 if (dtc->wb_dirty < 8)
1279                         setpoint = dtc->wb_dirty + 1;
1280                 else
1281                         setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1282         }
1283
1284         if (dirty < setpoint) {
1285                 x = min3(wb->balanced_dirty_ratelimit,
1286                          balanced_dirty_ratelimit, task_ratelimit);
1287                 if (dirty_ratelimit < x)
1288                         step = x - dirty_ratelimit;
1289         } else {
1290                 x = max3(wb->balanced_dirty_ratelimit,
1291                          balanced_dirty_ratelimit, task_ratelimit);
1292                 if (dirty_ratelimit > x)
1293                         step = dirty_ratelimit - x;
1294         }
1295
1296         /*
1297          * Don't pursue 100% rate matching. It's impossible since the balanced
1298          * rate itself is constantly fluctuating. So decrease the track speed
1299          * when it gets close to the target. Helps eliminate pointless tremors.
1300          */
1301         shift = dirty_ratelimit / (2 * step + 1);
1302         if (shift < BITS_PER_LONG)
1303                 step = DIV_ROUND_UP(step >> shift, 8);
1304         else
1305                 step = 0;
1306
1307         if (dirty_ratelimit < balanced_dirty_ratelimit)
1308                 dirty_ratelimit += step;
1309         else
1310                 dirty_ratelimit -= step;
1311
1312         wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1313         wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1314
1315         trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1316 }
1317
1318 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1319                                   struct dirty_throttle_control *mdtc,
1320                                   unsigned long start_time,
1321                                   bool update_ratelimit)
1322 {
1323         struct bdi_writeback *wb = gdtc->wb;
1324         unsigned long now = jiffies;
1325         unsigned long elapsed = now - wb->bw_time_stamp;
1326         unsigned long dirtied;
1327         unsigned long written;
1328
1329         lockdep_assert_held(&wb->list_lock);
1330
1331         /*
1332          * rate-limit, only update once every 200ms.
1333          */
1334         if (elapsed < BANDWIDTH_INTERVAL)
1335                 return;
1336
1337         dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1338         written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1339
1340         /*
1341          * Skip quiet periods when disk bandwidth is under-utilized.
1342          * (at least 1s idle time between two flusher runs)
1343          */
1344         if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1345                 goto snapshot;
1346
1347         if (update_ratelimit) {
1348                 domain_update_bandwidth(gdtc, now);
1349                 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1350
1351                 /*
1352                  * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1353                  * compiler has no way to figure that out.  Help it.
1354                  */
1355                 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1356                         domain_update_bandwidth(mdtc, now);
1357                         wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1358                 }
1359         }
1360         wb_update_write_bandwidth(wb, elapsed, written);
1361
1362 snapshot:
1363         wb->dirtied_stamp = dirtied;
1364         wb->written_stamp = written;
1365         wb->bw_time_stamp = now;
1366 }
1367
1368 void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
1369 {
1370         struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1371
1372         __wb_update_bandwidth(&gdtc, NULL, start_time, false);
1373 }
1374
1375 /*
1376  * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1377  * will look to see if it needs to start dirty throttling.
1378  *
1379  * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1380  * global_page_state() too often. So scale it near-sqrt to the safety margin
1381  * (the number of pages we may dirty without exceeding the dirty limits).
1382  */
1383 static unsigned long dirty_poll_interval(unsigned long dirty,
1384                                          unsigned long thresh)
1385 {
1386         if (thresh > dirty)
1387                 return 1UL << (ilog2(thresh - dirty) >> 1);
1388
1389         return 1;
1390 }
1391
1392 static unsigned long wb_max_pause(struct bdi_writeback *wb,
1393                                   unsigned long wb_dirty)
1394 {
1395         unsigned long bw = wb->avg_write_bandwidth;
1396         unsigned long t;
1397
1398         /*
1399          * Limit pause time for small memory systems. If sleeping for too long
1400          * time, a small pool of dirty/writeback pages may go empty and disk go
1401          * idle.
1402          *
1403          * 8 serves as the safety ratio.
1404          */
1405         t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1406         t++;
1407
1408         return min_t(unsigned long, t, MAX_PAUSE);
1409 }
1410
1411 static long wb_min_pause(struct bdi_writeback *wb,
1412                          long max_pause,
1413                          unsigned long task_ratelimit,
1414                          unsigned long dirty_ratelimit,
1415                          int *nr_dirtied_pause)
1416 {
1417         long hi = ilog2(wb->avg_write_bandwidth);
1418         long lo = ilog2(wb->dirty_ratelimit);
1419         long t;         /* target pause */
1420         long pause;     /* estimated next pause */
1421         int pages;      /* target nr_dirtied_pause */
1422
1423         /* target for 10ms pause on 1-dd case */
1424         t = max(1, HZ / 100);
1425
1426         /*
1427          * Scale up pause time for concurrent dirtiers in order to reduce CPU
1428          * overheads.
1429          *
1430          * (N * 10ms) on 2^N concurrent tasks.
1431          */
1432         if (hi > lo)
1433                 t += (hi - lo) * (10 * HZ) / 1024;
1434
1435         /*
1436          * This is a bit convoluted. We try to base the next nr_dirtied_pause
1437          * on the much more stable dirty_ratelimit. However the next pause time
1438          * will be computed based on task_ratelimit and the two rate limits may
1439          * depart considerably at some time. Especially if task_ratelimit goes
1440          * below dirty_ratelimit/2 and the target pause is max_pause, the next
1441          * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1442          * result task_ratelimit won't be executed faithfully, which could
1443          * eventually bring down dirty_ratelimit.
1444          *
1445          * We apply two rules to fix it up:
1446          * 1) try to estimate the next pause time and if necessary, use a lower
1447          *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1448          *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1449          * 2) limit the target pause time to max_pause/2, so that the normal
1450          *    small fluctuations of task_ratelimit won't trigger rule (1) and
1451          *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1452          */
1453         t = min(t, 1 + max_pause / 2);
1454         pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1455
1456         /*
1457          * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1458          * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1459          * When the 16 consecutive reads are often interrupted by some dirty
1460          * throttling pause during the async writes, cfq will go into idles
1461          * (deadline is fine). So push nr_dirtied_pause as high as possible
1462          * until reaches DIRTY_POLL_THRESH=32 pages.
1463          */
1464         if (pages < DIRTY_POLL_THRESH) {
1465                 t = max_pause;
1466                 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1467                 if (pages > DIRTY_POLL_THRESH) {
1468                         pages = DIRTY_POLL_THRESH;
1469                         t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1470                 }
1471         }
1472
1473         pause = HZ * pages / (task_ratelimit + 1);
1474         if (pause > max_pause) {
1475                 t = max_pause;
1476                 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1477         }
1478
1479         *nr_dirtied_pause = pages;
1480         /*
1481          * The minimal pause time will normally be half the target pause time.
1482          */
1483         return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1484 }
1485
1486 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1487 {
1488         struct bdi_writeback *wb = dtc->wb;
1489         unsigned long wb_reclaimable;
1490
1491         /*
1492          * wb_thresh is not treated as some limiting factor as
1493          * dirty_thresh, due to reasons
1494          * - in JBOD setup, wb_thresh can fluctuate a lot
1495          * - in a system with HDD and USB key, the USB key may somehow
1496          *   go into state (wb_dirty >> wb_thresh) either because
1497          *   wb_dirty starts high, or because wb_thresh drops low.
1498          *   In this case we don't want to hard throttle the USB key
1499          *   dirtiers for 100 seconds until wb_dirty drops under
1500          *   wb_thresh. Instead the auxiliary wb control line in
1501          *   wb_position_ratio() will let the dirtier task progress
1502          *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1503          */
1504         dtc->wb_thresh = __wb_calc_thresh(dtc);
1505         dtc->wb_bg_thresh = dtc->thresh ?
1506                 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1507
1508         /*
1509          * In order to avoid the stacked BDI deadlock we need
1510          * to ensure we accurately count the 'dirty' pages when
1511          * the threshold is low.
1512          *
1513          * Otherwise it would be possible to get thresh+n pages
1514          * reported dirty, even though there are thresh-m pages
1515          * actually dirty; with m+n sitting in the percpu
1516          * deltas.
1517          */
1518         if (dtc->wb_thresh < 2 * wb_stat_error(wb)) {
1519                 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1520                 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1521         } else {
1522                 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1523                 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1524         }
1525 }
1526
1527 /*
1528  * balance_dirty_pages() must be called by processes which are generating dirty
1529  * data.  It looks at the number of dirty pages in the machine and will force
1530  * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1531  * If we're over `background_thresh' then the writeback threads are woken to
1532  * perform some writeout.
1533  */
1534 static void balance_dirty_pages(struct address_space *mapping,
1535                                 struct bdi_writeback *wb,
1536                                 unsigned long pages_dirtied)
1537 {
1538         struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1539         struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1540         struct dirty_throttle_control * const gdtc = &gdtc_stor;
1541         struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1542                                                      &mdtc_stor : NULL;
1543         struct dirty_throttle_control *sdtc;
1544         unsigned long nr_reclaimable;   /* = file_dirty + unstable_nfs */
1545         long period;
1546         long pause;
1547         long max_pause;
1548         long min_pause;
1549         int nr_dirtied_pause;
1550         bool dirty_exceeded = false;
1551         unsigned long task_ratelimit;
1552         unsigned long dirty_ratelimit;
1553         struct backing_dev_info *bdi = wb->bdi;
1554         bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1555         unsigned long start_time = jiffies;
1556
1557         for (;;) {
1558                 unsigned long now = jiffies;
1559                 unsigned long dirty, thresh, bg_thresh;
1560                 unsigned long m_dirty = 0;      /* stop bogus uninit warnings */
1561                 unsigned long m_thresh = 0;
1562                 unsigned long m_bg_thresh = 0;
1563
1564                 /*
1565                  * Unstable writes are a feature of certain networked
1566                  * filesystems (i.e. NFS) in which data may have been
1567                  * written to the server's write cache, but has not yet
1568                  * been flushed to permanent storage.
1569                  */
1570                 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1571                                         global_page_state(NR_UNSTABLE_NFS);
1572                 gdtc->avail = global_dirtyable_memory();
1573                 gdtc->dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1574
1575                 domain_dirty_limits(gdtc);
1576
1577                 if (unlikely(strictlimit)) {
1578                         wb_dirty_limits(gdtc);
1579
1580                         dirty = gdtc->wb_dirty;
1581                         thresh = gdtc->wb_thresh;
1582                         bg_thresh = gdtc->wb_bg_thresh;
1583                 } else {
1584                         dirty = gdtc->dirty;
1585                         thresh = gdtc->thresh;
1586                         bg_thresh = gdtc->bg_thresh;
1587                 }
1588
1589                 if (mdtc) {
1590                         unsigned long filepages, headroom, writeback;
1591
1592                         /*
1593                          * If @wb belongs to !root memcg, repeat the same
1594                          * basic calculations for the memcg domain.
1595                          */
1596                         mem_cgroup_wb_stats(wb, &filepages, &headroom,
1597                                             &mdtc->dirty, &writeback);
1598                         mdtc->dirty += writeback;
1599                         mdtc_calc_avail(mdtc, filepages, headroom);
1600
1601                         domain_dirty_limits(mdtc);
1602
1603                         if (unlikely(strictlimit)) {
1604                                 wb_dirty_limits(mdtc);
1605                                 m_dirty = mdtc->wb_dirty;
1606                                 m_thresh = mdtc->wb_thresh;
1607                                 m_bg_thresh = mdtc->wb_bg_thresh;
1608                         } else {
1609                                 m_dirty = mdtc->dirty;
1610                                 m_thresh = mdtc->thresh;
1611                                 m_bg_thresh = mdtc->bg_thresh;
1612                         }
1613                 }
1614
1615                 /*
1616                  * Throttle it only when the background writeback cannot
1617                  * catch-up. This avoids (excessively) small writeouts
1618                  * when the wb limits are ramping up in case of !strictlimit.
1619                  *
1620                  * In strictlimit case make decision based on the wb counters
1621                  * and limits. Small writeouts when the wb limits are ramping
1622                  * up are the price we consciously pay for strictlimit-ing.
1623                  *
1624                  * If memcg domain is in effect, @dirty should be under
1625                  * both global and memcg freerun ceilings.
1626                  */
1627                 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1628                     (!mdtc ||
1629                      m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1630                         unsigned long intv = dirty_poll_interval(dirty, thresh);
1631                         unsigned long m_intv = ULONG_MAX;
1632
1633                         current->dirty_paused_when = now;
1634                         current->nr_dirtied = 0;
1635                         if (mdtc)
1636                                 m_intv = dirty_poll_interval(m_dirty, m_thresh);
1637                         current->nr_dirtied_pause = min(intv, m_intv);
1638                         break;
1639                 }
1640
1641                 if (unlikely(!writeback_in_progress(wb)))
1642                         wb_start_background_writeback(wb);
1643
1644                 /*
1645                  * Calculate global domain's pos_ratio and select the
1646                  * global dtc by default.
1647                  */
1648                 if (!strictlimit)
1649                         wb_dirty_limits(gdtc);
1650
1651                 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1652                         ((gdtc->dirty > gdtc->thresh) || strictlimit);
1653
1654                 wb_position_ratio(gdtc);
1655                 sdtc = gdtc;
1656
1657                 if (mdtc) {
1658                         /*
1659                          * If memcg domain is in effect, calculate its
1660                          * pos_ratio.  @wb should satisfy constraints from
1661                          * both global and memcg domains.  Choose the one
1662                          * w/ lower pos_ratio.
1663                          */
1664                         if (!strictlimit)
1665                                 wb_dirty_limits(mdtc);
1666
1667                         dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1668                                 ((mdtc->dirty > mdtc->thresh) || strictlimit);
1669
1670                         wb_position_ratio(mdtc);
1671                         if (mdtc->pos_ratio < gdtc->pos_ratio)
1672                                 sdtc = mdtc;
1673                 }
1674
1675                 if (dirty_exceeded && !wb->dirty_exceeded)
1676                         wb->dirty_exceeded = 1;
1677
1678                 if (time_is_before_jiffies(wb->bw_time_stamp +
1679                                            BANDWIDTH_INTERVAL)) {
1680                         spin_lock(&wb->list_lock);
1681                         __wb_update_bandwidth(gdtc, mdtc, start_time, true);
1682                         spin_unlock(&wb->list_lock);
1683                 }
1684
1685                 /* throttle according to the chosen dtc */
1686                 dirty_ratelimit = wb->dirty_ratelimit;
1687                 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1688                                                         RATELIMIT_CALC_SHIFT;
1689                 max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1690                 min_pause = wb_min_pause(wb, max_pause,
1691                                          task_ratelimit, dirty_ratelimit,
1692                                          &nr_dirtied_pause);
1693
1694                 if (unlikely(task_ratelimit == 0)) {
1695                         period = max_pause;
1696                         pause = max_pause;
1697                         goto pause;
1698                 }
1699                 period = HZ * pages_dirtied / task_ratelimit;
1700                 pause = period;
1701                 if (current->dirty_paused_when)
1702                         pause -= now - current->dirty_paused_when;
1703                 /*
1704                  * For less than 1s think time (ext3/4 may block the dirtier
1705                  * for up to 800ms from time to time on 1-HDD; so does xfs,
1706                  * however at much less frequency), try to compensate it in
1707                  * future periods by updating the virtual time; otherwise just
1708                  * do a reset, as it may be a light dirtier.
1709                  */
1710                 if (pause < min_pause) {
1711                         trace_balance_dirty_pages(wb,
1712                                                   sdtc->thresh,
1713                                                   sdtc->bg_thresh,
1714                                                   sdtc->dirty,
1715                                                   sdtc->wb_thresh,
1716                                                   sdtc->wb_dirty,
1717                                                   dirty_ratelimit,
1718                                                   task_ratelimit,
1719                                                   pages_dirtied,
1720                                                   period,
1721                                                   min(pause, 0L),
1722                                                   start_time);
1723                         if (pause < -HZ) {
1724                                 current->dirty_paused_when = now;
1725                                 current->nr_dirtied = 0;
1726                         } else if (period) {
1727                                 current->dirty_paused_when += period;
1728                                 current->nr_dirtied = 0;
1729                         } else if (current->nr_dirtied_pause <= pages_dirtied)
1730                                 current->nr_dirtied_pause += pages_dirtied;
1731                         break;
1732                 }
1733                 if (unlikely(pause > max_pause)) {
1734                         /* for occasional dropped task_ratelimit */
1735                         now += min(pause - max_pause, max_pause);
1736                         pause = max_pause;
1737                 }
1738
1739 pause:
1740                 trace_balance_dirty_pages(wb,
1741                                           sdtc->thresh,
1742                                           sdtc->bg_thresh,
1743                                           sdtc->dirty,
1744                                           sdtc->wb_thresh,
1745                                           sdtc->wb_dirty,
1746                                           dirty_ratelimit,
1747                                           task_ratelimit,
1748                                           pages_dirtied,
1749                                           period,
1750                                           pause,
1751                                           start_time);
1752                 __set_current_state(TASK_KILLABLE);
1753                 io_schedule_timeout(pause);
1754
1755                 current->dirty_paused_when = now + pause;
1756                 current->nr_dirtied = 0;
1757                 current->nr_dirtied_pause = nr_dirtied_pause;
1758
1759                 /*
1760                  * This is typically equal to (dirty < thresh) and can also
1761                  * keep "1000+ dd on a slow USB stick" under control.
1762                  */
1763                 if (task_ratelimit)
1764                         break;
1765
1766                 /*
1767                  * In the case of an unresponding NFS server and the NFS dirty
1768                  * pages exceeds dirty_thresh, give the other good wb's a pipe
1769                  * to go through, so that tasks on them still remain responsive.
1770                  *
1771                  * In theory 1 page is enough to keep the comsumer-producer
1772                  * pipe going: the flusher cleans 1 page => the task dirties 1
1773                  * more page. However wb_dirty has accounting errors.  So use
1774                  * the larger and more IO friendly wb_stat_error.
1775                  */
1776                 if (sdtc->wb_dirty <= wb_stat_error(wb))
1777                         break;
1778
1779                 if (fatal_signal_pending(current))
1780                         break;
1781         }
1782
1783         if (!dirty_exceeded && wb->dirty_exceeded)
1784                 wb->dirty_exceeded = 0;
1785
1786         if (writeback_in_progress(wb))
1787                 return;
1788
1789         /*
1790          * In laptop mode, we wait until hitting the higher threshold before
1791          * starting background writeout, and then write out all the way down
1792          * to the lower threshold.  So slow writers cause minimal disk activity.
1793          *
1794          * In normal mode, we start background writeout at the lower
1795          * background_thresh, to keep the amount of dirty memory low.
1796          */
1797         if (laptop_mode)
1798                 return;
1799
1800         if (nr_reclaimable > gdtc->bg_thresh)
1801                 wb_start_background_writeback(wb);
1802 }
1803
1804 static DEFINE_PER_CPU(int, bdp_ratelimits);
1805
1806 /*
1807  * Normal tasks are throttled by
1808  *      loop {
1809  *              dirty tsk->nr_dirtied_pause pages;
1810  *              take a snap in balance_dirty_pages();
1811  *      }
1812  * However there is a worst case. If every task exit immediately when dirtied
1813  * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1814  * called to throttle the page dirties. The solution is to save the not yet
1815  * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1816  * randomly into the running tasks. This works well for the above worst case,
1817  * as the new task will pick up and accumulate the old task's leaked dirty
1818  * count and eventually get throttled.
1819  */
1820 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1821
1822 /**
1823  * balance_dirty_pages_ratelimited - balance dirty memory state
1824  * @mapping: address_space which was dirtied
1825  *
1826  * Processes which are dirtying memory should call in here once for each page
1827  * which was newly dirtied.  The function will periodically check the system's
1828  * dirty state and will initiate writeback if needed.
1829  *
1830  * On really big machines, get_writeback_state is expensive, so try to avoid
1831  * calling it too often (ratelimiting).  But once we're over the dirty memory
1832  * limit we decrease the ratelimiting by a lot, to prevent individual processes
1833  * from overshooting the limit by (ratelimit_pages) each.
1834  */
1835 void balance_dirty_pages_ratelimited(struct address_space *mapping)
1836 {
1837         struct inode *inode = mapping->host;
1838         struct backing_dev_info *bdi = inode_to_bdi(inode);
1839         struct bdi_writeback *wb = NULL;
1840         int ratelimit;
1841         int *p;
1842
1843         if (!bdi_cap_account_dirty(bdi))
1844                 return;
1845
1846         if (inode_cgwb_enabled(inode))
1847                 wb = wb_get_create_current(bdi, GFP_KERNEL);
1848         if (!wb)
1849                 wb = &bdi->wb;
1850
1851         ratelimit = current->nr_dirtied_pause;
1852         if (wb->dirty_exceeded)
1853                 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1854
1855         preempt_disable();
1856         /*
1857          * This prevents one CPU to accumulate too many dirtied pages without
1858          * calling into balance_dirty_pages(), which can happen when there are
1859          * 1000+ tasks, all of them start dirtying pages at exactly the same
1860          * time, hence all honoured too large initial task->nr_dirtied_pause.
1861          */
1862         p =  this_cpu_ptr(&bdp_ratelimits);
1863         if (unlikely(current->nr_dirtied >= ratelimit))
1864                 *p = 0;
1865         else if (unlikely(*p >= ratelimit_pages)) {
1866                 *p = 0;
1867                 ratelimit = 0;
1868         }
1869         /*
1870          * Pick up the dirtied pages by the exited tasks. This avoids lots of
1871          * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1872          * the dirty throttling and livelock other long-run dirtiers.
1873          */
1874         p = this_cpu_ptr(&dirty_throttle_leaks);
1875         if (*p > 0 && current->nr_dirtied < ratelimit) {
1876                 unsigned long nr_pages_dirtied;
1877                 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1878                 *p -= nr_pages_dirtied;
1879                 current->nr_dirtied += nr_pages_dirtied;
1880         }
1881         preempt_enable();
1882
1883         if (unlikely(current->nr_dirtied >= ratelimit))
1884                 balance_dirty_pages(mapping, wb, current->nr_dirtied);
1885
1886         wb_put(wb);
1887 }
1888 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1889
1890 /**
1891  * wb_over_bg_thresh - does @wb need to be written back?
1892  * @wb: bdi_writeback of interest
1893  *
1894  * Determines whether background writeback should keep writing @wb or it's
1895  * clean enough.  Returns %true if writeback should continue.
1896  */
1897 bool wb_over_bg_thresh(struct bdi_writeback *wb)
1898 {
1899         struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1900         struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1901         struct dirty_throttle_control * const gdtc = &gdtc_stor;
1902         struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1903                                                      &mdtc_stor : NULL;
1904
1905         /*
1906          * Similar to balance_dirty_pages() but ignores pages being written
1907          * as we're trying to decide whether to put more under writeback.
1908          */
1909         gdtc->avail = global_dirtyable_memory();
1910         gdtc->dirty = global_page_state(NR_FILE_DIRTY) +
1911                       global_page_state(NR_UNSTABLE_NFS);
1912         domain_dirty_limits(gdtc);
1913
1914         if (gdtc->dirty > gdtc->bg_thresh)
1915                 return true;
1916
1917         if (wb_stat(wb, WB_RECLAIMABLE) >
1918             wb_calc_thresh(gdtc->wb, gdtc->bg_thresh))
1919                 return true;
1920
1921         if (mdtc) {
1922                 unsigned long filepages, headroom, writeback;
1923
1924                 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
1925                                     &writeback);
1926                 mdtc_calc_avail(mdtc, filepages, headroom);
1927                 domain_dirty_limits(mdtc);      /* ditto, ignore writeback */
1928
1929                 if (mdtc->dirty > mdtc->bg_thresh)
1930                         return true;
1931
1932                 if (wb_stat(wb, WB_RECLAIMABLE) >
1933                     wb_calc_thresh(mdtc->wb, mdtc->bg_thresh))
1934                         return true;
1935         }
1936
1937         return false;
1938 }
1939
1940 void throttle_vm_writeout(gfp_t gfp_mask)
1941 {
1942         unsigned long background_thresh;
1943         unsigned long dirty_thresh;
1944
1945         for ( ; ; ) {
1946                 global_dirty_limits(&background_thresh, &dirty_thresh);
1947                 dirty_thresh = hard_dirty_limit(&global_wb_domain, dirty_thresh);
1948
1949                 /*
1950                  * Boost the allowable dirty threshold a bit for page
1951                  * allocators so they don't get DoS'ed by heavy writers
1952                  */
1953                 dirty_thresh += dirty_thresh / 10;      /* wheeee... */
1954
1955                 if (global_page_state(NR_UNSTABLE_NFS) +
1956                         global_page_state(NR_WRITEBACK) <= dirty_thresh)
1957                                 break;
1958                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1959
1960                 /*
1961                  * The caller might hold locks which can prevent IO completion
1962                  * or progress in the filesystem.  So we cannot just sit here
1963                  * waiting for IO to complete.
1964                  */
1965                 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1966                         break;
1967         }
1968 }
1969
1970 /*
1971  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1972  */
1973 int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1974         void __user *buffer, size_t *length, loff_t *ppos)
1975 {
1976         proc_dointvec(table, write, buffer, length, ppos);
1977         return 0;
1978 }
1979
1980 #ifdef CONFIG_BLOCK
1981 void laptop_mode_timer_fn(unsigned long data)
1982 {
1983         struct request_queue *q = (struct request_queue *)data;
1984         int nr_pages = global_page_state(NR_FILE_DIRTY) +
1985                 global_page_state(NR_UNSTABLE_NFS);
1986         struct bdi_writeback *wb;
1987
1988         /*
1989          * We want to write everything out, not just down to the dirty
1990          * threshold
1991          */
1992         if (!bdi_has_dirty_io(&q->backing_dev_info))
1993                 return;
1994
1995         rcu_read_lock();
1996         list_for_each_entry_rcu(wb, &q->backing_dev_info.wb_list, bdi_node)
1997                 if (wb_has_dirty_io(wb))
1998                         wb_start_writeback(wb, nr_pages, true,
1999                                            WB_REASON_LAPTOP_TIMER);
2000         rcu_read_unlock();
2001 }
2002
2003 /*
2004  * We've spun up the disk and we're in laptop mode: schedule writeback
2005  * of all dirty data a few seconds from now.  If the flush is already scheduled
2006  * then push it back - the user is still using the disk.
2007  */
2008 void laptop_io_completion(struct backing_dev_info *info)
2009 {
2010         mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2011 }
2012
2013 /*
2014  * We're in laptop mode and we've just synced. The sync's writes will have
2015  * caused another writeback to be scheduled by laptop_io_completion.
2016  * Nothing needs to be written back anymore, so we unschedule the writeback.
2017  */
2018 void laptop_sync_completion(void)
2019 {
2020         struct backing_dev_info *bdi;
2021
2022         rcu_read_lock();
2023
2024         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2025                 del_timer(&bdi->laptop_mode_wb_timer);
2026
2027         rcu_read_unlock();
2028 }
2029 #endif
2030
2031 /*
2032  * If ratelimit_pages is too high then we can get into dirty-data overload
2033  * if a large number of processes all perform writes at the same time.
2034  * If it is too low then SMP machines will call the (expensive)
2035  * get_writeback_state too often.
2036  *
2037  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2038  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2039  * thresholds.
2040  */
2041
2042 void writeback_set_ratelimit(void)
2043 {
2044         struct wb_domain *dom = &global_wb_domain;
2045         unsigned long background_thresh;
2046         unsigned long dirty_thresh;
2047
2048         global_dirty_limits(&background_thresh, &dirty_thresh);
2049         dom->dirty_limit = dirty_thresh;
2050         ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2051         if (ratelimit_pages < 16)
2052                 ratelimit_pages = 16;
2053 }
2054
2055 static int
2056 ratelimit_handler(struct notifier_block *self, unsigned long action,
2057                   void *hcpu)
2058 {
2059
2060         switch (action & ~CPU_TASKS_FROZEN) {
2061         case CPU_ONLINE:
2062         case CPU_DEAD:
2063                 writeback_set_ratelimit();
2064                 return NOTIFY_OK;
2065         default:
2066                 return NOTIFY_DONE;
2067         }
2068 }
2069
2070 static struct notifier_block ratelimit_nb = {
2071         .notifier_call  = ratelimit_handler,
2072         .next           = NULL,
2073 };
2074
2075 /*
2076  * Called early on to tune the page writeback dirty limits.
2077  *
2078  * We used to scale dirty pages according to how total memory
2079  * related to pages that could be allocated for buffers (by
2080  * comparing nr_free_buffer_pages() to vm_total_pages.
2081  *
2082  * However, that was when we used "dirty_ratio" to scale with
2083  * all memory, and we don't do that any more. "dirty_ratio"
2084  * is now applied to total non-HIGHPAGE memory (by subtracting
2085  * totalhigh_pages from vm_total_pages), and as such we can't
2086  * get into the old insane situation any more where we had
2087  * large amounts of dirty pages compared to a small amount of
2088  * non-HIGHMEM memory.
2089  *
2090  * But we might still want to scale the dirty_ratio by how
2091  * much memory the box has..
2092  */
2093 void __init page_writeback_init(void)
2094 {
2095         BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2096
2097         writeback_set_ratelimit();
2098         register_cpu_notifier(&ratelimit_nb);
2099 }
2100
2101 /**
2102  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2103  * @mapping: address space structure to write
2104  * @start: starting page index
2105  * @end: ending page index (inclusive)
2106  *
2107  * This function scans the page range from @start to @end (inclusive) and tags
2108  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2109  * that write_cache_pages (or whoever calls this function) will then use
2110  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
2111  * used to avoid livelocking of writeback by a process steadily creating new
2112  * dirty pages in the file (thus it is important for this function to be quick
2113  * so that it can tag pages faster than a dirtying process can create them).
2114  */
2115 /*
2116  * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
2117  */
2118 void tag_pages_for_writeback(struct address_space *mapping,
2119                              pgoff_t start, pgoff_t end)
2120 {
2121 #define WRITEBACK_TAG_BATCH 4096
2122         unsigned long tagged;
2123
2124         do {
2125                 spin_lock_irq(&mapping->tree_lock);
2126                 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
2127                                 &start, end, WRITEBACK_TAG_BATCH,
2128                                 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
2129                 spin_unlock_irq(&mapping->tree_lock);
2130                 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
2131                 cond_resched();
2132                 /* We check 'start' to handle wrapping when end == ~0UL */
2133         } while (tagged >= WRITEBACK_TAG_BATCH && start);
2134 }
2135 EXPORT_SYMBOL(tag_pages_for_writeback);
2136
2137 /**
2138  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2139  * @mapping: address space structure to write
2140  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2141  * @writepage: function called for each page
2142  * @data: data passed to writepage function
2143  *
2144  * If a page is already under I/O, write_cache_pages() skips it, even
2145  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2146  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2147  * and msync() need to guarantee that all the data which was dirty at the time
2148  * the call was made get new I/O started against them.  If wbc->sync_mode is
2149  * WB_SYNC_ALL then we were called for data integrity and we must wait for
2150  * existing IO to complete.
2151  *
2152  * To avoid livelocks (when other process dirties new pages), we first tag
2153  * pages which should be written back with TOWRITE tag and only then start
2154  * writing them. For data-integrity sync we have to be careful so that we do
2155  * not miss some pages (e.g., because some other process has cleared TOWRITE
2156  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2157  * by the process clearing the DIRTY tag (and submitting the page for IO).
2158  */
2159 int write_cache_pages(struct address_space *mapping,
2160                       struct writeback_control *wbc, writepage_t writepage,
2161                       void *data)
2162 {
2163         int ret = 0;
2164         int done = 0;
2165         struct pagevec pvec;
2166         int nr_pages;
2167         pgoff_t uninitialized_var(writeback_index);
2168         pgoff_t index;
2169         pgoff_t end;            /* Inclusive */
2170         pgoff_t done_index;
2171         int cycled;
2172         int range_whole = 0;
2173         int tag;
2174
2175         pagevec_init(&pvec, 0);
2176         if (wbc->range_cyclic) {
2177                 writeback_index = mapping->writeback_index; /* prev offset */
2178                 index = writeback_index;
2179                 if (index == 0)
2180                         cycled = 1;
2181                 else
2182                         cycled = 0;
2183                 end = -1;
2184         } else {
2185                 index = wbc->range_start >> PAGE_SHIFT;
2186                 end = wbc->range_end >> PAGE_SHIFT;
2187                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2188                         range_whole = 1;
2189                 cycled = 1; /* ignore range_cyclic tests */
2190         }
2191         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2192                 tag = PAGECACHE_TAG_TOWRITE;
2193         else
2194                 tag = PAGECACHE_TAG_DIRTY;
2195 retry:
2196         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2197                 tag_pages_for_writeback(mapping, index, end);
2198         done_index = index;
2199         while (!done && (index <= end)) {
2200                 int i;
2201
2202                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2203                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2204                 if (nr_pages == 0)
2205                         break;
2206
2207                 for (i = 0; i < nr_pages; i++) {
2208                         struct page *page = pvec.pages[i];
2209
2210                         /*
2211                          * At this point, the page may be truncated or
2212                          * invalidated (changing page->mapping to NULL), or
2213                          * even swizzled back from swapper_space to tmpfs file
2214                          * mapping. However, page->index will not change
2215                          * because we have a reference on the page.
2216                          */
2217                         if (page->index > end) {
2218                                 /*
2219                                  * can't be range_cyclic (1st pass) because
2220                                  * end == -1 in that case.
2221                                  */
2222                                 done = 1;
2223                                 break;
2224                         }
2225
2226                         done_index = page->index;
2227
2228                         lock_page(page);
2229
2230                         /*
2231                          * Page truncated or invalidated. We can freely skip it
2232                          * then, even for data integrity operations: the page
2233                          * has disappeared concurrently, so there could be no
2234                          * real expectation of this data interity operation
2235                          * even if there is now a new, dirty page at the same
2236                          * pagecache address.
2237                          */
2238                         if (unlikely(page->mapping != mapping)) {
2239 continue_unlock:
2240                                 unlock_page(page);
2241                                 continue;
2242                         }
2243
2244                         if (!PageDirty(page)) {
2245                                 /* someone wrote it for us */
2246                                 goto continue_unlock;
2247                         }
2248
2249                         if (PageWriteback(page)) {
2250                                 if (wbc->sync_mode != WB_SYNC_NONE)
2251                                         wait_on_page_writeback(page);
2252                                 else
2253                                         goto continue_unlock;
2254                         }
2255
2256                         BUG_ON(PageWriteback(page));
2257                         if (!clear_page_dirty_for_io(page))
2258                                 goto continue_unlock;
2259
2260                         trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2261                         ret = (*writepage)(page, wbc, data);
2262                         if (unlikely(ret)) {
2263                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2264                                         unlock_page(page);
2265                                         ret = 0;
2266                                 } else {
2267                                         /*
2268                                          * done_index is set past this page,
2269                                          * so media errors will not choke
2270                                          * background writeout for the entire
2271                                          * file. This has consequences for
2272                                          * range_cyclic semantics (ie. it may
2273                                          * not be suitable for data integrity
2274                                          * writeout).
2275                                          */
2276                                         done_index = page->index + 1;
2277                                         done = 1;
2278                                         break;
2279                                 }
2280                         }
2281
2282                         /*
2283                          * We stop writing back only if we are not doing
2284                          * integrity sync. In case of integrity sync we have to
2285                          * keep going until we have written all the pages
2286                          * we tagged for writeback prior to entering this loop.
2287                          */
2288                         if (--wbc->nr_to_write <= 0 &&
2289                             wbc->sync_mode == WB_SYNC_NONE) {
2290                                 done = 1;
2291                                 break;
2292                         }
2293                 }
2294                 pagevec_release(&pvec);
2295                 cond_resched();
2296         }
2297         if (!cycled && !done) {
2298                 /*
2299                  * range_cyclic:
2300                  * We hit the last page and there is more work to be done: wrap
2301                  * back to the start of the file
2302                  */
2303                 cycled = 1;
2304                 index = 0;
2305                 end = writeback_index - 1;
2306                 goto retry;
2307         }
2308         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2309                 mapping->writeback_index = done_index;
2310
2311         return ret;
2312 }
2313 EXPORT_SYMBOL(write_cache_pages);
2314
2315 /*
2316  * Function used by generic_writepages to call the real writepage
2317  * function and set the mapping flags on error
2318  */
2319 static int __writepage(struct page *page, struct writeback_control *wbc,
2320                        void *data)
2321 {
2322         struct address_space *mapping = data;
2323         int ret = mapping->a_ops->writepage(page, wbc);
2324         mapping_set_error(mapping, ret);
2325         return ret;
2326 }
2327
2328 /**
2329  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2330  * @mapping: address space structure to write
2331  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2332  *
2333  * This is a library function, which implements the writepages()
2334  * address_space_operation.
2335  */
2336 int generic_writepages(struct address_space *mapping,
2337                        struct writeback_control *wbc)
2338 {
2339         struct blk_plug plug;
2340         int ret;
2341
2342         /* deal with chardevs and other special file */
2343         if (!mapping->a_ops->writepage)
2344                 return 0;
2345
2346         blk_start_plug(&plug);
2347         ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2348         blk_finish_plug(&plug);
2349         return ret;
2350 }
2351
2352 EXPORT_SYMBOL(generic_writepages);
2353
2354 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2355 {
2356         int ret;
2357
2358         if (wbc->nr_to_write <= 0)
2359                 return 0;
2360         if (mapping->a_ops->writepages)
2361                 ret = mapping->a_ops->writepages(mapping, wbc);
2362         else
2363                 ret = generic_writepages(mapping, wbc);
2364         return ret;
2365 }
2366
2367 /**
2368  * write_one_page - write out a single page and optionally wait on I/O
2369  * @page: the page to write
2370  * @wait: if true, wait on writeout
2371  *
2372  * The page must be locked by the caller and will be unlocked upon return.
2373  *
2374  * write_one_page() returns a negative error code if I/O failed.
2375  */
2376 int write_one_page(struct page *page, int wait)
2377 {
2378         struct address_space *mapping = page->mapping;
2379         int ret = 0;
2380         struct writeback_control wbc = {
2381                 .sync_mode = WB_SYNC_ALL,
2382                 .nr_to_write = 1,
2383         };
2384
2385         BUG_ON(!PageLocked(page));
2386
2387         if (wait)
2388                 wait_on_page_writeback(page);
2389
2390         if (clear_page_dirty_for_io(page)) {
2391                 get_page(page);
2392                 ret = mapping->a_ops->writepage(page, &wbc);
2393                 if (ret == 0 && wait) {
2394                         wait_on_page_writeback(page);
2395                         if (PageError(page))
2396                                 ret = -EIO;
2397                 }
2398                 put_page(page);
2399         } else {
2400                 unlock_page(page);
2401         }
2402         return ret;
2403 }
2404 EXPORT_SYMBOL(write_one_page);
2405
2406 /*
2407  * For address_spaces which do not use buffers nor write back.
2408  */
2409 int __set_page_dirty_no_writeback(struct page *page)
2410 {
2411         if (!PageDirty(page))
2412                 return !TestSetPageDirty(page);
2413         return 0;
2414 }
2415
2416 /*
2417  * Helper function for set_page_dirty family.
2418  *
2419  * Caller must hold lock_page_memcg().
2420  *
2421  * NOTE: This relies on being atomic wrt interrupts.
2422  */
2423 void account_page_dirtied(struct page *page, struct address_space *mapping)
2424 {
2425         struct inode *inode = mapping->host;
2426
2427         trace_writeback_dirty_page(page, mapping);
2428
2429         if (mapping_cap_account_dirty(mapping)) {
2430                 struct bdi_writeback *wb;
2431
2432                 inode_attach_wb(inode, page);
2433                 wb = inode_to_wb(inode);
2434
2435                 mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_DIRTY);
2436                 __inc_zone_page_state(page, NR_FILE_DIRTY);
2437                 __inc_zone_page_state(page, NR_DIRTIED);
2438                 __inc_wb_stat(wb, WB_RECLAIMABLE);
2439                 __inc_wb_stat(wb, WB_DIRTIED);
2440                 task_io_account_write(PAGE_SIZE);
2441                 current->nr_dirtied++;
2442                 this_cpu_inc(bdp_ratelimits);
2443         }
2444 }
2445 EXPORT_SYMBOL(account_page_dirtied);
2446
2447 /*
2448  * Helper function for deaccounting dirty page without writeback.
2449  *
2450  * Caller must hold lock_page_memcg().
2451  */
2452 void account_page_cleaned(struct page *page, struct address_space *mapping,
2453                           struct bdi_writeback *wb)
2454 {
2455         if (mapping_cap_account_dirty(mapping)) {
2456                 mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_DIRTY);
2457                 dec_zone_page_state(page, NR_FILE_DIRTY);
2458                 dec_wb_stat(wb, WB_RECLAIMABLE);
2459                 task_io_account_cancelled_write(PAGE_SIZE);
2460         }
2461 }
2462
2463 /*
2464  * For address_spaces which do not use buffers.  Just tag the page as dirty in
2465  * its radix tree.
2466  *
2467  * This is also used when a single buffer is being dirtied: we want to set the
2468  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
2469  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2470  *
2471  * The caller must ensure this doesn't race with truncation.  Most will simply
2472  * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2473  * the pte lock held, which also locks out truncation.
2474  */
2475 int __set_page_dirty_nobuffers(struct page *page)
2476 {
2477         lock_page_memcg(page);
2478         if (!TestSetPageDirty(page)) {
2479                 struct address_space *mapping = page_mapping(page);
2480                 unsigned long flags;
2481
2482                 if (!mapping) {
2483                         unlock_page_memcg(page);
2484                         return 1;
2485                 }
2486
2487                 spin_lock_irqsave(&mapping->tree_lock, flags);
2488                 BUG_ON(page_mapping(page) != mapping);
2489                 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2490                 account_page_dirtied(page, mapping);
2491                 radix_tree_tag_set(&mapping->page_tree, page_index(page),
2492                                    PAGECACHE_TAG_DIRTY);
2493                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2494                 unlock_page_memcg(page);
2495
2496                 if (mapping->host) {
2497                         /* !PageAnon && !swapper_space */
2498                         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2499                 }
2500                 return 1;
2501         }
2502         unlock_page_memcg(page);
2503         return 0;
2504 }
2505 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2506
2507 /*
2508  * Call this whenever redirtying a page, to de-account the dirty counters
2509  * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2510  * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2511  * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2512  * control.
2513  */
2514 void account_page_redirty(struct page *page)
2515 {
2516         struct address_space *mapping = page->mapping;
2517
2518         if (mapping && mapping_cap_account_dirty(mapping)) {
2519                 struct inode *inode = mapping->host;
2520                 struct bdi_writeback *wb;
2521                 bool locked;
2522
2523                 wb = unlocked_inode_to_wb_begin(inode, &locked);
2524                 current->nr_dirtied--;
2525                 dec_zone_page_state(page, NR_DIRTIED);
2526                 dec_wb_stat(wb, WB_DIRTIED);
2527                 unlocked_inode_to_wb_end(inode, locked);
2528         }
2529 }
2530 EXPORT_SYMBOL(account_page_redirty);
2531
2532 /*
2533  * When a writepage implementation decides that it doesn't want to write this
2534  * page for some reason, it should redirty the locked page via
2535  * redirty_page_for_writepage() and it should then unlock the page and return 0
2536  */
2537 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2538 {
2539         int ret;
2540
2541         wbc->pages_skipped++;
2542         ret = __set_page_dirty_nobuffers(page);
2543         account_page_redirty(page);
2544         return ret;
2545 }
2546 EXPORT_SYMBOL(redirty_page_for_writepage);
2547
2548 /*
2549  * Dirty a page.
2550  *
2551  * For pages with a mapping this should be done under the page lock
2552  * for the benefit of asynchronous memory errors who prefer a consistent
2553  * dirty state. This rule can be broken in some special cases,
2554  * but should be better not to.
2555  *
2556  * If the mapping doesn't provide a set_page_dirty a_op, then
2557  * just fall through and assume that it wants buffer_heads.
2558  */
2559 int set_page_dirty(struct page *page)
2560 {
2561         struct address_space *mapping = page_mapping(page);
2562
2563         if (likely(mapping)) {
2564                 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2565                 /*
2566                  * readahead/lru_deactivate_page could remain
2567                  * PG_readahead/PG_reclaim due to race with end_page_writeback
2568                  * About readahead, if the page is written, the flags would be
2569                  * reset. So no problem.
2570                  * About lru_deactivate_page, if the page is redirty, the flag
2571                  * will be reset. So no problem. but if the page is used by readahead
2572                  * it will confuse readahead and make it restart the size rampup
2573                  * process. But it's a trivial problem.
2574                  */
2575                 if (PageReclaim(page))
2576                         ClearPageReclaim(page);
2577 #ifdef CONFIG_BLOCK
2578                 if (!spd)
2579                         spd = __set_page_dirty_buffers;
2580 #endif
2581                 return (*spd)(page);
2582         }
2583         if (!PageDirty(page)) {
2584                 if (!TestSetPageDirty(page))
2585                         return 1;
2586         }
2587         return 0;
2588 }
2589 EXPORT_SYMBOL(set_page_dirty);
2590
2591 /*
2592  * set_page_dirty() is racy if the caller has no reference against
2593  * page->mapping->host, and if the page is unlocked.  This is because another
2594  * CPU could truncate the page off the mapping and then free the mapping.
2595  *
2596  * Usually, the page _is_ locked, or the caller is a user-space process which
2597  * holds a reference on the inode by having an open file.
2598  *
2599  * In other cases, the page should be locked before running set_page_dirty().
2600  */
2601 int set_page_dirty_lock(struct page *page)
2602 {
2603         int ret;
2604
2605         lock_page(page);
2606         ret = set_page_dirty(page);
2607         unlock_page(page);
2608         return ret;
2609 }
2610 EXPORT_SYMBOL(set_page_dirty_lock);
2611
2612 /*
2613  * This cancels just the dirty bit on the kernel page itself, it does NOT
2614  * actually remove dirty bits on any mmap's that may be around. It also
2615  * leaves the page tagged dirty, so any sync activity will still find it on
2616  * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2617  * look at the dirty bits in the VM.
2618  *
2619  * Doing this should *normally* only ever be done when a page is truncated,
2620  * and is not actually mapped anywhere at all. However, fs/buffer.c does
2621  * this when it notices that somebody has cleaned out all the buffers on a
2622  * page without actually doing it through the VM. Can you say "ext3 is
2623  * horribly ugly"? Thought you could.
2624  */
2625 void cancel_dirty_page(struct page *page)
2626 {
2627         struct address_space *mapping = page_mapping(page);
2628
2629         if (mapping_cap_account_dirty(mapping)) {
2630                 struct inode *inode = mapping->host;
2631                 struct bdi_writeback *wb;
2632                 bool locked;
2633
2634                 lock_page_memcg(page);
2635                 wb = unlocked_inode_to_wb_begin(inode, &locked);
2636
2637                 if (TestClearPageDirty(page))
2638                         account_page_cleaned(page, mapping, wb);
2639
2640                 unlocked_inode_to_wb_end(inode, locked);
2641                 unlock_page_memcg(page);
2642         } else {
2643                 ClearPageDirty(page);
2644         }
2645 }
2646 EXPORT_SYMBOL(cancel_dirty_page);
2647
2648 /*
2649  * Clear a page's dirty flag, while caring for dirty memory accounting.
2650  * Returns true if the page was previously dirty.
2651  *
2652  * This is for preparing to put the page under writeout.  We leave the page
2653  * tagged as dirty in the radix tree so that a concurrent write-for-sync
2654  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
2655  * implementation will run either set_page_writeback() or set_page_dirty(),
2656  * at which stage we bring the page's dirty flag and radix-tree dirty tag
2657  * back into sync.
2658  *
2659  * This incoherency between the page's dirty flag and radix-tree tag is
2660  * unfortunate, but it only exists while the page is locked.
2661  */
2662 int clear_page_dirty_for_io(struct page *page)
2663 {
2664         struct address_space *mapping = page_mapping(page);
2665         int ret = 0;
2666
2667         BUG_ON(!PageLocked(page));
2668
2669         if (mapping && mapping_cap_account_dirty(mapping)) {
2670                 struct inode *inode = mapping->host;
2671                 struct bdi_writeback *wb;
2672                 bool locked;
2673
2674                 /*
2675                  * Yes, Virginia, this is indeed insane.
2676                  *
2677                  * We use this sequence to make sure that
2678                  *  (a) we account for dirty stats properly
2679                  *  (b) we tell the low-level filesystem to
2680                  *      mark the whole page dirty if it was
2681                  *      dirty in a pagetable. Only to then
2682                  *  (c) clean the page again and return 1 to
2683                  *      cause the writeback.
2684                  *
2685                  * This way we avoid all nasty races with the
2686                  * dirty bit in multiple places and clearing
2687                  * them concurrently from different threads.
2688                  *
2689                  * Note! Normally the "set_page_dirty(page)"
2690                  * has no effect on the actual dirty bit - since
2691                  * that will already usually be set. But we
2692                  * need the side effects, and it can help us
2693                  * avoid races.
2694                  *
2695                  * We basically use the page "master dirty bit"
2696                  * as a serialization point for all the different
2697                  * threads doing their things.
2698                  */
2699                 if (page_mkclean(page))
2700                         set_page_dirty(page);
2701                 /*
2702                  * We carefully synchronise fault handlers against
2703                  * installing a dirty pte and marking the page dirty
2704                  * at this point.  We do this by having them hold the
2705                  * page lock while dirtying the page, and pages are
2706                  * always locked coming in here, so we get the desired
2707                  * exclusion.
2708                  */
2709                 wb = unlocked_inode_to_wb_begin(inode, &locked);
2710                 if (TestClearPageDirty(page)) {
2711                         mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_DIRTY);
2712                         dec_zone_page_state(page, NR_FILE_DIRTY);
2713                         dec_wb_stat(wb, WB_RECLAIMABLE);
2714                         ret = 1;
2715                 }
2716                 unlocked_inode_to_wb_end(inode, locked);
2717                 return ret;
2718         }
2719         return TestClearPageDirty(page);
2720 }
2721 EXPORT_SYMBOL(clear_page_dirty_for_io);
2722
2723 int test_clear_page_writeback(struct page *page)
2724 {
2725         struct address_space *mapping = page_mapping(page);
2726         int ret;
2727
2728         lock_page_memcg(page);
2729         if (mapping) {
2730                 struct inode *inode = mapping->host;
2731                 struct backing_dev_info *bdi = inode_to_bdi(inode);
2732                 unsigned long flags;
2733
2734                 spin_lock_irqsave(&mapping->tree_lock, flags);
2735                 ret = TestClearPageWriteback(page);
2736                 if (ret) {
2737                         radix_tree_tag_clear(&mapping->page_tree,
2738                                                 page_index(page),
2739                                                 PAGECACHE_TAG_WRITEBACK);
2740                         if (bdi_cap_account_writeback(bdi)) {
2741                                 struct bdi_writeback *wb = inode_to_wb(inode);
2742
2743                                 __dec_wb_stat(wb, WB_WRITEBACK);
2744                                 __wb_writeout_inc(wb);
2745                         }
2746                 }
2747                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2748         } else {
2749                 ret = TestClearPageWriteback(page);
2750         }
2751         if (ret) {
2752                 mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_WRITEBACK);
2753                 dec_zone_page_state(page, NR_WRITEBACK);
2754                 inc_zone_page_state(page, NR_WRITTEN);
2755         }
2756         unlock_page_memcg(page);
2757         return ret;
2758 }
2759
2760 int __test_set_page_writeback(struct page *page, bool keep_write)
2761 {
2762         struct address_space *mapping = page_mapping(page);
2763         int ret;
2764
2765         lock_page_memcg(page);
2766         if (mapping) {
2767                 struct inode *inode = mapping->host;
2768                 struct backing_dev_info *bdi = inode_to_bdi(inode);
2769                 unsigned long flags;
2770
2771                 spin_lock_irqsave(&mapping->tree_lock, flags);
2772                 ret = TestSetPageWriteback(page);
2773                 if (!ret) {
2774                         radix_tree_tag_set(&mapping->page_tree,
2775                                                 page_index(page),
2776                                                 PAGECACHE_TAG_WRITEBACK);
2777                         if (bdi_cap_account_writeback(bdi))
2778                                 __inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
2779                 }
2780                 if (!PageDirty(page))
2781                         radix_tree_tag_clear(&mapping->page_tree,
2782                                                 page_index(page),
2783                                                 PAGECACHE_TAG_DIRTY);
2784                 if (!keep_write)
2785                         radix_tree_tag_clear(&mapping->page_tree,
2786                                                 page_index(page),
2787                                                 PAGECACHE_TAG_TOWRITE);
2788                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2789         } else {
2790                 ret = TestSetPageWriteback(page);
2791         }
2792         if (!ret) {
2793                 mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_WRITEBACK);
2794                 inc_zone_page_state(page, NR_WRITEBACK);
2795         }
2796         unlock_page_memcg(page);
2797         return ret;
2798
2799 }
2800 EXPORT_SYMBOL(__test_set_page_writeback);
2801
2802 /*
2803  * Return true if any of the pages in the mapping are marked with the
2804  * passed tag.
2805  */
2806 int mapping_tagged(struct address_space *mapping, int tag)
2807 {
2808         return radix_tree_tagged(&mapping->page_tree, tag);
2809 }
2810 EXPORT_SYMBOL(mapping_tagged);
2811
2812 /**
2813  * wait_for_stable_page() - wait for writeback to finish, if necessary.
2814  * @page:       The page to wait on.
2815  *
2816  * This function determines if the given page is related to a backing device
2817  * that requires page contents to be held stable during writeback.  If so, then
2818  * it will wait for any pending writeback to complete.
2819  */
2820 void wait_for_stable_page(struct page *page)
2821 {
2822         if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2823                 wait_on_page_writeback(page);
2824 }
2825 EXPORT_SYMBOL_GPL(wait_for_stable_page);